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Abstract1

The main advantage of the 40Ar/39Ar method over conventional K-Ar dating is that it does not2

depend on any absolute abundance or concentration measurements, but only uses the relative ratios3

between five isotopes of the same element –argon– which can be measured with great precision on a4

noble gas mass spectrometer. The relative abundances of the argon isotopes are subject to a constant5

sum constraint, which imposes a covariant structure on the data: the relative amount of any of the6

five isotopes can always be obtained from that of the other four. Thus, the 40Ar/39Ar method is a7

classic example of a ‘compositional data problem’. In addition to the constant sum constraint, covari-8

ances are introduced by a host of other processes, including data acquisition, blank correction, detector9

calibration, mass fractionation, decay correction, interference correction, atmospheric argon correction,10

interpolation of the irradiation parameter, and age calculation. The myriad of correlated errors arising11

during the data reduction are best handled by casting the 40Ar/39Ar data reduction protocol in a matrix12

form. The completely revised workflow presented in this paper is implemented in a new software plat-13

form, Ar-Ar Redux, which takes raw mass spectrometer data as input and generates accurate 40Ar/39Ar14

ages and their (co-)variances as output. Ar-Ar Redux accounts for all sources of analytical uncertainty,15

including those associated with decay constants and the air ratio. Knowing the covariance matrix of16

the ages removes the need to consider ‘internal’ and ‘external’ uncertainties separately when calculating17

(weighted) mean ages. Ar-Ar Redux is built on the same principles as its sibling program in the U-Pb18

community (U-Pb Redux), thus improving the intercomparability of the two methods with tangible ben-19

efits to the accuracy of the geologic time scale. The program can be downloaded free of charge from20

http://redux.london-geochron.com.21

1 Introduction22

Let z be a function f of two variables x and y:23

z = f(x, y) (1)

then standard error propagation of z by first order Taylor expansion yields:24

σ2
z =

(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y + 2

∂f

∂x

∂f

∂y
cov(x, y) (2)

where cov(x,y) is the ‘covariance of x and y’. Current practice in 40Ar/39Ar geochronology generally25

assumes that the third term of Equation 2 can be safely neglected. For example, consider the 40Ar/39Ar age26

equation:27

T =
1

λ40
ln (1 + JR) (3)
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with λ40 the decay constant of 40K, J the neutron irradiation parameter (see Section 11) and R the28

40Ar∗/39ArK-ratio (where 40Ar∗ is the radiogenic argon component and 39ArK is derived from neutron29

reactions on 39K). Then the age uncertainty is currently calculated as (Berger and York, 1970; McDougall30

and Harrison, 1999; Koppers, 2002):31

σ2
T =

J2σ2
R +R2σ2

J

λ2
40(1 +RJ)

(4)

which assumes that cov(R,J) = 0. This assumption cannot be correct because both R and J are calculated32

using the same mass fractionation corrections, detector calibrations, interference corrections and radioactive33

decay corrections. The analytical uncertainty associated with each of these factors results in correlated errors34

between R and J. Ignoring these error correlations affects both the precision and accuracy of the resulting35

40Ar/39Ar ages.36

37

The problem of correlated errors is not limited to R and J alone. It crops up literally everywhere in the38

40Ar/39Ar method. In fact, a covariant structure is deeply engrained into the very DNA of the method,39

which is based on five isotopes (36-40) of a single element (Ar). This paper will show that, because the40

40Ar/39Ar method is based on ratios rather than absolute abundances, it is subject to the peculiar math-41

ematics of ‘compositional data’ (Section 2). Correlated errors are created during mass spectrometry, when42

the ion detector signals are extrapolated to ‘time zero’ and blank corrections are made (Sections 3 and 4).43

They occur as a result of mass fractionation corrections and detector inter-calibrations (Section 5). They44

arise when accounting for the effect of radioactive decay on 39Ar (from K), 36Ar (from Cl) and 37Ar (from45

Ca) (Section 7), or whenever an interference correction is made (Section 8). Error correlations occur when46

calculating J-factors (Section 11) and, as we have already seen at the beginning of this section, when apply-47

ing the J-factor to solve the age equation (Section 12). Error correlations must also be taken into account48

when calculating the weighted mean of several 40Ar/39Ar age analyses (Section 13). Finally, the methods49

presented in this paper provide a simple and elegant way to account for the systematic biases that occur as50

a result of the uncertainty in the 40K decay constant and the atmospheric 40Ar/36Ar ratio (Section 12).51

52

Thus, the existence of correlated errors affects every aspect of the 40Ar/39Ar method. The paper at hand53

presents an analytical solution to this problem as an alternative to the numerical approximations proposed54

elsewhere (Scaillet, 2000). A new computer code called Ar-Ar Redux was developed with the aim to facilitate55

the adoption of the rigorous data reduction and error propagation methods presented herein (Section 14).56

2 40Ar/39Ar as a compositional data problem57

As mentioned in Section 1, the 40Ar/39Ar-age calculation is based on the 40Ar∗/39ArK-ratio (R, see Equation58

3), which can be calculated as follows:59

R =
1− a+ b+ c

d− e
− f (5)

with60
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a =

[
40Ar
36Ar

]
a

[
36Ar
40Ar

]
m

(6)

b =

[
40Ar
36Ar

]
a

[
36Ar
37Ar

]
ca

[
37Ar
40Ar

]
m

(7)

c =

[
40Ar
36Ar

]
a

[
36Ar
38Ar

]
cl

[
38Ar
40Ar

]
m

(8)

d =

[
39Ar
40Ar

]
m

(9)

e =

[
39Ar
37Ar

]
ca

[
37Ar
40Ar

]
m

(10)

f =

[
40Ar
39Ar

]
k

(11)

in which ‘a’ stands for ‘air’, ‘ca’ for ‘Ca-salt’, ‘k’ for ‘K-glass’, and ‘cl’ for ‘Cl decay products’. The61

subscript ‘m’ stands for either ‘sample’ or ‘fluence monitor’. The meaning of this equation and the signifi-62

cance of the subscripts will be elaborated in later sections of this paper. The important point which needs63

to be made here is that Equations 6-11 only contain ratios, and do not depend on the absolute abundances64

of the different argon isotopes. In statistical terms, 40Ar/39Ar-measurements are said to be ‘compositional65

data’ and are subject to the peculiar mathematics of the compositional dataspace or ‘simplex’ (Aitchison,66

1986). To illustrate the profound implications of this point, consider the simple situation of a K-bearing67

sample containing neither Ca nor Cl. In this case, terms b, c and e in Equation 5 disappear, which leaves68

us with a simple three component system comprised of 36Ar, 39Ar and 40Ar. Because we are only interested69

in the relative abundances of these three isotopes, they can be normalised to unity and plotted on a ternary70

diagram (Figure 1). It is well known that common summary statistics such as the arithmetic mean and stan-71

dard deviation are unreliable in this data space. This is because the ternary diagram occupies a narrowly72

restricted subspace of the realm of real numbers. These restrictions cause problems because standard data73

reduction methods commonly assume that the data follow a Normal distribution, which requires support74

from -∞ to +∞. The solution to this conundrum is to transform the data from the simplex to a Euclidean75

‘logratio space’, in which standard Normal theory can be safely used (Aitchison, 1986; Vermeesch, 2010).76

77

In addition to opening compositional data to standard statistical analysis, the logratio transformation78

also simplifies the algebra of 40Ar/39Ar data reduction. This is because many of the calculations required for79

processing 40Ar/39Ar-data involve multiplication and exponentiation, which reduce to simple addition and80

multiplication after taking logs. The next sections of this paper will show how the raw mass spectrometric81

data can be cast into a logratio covariance structure for further processing, for both multi-collector (Section82

3) and single collector (Section 4) instruments.83

3 Multi-collector data84

To illustrate the calculations in the remainder of this paper, consider the following sequence of analyses: b185

(first blank), u1 (first sample), s1 (first age standard), u2 (second sample), b2 (second blank), s2 (second86

standard), s3 (third standard) and b3 (third blank). In a multicollector mass spectrometer, each of the five87

argon isotopes appearing in Equation 5 are monitored simultaneously through time (t) and can be cast into88

an [n × 5] matrix format, with n the number of integrations (i.e. t = {t1, t2, ..., tn}):89
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Figure 1: 40Ar/39Ar-data are compositional data, in which only the ratios between components matter, and
not their absolute abundances. This is reflected in the fact that 40Ar-39Ar-36Ar data can be renormalised to
unity and plotted on a ternary diagram (left). There is a one-to-one mapping between this so-called ‘simplex’
and Euclidean logratio space (right).

M(x, t) =


36Ar(x, t1) 37Ar(x, t1) 38Ar(x, t1) 39Ar(x, t1) 40Ar(x, t1)
36Ar(x, t2) 37Ar(x, t2) 38Ar(x, t2) 39Ar(x, t2) 40Ar(x, t2)

...
...

...
...

...
36Ar(x, tn) 37Ar(x, tn) 38Ar(x, tn) 39Ar(x, tn) 40Ar(x, tn)

 (12)

where ‘x’ stands for ‘blank’, ‘sample’ or ‘standard’. The same formulation can be used for the interference90

monitors (particularly Ca) but further discussion of these will be deferred to Section 8 and Appendix A.91

Because the measurements are done simultaneously on all five detectors, any random variation in, say, the92

filament voltage or trap current will simultaneously affect all signals, resulting in correlated residuals. The93

blank correction is made by subtracting the time-resolved signal of the nearest blank measurement (b) from94

that of the analysis (x), resulting in a new matrix B(x,b,t):95

B(x, b, t) =


36Arb(x, t1) 37Arb(x, t1) 38Arb(x, t1) 39Arb(x, t1) 40Arb(x, t1)
36Arb(x, t2) 37Arb(x, t2) 38Arb(x, t2) 39Arb(x, t2) 40Arb(x, t2)

...
...

...
...

...
36Arb(x, tn) 37Arb(x, tn) 38Arb(x, tn) 39Arb(x, tn) 40Arb(x, tn)

 (13)

with96

iArb(x, tj) = iAr(x, tj)− iAr(b, tj) (14)

for i = {36, 37, 38, 39, 40} and j = {1, ..., n}. Our goal is to extract 4-element vectors of logratios from97

these [n×5] matrices of blank corrected mass spectrometer signals, taking into account any correlated errors.98

The easiest but by no means only way to achieve this is by forming the logratios prior to regression, yielding99

an [n×4] matrix for each analysis:100
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L(x, b, t) =


l
[

36Arb(x,t1)
40Arb(x,t1)

]
l
[

37Arb(x,t1)
40Arb(x,t1)

]
l
[

38Arb(x,t1)
40Arb(x,t1)

]
l
[

39Arb(x,t1)
40Arb(x,t1)

]
l
[

36Arb(x,t2)
40Arb(x,t2)

]
l
[

37Arb(x,t2)
40Arb(x,t2)

]
l
[

38Arb(x,t2)
40Arb(x,t2)

]
l
[

39Arb(x,t2)
40Arb(x,t2)

]
...

...
...

...

l
[

36Arb(x,tn)
40Arb(x,tn)

]
l
[

37Arb(x,tn)
40Arb(x,tn)

]
l
[

38Arb(x,tn)
40Arb(x,tn)

]
l
[

39Arb(x,tn)
40Arb(x,tn)

]

 (15)

where ‘l’ stands for ‘natural log’ and 40Ar is used as a common denominator for all the ratios denoted101

by ‘m’ in Equation 5. We thus obtain five time-resolved logratio matrices, one for each run in the analysis102

sequence. These five matrices can be assembled into one [n × 20] matrix, which is naturally partitioned into103

three groups by the blanks.104

G(t) = [L(u1, b1, t) L(s1, b1, t) | L(u2, b2, t) L(s2, b2) | L(s3, b3, t)] = [g1|g2|g3] (16)

where the first group (g1) consists of sample u1 and standard s1, which share blank b1; the second105

group (g2) consists of sample u2 and standard s2, which share blank b2; and the third group consists of106

standard s3, which is the only analysis using blank b3. It is reasonable to expect the blank-corrected logratio107

signals to be correlated within each group, but uncorrelated between groups. We therefore extrapolate the108

logratio signals to t=0 (‘time zero’) in blocks, and concatenate the resulting logratio intercepts into a single109

20-element vector:110

X = [X(g1) X(g2) X(g3)] (17)

with X(gi) the vector of logratio intercepts of the ith group, obtained by joint (non)linear regression.111

The [20 × 20] covariance matrix of X is given by:112

ΣX =

 Σg1 08,8 08,4

08,8 Σg2 08,4

04,8 04,8 Σg3

 (18)

where Σgi is the covariance matrix of the ith group’s intercepts and 0i,j denotes a zero matrix of size113

[i× j]. One well known problem with the logratio transformation is the handling of zero or negative values.114

In the context of argon mass spectrometry, this occurs in one of two situations: (a) 36Ar (and 38Ar) in the115

atmospheric correction of extremely clean samples and (b) 37Ar in the Ca-interference correction of ‘expired’116

samples. The zero value problem can be avoided by performing generalised linear regression of the ratios117

(using a logarithmic link function to ensure positive intercepts, Nelder and Wedderburn, 1972), or to cast118

the regression problem into a more sophisticated maximum likelihood form (Wood, 2015). A comprehensive119

discussion of these alternative methods falls outside the scope of the present paper and will be deferred to a120

future publication.121

4 ‘Peak-hopping’ data122

In single collector mass spectrometers, the various argon isotopes cannot be monitored simultaneously, but123

must be measured separately. This is achieved by separately scanning (‘hopping’) over the mass range of the124

argon isotopes by varying the field strength of the mass analyser. Thus, each mass has its own time scale ti,125

for i = 36, 37, 38, 39 and 40, resulting in a set of five time resolved data vectors M(x,i,ti) for each run x:126

M(x, i, ti) =


iAr(x, ti1)
iAr(x, ti2)

...
iAr(x, tin)

 (19)
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Because the five isotope signals are measured at different times, we can safely assume their residual noise127

to be uncorrelated. Again, blank correction is done in time-resolved mode, but separately for each isotope.128

This results in five (one for each run) times five (for each isotope) n-element ratio vectors:129

L(x, b, i, ti) =


l
[
iAr(x, ti1)− iAr(b, ti1)

]
l
[
iAr(x, ti2)− iAr(b, ti2)

]
...

l
[
iAr(x, tin)− iAr(b, tin)

]
 (20)

These vectors are assembled into five [n × 5] matrices, each of which is partitioned into three groups130

according to the shared blank corrections:131

G(i, ti) =
[
L(u1, b1, i, t

i) L(s1, b1, i, t
i) | L(u2, b2, i, t

i) L(s2, b2, i, t
i) | L(s3, b3, i, t

i)
]

= [gi1|gi2|gi3] (21)

Joint regression to t=0 yields a 5-element vector of log-intercepts for each isotope:132

Z(i) = [Z(g1, i) Z(g2, i) Z(g3, i)] (22)

with [5 × 5] covariance matrices133

ΣZ(i) =

 Σig1 02,2 02,1

02,2 Σig2 02,1

01,2 01,2 Σig3

 (23)

where Σigj is the covariance matrix of the jth group’s iAr intercepts. Next, we bring the ratio-intercept134

data for all five isotopes together into a single 25-element vector135

Z = [Z(36) Z(37) Z(38) Z(39) Z(40)] (24)

with [25 × 25] covariance matrix136

ΣZ =


ΣZ(36) 05,5 05,5 05,5 05,5

05,5 ΣZ(37) 05,5 05,5 05,5

05,5 05,5 ΣZ(38) 05,5 05,5

05,5 05,5 05,5 ΣZ(39) 05,5

05,5 05,5 05,5 05,5 ΣZ(40)

 (25)

Finally, we form 20 logratios with the following matrix operation:137

X = Z JX (26)

The associated [20 × 20] covariance matrix is given by:138

ΣX = J ′X ΣZ JX (27)

with JX the [25 × 20] Jacobian matrix of the subtraction operation and J ′X its transpose:139

J ′X =


15,5 05,5 05,5 05,5 −15,5

05,5 15,5 05,5 05,5 −15,5

05,5 05,5 15,5 05,5 −15,5

05,5 05,5 05,5 15,5 −15,5

 (28)

where 1i,i is an [i× i] identity matrix. We have now cast the raw mass spectrometer data in a common140

logratio format X (through either Equation 17 or 26) and associated covariance structure ΣX (Equation 18141

or 27). From here on, multicollector and peak-hopping data can be treated on an equal footing.142
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5 Detector calibration143

The different ion detectors in a multicollector mass spectrometer do not necessarily respond equally to ion144

beams of equal mass and size. The measured ratio of the beam intensities at t=0 will therefore not necessarily145

equal the true isotopic ratio. This issue obviously does not occur in single collector instruments. Although146

the latest generation of multicollector noble gas mass spectrometers quantify the relative sensitivities inter-147

nally through an electronic detector intercalibration, this section describes a data reduction protocol for a148

conventional (‘analog’) detector calibration. Suppose that there are five detectors, one for each argon iso-149

tope, and denote these by d[36], d[37], d[38], d[39] and d[40]. The relative sensitivities of detectors d[36] and150

d[40] can be quantified by comparing the measured 40Ar/36Ar intensity ratio of an air shot with the known151

atmospheric ratio, as part of the mass fractionation correction (Section 6). The relative sensitivities of the152

remaining detectors, d[37]-d[40], on the other hand, are calibrated by steering a fixed 40Ar beam from an air153

tank across them. The resulting signals of this ‘peak hopping’ experiment are extrapolated to t=0 using the154

methods described in Section 4, resulting in four log-intercepts and their variances. No blank corrections are155

needed because we are only interested in the total amount of gas present in the mass spectrometer and not in156

the air composition itself. If the calibration experiment is repeated multiple times, then the measurements157

can be combined by taking the arithmetic mean of the logs (Section 13). To apply the detector calibration158

correction, we simply add the difference of the log-intercepts to the data, in matrix form. First, we append159

the log-intercepts of the calibration data to the sample vector.160

X∗ = [X Z(d[37]) Z(d[38]) Z(d[39]) Z(d[40])] (29)

with [24 × 24] covariance matrix Σ∗X :161

Σ∗X =


ΣX 020,1 020,1 020,1 020,1

01,20 σ[Z(d[37])]2 0 0 0
01,20 0 σ[Z(d[38])]2 0 0
01,20 0 0 σ[Z(d[39])]2 0
01,20 0 0 0 σ[Z(d[40])]2

 (30)

where X is a 20-element vector of sample and standard measurements (Equation 17) and ΣX its covariance162

matrix (Equation 18), Z(d[i]) indicates the log intercept of 40Ar measured by detector d[i] at ‘time zero’, and163

σ[Z(d[i])] is its standard error. Then the detector calibrated data (C) and their [20 × 20] covariance matrix164

(ΣC) are obtained by:165

C = X∗ JC (31)

and166

ΣC = J ′C Σ∗X JC (32)

respectively, where JC is the [24 × 20] Jacobian matrix of the detector calibration and J ′C is its transpose:167

J ′C =


14,4 04,4 04,4 04,4 04,4 J∗C
04,4 14,4 04,4 04,4 04,4 J∗C
04,4 04,4 14,4 04,4 04,4 J∗C
04,4 04,4 04,4 14,4 04,4 J∗C
04,4 04,4 04,4 04,4 14,4 J∗C

 (33)

with168

J∗C =


0 0 0 0
−1 0 0 1
0 −1 0 1
0 0 −1 1

 (34)
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Note that, if all the measurements (samples, age standards and interference monitors) use the same169

detector calibration, then the associated analytical uncertainties cancel out in the age calculation (Section170

12) and we can set σ[Z(d[i])]2 = 0 ∀ i in Equation 30.171

6 Mass fractionation172

The five argon isotopes of interest span a mass range of 10%. The sensitivity of both single- and multicollector173

instruments varies with atomic mass, and significant errors can occur if the resulting ‘mass fractionation’ is174

uncorrected for. The mass fractionation factor can be quantified by comparing the measured signal ratios of175

an air shot with its known isotopic ratio (298.56 ± 0.31, Lee et al., 2006). For multicollector instruments,176

each detector has its own mass fractionation correction factor. For detectors d[37], d[38] and d[39], these are177

obtained by peak hopping between masses 36 and 40. For d[40] and d[36], we can quantify the fractionation178

by directly monitoring the 36Ar/40Ar-ratio in multicollection mode. The exponential form of the kinetic179

isotope fractionation correction (Young et al., 2002) conveniently reduces to a linear equation in a logratio180

context:181

l

[
iAr
jAr

]
= l

[
iAr|d[i]
jAr|d[j]

]
+

l[i]− l[j]
l[40]− l[36]

(
A(j) + l

[
40Ar
36Ar

]
a

)
(35)

where iAr|d[j] stands for the iAr signal measured on detector j and A(j) is the ‘time zero’ intercept of182

l
[

36Ar|d[j]
40Ar|d[j]

]
a
, except if j = 40 on a multicollector instrument, in which case A(j) is the ‘time zero’ intercept of183

l
[

36Ar|d[36]
40Ar|d[40]

]
a
. To apply Equation 35, we append the air shot data and the true air ratio to the calibration-184

corrected logratio intercepts:185

C∗ =

[
C A(40) l

[
40Ar
36Ar

]
a

]
(36)

whose [22 × 22] covariance matrix Σ∗C can be written as:186

Σ∗C =

 ΣC 020,1 020,1

01,20 σ[A(40)]2 0
01,20 0 0

 (37)

Note that Equation 37 does not specify the analytical uncertainty of the atmospheric reference ratio.187

This is because any uncertainty resulting from an incorrect air-ratio at this point will cancel out during188

the atmospheric argon correction (Section 10). Recasting Equation 35 in matrix form, the fractionation189

correction of the sample and fluence measurements can be written as:190

F = C∗ JF (38)

with [20 × 20] covariance matrix191

ΣF = J ′F Σ∗C JF (39)

where JF is the [22 × 20] Jacobian matrix of the mass fractionation correction and J ′F is its transpose:192

J ′F =


14,4 04,4 04,4 04,4 04,4 J∗F
04,4 14,4 04,4 04,4 04,4 J∗F
04,4 04,4 14,4 04,4 04,4 J∗F
04,4 04,4 04,4 14,4 04,4 J∗F
04,4 04,4 04,4 04,4 14,4 J∗F

 (40)

with193
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J∗F =


−1.000 −1.000
−0.740 −0.740
−0.487 −0.487
−0.240 −0.240

 (41)

7 Decay corrections194

Two of the five argon isotopes of interest are radioactive: 37Ar (t1/2 = 34.95 ± 0.08 days, Renne and Norman,195

2001) and 39Ar (t1/2 = 269 ± 3 years, Stoenner et al., 1965). A correction is required for the loss of these196

isotopes during the time elapsed between irradiation and analysis:197

l[iAr]◦ = l[iAr](τ) + r(λi, τ) (42)

where l[iAr]◦ is the total amount of isotope i formed during irradiation, l[iAr](τ) is the amount remaining198

at a time τ after the end of the irradiation and r(λi, τ) is the amount lost due to radioactivity when the199

decay constant is λi. Using a similar approach to Wijbrans and McDougall (1986), r(λi, τ) can be calculated200

as:201

r(λi, τ) = l

∑
j

Pj∆tj

− l
∑

j

Pj
λi

(
1

eλi∆τj
− 1

eλi[∆τj+∆tj ]

) (43)

where Pj is the power and ∆tj the duration of the jth irradiation interval and ∆τj is the time elapsed202

between the end of the jth irradiation segment and τ . At this point it is important to merge the data203

reduction pathways for the samples and fluence monitors with those of any co-irradiated K-glass and Ca-204

salt. This is because they are all affected by the same decay constant uncertainties, resulting in correlated205

errors. However, in this Section we will, for the sake of simplicity, assume that
[
36Ar/37Ar

]
ca

,
[
39Ar/37Ar

]
ca

206

and
[
39Ar/40Ar

]
k

have been obtained from elsewhere and do not need to be corrected for radioactive decay.207

For completeness, further details about the joint analysis of co-irradiated interference monitors with the208

sample are given in Appendix A. To apply the decay correction to the samples and fluence monitors, we first209

concatenate all the decay corrections into one 5-element vector:210

r(i) = [r(λi, τ [u1]) r(λi, τ [s1]) r(λi, τ [u2]) r(λi, τ [s2]) r(λi, τ [s3])] (44)

The [5 × 5] covariance matrix of which is given by:211

Σr(i) = J ′r(i) σ(λi)
2 Jr(i) (45)

where σ(λi) is the standard error of the iAr decay constant, and Jr(i) is the Jacobian matrix:212

Jr =

[
∂r(λi, τ [u1])

∂λi

∂r(λi, τ [s1])

∂λi

∂r(λi, τ [u2])

∂λi

∂r(λi, τ [s2])

∂λi

∂r(λi, τ [s3])

∂λi

]
(46)

with the partial derivatives given by:213

∂r(λi, τ [x])

∂λi
=
∑
j

Pj
λi

[
1 + λi∆τj [x]

eλi∆τj [x]
− 1 + λi(∆τj [x] + ∆tj)

eλi(∆τj [x]+∆tj)

]/∑
j

Pj

[
1

eλi∆τj [x]
− 1

eλi(∆τj [x]+∆tj)

]
(47)

Next, we append the vector of 10 decay corrections to the 20 fractionation-corrected logratio intercepts:214

F ∗ = [F r(37) r(39)] (48)

with [30 × 30] covariance matrix215
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Σ∗F =

 ΣF 020,5 020,5

05,20 Σr(37) 0
05,20 0 Σr(39)

 (49)

The decay correction can then be cast into matrix form as216

D = F ∗ JD (50)

yielding a 20-element vector with covariance matrix217

ΣD = J ′D Σ∗F JD (51)

using the [30 × 20] Jacobian matrix JD and its transpose J ′D:218

J ′D = [120,20 J
∗
D(37) J

∗
D(39)] (52)

with219

J∗D(i) =


J∗∗D(i) 04,1 04,1 04,1 04,1

04,1 J∗∗D(i) 04,1 04,1 04,1

04,1 04,1 J∗∗D(i) 04,1 04,1

04,1 04,1 04,1 J∗∗D(i) 04,1

04,1 04,1 04,1 04,1 J∗∗D(i)

 (53)

where220

J∗∗D(37) =


0
1
0
0

 and J∗∗D(39) =


0
0
0
1

 (54)

8 Interference corrections221

The 40Ar/39Ar-method pairs the natural radioactive decay of 40K to 40Ar with the synthetic activation of222

39K to 39Ar. Unfortunately, neutron activation produces not only 39Ar but a host of other Ar-isotopes as223

well. The most important reactions are (McDougall and Harrison, 1999):224

K : 39K(n, p)39Ar
40K(n, p)40Ar

Ca : 40Ca(n, nα)36Ar
40Ca(n, α)37Ar
42Ca(n, α)39Ar

Cl : 35Cl(n, γ)36Cl
β−

−−→ 36Ar

37Cl(n, γ)38Cl
β−

−−→ 38Ar

The first five of these reactions can be characterised by mass spectrometric analysis of K-glass (40Ar/39Ar225

ratio) and Ca-salt (36Ar/37Ar and 39Ar/37Ar ratios). These ratios are directly incorporated into Equation 5226

(parameters a, b and f). The chlorine decay products, on the other hand, are generally calculated from the227

independently determined and reactor-specific 36Cl/38Cl-production ratio and will be discussed in Section 9.228
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If the K- and Ca-interference corrections are based on externally determined values, then we compile these229

with the decay-corrected sample and fluence measurements for further processing in Section 10:230

I = [D D(ca) D(k)] (55)

where, using the notation of Section 7, D(ca) is a 2-element vector containing the decay-corrected231

36Ar/37Ar- and 39Ar/37Ar-logratios of neutron-activated Ca, and D(k) is the 40Ar/39Ar-logratio of neutron-232

activated K. The corresponding [23 × 23] covariance matrix is given by233

ΣI =

 ΣD 020,2 020,1

02,20 ΣD(ca) 02,1

01,20 01,2 σ2
D(k)

 (56)

After which we can proceed to Section 9 of this paper. If, on the other hand, Ca and K interferences are234

quantified by co-irradiated Ca-salts and K-glass, then we can explicitly include the resulting mass spectrome-235

ter uncertainties into the error propagation. Further details of this are provided in Appendix A. In summary,236

the vector I, obtained from either Equation 55 or Appendix A, contains all the information required to solve237

Equation 5 except for factor ‘c’, which is discussed next.238

9 Cl-decay239

In contrast with the K- and Ca-interferences, which can be directly characterised by mass spectrometric240

analysis of co-irradiated materials, the Cl-interference on 36Ar is generally calculated from an independently241

determined and reactor-specific 36Cl/38Cl-production ratio (Foland et al., 1993; Renne et al., 2008). Let242

G(x) be the logratio of the chlorine decay products (i.e., l
[
36Ar/38Ar

]
) in sample (or fluence monitor) x.243

Using the approach of Wijbrans and McDougall (1986) to account for the radioactive decay of Cl to Ar, we244

obtain:245

G(x) = l

[
36Cl
38Cl

]
+ g(τ [x]) (57)

with246

g(τ) = l

[
1 +

∑
j Pj

(
e−λ36[∆τj+∆tj ] − e−λ36∆τj

)
λ36

∑
j Pj∆tj

]
(58)

where λ36 is the 36Cl decay constant and τ , ∆τi and ∆ti are as defined in Section 7. The decay corrections247

can be compiled into a single five-element vector248

G = [G(u1) G(s1) G(u2) G(s2) G(s3)] (59)

whose [5 × 5] covariance matrix is given by:249

ΣG = J ′G

[
σ
(
l
[

36Cl
38Cl

])2

0

0 σ(λ36)2

]
JG (60)

with250

JG =

[
1 1 1 1 1

∂G(u1)/∂λ36 ∂G(s1)/∂λ36 ∂G(u2)/∂λ36 ∂G(s2)/∂λ36 ∂G(s3)/∂λ36

]
(61)

where the partial derivatives are given by:251

∂G(x)

∂λ36
=

∑
j Pj

[
(1 + λ36∆τj [x])e−λ36∆τj − (1 + λ36[∆τj [x] + ∆tj ])e

−λ36(∆τj [x]+∆tj)
]

λ36

∑
j Pj

[
λ36∆tj + e−λ36(∆τj [x]+∆tj) − e−λ36∆τj [x]

] (62)
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Note that the Cl-interference correction implemented in Equation 8 does not account for the presence252

of atmospheric 38Ar and the production of 38Ar from K. Doing so is straightforward but adds considerably253

more complexity to Equation 5 (Appendix B).254

10 40Ar∗/39ArK255

After all the preprocessing discussed in the previous sections, we have finally gathered all the ratios required256

to solve Equation 5. To this end, we compile all the information obtained thus far into a single vector of257

logratios258

U =

[
I l

[
40Ar
36Ar

]
a

G

]
(63)

and its [29 × 29] covariance matrix259

ΣU =

 ΣI 023,1 023,5

01,23 σ
(
l
[

40Ar
36Ar

]
a

)2

01,5

05,23 05,1 ΣG

 (64)

To simplify the notation in the remainder of this Section, it is useful to permute U and ΣU so that the260

Cl-interference data (G) are interspersed with the samples and fluence monitors:261

U∗ = U P and Σ∗U = P U P (65)

where P is the [29 × 29] permutation matrix262

P =



14,4 04,1 04,4 04,1 04,4 04,1 04,4 04,1 04,4 04,1 04,4

04,4 04,1 14,4 04,1 04,4 04,1 04,4 04,1 04,4 04,1 04,4

04,4 04,1 04,4 04,1 14,4 04,1 04,4 04,1 04,4 04,1 04,4

04,4 04,1 04,4 04,1 04,4 04,1 14,4 04,1 04,4 04,1 04,4

04,4 04,1 04,4 04,1 04,4 04,1 04,4 04,1 14,4 04,1 04,4

04,4 04,1 04,4 04,1 04,4 04,1 04,4 04,1 04,4 04,1 14,4

01,4 1 01,4 0 01,4 0 01,4 0 01,4 0 01,4

01,4 0 01,4 1 01,4 0 01,4 0 01,4 0 01,4

01,4 0 01,4 0 01,4 1 01,4 0 01,4 0 01,4

01,4 0 01,4 0 01,4 0 01,4 1 01,4 0 01,4

01,4 0 01,4 0 01,4 0 01,4 0 01,4 1 01,4


(66)

Next we convert the logratio vector U∗ into a vector of 30 ratios263

W = [V (u1) V (s1) V (u2) V (s2) V (s3)] (67)

where264

V (x) = [a(x) b(x) c(x) d(x) e(x) f(x)] (68)

with a-f as defined in Equations 6-11. f(x) is the same for all analyses in this example but may vary265

between samples when combining different irradiations. W is calculated in matrix form by266

W = exp [U∗ JV ] (69)

with JV the [29 × 30] Jacobian matrix:267
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JV =


J∗V 05,6 05,6 05,6 05,6

05,6 J∗V 05,6 05,6 05,6

05,6 05,6 J∗V 05,6 05,6

05,6 05,6 05,6 J∗V 05,6

05,6 05,6 05,6 05,6 J∗V
J∗∗V J∗∗V J∗∗V J∗∗V J∗∗V

 (70)

where268

J∗V =


1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0

 and J∗∗V =


0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 1 0 0 0

 (71)

The [30 × 30] covariance matrix of W is obtained by269

ΣW = J ′W Σ∗U JW (72)

where the [29 × 30] Jacobian JW is given by270

JW =


J∗W 05,6 05,6 05,6 05,6

05,6 J∗W 05,6 05,6 05,6

05,6 05,6 J∗W 05,6 05,6

05,6 05,6 05,6 J∗W 05,6

05,6 05,6 05,6 05,6 J∗W
J∗∗W J∗∗W J∗∗W J∗∗W J∗∗W

 (73)

with271

J∗W =


a 0 0 0 0 0
0 b 0 0 e 0
0 0 c 0 0 0
0 0 0 d 0 0
0 0 c 0 0 0

 and J∗∗W =


0 b 0 0 0 0
0 0 0 0 e 0
0 0 0 0 0 f
a b c 0 0 0

 (74)

The five element vector R of 40Ar∗/39ArK-ratios is calculated with Equation 5:272

R = [R(u1) R(s1) R(u2) R(s2) R(s3)] (75)

and its [5 × 5] covariance matrix is obtained by273

ΣR = J ′R ΣW JR (76)

where JR is the [30 × 5] Jacobian matrix and J ′R is its transpose274

J ′R =


J∗R(u1) 01,6 01,6 01,6 01,6

01,6 J∗R(s1) 01,6 01,6 01,6

01,6 01,6 J∗R(u2) 01,6 01,6

01,6 01,6 01,6 J∗R(s2) 01,6

01,6 01,6 01,6 01,6 J∗R(s3)

 (77)

with275

J∗R(x) =

[
−1

d(x)− e(x)

1

d(x)− e(x)

1

d(x)− e(x)

a(x)− b(x)− c(x)− 1

[d(x)− e(x)]2
1− a(x) + b(x) + c(x)

[d(x)− e(x)]2
− 1

]
(78)

13



11 J-factors276

The parameter J quantifying the production of 39Ar from 39K in the age equation is determined by analysing277

the argon composition of a co-irradiated fluence monitor with accurately known K-Ar age (Ts). This com-278

position may vary across the irradiation stack due to neutron flux gradients in the reactor, which can be279

quantified by analysing several fluence monitors interspersed with the samples at known positions. The most280

appropriate J-factor for each sample is then obtained by simple linear interpolation:281

J(x) =
eλ40Ts − 1

R(s|x)
(79)

where R(s|x) denotes the 40Ar∗/39ArK-ratio of the fluence monitors interpolated to the position of sample282

x (which is henceforth referred to as p[x]). Applying this procedure to our two sample - three monitor case283

study, we form a four-element vector of sample ratios and interpolated fluence monitor ratios:284

Y = [R(u1) R(u2) R(s|u1) R(s|u2)] = R JY (80)

with [4 × 4] covariance matrix285

ΣY = J ′Y ΣR JY (81)

where R is the vector of 40Ar∗/39ArK-ratios for the samples and fluence monitors (Equation 75), JY is286

the [5 × 4] Jacobian matrix and J ′Y is its transpose. Suppose that sample u1 sits between monitors s1 and287

s2 in the irradiation stack, and u2 sits between monitors s2 and s3. Then288

J ′Y =


1 0 0 0 0
0 0 1 0 0

0 p[u1]−p[s1]
p[s2]−p[s1] 0 p[s2]−p[u1]

p[s2]−p[s1] 0

0 0 0 p[u2]−p[s2]
p[s3]−p[s2]

p[s3]−p[u2]
p[s3]−p[s2]

 (82)

Finally, we use Equation 79 to generate a five-element vector of sample 40Ar∗/39ArK-ratios, their re-289

spective J-factors, and the 40K decay constant:290

Q = [R(u1) R(u2) J(u1) J(u2) λ40] (83)

with [5 × 5] covariance matrix291

ΣQ = J ′Q

 ΣY 0 0
0 σ2(λ40) 0
0 0 σ2(Ts)

 JQ (84)

where JQ is the [6 × 5] Jacobian matrix and J ′Q is its transpose:292

J ′Q =


1 0 0 0 0 0
0 1 0 0 0 0

0 0 1−eλ40Ts
R(s|u1)2 0 Tse

λ40Ts

R(s|u1)
λ40e

λ40Ts

R(s|u1)

0 0 0 1−eλ40Ts
R(s|u2)2

Tse
λ40Ts

R(s|u2)
λ40e

λ40Ts

R(s|u2)

0 0 0 0 1 0

 (85)

The decay constant λ40 is included into Equation 83 because this parameter appears in both the expression293

for J (Equation 79) and the age equation (Equation 3), resulting in correlated errors.294
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12 Solving the age equation295

The 40Ar/39Ar-ages of samples u1 and u2 are calculated by plugging the relevant items of vector Q into296

Equation 3, resulting in a 2-element vector T297

T = [T (u1) T (u2)] (86)

with [2 × 2] covariance matrix298

ΣT = J ′T ΣQ JT (87)

where JT is the [5 × 2] Jacobian matrix:299

J ′T =

[
J(u1)

λ40[1+J(u1)R(u1)] 0 R(u1)
λ40[1+J(u1)R(u1)] 0 − l[1+J(u1)R(u1)]

λ2
40

0 J(u2)
λ40[1+J(u2)R(u2)] 0 R(u2)

λ40[1+J(u2)R(u2)]−
l[1+J(u2)R(u2)]

λ2
40

]
(88)

13 (weighted) mean ages300

Given a vector of N age measurements (T = [T(u1) T(u2) ... T(uN )]), we can calculate the arithmetic mean301

age T̄a as:302

T̄a = (T 1N,1) /N (89)

with standard error303

σ2(T̄a) = (11,N ΣT 1N,1) /N (90)

Alternatively, to calculate the error-weighted mean T̄w, first calculate its variance:304

σ2(T̄w) =
(
11,N Σ−1

T 1N,1
)−1

(91)

then305

T̄w = σ2(T̄w)
(
T Σ−1

T 1N,1
)

(92)

The MSWD (‘Mean Square of the Weighted Deviates’, also known as ‘reduced Chi-square statistic’306

outside geology) is a measure of the ratio of the observed scatter of the data points (T[ui]) around the mean307

value (T̄ ) to the expected scatter from the assigned errors (ΣT ):308

MSWD =
1

N − 1
[T − T̄ ] Σ−1

T [T − T̄ ]′ (93)

If MSWD>1, then the samples are said to be ‘overdispersed’ with respect to the analytical uncerainty.309

This commonly occurs in very precise datasets, which have sufficient power to resolve minute levels of310

sample heterogeneity. In this case, the geologically meaningful levels of heterogeneity can be quantified311

using a ‘mixed effects’ model with two sources of analytical uncertainty:312

T [ui] ∼ N [T̄ , σ(T [ui])
2 + ζ2] (94)

where N [a,b] stands for “the Normal distribution with mean a and variance b”, and ζ2 is the ‘overdis-313

persion’ (Vermeesch, 2010). Equation 94 can be solved by the method of maximum likelihood, which simul-314

taneously estimates the average, its standard error, and the overdispersion.315
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14 Ar-Ar Redux316

The revised data reduction procedure outlined in this paper revisits every aspect of the 40Ar/39Ar method.317

Unfortunately, the matrix format of the calculations is incompatible with existing data reduction platforms318

such as ArArCalc (Koppers, 2002). A new computer code named Ar-Ar Redux was developed to solve this319

problem and facilitate the adoption of the methods described herein. A prototype version of Ar-Ar Redux320

currently exists as a package in the R programming environment, which is an increasingly popular open321

source alternative to Matlab, available free of charge on any operating system at http://r-project.org.322

A standalone program with graphical user interface is in development for future release. ‘Ar-Ar Redux’323

derives its name from ‘U-Pb Redux’, which is a similar program developed by the U-Pb dating community324

(McLean et al., 2011; Bowring et al., 2011). Both programs use a similar matrix formulation and, although325

U-Pb Redux currently does not employ a logratio transformation, future versions of it will. The R-version326

of Ar-Ar Redux can be downloaded free of charge from the ‘Comprehensive R-Archive Network’ (CRAN,327

http://cran.r-project.org). Appendix C gives a brief introduction to Ar-Ar Redux, with further details328

provided at http://redux.london-geochron.com. The latter website will also host the standalone version329

of the program when it is ready for public release. Currently, Ar-Ar Redux accepts input files that are330

compatible with the ARGUS-VI multicollector instrument, but other input formats can easily be imple-331

mented as well. Ar-Ar Redux is intended to be a community-driven software platform, which can evolve to332

accommodate the demands and expectations of 40Ar/39Ar practitioners, and the reader is invited to contact333

the author with any questions or requests. The program is bundled with a real dataset, which was kindly334

provided by Prof. David Phillips of the University of Melbourne.335

15 Discussion and conclusions336

One might wonder how much difference the revised data reduction workflow makes compared to currently337

used procedures. The answer to this question depends on the particular details of the sample of interest.338

For example:339

– Error correlations are stronger when several samples share the same blank than when each sample has340

its own blank.341

– Large interference corrections result in strong error correlations.342

– Multicollector data are more strongly correlated than ‘peak hopping’ data.343

– Analysing co-irradiated interference monitors yields stronger error correlations than using externally344

provided interference corrections.345

Regarding the latter two examples, it is important to note that correlated errors should not necessarily346

be considered undesirable, as long as they are properly quantified. It is only when covariances are ignored347

that uncertainties are overestimated, potentially significant age differences are blurred out and geologically348

meaningful information is lost. Experience tells that the covariance terms can be very substantial. For the349

test data provided with Ar-Ar Redux, error correlations (defined as ρ(x, y) = cov(x,y)/[σ(x)σ(y)]) between350

aliquots of the same sample are on the order of 0.9.351

352

Renne et al. (1998) make the distinction between ‘internal’ and ‘external’ errors. ‘internal errors’ can be353

conceptually defined as the natural variability that would arise if the same sample were dated multiple times354

under the same experimental conditions. ‘external’ errors include the systematic effects of decay constant355

uncertainty, the K/Ar ratio of the age standard, the air ratio etc. Renne et al. (1998) point out that “com-356

parison of two different 40Ar/39Ar dates based on the same standard may legitimately ignore uncertainties357

in K-Ar data, decay constants, as well as all intercalibration factors common to both dates”. However,358

when comparing a 40Ar/39Ar-age with, say, a zircon U/Pb age, “it is important to consider all sources of359

systematic error in data from both radioisotopic systems”. Thus, great care must be taken which sources360
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of uncertainty should or should not be included in the error propagation. In practical terms, this results361

in different analytical forms of the error propagation depending on the situation. This added complexity362

disappears entirely when using the methods presented in this paper. By processing the data in matrix form363

and explicitly taking into account covariances, the internal and external errors are jointly considered, with364

the latter corresponding to the off-diagonal terms of the covariance matrix. Revisiting Renne et al. (1998)’s365

two scenarios, we find that the difference between two 40Ar/39Ar dates based on the same standard may366

appear to be statistically insignificant compared to their respective variances, but statistically significant367

when the covariance terms are considered (Figure 2).368

369

This paper has revisited many but not all aspects of 40Ar/39Ar data reduction. For example, it has not370

discussed isochrons, in which linear regression is used to deconvolve the radiogenic and inherited argon com-371

ponents without the need to assume an atmospheric composition for the latter. Although the least squares372

algorithms which are currently used for this purpose do take into account error correlations between the x-373

and y-variables (e.g., York, 1969), they ignore the covariance between different samples. Similarly, thermal374

modelling is done by jointly considering multiple analyses and finding best-fitting (‘Arrhenius’) trends to375

them. Current fitting algorithms do not account for the significant error correlations that exist between376

subsequent heating steps in a diffusion experiment. The covariant structure of linear regression naturally377

follows from the covariant age structure represented by Equations 86 and 87, but a detailed discussion of378

this will be deferred to a forthcoming publication.379
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Figure 2: A synthetic yet realistic example of two replicate
age estimates of the same sample (T1 = 99 Ma and T2 = 101
Ma) plotted against each other as an error ellipse. Ignoring
the covariances, the two dates appear to agree within two
standard errors. Taking into account the off-diagonal terms
of the covariance matrix (ΣT ), however, reveals that the
two samples are overdispersed with respect to the analytical
uncertainties.

In summary, this paper presented a fresh look at the 40Ar/39Ar method, by recasting every aspect of it381

into a matrix form and rigorously keeping track of all covariances. Thus, the methods outlined in this paper382

put the 40Ar/39Ar method on an equal footing with the U-Pb method (McLean et al., 2011). Using the383

same data reduction framework for both methods will improve their intercomparability, which in turn will384

benefit the accuracy and precision of the geologic time scale (Min et al., 2000; Kuiper et al., 2008).385
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Appendix A: calculation of interference corrections by mass spec-393

trometric analysis of co-irradiated monitor materials394

Neutron reactions on Ca produce interferences on 36Ar and 39Ar, which can be corrected for by monitoring395

the 36Ar/37Ar- and 39Ar/37Ar-ratios of co-irradiated Ca-salts (Section 8). In this Section, we will use the396

same simplified regression methods as in Sections 3 and 4. If the three Ar-isotopes of interest are measured397

in multicollector mode, then their time resolved and blank corrected signal can be cast into the following [n398

× 2] logratio matrix:399

L(ca, b, t) =


l
[

36Arb(ca,t1)
37Arb(ca,t1)

]
l
[

39Arb(ca,t1)
37Arb(ca,t1)

]
l
[

36Arb(ca,t2)
37Arb(ca,t2)

]
l
[

39Arb(ca,t2)
37Arb(ca,t2)

]
...

...

l
[

36Arb(ca,tn)
37Arb(ca,tn)

]
l
[

39Arb(ca,tn)
37Arb(ca,tn)

]

 (95)

resulting in a vector of logratio intercepts X(ca) and covariance matrix ΣX(ca). For the detector calibra-400

tion, we replace Equation 29 with:401

X∗(ca) = [X(ca) Z(d[37]) Z(d[39] Z(d[40])] (96)

with covariance matrix Σ∗X(ca):402

Σ∗X(ca) =


ΣX(ca) 02,1 02,1 02,1

01,2 σ[Z(d[37])]2 0 0
01,2 0 σ[Z(d[39])]2 0
01,2 0 0 σ[Z(d[40])]2

 (97)

where, for the sake of notational simplicity, we have assumed that only a single Ca-salt measurement was403

made (accommodating duplicate analyses is trivial). Note that Equations 96 and 97 use Z(d[40]) instead404

of Z(d[36]), implying equal sensitivities of detectors d[36] and d[40]. This assumption is valid because the405

sensitivity difference between said detectors is accounted for by the mass fractionation correction. Equations406

31 and 32 remain the same but use the following Jacobian matrix:407

J ′C(ca) =

[
1 0 1 0 −1
0 1 1 −1 0

]
(98)

We thus obtain a two-element vector of sensitivity-corrected logratio intercepts C(ca) and its covariance408

matrix ΣC(ca). For the mass fractionation correction, we first append the air shot data to the calibration-409

corrected logratio intercepts:410

C∗(ca) =

[
C(ca) A(37) l

[
40Ar
36Ar

]
a

]
(99)

with [4 × 4] covariance matrix Σ∗C(ca):411

Σ∗C(ca) =

 ΣC(ca) 02,1 02,1

01,2 σ[A(37)]2 0
01,2 0 0

 (100)

Recasting in matrix form, the fractionation-corrected Ca-salt measurements and their covariances are412

given by:413

F (ca) = C∗(ca) JF (ca) (101)

and414
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ΣF (ca) = J ′F (ca) Σ∗C(ca) JF (ca) (102)

respectively, where JF (ca) is the Jacobian matrix of the mass fractionation calibration and J ′F (ca) its415

transpose:416

J ′F (ca) =

[
1 0 −0.240 −0.240
0 1 0.487 0.487

]
(103)

For ‘peak hopping’ data, Equation 95 can be replaced with three vectors containing the logs of the417

time-resolved 36Ar, 37Ar and 39Ar signals, which may be processed as in Section 4 to calculate the logratio418

intercepts. Since detector calibration does not apply to single collector instruments, Equations 96-103 can419

be safely skipped. Next, we apply the decay correction which, as explained in Section 7, affects both 37Ar420

and 39Ar. At this point the data reduction of the Ca and K-interference monitors is merged with that of the421

samples and fluence monitors. This is achieved by collating their respective decay corrections:422

r(i) = [r(λi, τ [u1]) r(λi, τ [s1]) r(λi, τ [u2]) r(λi, τ [s2]) r(λi, τ [s3]) r(λi, τ [ca]) r(λi, τ [k])] (104)

the covariance matrices of which are given by Equation 45 with423

Jr(i) =

[
∂r(λi, τ [u1])

∂λi

∂r(λi, τ [s1])

∂λi

∂r(λi, τ [u2])

∂λi

∂r(λi, τ [s2])

∂λi

∂r(λi, τ [s3])

∂λi

∂r(λi, τ [ca])

∂λi

∂r(λi, τ [k])

∂λi

]
(105)

To apply these decay corrections, we append them to the fractionation-corrected logratios:424

F ∗ = [F F (ca) F (k) r(37) r(39)] (106)

with [37 × 37] covariance matrix425

Σ∗F =


ΣF 020,2 020,1 020,7 020,7

02,20 ΣF (ca) 02,1 02,7 02,7

01,20 01,2 ΣF (k) 01,7 01,7

07,20 07,2 07,1 Σr(37) 07,7

07,20 07,2 07,1 07,7 Σr(39)

 (107)

These values are then simply plugged into Equations 50 and 51:426

I = F ∗ JD (108)

ΣI = J ′D Σ∗F JD (109)

where JD is the [37 × 23] Jacobian matrix and J ′D its transpose:427

J ′D = [123,23 J
∗
D(37) J

∗
D(39)] (110)

with428

J∗D(37) =



J∗∗D(37) 04,1 04,1 04,1 04,1 04,1 04,1

04,1 J∗∗D(37) 04,1 04,1 04,1 04,1 04,1

04,1 04,1 J∗∗D(37) 04,1 04,1 04,1 04,1

04,1 04,1 04,1 J∗∗D(37) 04,1 04,1 04,1

04,1 04,1 04,1 04,1 J∗∗D(37) 04,1 04,1

0 0 0 0 0 −1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 0


(111)
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and429

J∗D(39) =



J∗∗D(39) 04,1 04,1 04,1 04,1 04,1 04,1

04,1 J∗∗D(39) 04,1 04,1 04,1 04,1 04,1

04,1 04,1 J∗∗D(39) 04,1 04,1 04,1 04,1

04,1 04,1 04,1 J∗∗D(39) 04,1 04,1 04,1

04,1 04,1 04,1 04,1 J∗∗D(39) 04,1 04,1

0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(112)

with J∗∗D(37) and J∗∗D(39) as in Equation 54. This completes the Ca-interference correction. The K-430

interference on 40Ar and (as discussed in Appendix B) 38Ar, can be corrected in a very similar manner by431

monitoring 40Ar/39Ar and 38Ar/39Ar in K-glass.432

Appendix B: Cl-interference correction accounting for all sources433

of 38Ar434

As mentioned at the end of Section 9, the Cl-intereference correction on 36Ar implemented in Equation435

5 does not account for the presence of atmospheric 38Ar or the production of 38Ar from K. Doing so is436

straightforward but requires a reformulation of Equation 5:437

R =
1− a+ b+ c− g − h+ i

d− e− j + k
− f (113)

with a-f as defined in Equations 6-11 and438

g =

[
38Ar
36Ar

]
a

[
36Ar
38Ar

]
cl

(114)

h =

[
40Ar
36Ar

]
a

[
36Ar
38Ar

]
cl

[
38Ar
39Ar

]
k

[
39Ar
40Ar

]
m

(115)

i =

[
40Ar
36Ar

]
a

[
36Ar
38Ar

]
cl

[
38Ar
39Ar

]
k

[
39Ar
37Ar

]
ca

[
37Ar
40Ar

]
m

(116)

j =

[
38Ar
36Ar

]
a

[
36Ar
38Ar

]
cl

[
39Ar
40Ar

]
m

(117)

k =

[
38Ar
36Ar

]
a

[
36Ar
38Ar

]
cl

[
39Ar
37Ar

]
ca

[
37Ar
40Ar

]
m

(118)

This formulation requires adjustment of Sections 10 and 11 and the addition of the
[

38Ar
39Ar

]
k

to Section439

8, which is omitted here for brevity.440

Appendix C: A brief introduction to Ar-Ar Redux441

In its present form, Ar-Ar Redux exists as a package in a statistical programming environment called R. After442

installing R from http://r-project.org, Ar-Ar Redux can be installed by typing443

install.packages(’ArArRedux’)444

Once installed, the package can be loaded by typing445
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library(ArArRedux)446

The first step in the data reduction procedure is to load the time resolved mass spectrometer signals and447

turn them into a vector of logratio intercepts with associated covariance matrix. The read function groups448

the calculations listed in Sections 3, 4 and 5:449

X <- read(xfile="Samples.csv", masses=c("Ar37","Ar38","Ar39","Ar40","Ar36"),450

blabel="BLANK#", Jpos=c(3,15), kfile="K-glass.csv", cafile="Ca-salt.csv",451

dfile="Calibration.csv", dlabels=c("H1","AX","L1","L2"))452

where xfile is the name of a file containing the time resolved mass spectrometer data of all the samples,453

fluence monitors and blanks; masses is a vector specifying the order in which the argon isotopes are listed454

within xfile; blabel is the prefix of the blanks listed in xfile; Jpos is a vector with the positions of455

the fluence monitors within the irradiation stack; kfile is the name of a file containing the time resolved456

mass spectrometer signals of co-irradiated K-bearing monitor glass, formatted in the same way as xfile;457

cafile contains the same information for the co-irradiated Ca-bearing salts; dfile contains the detector458

intercalibration data and dlabels is a list specifying the order in which the detectors are listed within dfile.459

Next, we form a list of two fractionation corrections, one for each denominator isotope used in Equation 5460

(i.e. 37Ar, 39Ar and 40Ar):461

fract <- list(fractionation("AirL2.csv",detector="L2",PH=TRUE),462

fractionation("AirAX.csv",detector="AX",PH=TRUE),463

fractionation("AirH1.csv",detector="H1",PH=FALSE))464

where the fractionation function performs the calculations outlined in Section 6 and Appendix A; detector465

specifies the name of the detector of interest; and PH is a boolean flag indicating whether the data are collected466

in multicollector or ‘peak hopping’ mode. The last file that needs to be loaded contains the neutron irradiation467

schedule:468

irr <- loadirradiations("irradiations.csv")469

The process function carries out the fractionation, decay and interference corrections (Sections 6, 7, 8 and470

9), interpolates the J-factors and calculates the ages (Sections 11 and 12):471

ages <- process(X,irr,fract)472

The following three lines are used to tabulate the results, view the covariance structure as a coloured473

correlation matrix, and calculate the weighted mean age of a subset (in this example samples S1-5) of the474

data, respectively:475

summary(ages)476

corrplot(ages)477

weightedmean(ages,c("S1","S2","S3","S4","S5"))478

Ar-Ar Redux is very flexible. For example, all but the first four arguments to the read function are optional.479

If, for instance, no co-irradiated K-glass or Ca-salt were analysed, then it is possible to specify the interference480

corrections explicitly. A comprehensive overview of all the options falls outside the scope if this short481

Appendix. A more extensive tutorial is provided on http://redux.london-geochron.com. Contextual482

help within the R environment can be obtained from Ar-Ar Redux’s built-in documentation. For example,483

to learn more about the read function, it suffices to type ?read at the command prompt.484
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