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Abstract

Background: The results of multivariable regression models are usually summarized in the form of parameter
estimates for the covariates, goodness-of-fit statistics, and the relevant p-values. These statistics do not inform us
about whether covariate information will lead to any substantial improvement in prediction. Predictive ability
measures can be used for this purpose since they provide important information about the practical significance of
prognostic factors. R2-type indices are the most familiar forms of such measures in survival models, but they all have
limitations and none is widely used.

Methods: In this paper, we extend the total gain (TG) measure, proposed for a logistic regression model, to survival
models and explore its properties using simulations and real data. TG is based on the binary regression quantile plot,
otherwise known as the predictiveness curve. Standardised TG ranges from 0 (no explanatory power) to 1 (‘perfect’
explanatory power).

Results: The results of our simulations show that unlike many of the other R2-type predictive ability measures, TG is
independent of random censoring. It increases as the effect of a covariate increases and can be applied to different
types of survival models, including models with time-dependent covariate effects. We also apply TG to quantify the
predictive ability of multivariable prognostic models developed in several disease areas.

Conclusions: Overall, TG performs well in our simulation studies and can be recommended as a measure to quantify
the predictive ability in survival models.

Keywords: Total gain, Predictive ability, Cox proportional hazards model, Non-proportional hazards, Time-dependent
covariate

Background
Predictive ability measures are useful in medical practice
as well as biomedical research. Measures that quantify the
degree of association between the dependent and explana-
tory variables in a model are one class of such measures.
In this class, R2 is the most familiar predictive ability
measure for the linear regression model E(Y |Z) = β ′Z
where Z and β are a set of covariate and parameter vec-
tors, respectively. R2 is the proportion of variability in the
outcome that is explained through the covariates in the
model, where variability is measured by the variance of
the outcome variable

R2 = Var(Y ) − E(Var(Y |Z))

Var(Y )
. (1)
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To estimate R2 in simple linear regression, Var(Y ) and
E(Var(Y |Z)) can be replaced with the (scaled) estimates
of SST (total sum of squares) and SSE (residual sum of
squares), respectively. R2 has several appealing properties,
of which the most important are: i) R2 ∈ [ 0, 1]: it lies
between 0 (representing no predictive ability) and 1 (per-
fect predictive ability); ii) monotonicity: it increases with
the size of the covariate effect, ‖β‖, in the model; and
iii) interpretability as the percentage of variability in the
outcome that is explained by the covariates [1].
Due to its popularity, analogous R2-type statistic have

been developed for other regression models [2], includ-
ing logistic and survival models [1, 3]. Logistic regression
has wide applications in medical research. The response
variable in this model is a binary variable Y, which takes
the value 1 for those experiencing the event of interest,
e.g. cases, and 0 for others, e.g. controls. In this model,
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the mean of Y, the probability of experiencing the event, is
π . The model is represented by logit(π |Z) = β ′Z. Many
R2 counterparts have been proposed for use in logistic
regression [2]. Since the predictions for the outcome vari-
able are expressed as event probabilities in this model,
different functions have been proposed to replace Var(Y )

and E(Var(Y |Z)) in Equation 1. One such example is the
(expected) Brier scores [4] under the null and the model
with covariate Z.
For a logistic model, discrimination measures [5, 6]

can be regarded as an alternative class of predictive abil-
ity measures (see Table one in [6]). The c-statistic [7]
belongs to this class which has been extended to sur-
vival models. The c-index is identical to the area under
the receiver operating characteristic (ROC) curve [6]. It
can be interpreted as the chance that a case will have a
higher predicted probability of event occurrence than a
control. The c-statistic is a rank-order statistic for predic-
tions against true outcomes, and ranges between 0.5 (no
discrimination) to 1 (perfect discrimination).
In 1999, Copas [8] proposed a new approach to sum-

marise the predictive ability of a logistic regression model.
The logit rank plot is based on the cumulative distribu-
tion function of the prognostic index (PI) β ′Z. Later, Bura
and Gastwirth [9] proposed the binary regression quantile
plot, also known as predictiveness curves [10]. A predic-
tiveness curve displays the distribution of estimated (or
predicted) event probabilities versus their quantiles. Bura
and Gastwirth [9]’s approach differs from the receiver-
operating characteristic (ROC) curve and the logit rank
plot of Copas [8] as it does not classify subjects into
high risk or low risk classes. Bura and Gastwirth [9]
extended the plot and proposed a new measure of predic-
tive ability, named total gain (TG), for a logistic regression
model. TG is defined as the integrated absolute difference
between the predicted event probabilities and the ‘aver-
age’ event probability over the cumulative distribution
function of the PI. Bura and Gastwirth [9] also proposed
a standardised counterpart TGSTD which, similar to R2

in linear regression, lies between 0 and 1. Although, in
principle, Bura and Gastwirth’s measures can be imme-
diately applied to survival data, their properties have not
been investigated in survival data where censoring is
present.
Many analogous R2-type statistics have been proposed

for the survival models [11]. Some of the measures
are only defined for the Cox proportional hazards (PH)
model [12, 13], and some have been generalised for use
with more general types of survival models [14, 15].
However, as has been shown by Choodari-Oskooei
et al. [1, 3] and others [16], they all have shortcomings.
The adverse effect of censoring on most of the mea-
sures is one of the main reasons for this. Nonetheless,
based on their comprehensive empirical investigations,

Choodari-Oskooei et al. [1, 3] recommended a set of
measures for practical application. They are R2

PM, R2
D,

and ρ2
W - see Additional file 1 for their definition. These

statistics quantify the amount of prognostic information
resulting from the model and provide an overall mea-
sure of predictive ability for the whole follow-up period.
Also, Graf et al. [14] proposed R2

BS(t) which uses the
(time-dependent) marginal and conditional Brier scores
to replace Var(Y ) and E(Var(Y |Z)) in Equation 1 - see
Additional file 1. R2

BS(t) quantifies the accuracy of (sur-
vival) probability predictions at the individual level at a
particular time-point. Among the above four measures,
R2
BS(t) is the only statistic that can explicitly assesses

the model’s (predictive) performance at any time point
over the follow-up period. In their current form, R2

PM,
R2
D, and ρ2

W are unsuitable for this purpose, hence their
application is limited. For example, they can not be
applied to models with time-dependent covariate effects
included.
The purpose of the present article is fourfold. First,

we extend the predictiveness curve, the TG statistic, and
its counterpart TGSTD to survival models. Second, we
explore their properties in survival models using exten-
sive simulation studies. Third, we show the relationship
between a (version of) total gain measure which is based
on the squared error loss function with the Schemper’s
V -measure [17] for binary outcomes and R2

BS for survival
models. Fourth, we discuss the application of TG in prog-
nostic modelling and compare its estimates to the those
of other recommended measures using real data. We also
show that both TG and TGSTD explicitly assess the per-
formance of the model at a specific time point over the
follow-up period.
The structure of the paper is as follows. In

“Methods”, we describe the predictiveness curve and
the TG statistic for a logistic regression model. In
“Extension to survival models”, we propose our extension
to survival models. We use a real data set from breast
cancer to illustrate the steps that should be taken to
draw the predictiveness curve, and also to estimate both
TG(t) and TGSTD(t) for a survival model. In “Results”,
we present the results of our simulation studies to explore
the performance of the proposed measure(s) for sur-
vival models under numerous scenarios. We study the
impact of censoring, covariate distribution, influential
(extreme and outlier) observations, and non-proportional
hazards (non-PH) on the measure. We also investigate
the monotonicity property of the measure as well as the
effect of categorising continuous prognostic factors. In
“Applications”, we apply our proposed measures to real
data from several studies, and compare the results to those
from other recommended R2-type measures. Finally,
we discuss the findings and make recommendations in
“Discussion”.
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Methods
Total gain (TG) measure
The total gain (TG) measure [9] is based on the predictive-
ness curve [10]. We first describe this curve in a logistic
regression model. We then extend the plot and present an
analogous TGmeasure for survival models.

Predictiveness curve in logistic regression
Let Y denote a binary outcome variable Y ∈ {0, 1},
such as incidence of disease or occurrence of an event
within a specified time period and let Z denote a set
of prognostic factors (or covariates) used to predict the
outcome. For example, elements of the Framingham risk
score (age, gender, total and high-density lipoprotein
cholesterol, systolic blood pressure, treatment for hyper-
tension and smoking) have been used in logistic regression
to predict occurrence of a cardiovascular event (http://
hp2010.nhlbihin.net/atpiii/calculator.asp). In the multi-
variable logistic regression model, we can estimate the
predicted risk associated with the value (of prognostic fac-
tors) Z = z as π |Z = Pr [Y = 1|Z = z]. Huang et al.
[10] defined the predictiveness curve as the distribution of
estimated risk over the cumulative distribution of the PI
of the model. Let υ = F(β ′Z) where F(.) is the cumula-
tive distribution function. In other words, υ represents the
proportional rank of PI across its values from the smallest
to the largest. The predicted risk associated with υ ∈ [ 0, 1]
is defined as

R(υ) = Pr [Y = 1|υ] .
In practice, β is estimated with β̂ in which case π̂ |Z =

Pr [Y = 1|β̂], υ̂ = F(β̂z), and R̂(υ) = Pr [Y = 1|υ̂]. In
effect, the predictiveness curve is a plot of the risk R(υ)

versus the (scaled) ranks of PI. Plotting the risks against
the ranks of PI enables us to compare different risk scores
from different models as all score values are being trans-
formed to a common scale, i.e. between 0 and 1. Another
property of the plot is that it remains invariant to mono-
tonic transformation of the PI - all that matters is that
Pr [Y = 1|Z = z] is an increasing function of the PI.
In logistic regression, the estimated risks are a mono-

tonic function of the PI. Therefore, the curve is in effect
a P-P plot of the cumulative distribution function of the
estimated risks themselves. This gives the curve a useful
interpretation as it shows the proportion υ of individuals
in the study with estimated risks less than R(υ).
Let π0 = Pr [Y = 1] denote the overall prevalence of

disease or occurrence of an event. Its estimate π̂0, which
can be regarded as the estimate of the ‘average’ event
probability for all individuals, can obtained from the null
model. For a completely ‘uninformative’ prognostic fac-
tor, the predictiveness curve is a horizontal line R(υ) =
π0 because in this scenario π |Z = Pr [Y = 1|Z = z]=
Pr [Y = 1]= π0 for all individuals. On the other hand,

a perfect prognostic factor assigns π |Z = 1 for the pro-
portion π0 of subjects with Y = 1 and π |Z = 0 for the
proportion 1−π0 with Y = 0. The predictiveness curve in
this scenario is the step function R(υ) = I[ (1 − π0) < υ],
where I[·] is the indicator function. For essentially all
recognised prognostic factors, the plot lies between
these two extremes. We will illustrate this in Fig. 1 of
Section “Extension to survival models” when we present
our extension to survival models.

TG in logistic regression
TheTG statistic can be directly visualised from the predic-
tiveness curve. It is a non-negative, unitless measure of the
total cumulative distance between the average risk prob-
ability, π0, and the estimate of risk over the cumulative
distribution function of the PI

TG =
∫ 1

0
|R(υ) − π0| dυ. (2)

Bura and Gastwirth [9] showed that TG has an upper
bound of 2π0(1−π0). This can be used as a ‘scaling’ factor
to standardise the measure

TGSTD = TG
2π0(1 − π0)

(3)

so that, similar to the other analogous R2-type measures,
TGSTD ∈ [ 0, 1].
Based on the normal approximation, Bura and

Gastwirth [9] developed a (complex) asymptotic formula
for the variance of TG in logistic regression - see
Additional file 1. The formula is based on the normal
approximation to π̂ . For this reason, the proposed
(asymptotic) variance formula might not provide a good
approximation if the (effective) sample size is small and π̂

is near 0 or 1. However, bootstrap resampling can be used
for this purpose in both small and large sample sizes.

Relationship to Brier score and Schemper’s V
For a binary outcome, the standardised total gain statis-
tic in Equation 3 uses the mean absolute deviation (i.e.
an average L1-norm function) between the model-based
predicted risk probabilities (π |Z) and the average risk π0
to provide a measure of predictive ability. Mean squared
deviation (i.e. an average L2-norm function) is an alterna-
tive loss function that can be used to defineTGSTD. In fact,
Pepe et al. [18] proposed the following R2-type measure
using the squared error loss function

R2
Pepe = [π0(1 − π0)]−1

∫ 1

0
(R(υ) − π0)

2dυ. (4)

It can be shown that (see Additional file 1) in a correctly-
specified model, R2

Pepe becomes identical to the Schemper
V -measure [17] based on the Brier score for a binary
outcome

http://hp2010.nhlbihin.net/atpiii/calculator.asp
http://hp2010.nhlbihin.net/atpiii/calculator.asp
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Fig. 1 Predictiveness curve, TG(t) and TGSTD(t) at 2 years in the breast cancer study. a the Kaplan-Meier survival estimates over time,π̂0(t); b plot of
predicted survival probabilities S(t∗|z; β̂) vs the PI of the model; c the predictiveness curve R(υ ; t∗) at t∗ = 2; d TG(t) is the shaded area - see text
and Additional file 2 for the prognostic factors included in the model

VB =
∑n

i (Yi − π0)2 − ∑n
i (Yi − πi|Z)2∑n

i (Yi − π0)2
(5)

where n is the sample size. Mittlbock and Schemper [19]
studied VB for a logistic model and Graf et al. [14] pro-
posed a modified version of it for survival models, i.e. R2

BS
- see Additional file 1.

Extension to survival models
In this section, we extend the predictiveness curve and the
TG statistic to a survival model with a focus on the Cox
PH regression model.

Model and notation
In a survival study with n subjects, denote by Ti and Ci
(i = 1, 2, · · · , n) the failure and censoring times. For indi-
vidual i we observe Xi = min(Ti,Ci), and δi = I(Ti ≤ Ci).
The Cox PH model assumes that the conditional hazard
function

h(t|Z;β) = h0(t)exp(β ′Z)

where t is a non-negative random variable denoting the
time to a failure event, and h0(t) is the baseline hazard.
For this model, S0(t) = exp

{
−∫ t

0h0(u)du
}
represents the

baseline survival function, and S(t|Z;β) = S0(t)exp(β
′Z)

is the survival function for the model with covariate
vector Z.

Predictiveness curve and TG for a survival model
In prognostic studies of survival data, we are generally
interested in the accuracy of the predictions in terms of
survival probabilities. For this reason, we define the pre-
dictiveness curve and TG and TGSTD statistics based on
the (predicted) survival probabilities from a fitted model.
This means R(υ) is constructed from (the estimates of )
S(t|Z;β) in which case π0 is replaced with the Kaplan-
Meier survival estimate at time t, π̂0(t). The correspond-
ing predictiveness curve is a function of time. Therefore,
a time-dependent predictiveness curve at time t is defined
as

R(υ ; t) = Pr[T > t|υ] (6)

where υ = F(β ′Z) is the cumulative distribution function
- i.e. υ ∈[ 0, 1] is the proportional rank of PI across its val-
ues from the smallest to the largest. The corresponding
time-dependent TG(t) measure at time t is

TG(t) =
∫ 1

0
|R(υ ; t) − π0(t)| dυ. (7)

Similar to the logistic regression case, it can be shown
that TG(t) has an upper bound of 2π0(t)(1 − π0(t)) [9].
Therefore,

TGSTD(t) = TG(t)
2π0(t)(1 − π0(t))

(8)

In practice, β is estimated with β̂ in which case π̂(t)|Z =
Pr[T > t|β̂], υ̂ = F(β̂z), and R̂(υ ; t) = Pr [T > t|υ̂].
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The Cox PH regression model has been used to develop
a multivariable prognostic model for breast cancer [20].
The proposed model, which includes several factors, is
based on a cohort study by the German Breast Cancer
Study Group in primary node positive breast cancer [21] -
see “Applications” and Additional file 2 for further details.
Figure 1(a) shows the Kaplan-Meier plot of recurrence-
free survival probabilities π0(t) for this study. We use this
data set to illustrate the steps that should be taken to
estimate both TG(t) and TGSTD(t):

1. Choose a clinically relevant time point t∗, e.g. 2 years
in the breast cancer study [20].

2. Fit the model with covariate vector Z and obtain the
predicted survival probabilities given covariate vector
Z at time t∗, i.e. S(t∗|z; β̂). The Kaplan-Meier
estimate of survival for all individuals at time t∗
should also be obtained, i.e. π̂0(t∗) - Fig. 1(a).

3. Plot the estimates of survival probabilities from the
model S(t∗|z; β̂) against the PI, i.e. Fig. 1(b).

4. Replace the actual values of the PI with its
proportional ranks υ - see Fig. 1(c). This is the
predictiveness curve for the survival probability
predictions at t∗ = 2 years. In this graph the dashed
line represents π̂0(t∗), i.e. the Kaplan-Meier survival
estimate at t∗ = 2 years, and the solid curve is the
predictiveness curve for the model with covariate
vector Z.

5. The shaded area between the solid curve and the
dashed line in Fig. 1(d) is TG(t∗) and can be
considered as the gain in terms of predictive ability
when using prognostic factors Z compared with not
using them.

6. T̂GSTD(t∗) is the ratio of the area between the solid
curve and the dashed line, i.e. T̂G(t∗), to
2π̂0(t)(1 − π̂0(t)).

In this example, T̂G(2) and T̂GSTD(2) are 0.13 (95%
bootstrap CI: 0.11-0.15) and 0.33 (95% bootstrap CI: 0.29-
0.38), respectively.

Results
Simulation study
We conducted extensive simulation studies to explore
the properties of TG(t) and TGSTD(t). Choodari-Oskooei
et al. [1] described the properties that a ‘good’ mea-
sure of predictive ability for a survival model should
possess. They are: i) independence from censoring; ii)
monotonicity; iii) robustness against influential (extreme
and outlier) observations; and iv) interpretability. Our
simulations, therefore, were carried out to explore the
performance of the measures with respect to these
criteria.
In this section, we first describe the simulation model.

Then, we present the results of simulations and assess the

performance of the measures with respect to the above-
mentioned criteria. We investigate the upper bound of
both TG(t) and TGSTD(t), as well as the impact of non-
proportional hazards on TGSTD(t). The simulation model
(exponential), censoring mechanisms (random censor-
ing), censoring proportions, covariate distributions (nor-
mal, positively skewed, and negatively skewed), and
covariate effects assumed in our studies are explained
below.

Simulation of censored time-to-event data
We simulated time-to-event data from the exponential
distribution with baseline hazard rate λ. The survival time
in a proportional hazards model with a covariate, Z, was
simulated as

T = − ln(U)

λ
exp(−βZ) (9)

where U is sampled from the standard uniform distri-
bution, U(0, 1). To generate randomly censored survival
times, we followed guidelines provided by Burton et al.
[22].

Design parameters
Covariate distribution and effects: We study the measures
in the context of multiple regression where the PI, i.e. the
linear predictor, in the model is generally a function of
several variables. As a result of the central limit theorem
[1], the prognostic index should tend to Normality as the
dimension of the parameter vector β increases. However,
skewed prognostic factors are not uncommon in medical
research - for example see the distribution of the num-
ber of positive lymph nodes (skewness: 2.8 and Kurtosis:
16.2) and progesterone receptor (skewness: 4.8 and Kur-
tosis: 37.8) in the breast cancer data set studied in [1].
Thus, we conducted our simulation study for three covari-
ate distributions: normal N(0, 1); negatively skewed with
skewness of −2.8; and positively skewed with skewness of
2.8. We applied the method proposed by Fleishman [23]
to transform the standard normal distribution to skewed
distributions with mean 0 and variance 1. For all covariate
distributions, we carried out our simulations under four
covariate effects of exp(β) = {1.25, 1.5, 2, 4}.
Censoring mechanisms: we carried out our simulations

under both random and type I (or administrative) censor-
ing with 20%, 50%, and 80% censoring proportions. Since
the results were very similar, we only present the results
under the random censoring condition.
Sample size and the number of replicates: sample size

was set at 500 individuals, and the number of replicates
was 5,000 is all experimental conditions.

Uncensored data
In this section, we present the results for TGSTD(t) and
discuss those for TG(t) in uncensored data. The results
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of simulation studies to evaluate the means of TGSTD(t)
under 3 covariate distributions and 4 covariate effects are
presented in Table 1. In the simulations, we considered 6
time points to show the behaviour of the measure over
time. The time points are the 5 th, 10th, 15th, 20th, 25th,
and 50th centile of the exponential distribution used to
generate the survival times. They correspond to 6 time
points as T1 = 2.57, T2 = 5.28, T3 = 8.17, T4 = 11.20,
T5 = 14.43, and T6 = 34.66.
Generally, the estimates of the measure are higher

in positively skewed covariates and lower in negatively
skewed covariates. In most scenarios, there is a mild
increase with increasing time. We also conducted further
simulations beyond the time point T6 and to the max-
imal time points (data not shown). The results showed
that TG(t) is 0 at time 0. It increases until a certain point
(i.e. median of the underlying time-to-event distribution),
and then decreases again towards 0 at the maximal time
points. However, TGSTD(t) does not follow this pattern
and its trend over time depends on the size of the effect
(and distribution) of the covariate. In all scenarios, the
estimates of TG(t) and TGSTD(t) increase with increasing
covariate effects. We also carried out similar simulations
with sample sizes of 200 and 1000 which resulted in sim-
ilar conclusions. The results showed that the dispersion
of the measures decreases as sample size increases, as
expected.
Furthermore, we carried out similar simulation stud-

ies on the time-dependent version of R2
Pepe where R(υ),

and π0 in Equation 4 are replaced with the corresponding
R(υ ; t), and π0(t) - data not shown. Our results con-
firmed the underlying theory that R2

Pepe(t) and R2
BS(t) are

asymptotically the same. However, since R2
BS(t) is a non-

parametric measure, its sampling distribution has larger
variance. For example, for HR = 4 with one normally

distributed covariate the means (standard deviation) of
R2
Pepe(T6) and R2

BS(T6) are 0.40 (SD: 0.02) and 0.40 (SD:
0.04), respectively.

Censoring effect
In this section, we present the results of simulations to
study the impact of random censoring on TGSTD(t). The
results are demonstrated in Table 2. The simulations were
carried out for three covariate distributions, three censor-
ing proportions (20%, 50%, and 80%), and one covariate
effect of 0.693 (exp(β) = 2). We report the average per-
centage difference between the means of the measures in
the censored data and the corresponding means of the
measures in the uncensored condition, i.e. the percentage
bias.
The results show that censoring has almost no effect on

the estimates. The percentage difference to the means of
themeasure in censored scenarios are less than 1%, except
in one case where the censoring proportion is more than
80%. Even in this scenario, i.e. negatively skewed covari-
ate, the means (standard deviation) of sampling distribu-
tion of TGSTD(T6) for 0% and 80% censoring conditions
are 0.280 (SD: 0.022) and 0.285 (SD: 0.062), respectively –
a practically negligible difference in means.
We conducted similar simulations with sample

sizes of 200 and 1000 and different covariate effects
which resulted in similar conclusions. However, the
results showed that in general the percentage difference
decreases as the sample size increases in all censoring pro-
portions. As a measure of dispersion, we also calculated
the standard deviation of sampling distribution of the
measure (data not shown) in each experimental condition.
The results showed that the dispersion of the measures
decreases as sample size increases in all censoring con-
ditions, as expected. To illustrate this, Fig. 2 presents the

Table 1 Mean and standard deviation (in brackets) of TGSTD(t) at 6 different time points by the covariate distribution (Cov.) and
covariate effect (exp(β)) - sample size is 500, and 0% censoring

Cov. exp (β) TGSTD(T1) TGSTD(T2) TGSTD(T3) TGSTD(T4) TGSTD(T5) TGSTD(T6)

1.25 0.090 (0.019) 0.093 (0.020) 0.095 (0.020) 0.098 (0.021) 0.101 (0.021) 0.121 (0.025)

Normal 1.5 0.163 (0.020) 0.168 (0.021) 0.172 (0.021) 0.177 (0.022) 0.182 (0.022) 0.216 (0.025)

2 0.274 (0.022) 0.281 (0.022) 0.288 (0.023) 0.295 (0.023) 0.303 (0.023) 0.346 (0.024)

4 0.499 (0.025) 0.505 (0.023) 0.511 (0.022) 0.517 (0.021) 0.523 (0.021) 0.558 (0.020)

1.25 0.093 (0.023) 0.094 (0.23) 0.095 (0.023) 0.096 (0.023) 0.097 (0.022) 0.107 (0.023)

Pos. 1.5 0.187 (0.032) 0.184 (0.029) 0.182 (0.027) 0.181 (0.026) 0.181 (0.025) 0.185 (0.022)

skewed 2 0.347 (0.041) 0.325 (0.034) 0.313 (0.031) 0.304 (0.028) 0.298 (0.026) 0.284 (0.022)

4 0.603 (0.035) 0.557 (0.031) 0.529 (0.029) 0.509 (0.027) 0.494 (0.026) 0.449 (0.023)

1.25 0.070 (0.014) 0.072 (0.015) 0.075 (0.016) 0.078 (0.016) 0.081 (0.017) 0.101 (0.022)

Neg. 1.5 0.118 (0.014) 0.122 (0.015) 0.127 (0.016) 0.132 (0.016) 0.138 (0.017) 0.176 (0.022)

skewed 2 0.180 (0.015) 0.188 (0.015) 0.196 (0.016) 0.205 (0.017) 0.215 (0.018) 0.280 (0.024)

4 0.289 (0.016) 0.307 (0.017) 0.326 (0.018) 0.346 (0.019) 0.367 (0.020) 0.491 (0.025)



Choodari-Oskooei et al. BMCMedical ResearchMethodology  (2015) 15:50 Page 7 of 16

Table 2 The percentage difference in the means of TGSTD(t) in censored data from those of TGSTD(t) in the corresponding uncensored
data by covariate distribution (Cov.), and censoring proportion

Cov. %cen. TGSTD(T1) TGSTD(T2) TGSTD(T3) TGSTD(T4) TGSTD(T5) TGSTD(T6)

20 0.1 0.1 0.1 0.1 0.1 0.0

Normal 50 0.2 0.2 0.1 0.1 0.1 0.1

80 0.6 0.5 0.5 0.5 0.5 1.0

20 0.0 0.0 -0.1 -0.1 -0.1 -0.1

Pos. 50 0.1 0.1 0.0 0.0 0.0 -0.1

skewed 80 0.6 0.5 0.4 0.4 0.4 0.7

20 0.0 0.0 0.0 0.0 0.0 0.1

Neg. 50 0.1 0.1 0.1 0.1 0.0 0.2

skewed 80 0.6 0.6 0.7 0.7 0.8 1.9

sampling distribution of TGSTD(T2) for different covariate
effects, sample sizes, and censoring proportions.

Monotonicity and upper bound
Themonotonicity property requires that TGSTD(t) should
increase with the size of covariate effect, i.e. |β|. In this
section, we applied simulations to explore the means of
both TG and TGSTD for a range of covariate effects where
the distribution of survival time is exponential and the
covariate is normally distributed.
The results are presented in graphs of Fig. 3. The figure

shows the means of TG(t), left graph, and TGSTD(t), right

graph, at different time points by the covariate effect in the
50% random censoring condition. As it is evident from
the graphs, TG(t) increases with β and reaches a plateau
of about 0.5; whereas TGSTD(t) reaches values close to 1
for large βs. This accords with the finding of Bura and
Gastwirth [9] for a logistic regression model where they
showed that the upper bound of TG is less than or equal
to 0.5. Finally, it is noticeable that the means of TG(t) at 6
time points differ for small values of β , but they converge
as the covariate effect becomes stronger. The means of
TGSTD(t) are generally in agreement throughout the range
of the covariate effect.

Fig. 2 The sampling distribution of TGSTD(t) by covariate effect β , sample size N, and censoring proportion. Number of replicates is 5,000 in all
scenarios and the covariate, Z, is normally distributed
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Fig. 3 The means of TG(t) (a) and TGSTD(t) (b) by the covariate effect in censored data. The covariate is normally distributed, random censoring
(50%) condition is used with a sample size of 500

Influential observations
In this section, we study the impact of extreme and out-
lier observations on TGSTD(t) using simulations. We fol-
low the definition of extreme and outlier observations as
outlined in [1]: an extreme observation fits the underly-
ing relationship between survival time and the covariate
but it lies in the extremes of the (covariate) distribution,
whereas the outlier observation does not fit the under-
lying relationship. In simulations, we generated survival
times from an exponential distribution with one nor-
mally distributed covariate N(0, 1) and covariate effect
of β = 0.69, with each replicated data set of size 200.
Each data set was contaminated with a single extreme or
outlier observation according to the procedure described
in [1].
The results are presented through graphs in Fig. 4.

The graphs show the means of TGSTD(t) by the value of
the outlying covariate observation. For example, 4 in the
X axis represents the condition where one observation’s
covariate, Z ∼ N(0, 1), is replaced with 4, and the cor-
responding value in the Y axis represents the mean of
TGSTD(t). The mean of TGSTD(t) in the uncontaminated
data is represented with ‘none’ on the X axis. The left
graph in Fig. 4 shows the impact of one extreme covariate
observation, and the right graph show the impact of one
outlier covariate observation at 5 different time points. In
the graphs, if a measure is resistant to extreme and outlier
observations, its mean would not change in the presence

of such observations. In other words, we expect a hori-
zontal line across the X axis if the measure is resistant to
such observations. The graphs indicate that the means of
TGSTD(t) are robust against the extreme observations, but
they decrease rapidly as the outlier observation becomes
more severe in all time points.

Non-proportional hazard and time-dependent covariates
We carried out simulations to investigate the performance
of TGSTD(t) under non-proportional hazards (non-PH)
and time-dependent covariate effect in a two arm trial
setting. We used the Weibull distribution to generate
time-to-event data and obtained the corresponding shape
and scale parameters for the distribution of time-to-event
data in each arm from IPASS (Iressa Pan-ASia Study) trial
[24] - we used the samemethod as in [25] to estimate these
parameters.
IPASS is a phase 3, two arm trial of previously untreated

patients in East Asia who had advanced pulmonary ade-
nocarcinoma (lung cancer) [24]. The main results from
IPASS are summarized in Mok et al. [24]’s Figure two,
which shows the distribution of time-to-event in each arm
as Kaplan–Meier curves. Their Figure two(A) (i.e. Figure
two, Panel A) shows that the progression-free survival
curves cross at approximately 5.7 months, thus showing
extreme non-PH. As it has been shown in [25], Weibull
distributions with the following scale and shape parame-
ters provide a good fit to the (censored) survival times in
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Fig. 4 The impact of one extreme or outlier observation on the mean of TGSTD(t). a one extreme observation (left); b one outlier observation (right).
The covariate is normally distributed, random censoring condition, sample size = 200, and 50%

the two treatment arms: control arm parameters, scale =
0.35 and shape = 1.72; and experimental arm parameters,
scale = 0.10 and shape = 1.08. We used these parame-
ters to generate the survival times in the two groups. We
truncated the time to event at 20 months to resemble the
follow-up pattern in Mok et al. [24]’s Figure two(A).
The fitted survival curves by treatment arm are shown

in Fig. 5(a). The curves cross at approximately the median
survival time, which is about 5.7 months in each arm. We
chose the same sample size as that of the IPASS trial, i.e.
n = 1127, with equal allocation ratio. We fitted a flexi-
ble parametric survival model [25] on the log cumulative
hazard scale - see Additional file 2 for the details on the
fitted model. Figures 5(b) and (c) show the fitted log haz-
ard ratio and the cumulative hazard functions for the two
arms. We then evaluated TGSTD(t) from 1 − 20 months
with 5,000 replications in each scenario. The results are
summarised in Fig. 5(d). The mean (standard deviation)
of the sampling distribution of TGSTD(t) is 0.25(SD: 0.03)
at 1 month, but it decreases towards 0 as the survival
curves of the two arms converge. The mean reaches its
minimal value of 0 where the survival curves cross at
about 5.7 months. At this time point there is no separa-
tion/discrimination between the two groups and themean
value ofTGSTD(t) reflects this. It then increases as the sur-
vival curves diverge again until about 16 months, but it is
starting to level off after this time point. Our results also
showed a similar pattern for the mean of R2

BS(t) for the

first 16 months; although the means of R2
BS(t) are much

smaller throughout - see the right y-axis in Fig. 5(d). None
of R2

PM, R2
D, and ρ2

W can be used to meaningfully evaluate
the performance of the model in this setting.

Impact of categorisation of covariates
In this section, we study the impact of categorisation
of covariates on TGSTD(t). We carried out simulations
to explore its performance when the continuous prog-
nostic factors such as age and weight are categorised.
Royston et al. [26] explained the dangers of dichotomisa-
tion of continuous covariates in the context of regression
modelling, with the conclusion that it is an unnecessary
practice for statistical analysis. They also showed that it
will reduce both the amount of prognostic information
and power, resulting in a reduction in the predictive ability
of the fitted model.
In our simulations, the (conditional) distribution of sur-

vival times were exponential. The covariate was normally
distributed as N(0, 1) with an effect of exp(β) = 4. We
progressively categorised the covariate into j = 2, ..., 20
categories by its quantiles. In each scenario, we computed
percentiles corresponding to percentages 100 ∗ k/j for
k = 1, 2, ..., j − 1. For example, the categorisation of the
covariate into 10 different groups requires that the 10th,
20th,..., 90th percentiles be computed.
To compare the performance of the measures with

those of other proposed measures of predictive ability,
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Fig. 5 a Fitted survival curves by treatment group for the IPASS trial - simulated data. b Log hazard ratio over time. c Cumulative hazard functions by
treatment. d The means of sampling distributions of TGSTD(t) and R2BS(t) from 1 to 20 months - vertical lines represent the standard deviations in
each scenario

we also carried out similar simulations for R2
PM, R2

D, ρ2
W ,

and R2
BS(t), which have been recommended by Choodari-

Oskooei et al. [1, 3] for general use. R2
PM, R2

D, and ρ2
W

summarise the predictive ability for the entire follow-up
period, whereas R2

BS(t) is time-dependent and changes
over the follow-up period. R2

BS(t) is based on the (modi-
fied) Brier score [14]. Both R2

PM and R2
D are (monotonic)

functions of the variance of the prognostic index of the
model, whereas ρ2

W is based on the expected likelihood
(entropy) under the full and null models - see [1, 3] for
their formula and further details.
The percentage difference between the means of the

measures in the categorised scenario and the correspond-
ing means of the measures in the uncategorised condition
are displayed in Fig. 6. In general, a proportion of prog-
nostic information is lost through grouping, which should
be reflected in the estimates of the measures. As Fig. 6
demonstrates the loss of prognostic information is much
more pronounced in the estimates of R2

PM, R2
D, and ρ2

W .
Except TGSTD(t), all the other measures monotonically
increase as the number of groups increases and reach val-
ues very close to the mean of the measures in the true
model for more than 7 groups. The unexpected fluctua-
tions in the means of TGSTD(t) in less than 5 groups is
due to the impact of integration under the predictiveness
curve in these scenarios, which is a step function. In gen-
eral, the loss of prognostic information is relatively small
in both TGSTD(t) and R2

BS(t).

Applications
In this section we present the results of investigation on
the application of the measures to data sets from 5 disease
areas. The estimates of the measures (with 95% boot-
strap confidence intervals) are displayed in Table 3. We
also compare the estimates of TGSTD(t) with those of

Fig. 6 The impact of categorization on TGSTD(t), R2PM , R
2
D , ρ

2
W , and

R2BS(t) - TGSTD(t) and R2BS(t) were evaluated at T6. The percentage
difference to the means of the measures in the uncategorised
scenario plotted on the vertical axis against the number of groups
(horizontal axis). In the uncategorised scenario, i.e. in the true model,
the means of TGSTD(t), R2PM , R

2
D , ρ

2
W , and R2BS(t) were 0.56, 0.54, 0.54 ,

0.64, and 0.33, respectively
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Table 3 The estimates of TGSTD(t), R2PM , R
2
D , ρ

2
W , and R2BS(t), including 95% bootstrap confidence intervals from 1000 replicates, in real data sets at 3 time points. The time points T1,

T2, and T3 at which TGSTD(t) and R2BS(t) are evaluated in all data sets are the 25th, 50th, and 75th quantile of the follow-up period, i.e. the time to the last event, in each study.
Therefore, T1, T2, and T3 are different in each study

Est. TGSTD(t) at 3 time points Est. R2BS(t) at 3 time points

Study T̂GSTD(T1) T̂GSTD(T2) T̂GSTD(T3) R̂2PM R̂2D ρ̂2
W R̂2BS(T1) R̂2BS(T2) R̂2BS(T3)

Breast 0.32 0.33 0.35 0.27 0.28 0.36 0.12 0.16 0.20

cancer (0.27-0.37) (0.28-0.38) (0.30-0.40) (0.21-0.35) (0.21-0.35) (0.29-0.47) (0.07-0.18) (0.10-0.21) (0.14-0.25)

Lymphoma 0.28 0.31 0.36 0.23 0.23 0.32 0.16 0.22 0.24

(0.16-0.40) (0.18-0.44) (0.21-0.50) (0.11-0.42) (0.11-0.40) (0.15-0.53) (0.02-0.24) (0.05-0.34) (0.07-0.38)

PBC 0.58 0.62 0.56 0.56 0.65 0.60 0.38 0.47 0.47

(0.52-0.65) (0.54-0.70) (0.50-0.62) (0.48-0.65) (0.55-0.74) (0.53-0.68) (0.19-0.52) (0.38-0.58) (0.34-0.57)

Renal 0.34 0.37 0.41 0.27 0.26 0.33 0.24 0.27 0.19

cancer (0.28-0.40) (0.31-0.42) (0.36-0.46) (0.21-0.36) (0.20-0.33) (0.27-0.42) (0.16-0.31) (0.21-0.34) (0.11-0.26)

Prostate 0.22 0.24 0.26 0.13 0.13 0.18 0.06 0.11 0.10

cancer (0.17-0.27) (0.19-0.29) (0.21-0.32) (0.09-0.20) (0.09-0.21) (0.13-0.27) (0.02-0.10) (0.06-0.15) (0.05-0.14)
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R2
PM, R2

D, ρ2
W , and R2

BS(t). The data sets are from: i) breast
cancer (Schumacher et al., [21]); ii) lymphoma (Rosen-
wald et al., [27]); iii) primary biliary cirrhosis (PBC)
(Fleming and Harrington, [28]); iv) renal cancer (Ritchie et
al., [29]); and v) prostate cancer (Byar and Green, [30]). All
data sets are in the public domain - see Additional file 2.
Multivariable prognostic models based on the Cox PH

model have already been developed for the above data
sets. We applied the measures to these models to com-
pare their performance. The first two data sets have been
analysed extensively by Choodari-Oskooei et al. [1, 3]- see
Additional file 2 for further details on the data sets, prog-
nostic factors included in each study, and the summary of
fitted models.
Table 3 shows the estimates of TGSTD(t) and R2

BS(t) at 3
time points, together with the estimates of R2

PM, R2
D, and

ρ2
W . The 3 time points at which TGSTD(t) and R2

BS(t) are
evaluated in all data sets are the 25th, 50th, and 75th quan-
tile of the follow-up period (the time to the last event)
in each study. We emphasise that in practice a clinically

motivated time point should be chosen. In all studies, the
point estimates ofTGSTD(t)mildly increase with time, and
are markedly higher than those for R2

BS(t). In some data
sets, the estimates are within close range of those for R2

PM
and R2

D.
As stated before, the advantage of TGSTD(t) over R2

PM,
R2
D, and ρ2

W is its ability to assess how the model’s pre-
dictive performance changes over time. Figure 7 shows
the estimates of TGSTD(t) over the entire follow-up in
each study, together with the 95% bootstrap confidence
intervals. It can be concluded that the predictive abil-
ity of the models for breast cancer, PBC, and (to some
extent) lymphoma studies relatively remain constant over
the follow-up period.

Discussion
In this paper, we described the predictiveness curve,
and extended the (standardised) total gain statistic to a
survival model. We carried out comprehensive simulation
studies assessing its performance with respect to the

Fig. 7 Estimates of TGSTD(t) over the entire follow-up period in each study. a breast cancer study; b lymphoma data; c PBC study; d renal cancer
data; and e prostate cancer. The solid lines represent the point estimates, and the dashed lines are the 95 % bootstrap confidence intervals with
1,000 replicates in each experimental condition
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criteria that a good measure of predictive ability should
possess.

Summary of our findings
Both TG(t) and TGSTD(t) are based on the predictiveness
curve. In simple terms, the predictiveness curve is a plot
of the rank-ordered predicted survival probabilities ver-
sus the cumulative percentile for each predicted survival
probability. The plot, therefore, illustrates the distribution
of estimated risk (or survival probability predictions) in
the population under study. The results of our empiri-
cal studies showed that both TG(t) and TGSTD(t) are an
increasing function of the covariate effect, and are inde-
pendent of random censoring. Our results also showed
that both measures are affected by the distribution of the
prognostic factor in a survival model.
Our findings indicate that TGSTD(t) is an increasing

function of time in a multivariable regression model
where the distribution of the PI is roughly Gaussian,
whereas TG(t) increases with time until a certain time
point and decreases afterwards towards zero in maximal
survival times. This accords with the behaviour of the
(modified) Brier score suggested by Graf et al. [14] for the
survival models [3], and that of R2

BS(t). The trend of TG(t)
over time indicate that (for the models we studied) dis-
crimination in survival probability predictions is minimal
at the time origin as well as maximal time points, but it
reaches its maximum around the median of the underly-
ing distribution of survival time. We emphasise that the
time points where both TG(t) and TGSTD(t) are evalu-
ated should be clinically relevant. We favour the use of
TGSTD(t) overTG(t) since it is in a similar scale to those of
other R2-type statistics. TG(t) can easily be obtained from
the estimate of TGSTD(t) if the Kaplan-Meier estimate of
survival probability at time t, π̂0(t), is also reported.

Properties of TGSTD(t)
An important property of TGSTD(t) is that, unlike some of
the proposed R2-type measures [1], it always lies between
0 and 1. Another advantage of TGSTD(t) is its extendabil-
ity to other types of survival model, including parametric
survival models [25, 31]. The only underlying assumption
in both measures is that the predictiveness curve R(υ ; t)
should be a monotonic function of the prognostic index
in the model. Unlike R2

BS(t) and other proposed predic-
tive accuracy measures [3] (which assess the ability of the
model to predict the outcome of interest at the individual
level), TGSTD(t) is a measure that quantifies the amount
of prognostic information for a group of patients as it does
not directly compare the individuals’ predicted risk prob-
abilities with their actual outcomes. For a survival model,
R2
PM, R2

D, and ρ2
W also quantify the amount of prognos-

tic information for a group of patients. They, however,
provide an overall measure of predictive ability for the

entire follow-up period. In this respect, TGSTD(t) has an
advantage over these measures because, inherently, it is a
function of time and can be used to compare studies with
different follow-up periods. But, its (perceived) downside
is that it does not provide a unique value for a givenmodel.
One possible solution is to define an integrated version of
TGSTD(t) over the entire follow-up period - similar to the
integrated R2

BS(t) proposed by Graf et al. [14].
Bura and Gastwirth [9] showed that TG is normally dis-

tributed for a logistic regression model and developed
a formula for its variance. The results of our simula-
tions showed that the sampling distribution of TG(t) is
also (asymptotically) normal (e.g. see Fig. 2). Based on
the (large sample) asymptotic distribution of TG, Bura
and Gastwirth [9] developed an asymptotic formula for
its variance - see Additional file 1. In principle, the for-
mula can be adopted (with some amendments) for use in
a survival model. However, since it is based on the nor-
mal approximation to the probability of having an event
by time t, i.e. π0(t), it might not provide a good approx-
imation if the (effective) sample size is small and π0(t) is
near 0 or 1. We, therefore, propose bootstrap resampling
to construct confidence intervals.
Finally, most R2-type measures proposed for survival

models lack the intuitive interpretation of R2 in lin-
ear regression as explained variation. TGSTD(t) is not
an exception in this regard. Therefore, further research
is needed to explain these measures (and their prop-
erties) in a way that is easily accessible to practical
researchers.

Relationship to other measures
We have shown that R2

Pepe(t) (i.e. TGSTD(t) with squared
error loss) is the model-based, i.e. parametric, version
of R2

BS(t). Therefore, they are asymptotically equivalent
if the model is correctly specified. It can be argued that
the assumption of correctly specified model may not be
entirely feasible in practice. Nonetheless, the smaller vari-
ance in (the estimates of ) R2

Pepe(t) makes it an appealing
choice - i.e. the classic bias versus variance trade-off. Fur-
ther research is required to study the trade-off between
the bias and variance of these estimators in a series of sim-
ulations based on real datasets. For a logistic regression
model, the relationships between the predictiveness curve
R(υ ; t), the c-statistic, and reclassification measures have
been established [10]. For a survival model, however, this
is a topic for further research.

Conclusions
Our studies showed that the total gainmeasure performed
well with respect to our criteria. It can also be applied
to a broad class of survival models. Overall, we believe
that it can be recommended as a measure to quantify the
predictive ability in survival models.
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Additional files

Additional file 1: In this document R2BS(T
∗), R2PM, and R2D are formally

defined and the relationship between R2Pepe and VB is explored. The
asymptotic formula for the variance of TG is also presented.

Additional file 2: The multivariable prognostic models applied to the
data sets in Applications, as well as the flexible parametric model
applied in Non-proportional hazard and time-dependent covariates,
are presented.
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