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We present high-resolution measurements of the c?-axis thermal expansion and magnetostriction of
piperidinium copper bromide �C5H12N�2CuBr4. The experimental data at low temperatures are well
accounted for by a two-leg spin-ladder Hamiltonian. The thermal expansion shows a complex behavior
with various sign changes and approaches a 1=

����
T
p

divergence at the critical fields. All low-temperature
features are semiquantitatively explained within a free-fermion model; full quantitative agreement is
obtained with quantum Monte Carlo simulations.
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In recent years there has been an increasing interest in
spin compounds exhibiting magnetic field-induced quan-
tum phase transitions. Examples are a Bose-Einstein con-
densation of magnons [1,2] studied in three-dimensional
(3D) systems like coupled spin dimers [3–5] or arrays of
coupled spin-1 chains [6,7] or spin-ladders [8,9]. These
systems share a zero-field ground state with a spin gap. In a
magnetic field two quantum phase transitions are present;
at Hc1 the gap closes and at Hc2 the fully field-polarized
state is reached. An interesting scenario arises in the limit
of very weakly coupled ladders or chains where an ex-
tended temperature regime controlled by 1D physics is
expected. The low-dimensionality makes the investigation
of quantum critical properties particularly exciting, and the
thermal expansion � is especially suited for this purpose.
In fact, it has been shown that the Grüneisen parameter
� � �=C, where C is the specific heat, necessarily di-
verges at a quantum phase transition [10]. In addition, �
shows a sign change whose location in the phase diagram
indicates accumulation of entropy [11]. For D< 1=�,
where � is the correlation length exponent, even � will
diverge at criticality. For a spin-ladder, � � 1=2, the ther-
mal expansion at the critical fields is expected to behave as
�� 1=

����
T
p

[10]. Experimentally, this is largely unexplored
due to the lack of suitable model materials.

In this letter we present a study of the thermal expansion
and the magnetostriction of single crystalline piperidinium
copper bromide �C5H12N�2CuBr4 whose magnetic subsys-
tem is a very good realization of a two-leg spin ladder [8]
with Hamiltonian

 H �
XN
i�1

�J?Si;1Si;2 � Jk�Si;1Si�1;1 � Si;2Si�1;2�

� g�BH�S
z
i;1 � S

z
i;2��: (1)

The critical fields Hc1 � 6:8 T and Hc2 � 13:9 T imply
J?=kB � 12:9 K and Jk=kB � 3:6 K for the rung and leg

couplings, respectively [12]. The interladder couplings are
very weak since no indications of three-dimensional mag-
netic ordering are present down to T ’ 100 mK [15]. On
approaching each of the critical fields, we find highly
anomalous temperature dependencies of �. For 0:3K &

T & 2 K, ��T� approaches 1=
����
T
p

divergences with oppo-
site signs for Hc1 and Hc2 in agreement with the expected
quantum critical behavior. Away from the critical fields, �
shows a complex structure with various sign changes,
essentially antisymmetric with respect to �Hc1 �Hc2�=2.
All these low-temperature features are reproduced semi-
quantitatively within a model of free fermions, although
the latter is valid only close to Hc1=c2.
�C5H12N�2CuBr4 crystallizes in a monoclinic structure

[14]. The legs of the spin ladders are oriented along the a
axis and the rungs roughly (	20
) along c?. The single
crystals used in this study have been grown from solution
[15]. We present high-resolution measurements of the
thermal expansion ��T� � 1=L0@�L�T�=@T, magneto-
striction "�H� � �L�H�=L0 and its field derivative � �
@"�H�=@H. Here, L0 is the sample length along c?; �L�T�
and �L�H� denote the temperature- and field-induced
change at constant H and T, respectively. The measure-
ments have been performed on a home-built capacitance
dilatometer in magnetic fields H k c? up to 17 T for
0:3K & T & 10 K.

Figure 1 displays "�H� measured at various constant
temperatures. At T � 335 mK, "�H� is field independent
up to about 6 T; then it continuously increases until it
saturates for H * 15 T. This behavior strongly resembles
that of the low-temperature magnetization [8]. The inset of
Fig. 1 shows the magnetostriction coefficient ��H� with
two pronounced peaks at 335 mK, whose magnitude shrink
with increasing temperature until around 2 K both peaks
merge into one broad plateau which further broadens to-
wards higher T. In order to identify the critical fields
specified above we used linear interpolations of the peak
positions of ��H� towards T � 0 K.
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In Fig. 2(a) we summarize the thermal expansion data
for H & Hc1. In zero field, ��T� has a pronounced peak
around 5 K followed by a strong increase above about
15 K. The latter is due to the usual thermal expansion of
phononic origin, while the 5 K peak is well described by a
Schottky formula indicating the thermal occupation of
triplet excitations, see discussion below. These degenerate
triplets are split upon increasing magnetic field which is
reflected in a broadening and slight shift of the Schottky
peak towards lower T. For H * 5:5 T, the magnitude of
the peak starts to grow until around Hc1 a continuous
increase of��T� down to our lowest T ’ 0:3 K is observed.
For H >Hc1, this low-T increase rapidly weakens and �
becomes even negative for H � 7:2 T; see Fig. 2(b). With
further increasing field this sign change shifts towards
higher T and a clear minimum-maximum structure of
��T� becomes visible, whose amplitude continuously de-
creases until a comparatively featureless ��T� curve is
reached at the aforementioned symmetry field �Hc1 �
Hc2�=2 � 10:4 T. On approaching Hc2 we observe the
same systematics of ��T� but with inverted signs,
Fig. 2(c); in particular, a negative Schottky peak develops
above Hc2; see Fig. 2(d).

We now turn to the theoretical discussion of the mag-
netic contributions to the thermal expansion and magneto-
striction arising from the Hamiltonian (1). As
Jk=J? 	 1=4 for �C5H12N�2CuBr4 we can resort to the
strong coupling limit Jk � J? where the physics emerges
in a transparent way. In this limit, the Hamiltonian (1)
represents a sum of weakly interacting dimers in one
dimension. For kBT � Jk, the magnetic contribution to
� is then attributed to the thermal occupation of single-
dimer states described by the Schottky formula

 �Sch�
�e��h�J?��h�1�e2�h��J?�1�e

�h�e2�h��

kBT2�1�e�h�e2�h�e��h�J?��2
; (2)

where 1=� � kBT and � � 1
VD

@J?
@p with the volume per

dimer VD ’ 859 �A3 [15]. A fit for H � 0 [dashed line in
Fig. 2(a)] yields � ’ 11:7 10�5 [16] implying a uniaxial
pressure, pc? k c?, dependence @ lnJ?=@pc? ’ 55%=GPa.
In lowest order, the leg coupling leads to a mean-field shift
of the effective magnetic field, h � g�BH � JkM=�g�B�,
where M is the magnetization of a single dimer. The
Schottky formula (2) accounts well for the field depen-
dence of the 5 K peak (not shown). In particular, it iden-
tifies for any given temperature a unique magnetic field
where the thermal expansion vanishes and changes sign,
see Fig. 3. Upon decreasing temperature, the positions of
vanishing � in the (H, T) phase diagram shift to lower
fields towards the location of the singlet-triplet transition,
h ’ J?.

However, when temperature is of order kBT ’ Jk the
behavior changes qualitatively and the Schottky formula
ceases to be valid. In contrast to a simple singlet-triplet
level crossing of isolated dimers, the kinetic energy of the
triplet excitations gives rise to an extended gapless phase at
zero temperature terminated by two quantum critical
points at Hc1=c2. In the low-T limit kBT � J?, the
Hamiltonian (1) can be mapped onto an effective XXZ
spin-1=2 chain [17–19] that is described by interacting
tight-binding Jordan-Wigner fermions with bandwidth Jk
and chemical potential tuned by magnetic field, � �
g�BH � J? �O�Jk�. Here, the magnetic field and the
pressure-dependent J?�p� only enter via the chemical
potential � which implies essentially the same behavior

FIG. 2 (color online). Thermal expansion � � 1=L@L=@T
measured along the c? direction in various magnetic fields
(a) below Hc1, (b),(c) between Hc1 and Hc2, and (d) above
Hc2. Note the logarithmic temperature scale. The dashed line
in (a) is a fit with the Schottky formula Eq. (2). The arrows signal
the order of the ��T� curves with increasing field.

FIG. 1 (color online). (a) Magnetostriction " � �L�H�=L and
(b) � � @"=@H measured along c?. The solid line in (a) is a fit
of " at 335 mK within a free-fermion model.
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for the derivatives of the free energy with respect to H and
p. This not only explains the close correspondence be-
tween magnetization [8] and "�H� of Fig. 1 in the low-T
limit but it also provides an intuitive interpretation of the
various sign changes of the thermal expansion �.

The sign change of thermal expansion, � / @S=@p,
reveals the locations of extrema of entropy, S, in the phase
diagram that originate from the proliferation of low-energy
fluctuations close to a quantum critical point [11]. In the
present context, the close vicinity of two quantum critical
points Hc1=c2 gives rise to a rich structure in �, see Fig. 2,
whose sign changes we summarized in Fig. 3. At elevated
temperatures, thermodynamics is not able to resolve the
distance between the critical points, viz., the bandwidth Jk
of triplet excitations. For temperatures Jk < kBT � J?,
this is reflected in a broad single peak in the entropy as a
function of magnetic field S�H�, or, equivalently, as a
function of the chemical potential �, indicating the
singlet-triplet level crossing. This peak implies a single
sign change of � / @S=@J? / @S=@� in agreement with
the prediction of the Schottky formula (2). At kBT ’ Jk,
however, thermodynamics starts to resolve the triplet band-
width which is reflected in a splitting of the entropy peak
into two separate maxima whose positions approach the
critical points Hc1=c2 for T ! 0 K. The bifurcation of the
entropy peak is the origin of the rich structure of �. The
two maxima and the enclosed minimum of S�H� result in
three consecutive sign changes of ��H� for kBT & Jk as
shown in Fig. 3.

Close to criticality, H 	 Hc1=c2 and kBT � Jk, the in-
teractions among Jordan-Wigner fermions can be ne-
glected and the critical model reduces to free non-
relativistic fermions. The resulting singular part of the
free energy has the scaling form

 Fcr;n � jg�B�H�Hcn�j
3=2�n

�
kBT

g�B�H �Hcn�

�
; (3)

where n � 1, 2 label the two distinct critical points and the
scaling function�was specified in [20]. Assuming that the
critical fields Hc1=c2 are smooth functions of pressure, it
follows from (3) that "�H� / @Fcr;n=@p / @Fcr;n=@Hcn ap-
proaches the same characteristic square root behavior as
the magnetization in the zero temperature limit, "�H� �����������������������
jH �Hcnj

p
; this is already apparent in the low-T data in

Fig. 1. For the critical thermal expansion the previously
announced divergence �� 1=

����
T
p

is found for jH �
Hcnj � T. Note that a divergent thermal expansion at a
quantum critical point is not prohibited by any fundamen-
tal principle. However, (3) also predicts a divergent critical
contribution to the compressibility that might result in a
preemptive first-order transition of the elastic system [21].

In order to capture the complex behavior of ��T;H� for
kBT < Jk we employ a simple fitting formula

 �FF � ��
Z �

��

dk
2�

��� 	k�

4kBT2cosh2���� 	k�=�2kBT��
; (4)

where� � g�B�2H �Hc1 �Hc2�=2, the dispersion 	k �
1
2g�B�Hc2 �Hc1� cos�k�, and � measures the pressure
dependence of the singlet-triplet crossing field, � �
g�B�@�Hc1 �Hc2�=@p�=�2VD�. Formula (4) follows
from a free-fermion model with a pressure dependent
chemical potential � and dispersion 	k; note that it repro-
duces the qualitatively correct 1=

����
T
p

behavior close to the
critical fields. The fit of "�H� at 335 mK, see Fig. 1,
identifies � ’ 12 10�5 with the saturation value of
"�H� at large fields, in good agreement with the value
obtained from the Schottky fit of ��T�. Having � fixed,
Eq. (4) strikingly reproduces the complex behavior of ��T�

FIG. 3 (color online). Regions of positive and negative thermal
expansion � along the c? axis of �C5H12N�2CuBr4. The triangles
and circles denote the positions of vanishing � determined from
an interpolation along the T and H axis, respectively. In the
shaded area � is negative. The dashed line indicates the zeros of
� as predicted by the Schottky formula (2). The solid lines show
zeros of � derived from the free-fermion fitting formula (4),
which for T � 0 start at the two quantum critical points located
at Hc1 � 6:8 T and Hc2 � 13:9 T and at �Hc1 �Hc2�=2. Note
that a crossing point of lines of zeros as suggested by Eq. (4) is
not realized as the regions of negative � are connected.
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FIG. 4 (color online). Panels (a)–(c) compare representative
experimental data (symbols) of ��T� to theoretical curves (lines)
obtained within the free-fermion model (4). All these curves are
fully determined by Hc1=c2 and a factor � obtained from a fit to
"�H� data at T � 335 mK (see Fig. 1). Panel (d) shows the
thermal expansion near Hc1=c2 on a double-logarithmic scale
together with the limiting 1=

����
T
p

behavior (dashed line).
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in the low-T limit for all magnetic fields without further
adjustment of any parameter, see Fig. 4. In particular,
Eq. (4) confirms the three consecutive sign changes of �
at lowest T as discussed above. The fit also demonstrates in
Fig. 4(a) that in the measured temperature range the off-
critical curve at H � 6:6 T is even larger than the critical
one at Hc1 � 6:8 T, but is expected to cross the latter at
lower T. In Fig. 4(d) we show the ��T� curves that are
closest to the two critical fields on a double-logarithmic
scale. Whereas � at H � 6:8 T is critical, the one at H �
14 T is slightly off critical. The dashed line indicates the
limiting 1=

����
T
p

behavior. The deviation of the latter from
the critical H � 6:8 T fitting curve (solid line) is attributed
to certain corrections to scaling that are still sizeable in the
considered temperature range; note, however, that the sim-
plistic formula (4) does not correctly capture these correc-
tions. The small offset between the experimental data and
the fit in Fig. 4(d) amounts to a systematic error in the
effective prefactor � at criticality of ’10% [22].

Figure 5 compares the uniaxial magnetostriction coeffi-
cient � along the c? axis with the ones along the orthogonal
a and b directions. While the former is nearly symmetric
with respect to �Hc1 �Hc2�=2 this symmetry is missing in
the other two directions. This difference is due to the
additional contribution arising from the pressure depen-
dence of the leg coupling Jk. It turns out that the depen-
dence of Jk on uniaxial pressure pc? k c? is very weak,
j@Jk=@pc? j � j@J?=@pc? j, such that its influence can be
neglected. The single dominant pc?-dependent energy
scale J? causes peaks in � at Hc1=c2 that are of comparable
sizes as @Hc1=@pc? 	 @Hc2=@pc? / @J?=@pc? [12]. This
is not the case for the orthogonal directions where the
respective uniaxial pressure dependencies of J? and Jk
are of similar magnitudes. In particular, the small relative
size of the peaks at Hc1 	 �J? � Jk�=g�B can be under-
stood as a partial cancellation of the two pressure depen-
dencies @Jk=@pn � @J?=@pn yielding a small @Hc1=@pn,
with n � a, b. Taking the pressure dependencies of both,
J? and Jk, into account, we find excellent quantitative

agreement with quantum Monte Carlo simulations of the
Hamiltonian (1), solid lines in Fig. 5 [22].

In summary, we measured the magnetostriction and
thermal expansion of �C5H12N�2CuBr4. For both physical
quantities we find excellent agreement with calculations
based on a two-leg spin-ladder Hamiltonian (1). The ther-
mal expansion � is critically enhanced as 1=

����
T
p

close to
the two quantum critical points atHc1=c2 and shows various
sign changes as a function of H and T signaling entropy
extrema in the phase diagram. This complex behavior of �
is semiquantitatively explained within a model of free
fermions, and we find quantitative agreement with quan-
tum Monte Carlo calculations.
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FIG. 5 (color online). Anisotropic magnetostriction coeffi-
cients � (symbols) measured along c?, a, and b. The lines are
quantum Monte Carlo fits using the experimental values of J?
and Jk and two additional parameters for each direction, which
measure the uniaxial pressure dependencies of J? and Jk [22].
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