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Abstract

The exponential growth of wireless data traffic has caused a significant increase in the power

consumption of wireless communications systems due to the higher complexity of the transceiver

structures required to establish the communication links. For this reason, in this Thesis we

propose and characterize technologies for improving the energy efficiency of multiple-antenna

wireless communications.

This Thesis firstly focuses on energy-efficient transmission schemes and commences by intro-

ducing a scheme for alleviating the power loss experienced by the Tomlinson-Harashima precoder,

by aligning the interference of a number of users with the symbols to transmit. Subsequently, a

strategy for improving the performance of space shift keying transmission via symbol pre-scaling

is presented. This scheme re-formulates complex optimization problems via semidefinite relax-

ation to yield problem formulations that can be efficiently solved. In a similar line, this Thesis

designs a signal detection scheme based on compressive sensing to improve the energy efficiency

of spatial modulation systems in multiple access channels. The proposed technique relies on ex-

ploiting the particular structure and sparsity that spatial modulation systems inherently possess

to enhance performance.

This Thesis also presents research carried out with the aim of reducing the hardware com-

plexity and associated power consumption of large scale multiple-antenna base stations. In this

context, the employment of incomplete channel state information is proposed to achieve the

above-mentioned objective in correlated communication channels. The candidate’s work devel-

oped in Bell Labs is also presented, where the feasibility of simplified hardware architectures for

massive antenna systems is assessed with real channel measurements. Moreover, a strategy for

reducing the hardware complexity of antenna selection schemes by simplifying the design of the

switching procedure is also analyzed.

Overall, extensive theoretical and simulation results support the improved energy efficiency

and complexity of the proposed schemes, towards green wireless communications systems.
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Chapter 1

Introduction

The design of spectrally efficient wireless communications has been a key focus of

both academia and industry for the past generations of mobile communications stan-

dards due to the need of providing service to an exponentially increasing number of

mobile devices while satisfying their data rate requirements [1]. However, the impact

that the achievable rate increase has on the power consumption of both mobile units and

base stations has arisen as one of the main issues in the development of novel communi-

cation systems. Specifically, the power consumption of the mobile stations has become a

major concern because battery technologies have not been able to scale up with the in-

creasingly higher energy requirements, hence significantly affecting the battery lifetime

[2]. Moreover, the total energy consumption of the mobile and wired networks has also

attracted much interest recently as it has currently grow up to 3% of the global power

consumption and it is expected to keep increasing in the following years [3–5]. Indeed,

5G communication systems and beyond are not only anticipated to provide high data

rates, but they are also expected to do that in a power-efficient manner [2,6]. To study

the trade-off between power consumption and achievable rates, the focus of researchers

has shifted towards a metric that combines them: the energy efficiency [2,7].

The energy efficiency essentially characterizes the relationship between the total

power consumption of a communication system and its spectral efficiency. Hence, the

maximization of this parameter provides a solution to the energy problem and it is
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expected to determine the characteristics of the wireless communications systems de-

ployed in the future [8]. This area of research is commonly referred to as green wireless

communications and it has motivated several industrial initiatives such as the SMART

2020 report or the GreenTouch consortium [8–10]. In fact, due to its importance, novel

technologies whose main aim is to improve the energy efficiency of wireless communi-

cations have been developed. Among these alternatives, the employment of multiple

antennas, also known as multiple-input multiple-output (MIMO) communications, has

been shown to be one of the most relevant options to satisfy the future energy efficiency

requirements [2].

Although generally MIMO communications have been used with the sole purpose

of maximizing the achievable rates, more recent strategies based on the same principle

have shown that their use is also convenient for maximizing the energy efficiency. For

instance, large scale or massive MIMO technologies suggest to incorporate a large num-

ber of antennas at the base stations to increase the transmission rates while maintaining

a constrained transmission power [11, 12]. This is possible because the large number

of antennas facilitates achieving unprecendented spatial resolutions, simultaneously di-

minishing harmful communication effects such as the channel noise or the inter-user

interference [11, 12]. However, the approach conventionally adopted in current MIMO

standards of dedicating one radio frequency (RF) chain per antenna constitutes a major

bottleneck for the practical deployment of these systems due to the large complexity and

power consumption of the related circuitry, which also severely affects the analog-digital

data interfaces [13–15]. Furthermore, the consideration of higher frequency bands such

as millimeter wave also poses novel system-level design challenges due to the generally

larger power consumption of hardware components required at those frequencies, e.g.

the analog-to-digital converters (ADCs) [16,17].

Understanding the importance of the above problems, technologies such as space

shift keying (SSK) [18], spatial modulation (SM) [19] or hybrid precoding and detection

[20] have been proposed with the objective of enhancing the overall energy efficiency and

reducing the number of hardware components implemented at the transceivers. This

aim is generally achieved by reducing the number of RF chains while exploiting the
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availability of multiple antennas to improve the data rates. Still, both the characteri-

zation and development of energy-efficient strategies are at an early stage, since critical

aspects such as the propagation characteristics with large arrays are still under study

[21]. Overall, the flourishing area of green communications poses a significant number

of exciting open questions and research opportunities, which constitute the focus of this

Thesis.

1.1 Aim and Motivation

In spite of comprising the core of a number of technologies considered for future

energy-efficient communications, a number of aspects involved in the design of multi-

ple antenna systems have not been fully optimized as yet [6, 22]. Indeed, the design of

modern transmission schemes such as spatial modulation require the application of in-

novative strategies for enhancing their performance, hence motivating the development

of novel approaches for exploiting the potential of multiple antenna designs.

Similarly, the understanding of channel propagation and the design of large scale

antenna systems (LSAS) are at a premature state [12,13]. This drives research focused

on providing insights on their real performance and exploring the system-level differences

when compared with small-scale antenna systems. Amongst the important differences,

analyzing the impact of dedicating one RF chain per antenna element or increasing the

size of the physical structure required for deploying an excessive number of antennas

are particularly relevant, since the promising gains offered by LSAS rely on specific

assumptions that might not be satisfied in practical systems [11].

Simultaneously, the above analyses motivate research focused on solving the specific

problems that arise in LSAS such as their excessive analog hardware and signal pro-

cessing complexities, which greatly harm their energy efficiency [13]. In this line, the

implementation of strategies traditionally employed for MIMO systems such as antenna

selection might alleviate the above-mentioned problems [23]. However, the substantial

differences between LSAS and small-scale MIMO designs prompts the design of origi-

nal solutions as well as introducing modifications to existing schemes with the aim of
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facilitating the practical deployment of these systems.

1.2 Main Contributions

This Thesis aims at characterizing and enhancing the energy efficiency of both small

and large scale multiple antenna communications systems by proposing and evaluating

various schemes with this objective. Specifically, the main contributions of this work

can be summarized as follows:

• Design of a power-efficient scheme for Tomlinson-Harashima precoding (THP) that

relies on the adjustment of the transmit constellation symbols depending on the

known inter-user interference to pre-subtract (Chapter 3). The results indicate

that the proposed scheme is capable of reducing the transmission power of con-

ventional THP to less than 50% of its original value for the small scale antenna

systems considered, while approximately preserving its average performance.

• Formulation and solution of computationally tractable optimization problems via

semidefinite programming (SDP) for enhancing the minimum Euclidean distance

(MED) of the received symbols in SSK transmission (Chapter 4). Robust optimiza-

tion problems accounting for imperfect channel state information (CSI) acquisition

are also designed. The results demonstrate the signal-to-noise ratio (SNR) en-

hancements offered by the proposed optimization algorithms, which can be larger

than 3 dB with respect to conventional SSK transmission for the small scale MIMO

scenarios considered.

• Design of a detector based on compressive sensing (CS) for spatial modulation

(SM) systems in the large scale multiple access channel (Chapter 5). The results

for the scenarios explored demonstrate that the proposed CS-based detector can

provide performance gains in the order of 2 − 3 dB when compared with linear

detection algorithms of comparable complexity.

• Design of a strategy for reducing the signal processing and the hardware complex-

ities of massive antenna arrays deployed in physically constrained structures by
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incomplete CSI acquisition (Chapter 6). The designed scheme exploits the severe

correlation experienced between the channels of neighbour antenna elements for

relaxing the CSI requirements. The results obtained for space-constrained arrays

demonstrate that both the number of RF hardware components and the digital

signal processing load can be approximately halved at a moderate performance

loss that depends on the system’s SNR, hence improving the resultant system’s

energy efficiency.

• Evaluation of multiple RF switching implementations for AS systems and design

of a switching architecture for reducing their hardware complexity (Chapter 7).

Relevant technical specifications such as the insertion losses (ILs) of various RF

switching matrices are analyzed. The results show that the slight performance

loss introduced by the architecture with a reduced number of internal switches is

clearly counterbalanced by its implementation benefits and IL reductions, which

can be in the order of 2-3 dB for the LSAS with a reduced number of RF chains

explored in this Thesis.

• Analysis of the propagation in LSAS based on channel measurements and assess-

ment of various strategies for reducing the analog hardware complexity in realistic

scenarios (Chapter 8). The characteristics of the communications channels in

LSAS are determined by analyzing channel measurements acquired in Bell Labs

with a massive antenna array. The performance of strategies for reducing the ex-

cessive analog hardware complexity of these systems such as antenna selection is

also assessed. The results show that realistic massive MIMO channels experience

severe variations in the power received along the antenna array due to its large

dimensions, hence motivating the deployment of solutions with reduced hardware

complexity in LSAS.

• Proposal of a model for evaluating under realistic RF losses the performance of hy-

brid analog-digital precoding and detection systems (Chapter 8). The introduced

model accounts for the practical operation of the hardware components involved in

the RF stage of hybrid schemes and bridges the gap between theoretical works and
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practical hybrid RF designs. The results substantially differ from those found in

the existing literature and demonstrate the importance of adopting a holistic RF

and digital perspective in the design of hybrid precoding and detection systems.

In particular, it is demonstrated that increasing the number of RF chains does not

always enhance the rate performance of hybrid precoding and detection systems

due to the larger power losses introduced in the RF signal processing stage.

1.3 Thesis Organization

Subsequent to this introductory Chapter, this Thesis is organized following the struc-

ture illustrated in Fig. 1.1 and described in the sequel.

Chapter 2 provides a comprehensive review of multiple antenna technologies that

constitute the basis of future energy-efficient wireless communication systems. In par-

ticular, this chapter describes the principles of MIMO systems with particular emphasis

on signal precoding and detection. The most relevant schemes for reducing the ana-

log hardware complexity and enhancing energy efficiency of both small- and large scale

MIMO systems are also identified, since they constitute the foundation of this Thesis.

Chapter 3 introduces a scheme for enhancing the energy efficiency of Tomlinson-

Harashima precoding (THP). The considered approach reduces the power loss intro-

duced in this non-linear precoding procedure by aligning the symbols to convey with

the known interference to mitigate. The attainable power savings and the additional
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signal processing required by the proposed strategy are quantified in this chapter.

Chapter 4 presents an energy-efficient pre-scaling scheme for MIMO space shift key-

ing (SSK) transmission systems. The proposed strategy aims at modifying the trans-

mission symbols to maximize the minimum Euclidean distance (MED) at the receiver

side. This is achieved by relaxing the original optimization problems via semidefinite

relaxation (SDR) to achieve a computationally efficient solution. The impact of this

relaxation on the system performance is characterized and a related scheme with ro-

bustness against channel state information (CSI) imperfections is also introduced.

Chapter 5 introduces a detector based on the compressive sensing (CS) principles

for spatial modulation (SM) and generalized spatial modulation (GSM) systems in the

multiple access channel (MAC). The proposed detector exploits the sparsity inherent

to SM-type communications and the particular structure of the MAC to enhance the

performance and energy efficiency of conventional MIMO detectors in the large scale

regime. The complexity of the proposed CS-based detector is thoroughly studied and

the close relationship between CS and MIMO detection is also discussed.

Chapter 6 is dedicated to reduce the analog hardware and signal processing com-

plexities in large scale antenna systems (LSAS). The proposed strategy consists on ex-

ploiting the large inter-antenna correlation that arises in physically constrained arrays

for reducing the number of RF chains or the signal processing load. These objectives

are achieved by collecting CSI for a subset of antennas and, subsequently, deriving the

CSI of the remaining nearby antennas via simple linear interpolation. The resultant

performance-complexity trade-off is characterized in this chapter.

Chapter 7 proposes to reduce the RF complexity and power losses of antenna selec-

tion (AS) systems via partially-connected (PC) switching networks. Different implemen-

tations of RF switching matrices are analyzed and the performance loss due to having

a limited connectivity between the RF chains and the antenna ports is characterized.

Chapter 8 presents research carried out with the aim of characterizing practical

LSAS. Insights about the large scale propagation channel are presented based on the data

extracted from a measurement campaign carried out in Bell Labs Dublin. The feasibility
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of reducing the RF hardware in realistic propagation scenarios is also assessed. In this

context, this chapter also proposes a realistic model for characterizing the operation of

hybrid analog-digital precoding systems.

Chapter 9 concludes this Thesis by summarizing the contents and the conclusions

derived throughout. Moreover, future research lines within the framework of this Thesis

are also presented.

Finally, mathematical proofs of the analyses developed throughout this Thesis are

provided in Appendices A-F.
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Chapter 2

Energy Efficiency in Multiple

Antenna Wireless

Communications Systems

This chapter presents a review of the state of the art in the research areas relevant

to this Thesis. In particular, the focus is placed on multiple antenna strategies designed

with the objective of enhancing the energy efficiency of wireless communications. Due to

the broad scope of the work, this introductory chapter concentrates on offering a broad

overview of the research related to the contributions of this Thesis, while a detailed

analysis of the specific state of the art is provided in each chapter separately.

2.1 Multiple-Input Multiple-Output (MIMO) Communi-

cations

2.1.1 Fundamentals and Preliminaries

Multiple-Input Multiple-Output (MIMO) technologies appeared due to the necessity

of scaling up the communication rates and improving the reliability of wireless commu-

nications [24, 25]. Essentially, the use of multiple antennas enables the transmission of
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Figure 2.1: Block diagram with the basic elements of a MIMO digital communi-
cation system.

parallel data streams that are spatially multiplexed. Formally, a downlink MIMO trans-

mission channel with N transmit antennas and K receiving antennas can be described

by

y = Hx + n, (2.1)

where y ∈ CK×1 is a vector that represents the received signal and x ∈ CN×1 con-

tains the symbols transmitted by the N transmit antennas. Moreover, n ∈ CK×1 ∼

CN (0, σ2IK) denotes the standard additive white-gaussian noise vector with variance

σ2, and H ∈ CK×N is the channel matrix whose complex coefficients hm,n represent

the channel gain between the n-th transmit antenna and the m-th receive antenna. In

the above, IK represents the K ×K identity matrix and the symbol ∼ indicates “dis-

tributed as”. Usually, the communication channel H is assumed to follow a frequency

flat Rayleigh fading at microwave frequencies, which can correspond to a subcarrier if

orthogonal frequency-division multiplexing (OFDM) is used. Hence, the channel matrix

is often characterized as H ∼ CN (0, IK ⊗ IN ), where ⊗ denotes the Kronecker product

[26, Section 4.6]. A block diagram illustrating the fundamental elements of a MIMO

digital communication is shown in Fig. 2.1 [27]. Here, the additional RF chains and an-

tennas required for MIMO transmission are explicitly represented, since they can have

a strong influence on the system’s energy efficiency as detailed in Sec. 2.1.3 [28].
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Capacity: The capacity of the MIMO communication channel can be obtained

when both the transmitter and the receiver have perfect instantaneous channel state

information (CSI) and it can be expressed as [24]

C =

nmin∑
i=1

log

(
1 +

P ∗i λ
2
i

N0

)
bits/s/Hz, (2.2)

where λi as the i-th ordered singular value λ1 ≥ λ2 ≥ . . . ≥ λnmin of the channel matrix H

with λnmin singular values and N0 denotes the one-sided noise spectral density. The non-

zero singular values λi are usually referred to as an eigenmode of the channel H and each

one of them can support an independent data stream. Moreover, P∗ =
[
P ∗1 , . . . , P

∗
nmin

]T
represents the optimum power allocation vector at the transmitter [24]

P ∗i =

(
µ− N0

λ2
i

)+

. (2.3)

In the above expressions, (·)T denotes the transpose operator, (p)+ = max (0, p), and

µ is selected so that the total transmit power constraint
∑

i P
∗
i = Pt is satisfied. The

optimal power allocation represented in (2.3) is achieved through water filling, i.e., by

allocating more power to the better conditioned channels and less (or even zero) to the

worse conditioned ones [24].

Multiplexing gain: The increase in the rates of a MIMO system can also be

characterized by its multiplexing gain r, which is defined as [29]

lim
SNR→∞

R(SNR)

log(SNR)
= r, (2.4)

where R(SNR) represents the data rate of a communication system for a given transmit

signal-to-noise (SNR) [29,30]. In essence, the multiplexing gain characterizes the increase

in the degrees of freedom provided by the MIMO channel.

Diversity gain: The deployment of multiple antennas can also reduce the average

error probability of the communication system. For instance, transmitting signals with

identical information exploiting the additional communication paths provided by the

multiple antennas is a useful strategy against fading conditions [29]. The characteriza-
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tion of this effect is given by the diversity gain d, which is defined as [30]

lim
SNR→∞

logPe(SNR)

log(SNR)
= −d, (2.5)

where Pe(SNR) denotes the average error probability at a fixed SNR. In general, there

exists a trade-off between the diversity and the multiplexing gains of a MIMO system,

since the communication paths are employed with the separate purposes of enhancing

the link reliability or the data rates, respectively. The interested reader is referred to

[29] for a detailed analysis of this trade-off.

2.1.2 Precoding in MIMO Systems

Intuitively, MIMO technologies require additional signal processing at the transmit-

ters and/or the receivers to separate independent data streams. These schemes are

classified in detection, precoding and joint transmit and receive techniques depending

on whether the signal processing is carried out at the receiver, at the transmitter or at

both communication sides, respectively.

Generally, precoding techniques are conventionally employed in the downlink of

multi-user scenarios with a single base station (BS), whereas detection schemes are

implemented in the uplink. Amongst other reasons, this is because the signal processing

load at the mobile devices is usually constrained due to the limitations in the batteries

and signal processors. Due to their importance in this Thesis, precoding techniques are

reviewed in this section.

In general, precoding techniques translate a significant part of the signal processing

load from the mobile units to the BS in broadcast channel scenarios where channel state

information is available at the transmitter [31]. Precoding schemes can be classified

as linear and nonlinear, according to the transformation that the original information

symbols undergo before being transmitted as shown in Fig. 2.2 [32]. Linear precoding

techniques are a low complexity means of pre-canceling the interference at the trans-

mitter by taking advantage of the knowledge that the BS has of both the channel and

the symbols to transmit [33–38]. Nonlinear precoding schemes have a higher signal
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Figure 2.2: Classification of the precoding techniques.

processing complexity but also enhance the maximum achievable rates [31,39–44].

2.1.2.1 Linear or Closed-Form Precoding

Closed-form precoding techniques aim at separating the different user streams by

employing a precoding matrix F that is applied to the vector of input symbols u ∈ CK×1.

Formally, the linear precoding process can be expressed as

x =
F
√
γ

u, (2.6)

where the definition of the precoding matrix F ∈ CN×K depends on the selection of

precoder and the normalization constant γ ensures that the average transmission power

is constrained to E
{
xHx

}
≤ Pt. Here, (·)H denotes the conjugate transpose and E {·}

represents the statistical expectation. The fundamental linear precoding schemes are

matched filtering (MF), zero forcing (ZF) and regularized zero forcing (RZF):

• Matched filtering (MF), also known as maximum ratio transmission (MRT), is

the simplest precoding strategy [45]. The precoding matrix of the MF precoder is

defined as

F = HH. (2.7)

The performance of this precoder is generally poor as the effect of the multi-user

interference is not explicitly mitigated [24].

• Zero forcing (ZF) fully eliminates interference at the cost of enhancing the pre-

detection noise at the receivers. Essentially, the effect of the channel over the
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transmission symbols is compensated prior transmission by setting [33]

F = H† = HH
(
HHH

)−1
, (2.8)

where (·)−1 and (·)† denote the inverse and the Moore-Penrose pseudoinverse ma-

trices, respectively [46].

• Regularized zero forcing (RZF) precoding improves the performance of the ZF

precoder by maximizing the signal-to-interference-plus-noise ratio (SINR) instead

of just focusing on mitigating the inter-user interference. This is accomplished

by regularizing the precoding matrix by a factor ϑ that is conventionally set to

satisfy the minimum mean square error (MMSE) criterion. Mathematically, the

precoding matrix is defined as [33]

F = HH
(
HHH + ϑIN

)−1
, (2.9)

where the optimal regularization factor for a single-cell scenario is given by ϑopt =

Nσ2 [33].

2.1.2.2 Non-Linear Precoding

In contrast with linear precoding techniques, the signal processing operations that

non-linear precoders perform to obtain the output signal at the transmitter cannot be

characterized via closed-form expressions. The fundamental non-linear precoders are:

• Dirty paper coding (DPC). These techniques are able to achieve the capacity of

the communication channel [47]. However, their complexity is too high, involving

codes of infinite length and sphere searches with complexity that grows exponen-

tially with the number of users [48,49].

• Vector perturbation (VP). This precoder perturbs the user data before transmis-

sion in a way such that the normalization constant of the ZF precoder is reduced

[39]. This modification allows increasing the performance of the linear precoders
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as the noise effect at the receivers is diminished. However, this comes at the cost

of a significant signal processing complexity, since an integer-lattice least squares

(LS) optimization problem is required to be solved [39,50]

• Tomlinson-Harashima precoding (THP). This nonlinear technique is the focus of

Chapter 3 and it is based on successively subtracting the known interference at

the transmitter [31]. This precoding scheme is more practical since, while offering

a reduced performance when compared with DPC and VP, its complexity is also

significantly reduced [31, 39]. Still, a power loss that harms the transmission’s

energy efficiency, which is particularly pronounced for low-order constellations,

is introduced in the signal generation process [31, 51, 52]. Alleviating this power

loss is the fundamental objective of the schemes proposed in [53–56]. However,

these strategies require to convey additional information to the receivers prior data

transmission [53,56], do not accurately characterize how to determine essential pa-

rameters to optimize performance [54], or have limited performance improvements

due to being applied to a single user [55]. These shortcomings motivate the tech-

nique proposed in Chapter 3 of this Thesis, which provides an alternative solution

to overcome the power loss problem.

2.1.3 Energy Efficiency in MIMO Wireless Communications

The optimization of the energy efficiency has attracted much interest due to the

concern on controlling the power consumption while the rates grow exponentially [2, 4,

57,58]. The energy efficiency ε is defined as

ε =
R

Ptot
, (2.10)

where here R can refer to the sum rates, the spectral efficiency or the throughput, and

Ptot is the total system power. There exist a variety of models for the total system

power consumption Ptot required for downlink transmission and a summary of these

can be found in Table 2.1. These different models or slight variations will be employed

throughout this Thesis for computing the total power consumption and energy efficiency
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Table 2.1: Different power consumption models employed in the literature for the
calculation of the energy efficiency in MIMO systems.

Ref. Formulation Parameters

[64]

 PDL
tot =

(
TDL
data

TCoher
+ α1

)
· PBS + α2 · PMS

PUL
tot =

(
TUL
data

TCoher
+ α3

)
· PMS

α{1,2,3}: Overhead signaling parameter

PMS: Transmit power mobile station

PBS: Transmit power base station

[5,
60]

PDL
tot =

PBS

η(1−σfeed)
+PRF+Psta

(1−σDC)(1−σcool)(1−σMS)

η: Power amplifier efficiency

σfeed: Lossy factor antenna feeder

PRF: Power consumption RF chains

Psta: Idle power consumption

σDC: Lossy factor DC-DC supply

σcool: Lossy factor cooling system

σMS: Lossy factor power supply

[2] PDL
tot = γ + βR

γ, β: Constants

R: System rate

[57] PDL
tot = PBS

η +MaPdyn + Psta

Ma: Number of active antennas

Pdyn: Dynamic power consumption

Psta: Static power consumption

[40,
65]

PDL
tot =

(
ξ
η

)
PBS +MaPdyn + C · pc

ξ: Peak-to-average power ratio (PAPR)

C: Complexity in kflops

pc: Power per 103 operations in a DSP

efficiency of the schemes under consideration. Note that the power consumption models

for the uplink of MIMO systems are not as advanced as those developed for the downlink

[59]. It should also be highlighted that the power consumption model introduced in

[5,60] is probably the most accurate one, since it is the result of a specific campaign for

characterizing the power consumption of existing cellular BSs. Indeed, this model has

been adopted by numerous works (e.g., [61–63]).

The optimization of the energy efficiency has been the subject of extensive analysis

in the related literature. Illustrative examples aim at highlighting the importance of

considering the power consumption of the RF circuitry on the resultant energy efficiency

[57, 58, 61, 66]. The optimization of the system’s energy efficiency is also considered in

[4, 57, 59, 65, 67, 68] and references therein. Overall, these works highlight a specific

concern: the critical impact of incorporating a large number of antennas and analog

hardware components on the resultant system’s power consumption and, subsequently,

on the energy efficiency. Due to their importance in the context of this Thesis, these

massive antenna systems constitute the focus of the following section.
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2.2 Large Scale Antenna Systems (LSAS)

Massive or large scale antenna systems (LSAS) are currently regarded a key solu-

tion for enhancing the spectral efficiency of the communication systems at microwave

frequencies [11, 12, 69]. These systems rely on incorporating a large number of anten-

nas at the base stations, which also becomes necessary at millimeter wave (mmWave)

frequencies between 30 and 300 GHz, where the signal attenuation is larger than at

microwave bands [16, 70]. Note that the increased path loss at higher frequencies also

promotes placing BSs closer to the users, i.e. increasing cell densification. Essentially,

this results in an interplay between the technologies that will be employed to increase

capacity in future networks: small cell solutions [71], massive MIMO [11], and mmWave

technologies [17]. This section presents the characteristics and challenges behind LSAS

with particular focus on their analysis for microwave frequencies, since they constitute

one of the main research areas of this Thesis.

2.2.1 System Model of LSAS

Consider the uplink of a single-cell scenario comprised of a BS equipped with N

antennas andK � N single-antenna autonomous users. Due to the reciprocity principle,

the uplink channel in the baseband model can be described as the Hermitian transpose

of the downlink channel under time division duplex (TDD) operation [72]1. In this

setting, the uplink channel matrix G , HH ∈ CN×K can be expressed as [11]

G , HH = ZD1/2, (2.11)

where the entries of Z ∈ CN×K represent the small (fast) fading effect and they are

typically assumed to be independent and identically distributed (i.i.d.) following a

complex-normal distribution with zero mean and unit variance, zn,m ∼ CN (0, 1), when

Rayleigh fading is assumed. The diagonal matrix D ∈ RK×K represents the large

1Channel reciprocity can be violated if the analog hardware components of the RF transceivers are
not accurately calibrated [13]. The interested reader is referred to [13, 73] and references therein for a
number of strategies developed with the purpose of continuosly calibrating the hardware mismatches
produced in the communication system.
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(slow) fading and its diagonal coefficients, d = [d1, . . . , dK ]T, incorporate the effect of

both geometric and shadow fading between the mobile stations (MSs) and the BS. The

amplitude factor dk of the k-th user is defined as

dk =
zk
r%k
, (2.12)

where zk corresponds to the standard log-normal shadowing, 10 log zk ∼ CN (0, σ2
shad),

with standard deviation σshad, rk is the distance between the BS and the k-th user, and

% represents the decay exponent. Typical values in the literature for these parameters

are % = 3.8 and σshad = 8 dB [74,75].

In the uplink, the BS receives a baseband complex signal yul = [y1, . . . , yN ]T which

reads as

yul =
√
ρul ·G · xul + n. (2.13)

Here, xul ∈ CK×1 is the vector of transmit symbols from the single-antenna mobile units,

ρul is proportional to the uplink SNR and the noise entries are i.i.d. with unit variance,

nk ∼ CN (0, 1). Moreover, it is considered that the symbols transmitted by the mobile

users satisfy xul ∼ CN (0, IK) for the capacity derivations in the sequel [11].

2.2.2 Achievable Sum Rates with Linear Detection in LSAS

This section shows that even the simplest linear precoding and detection schemes

become asymptotically optimal in the realm of LSAS. Specifically, this is demonstrated

by considering that the number of antennas at the BS tends to infinity and that there

is a large number of scattering centers [11, 74]. The achievable sum rate in the uplink

of a generic multi-user MIMO (MU-MIMO) system is given by [11]2

Rul
sum = log2 det

(
IK + ρulG

HG
)
, (2.14)

where det (·) denotes the determinant of the argument matrix.

2Without loss of generality, this section concentrates on uplink transmission. Similar results can be
derived for downlink channels [11, 69].
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To derive the achievable rates in LSAS, the fact that N � K in large-scale MIMO

systems is exploited, i.e., the uplink channel matrix G is a tall matrix. As a conse-

quence of this, the columns of the channel matrix G become orthogonal under favorable

propagating conditions [74]. Physically, channel orthogonality appears as a result of

having a large number of antennas at the BS and can be interpreted as follows: the

closer to orthogonal the user channels become, the larger the disparity in the commu-

nication channels of different users will be. This facilitates the spatial separation of the

data streams received from different users at the BS side, since their channels become

distinct. With these restrictions, the following expression is satisfied [11]

(
GHG

N

)
K�N

= D1/2

(
ZHZ

N

)
K�N

D1/2 ≈ D. (2.15)

The above expression can be interpreted in the following way: in the asymptotic limit

of large scale MIMO systems and under favorable propagation conditions, only the large

scale fading, i.e. shadowing and path loss, has an effect on the communication between

the mobile stations and their BS. Incorporating this result into (2.14), the achievable

sum rate can be approximated as

Rul
sum ≈ log2 det (IK +NρulD) =

K∑
k=1

log2 (1 +Nρuldk) . (2.16)

The last equality provides a nice intuitive interpretation: the transmission channel of

an LSAS can be decomposed into K parallel additive white Gaussian noise channels,

where each equivalent link between the k-th mobile station and the BS has received SNR

Nρuldk. Note that, since the small-scale parameters do not influence the expression in

(2.16), the achievable rates experience reduced temporal variations as the number of BS

antennas grows, a phenomenon referred to as channel hardening. In other words, the

instantaneous achievable rates approximate the ergodic achievable rates in LSAS [76].

The channel hardening effect is illustrated in Fig. 2.3, which represents both the

average of the sum rates E
{
Rul

sum

}
in (2.14) and their 90% confidence intervals, repre-

sented by shaded regions, against N for the K = {2, 6} cases and ρul = 1/K. Without

loss of generality, this figure considers a channel without path loss, i.e. D = IK in (2.11).
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sum rates and shaded areas denote the 90% confidence intervals of
the instantaneous sum rates Rul

sum in (2.14).

Fig. 2.3 shows that the thickness of the shaded areas representing the 90% confidence

intervals is reduced for increasing N . This is a direct consequence of the channel hard-

ening effect, since the instantaneous sum rates approximate their average value. It can

also be observed that the number of BS antennas required to attain channel hardening

grows as K increases, which can be explained by the reduced channel orthogonality of

the communication channels from different mobile terminals.

An identical result to (2.16) can be derived if a MF is implemented at the BS under

the same conditions, thus verifying that this simple form of detection is optimal. From

(2.13) and using (2.15), the post-processed signal after MF detection reads as

y = GH · yul =
√
ρulG

HG · xul + GHn ≈ √ρulND · xul + GHn. (2.17)

The received SNR for the k-th user in (2.17) is given by SNRk = Nρuldk, which coin-

cides with that derived in (2.16) and determines the achievable rate for the k-th user.

Alike conclusions can be derived for the ZF and RZF linear detectors [11, 72]. In other

words, the performance of linear precoding techniques approaches that obtained with

the complex dirty paper coding strategies [11]. In this line, a variety of strategies have
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Figure 2.4: TDD operation protocol. Each symbol slot represents a
time/frequency resource.

been designed with the objective of reducing the signal processing of the large matrix

inversions required in the linear ZF and RZF precoding and detection schemes [75,77,78].

2.2.3 Acquisition of Channel State Information (CSI) in LSAS

The application of linear precoders and detectors requires knowledge of instantaneous

CSI at the BS. Indeed, the duration of the CSI acquisition process justifies the focus of

the LSAS literature on TDD operation [11,74,79]. This is because the training interval

can be proportional to the excessive number of antennas at the BSs in FDD scenarios

[79]3. Instead, the employment of TDD in massive MIMO systems relies on that the

training interval length depends on the number of active terminals and is independent

of the number of antennas at the BSs.

Under TDD operation, the channel coherence interval is divided into two phases:

pilot training and data transmission and reception. The CSI acquisition sequence is

illustrated in Fig. 2.4. First, the BS acquires the CSI via uplink pilots in a process that

occupies ηtr time/frequency symbol slots. Subsequently, the BS is then ready to transmit

or receive data as the instantaneous CSI is available for the design of the precoders and

detectors for the downlink and uplink respectively.

The pilot training process starts with each user transmitting its own predefined pilot

signals to the BS over ηtr ≥ K symbols. This condition allows orthogonality between

the pilot vector of the k-th user, θk = [θk(1), . . . , θk(ηtr)]
T, and the pilot signals of rest

3The development of strategies for enabling FDD operation is a flourishing area in the LSAS literature
(see, e.g. [80–83] and references therein). However, most of these works assume channel sparsity for
reducing the length of the CSI acquisition process, which is yet an hypothesis not confirmed [13].
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of the users. In other words, the training pilots should ideally satisfy

θi · θH
j =


1, if i = j

0, if i 6= j

. (2.18)

The received signal at the BS after the pilot training phase Ytr ∈ CN×ηtr is given by

Ytr =
√
ρulGΘ + N, (2.19)

where Θ ∈ CK×ηtr is defined as Θ = [θ1, . . . ,θK ]T, N ∈ CN×ηtr is an AWGN matrix

formed by i.i.d. standard gaussian entries and ρul is the uplink SNR [72].

The received pilots are then processed by correlating them with the pilots already

available at the BS. Mathematically, the least squares channel estimate Ĝ ∈ CN×K can

be expressed as [84–86]

G̃ = YtrΘ
H =

(√
ρulGΘ + N

)
ΘH =

√
ρtrG + NΘH, (2.20)

where ρtr is a constant proportional to the SNR of the training phase [72]. Other

estimation methods such as MMSE can also be applied provided that the statistics of

the channel are known in advance [85]. From (2.20), the BS is also capable of estimating

the downlink channel by considering channel reciprocity, i.e., H̃dl = G̃H.

The CSI acquisition process can limit the global performance of practical massive

MIMO systems due to the necessity of satisfying ηtr ≥ K. Hence, one of the most

active areas of research is focused on reducing the acquisition time or the complexity

of estimating the communication channel [85, 87]. Indeed, the coherence time might

not be long enough in realistic multi-cell scenarios to provide orthogonality between the

pilots of different cells without significantly degrading the performance. This entails that

non-orthogonal pilots have to be employed, which in turn generates the so-called pilot

contamination effect [74]. Since pilot contamination is usually considered the ultimate

performance limit of LSAS [11], this aspect is analyzed separately in Sec. 2.2.4, where

the fundamental challenges of LSAS are identified.
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2.2.4 Fundamental Challenges of LSAS

2.2.4.1 Pilot Contamination

The limited coherence time of realistic transmission channels forces the employment

of non-orthogonal pilot sequences between the terminals of different cells in TDD scenar-

ios. As a consequence, the BS —which would only ideally receive channel information

about the intra-cell users— acquires inaccurate CSI during the training phase because it

cannot decorrelate the pilot signals generated from the users of other cells. The worst-

case scenario where the same pilot sequences are re-used in all cells is usually considered

in the literature [74]. Specifically, under these conditions the LS estimate obtained at

the l-th BS can be expressed as [84]

G̃ll =
√
ρtrGll +

√
ρtr

∑
i 6=l

Gil︸ ︷︷ ︸
Inter-cell interference

+Nl, (2.21)

where Gil ∈ CN×K denotes the channel between the mobile stations of the i-th cell

and the l-th BS, Nl ∈ CN×K represents the standard AWGN at the l-th BS with i.i.d.

entries nij ∼ CN (0, 1), and
√
ρtr is a constant proportional to the SNR of the training

phase. The pilot contamination process is illustrated in Fig. 2.5(a). In this simplified

scenario two arbitrary users with the same training sequence affect the channel estimate

obtained by the BS in Cell 1, since this BS is not able of decorrelate their sequences.

The simplest precoding strategy, i.e. the MF, can be employed to illustrate the effect

of the pilot contamination in the downlink. This precoder is able to achieve the sum

rates in the uplink (and, similarly, downlink) of LSAS as shown in Sec. 2.2.2, and its

simplicity contributes to understand the effect of the pilot contamination in multi-cell

scenarios. Specifically, consider a multi-cell system comprised of L cells. The received

signal at the mobile units in the l-th cell in such a system is given by

yl =
√
ρdlHllxl +

√
ρdl

∑
i 6=l

Hlixi︸ ︷︷ ︸
Inter-cell interference

+nl, (2.22)
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Figure 2.5: Illustration of the (a) pilot contamination effect and (b) inter-cell
interference produced by the pilot contamination effect.

where yl ∈ CK×1 is the composite signal received by the K users positioned in the l-th

cell, xi ∈ CN×1 denotes the signal transmitted by the i-th BS and ρdl is proportional

to the downlink SNR. Moreover, nl is the noise received by the MS in the l-th cell with

independent i.i.d. components following nij ∼ CN (0, 1). Note that effect of the inter-

cell interference is explicitly shown in (2.22), since each mobile user receives information

from all L BSs. When a MF precoder F̃ = G̃ll , H̃H
ll is applied at the transmitter, the

signals received at the mobile units of l-th cell can be subsequently expressed as

yl =
√
ρdl

L∑
n=1

HlnF̃llul + nl =
√
ρdl

L∑
n=1

Hln

√ρtrH
H
ll +
√
ρtr

∑
i 6=n

HH
in + Nl

un + nl,

(2.23)

where ul ∈ CK×1 denotes the data symbols for the users of the l-th cell and the MF

is built by incorporating the channel estimate obtained in (2.21). As N grows large,

products of the form HlnNj can be considered negligible since the noise is always un-

correlated with any other quantity. Moreover, products of the form Hln ·HH
in ∀ i 6= l are

much smaller than the correlated products (i = l) for large N . Using identity (2.15) and

the above-mentioned assumptions, the received signal at the mobile units (2.23) can be

expressed as

yl ≈ N
√
ρdl · ρtr

(
L∑
n=1

Dlnun

)
, (2.24)

where Dln ∈ RK×K is a diagonal matrix containing the large scale fading coefficients

between the users of the l-th cell and the n-th BS. Particularizing (2.24) for the k-th

user of the l-th cell, the received symbol at the k-th mobile station under the large scale
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MIMO assumptions is given by

ylk ≈ N
√
ρdl · ρtr

dllk · ulk +
∑
n6=l

dlnk · unk

 , (2.25)

where dlnk denotes the large-scale fading between the k-th terminal of the l-th cell and

the n-th BS. Instead, unk represents the symbol transmitted from the n-th BS to the

k-th user of that cell. From (2.25), the signal to interference plus noise ratio (SINR) at

the k-th terminal reads as

SINRk =
d2
llk∑

n6=l d
2
lnk

. (2.26)

The above expression can be interpreted as follows: in the downlink of multi-cell systems,

all BSs partially beamform their signals to the mobile users placed in other cells due to

the pilot contamination effect. In other words, an inaccurate estimation of the intra-cell

channel generates inter-cell interference. This effect is depicted in Fig. 2.5(b), where it

can be seen that the BS-1 partially beamforms its signal to the mobile user that shares

a common pilot sequence in the adjacent cell. Note that increasing the pilot power does

not increase the SINR as ρtr does not appear in (2.26), which is a consequence of the

pilot re-use in the different cells [11]. Moreover, it can be concluded that the small-scale

fading, the noise in the channel acquisition procedure, and the uncorrelated noise at the

receivers vanish in the large scale antenna limit, since they do not intervene in the final

SINR of the system [72,79,84].

The mitigation of pilot contamination is one of the most active research areas in

LSAS. Although not extensively described in here for reasons of space, two alternative

approaches are conventionally adopted in the literature for alleviating pilot contami-

nation: 1) identifying the differences between the intra-cell signals from the exterior

ones in order to separate them during the pilot training stage [79, 88–93], and 2) mod-

ifying the CSI acquisition protocols [94, 95]. The interested reader is referred to the

above-mentioned mentioned works for further discussion.
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2.2.4.2 Non-Ideal Hardware

The large number of antennas required in LSAS promotes the employment of cheaper

analog hardware components that might introduce signal distortions and imperfections,

hence affecting the performance provided by realistic LSAS [96]. An extensive analysis

of the hardware impairments is provided in [64], where the impairments are incorporated

via several additional noise sources when compared to the conventional MIMO system

model: one at the BS and an additional one in each mobile terminal. These sources

model the combined effect of non-idealities such as I/Q imbalance, imperfect analog

filters, or non-linear power amplifiers [64, 96]. Specifically, the model that incorporates

the above hardware non-idealities for the uplink data transmission in a single-user setup

can be expressed as [64]

y = g (u+$t) +$r + n, (2.27)

where both the hardware impairments at the BS, $r, and the mobile terminal, $t, are

comprised of i.i.d. Gaussian random variables as per the central limit theorem [64, 97].

In the above expression, u ∈ C denotes the symbol transmitted by the user, g ∈ CN×1

represents the communication channel and n is the AWGN vector with i.i.d. entries

following ni ∼ CN
(
0, σ2

)
. A fundamental conclusion derived in [64] is that cheaper

components can be employed at the BSs without noticing a significant decrease in the

performance of the system. This facilitates the deployment of LSAS, since the number

of components at their BSs notably increases w.r.t. conventional MU-MIMO [13]. The

interested reader is referred to [98–100] and references therein for more information

regarding hardware non-idealities in LSAS.

2.2.4.3 Inter-Antenna Correlation due to Space Constraints

The large number of antennas that massive MIMO technologies advocate entails that

the physical space dedicated to allocate the antennas must also grow if they operate

on the same frequency bands [11, 101]. However, a limit in the maximum number of

antennas can appear due to the existence of physical restrictions at the BS structure.

Consider for instance an antenna array with N = 64 elements and transmitting at a
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Figure 2.6: Schematic of the 4×16 planar antenna array employed for the channel
measurements in Bell Labs.

typical frequency of f = 2.6 GHz [102]. This results in a wavelength of λ = c/f ≈ 11.5

cm, where c = 3 × 108 m/s refers to the speed of light. If d ≥ 0.5λ is considered to

mitigate inter-antenna correlation and mutual coupling [103,104], placing the antennas

in a traditional uniform linear array (ULA) topology seems impractical in the above

example, since the size of the resultant array would at least be dt = Nλ/2 ≈ 3.68

meters. This antenna size is significantly larger than the physical structures currently

employed, hence complicating their deployment.

The above observation motivates the deployment of other antenna topologies such

as planar, cylindrical, spherical, or even irregular arrays [12, 21, 105]. For instance, the

dimensions of the above antenna array with N = 64 dual-polarized antenna elements

distributed in a planar arrangement with Nh = 16 horizontal antennas (dh = 0.5λ) and

Nv = 4 vertical antennas (dv = λ) would occupy an approximate area of 92 × 46 cm2.

Indeed, this specific array topology is shown in Fig. 2.6, since it coincides with that

employed in Bell Labs for performing the channel measurements analyzed in Chapter

8. Note that placing a larger number of antennas horizontally is conventional due to

the interest of having finer resolutions in azimuth than in elevation [73,106]. Moreover,

larger vertical inter-antenna distances are promulgated to improve spatial resolution in

the elevation domain.

In spite of the above, there might be scenarios where the massive antenna arrays

have to be constrained to the physical space occupied by today’s BSs. Intuitively,

LSAS deployments would require packing more antenna elements in constrained phys-

ical spaces, hence generating inter-antenna distances smaller than d ≤ 0.5λ. These
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reduced inter-antenna spacings can generate severe spatial correlation and mutual cou-

pling between the antenna elements [25,104,107–110], whose study for LSAS is consid-

ered in [101, 111, 111–113]. Interestingly, [111] shows that, in contrast with the result

shown in (2.16), favourable propagation conditions are not attained when asymptoti-

cally increasing the number of antennas in a fixed physical space. In spite of this, an

increased spatial correlation might also provide opportunities for reducing the hardware

and signal processing complexities of LSAS. Indeed, spatial channel correlation has been

leveraged in [114] and references therein for reconfiguring the physical location of the an-

tenna elements with the purpose of maximizing performance. Alternatively, the scheme

developed in Chapter 6 concentrates on exploiting severe inter-antenna correlation for

reducing the complexity of space-constrained massive BSs.

2.2.4.4 Analog Hardware Complexity in LSAS

As highlighted throughout this chapter, the excessive number of antennas imple-

mented in massive MIMO BSs come at the cost of an equally large number of RF

chains. Therefore, the circuit power consumption is increased in LSAS w.r.t. conven-

tional systems, which can degrade the energy efficiency as indicated in Sec. 2.1.3. A

number of works have placed special emphasis on the additional power consumption

required by the electronic components of LSAS [4, 61, 115, 116]. In a similar line, the

analog hardware complexity of LSAS is burdensome due to the large number of RF

components required. Therefore, providing effective solutions to these crucial problems

is essential for the practical deployment of energy- and cost-efficient LSAS. Due to their

relevance for this Thesis, the most relevant alternatives for reducing the complexity of

LSAS are introduced in Sec. 2.3.

2.3 Enhancing the Energy Efficiency of Multiple Antenna

Systems

As detailed in the previous section and Sec. 2.1.3, increasing the number of antennas

might not enhance the system’s energy efficiency, since the additional power consumed

58



Chapter 2. Energy Efficiency in Multiple-Antenna Wireless Systems

by the RF chains may actually produce the opposite effect. Therefore, two complemen-

tary aspects required for enhancing the energy efficiency of multiple antenna systems

should be considered: 1) understanding the evolution of the actual achievable rates

with increasing number of antennas in real communication systems and 2) employing

schemes with reduced analog hardware and signal processing complexities. This Thesis

presents contributions in both areas, i.e. the realistic propagation channels of LSAS are

analyzed in Chapter 8, and a variety of strategies are proposed throughout with the aim

of reducing the total power consumption. With the purpose of motivating the reduced-

complexity schemes introduced in this Thesis, the following sections describe a number

of main alternatives for reducing the hardware and signal processing complexities of

multiple antenna systems.

2.3.1 Antenna and Beamspace Selection

The selection of a subset of antennas M < N based on their channel conditions has

been posed as a feasible alternative for reducing the complexity in both small and large

scale MIMO systems [23,117,118]. Intuitively, the selection procedure exploits that sep-

arate antenna elements experience different propagation characteristics. Therefore, the

fundamental objective consists in choosing M antenna elements that maximize a given

performance metric such as the achievable rates or the energy efficiency. These designs

are commonly referred to as antenna selection (AS) schemes and they facilitate reducing

the number of RF chains M at the expense of a performance loss when compared with

full-RF MIMO transmitters and receivers [23, 117–123]. The block diagram of an AS

system is shown in Fig. 2.7, where the additional switching matrix required for selecting

the subset of antennas is explicitly shown.

The characterization and development of AS systems have been the focus of intensive

research. For instance, a vast number of sub-optimal AS algorithms for reducing the

complexity of the optimal selection have been proposed in the related literature (see,

e.g. [118, 124–128] and references therein). Numerous performance analyses in terms of

attainable rates and diversity of these algorithms for transmit and receive AS are also
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Figure 2.7: Block diagram of a transmit antenna selection (AS) system.

available [23,117–123]. Moreover, there are several works studying different aspects of AS

systems such as the acquisition of channel state information (CSI) [129–131], their energy

efficiency improvements [132–134], or their practical implementation aspects [135, 136].

The application of AS to LSAS has also attracted significant attention recently due to

the interest in reducing the colossal number of RF chains required [21, 137–146]. In

turn, the large number of RF chains and antenna ports also pose new challenges in the

design of the essential RF switching matrix that implements the AS, which have been

identified in [146,147]. While these works propose schemes for reducing the complexity

of RF switching matrices, they only concentrate on specific implementations with a fixed

number of RF chains and do not perform an accurate characterization of the savings

attained. Since AS constitutes one of the best candidates for reducing the hardware

complexity in LSAS [148], Chapter 7 analyzes and proposes a variety of RF switching

hardware implementations for obtaining further complexity savings in AS systems. In

this line, Chapter 8 studies the performance of AS in real propagation environments

with a massive antenna array.

At this point it should be noted that a similar approach to antenna selection can

be applied in the beamspace domain by performing a transformation of the channel

such that the physical space is divided into orthogonal beams [149, 150]. Essentially,

this transformation can be performed via discrete lens arrays [103,151], Butler matrices

[152–154], or any other solution that performs a discrete Fourier transform (DFT) of the

channel response [103,149,155]. The basic block diagram and the intuitive interpretation

of beamspace MIMO systems is shown in Fig. 2.8, where it can be observed that only a
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Figure 2.8: Block diagram and physical interpretation of a beamspace MIMO
system.

subset of coloured beams is active. Consequently, the number of RF chains can be re-

duced in directional communication channels where signals are received (or transmitted)

from a reduced number of physical directions, i.e. sparse channels in the physical domain

such as those found at mmWave frequencies [156]. Intuitively, these reduced RF-chain

schemes select specific physical directions instead of antenna elements, as convention-

ally done in AS. These approaches are conventionally referred to as beamspace selection

schemes, and their operation in realistic systems is also considered in Chapter 8.

2.3.2 Spatial Modulation

Spatial modulation (SM) transmitters and receivers aim at reducing the number

of RF chains by activating a subset of antennas M < N depending on the input bit

stream [19,157,158]. The essential idea behind SM is to, apart from using conventional

modulation methods to transmit information, encoding additional information onto the

antenna indexes. This generates a 3-dimensional constellation: the first two signal

dimensions corresponding to the conventional Q-QAM symbols and an additional spatial

dimension given by the antenna indexes employed to convey the selected modulation

symbol. The operation principle of conventional SM is illustrated in Fig. 2.9 for a

system with N = 4 and Q = 4 and can be described as follows:

− The antennas serve as a source of information and the number of antennas de-

termines the number of bits that can be encoded in the spatial dimension. For
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Figure 2.9: Illustration of the transmission process in spatial modulation.

instance, the scheme of Fig. 2.9 conveys log2(N) = log2(4) = 2 bits through the

antenna index.

− The remaining bits are subsequently employed to select the modulation symbol.

Therefore, the number of bits that can be simultaneously transmitted in bits per

channel use (bpcu) depends on both the modulation order and the number of

transmit antennas via log2(N)+log2(Q). Specifically, the transmit signal of single-

RF SM transmitter adopts the form

x =
[
0 · · · sql · · · 0

]T
, (2.28)

where sq is the q-th symbol of the transmit constellation Q and l ∈ {1, . . . , N}

denotes the index of the active antenna. Note that a large number of entries in

the transmitted vector of (2.28) are zero-valued.

− The channel is used as a modulator, i.e., its output (the signal at the receiver) will

be different depending on the antenna employed for transmission. For this to hold,

SM ideally assumes that the antennas are sufficiently well separated so that there

is no spatial correlation between them, and a scenario with sufficient scattering.

− Ideal SM transmission assumes that the receiver has instantaneous CSI knowledge.

This channel knowledge is exploited to estimate both the transmitted signal and

the active antennas. For instance, the optimal maximum likelihood (ML) detection

is given by [159] (
l̂, ŝq

)
= arg min

l,q
(y − hls

q) , (2.29)

where, in coherence with (2.1), y ∈ CK×1 is the received signal, hl represents
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Figure 2.10: Comparison between the architectures of (a) a conventional MIMO
transmitter and (b) a spatial modulation transmitter.

the l-th column of the downlink channel matrix, and l̂ ∈ {1, . . . , N} and ŝq ∈ Q

denote the estimated active antenna index and the estimated constellation symbol,

respectively.

Overall, the above operation allows decreasing the number of RF chains employed

in conventional MIMO transmission, since only one antenna is simultaneously active

[19, 157, 158]. This is explicitly shown in Fig. 2.10, where the block diagrams of both

conventional MIMO and SM transmitters are represented. Fig. 2.10 explicitly shows

that spatial modulation transmitters require a fast switch that varies at the symbol

rate, which constitutes one of the main bottlenecks of these systems [19,157,158]. Also

note that the RF hardware benefits come at the cost of a reduced attainable spectral

efficiency Se when compared with MIMO transmitters, where Se increases linearly with

the number of transmit antennas as N log2(Q). In spite of this, the energy efficiency

trade-off can still be favourable for spatial modulation systems, depending on the relative

power consumption of the RF chains w.r.t. the transmission power [62,160–162].

There exists a conglomerate of uncoded SM systems that have different denomina-

tions according to their modulation order or their number of active antennas as depicted

in Fig. 2.114. This figure highlights in color the schemes where this Thesis has made

contributions on: space shift keying (SSK) and spatial modulation (SM). Specifically,

4The concept of SM can also be extended to incorporate both space and time dimensions via disper-
sion matrices that occupy a number of transmission blocks [163,164]. For reasons of brevity, this Thesis
concentrates on conventional SM, where only the spatial dimension as a means of conveying information
is considered.
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Figure 2.11: Nomenclature and characteristics of different SM-based systems.

SSK constitutes a low-complexity version of SM where the information is only conveyed

via the spatial-constellation diagram, i.e. sq = 1,∀ q in (2.28) [18]. The theoretical char-

acterization of the error rates of both SSK and SM has been performed in [18,165,166].

Additionally, there are three research areas in SSK and SM particularly related to this

Thesis, namely, signal detection, signal pre-scaling and the application of the SM prin-

ciples to the multiple access channel (MAC):

− Signal detection. The efforts for enhancing the performance attainable by SSK

and SM have been mainly focused on the design of detection algorithms for point-

to-point systems [19,157,167]. The fundamental objective behind this research line

is to reduce the computational complexity of the ML detector in (2.29), while ap-

proximating its attainable performance (see, e.g. [168–171] and references therein).

Particularly related to this Thesis are [172, 173], where the sparsity of the trans-

mitted signals in SSK and GSSK is leveraged for devising single-user detectors

based on compressive sensing (CS). Indeed, Chapter 5 also relies on the principles

behind CS for proposing a SM detector, although for scenarios with a multiplicity

of users, as detailed below.
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Figure 2.12: Illustration of the uplink of a LSAS with SM. The mobile terminals
only activate a subset of antennas for transmission towards the BS.

− Signal pre-scaling. Although conventional SM systems only consider CSI avail-

ability at the receiver for the purpose of detection, a parallel line of research

has demonstrated the benefits of exploiting CSI availability at the transmitter.

For instance, a number of suboptimal constellation shaping algorithms have been

proposed in [163, 174–177]. Similarly, the focus of [178–180] is also placed on de-

veloping pre-scaling algorithms, but their application is limited to systems with

a single receive antenna. Instead, the schemes developed in [181–184] facilitate

the application of symbol pre-scaling to multiple antenna systems. However, these

schemes only adapt the transmission power [181,182], do not devise the candidate

pre-scaling factors according to the channel conditions [183], or have a substantial

complexity due to the need of solving multiple convex optimization problems be-

fore reaching convergence [184]. In order to address the above-mentioned issues,

Chapter 4 proposes a pre-scaling strategy for SSK multiple antenna systems based

on semidefinite programming.

− Application of SM to the multiple access channel (MAC). The works de-

tailed above solely concentrate on point-to-point systems. Instead, contemporary

works consider the application of SM to the MAC, where a multiplicity of SM

terminals convey information towards a BS, generally considered to incorporate a

large number of antennas as shown in Fig. 2.12 [159, 185, 186]. Indeed, the the-

oretical analyses carried out in [159, 185, 186] demonstrate that SM systems can

provide performance improvements over conventional MIMO systems with identi-

cal number of RF chains. The extension of SM to multi-user scenarios has been
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also considered in [187–191] for enhancing the performance of conventional point-

to-point detection algorithms. Essentially, these detection schemes take advantage

of the knowledge that only a given subset of antennas will be active per user. In

other words, the transmitted signals have a specific structure. Still, the above algo-

rithms, which have developed contemporarily to this Thesis, do not fully optimize

the detection procedure, where additional complexity savings can be achieved. In

this line, Chapter 5 designs a detection algorithm for SM with the purpose of

providing further complexity and performance benefits in the MAC of LSAS.

2.3.3 Hybrid Analog-Digital Precoding and Detection for LSAS

Hybrid analog-digital precoding and detection schemes aim at reducing the number

of RF chains by translating part of the signal processing operations to the RF domain

[20, 192–195]. Indeed, this approach is crucial in mmWave systems due to the reduced

number of degrees of freedom offered by the communication channel and the need for

providing beamforming gains [156]. The employment of hybrid precoding and detection

at mmWaves is further motivated by the cost of the RF chains at these high frequencies,

which is significantly increased w.r.t. the components working below 3 GHz [16,193]. In

practical terms, this introduces a limitation in the number of RF chains that mmWave

systems can implement. The composite precoding matrix F of hybrid analog-digital

precoding systems can be decomposed as [193]

F = FRFFBB, (2.30)
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where FBB ∈ CM×K represents the digital baseband precoding matrix and FRF ∈

CN×M characterizes the analog beamforming network (ABFN). The equivalent hardware

block diagram of hybrid analog-digital precoding systems is shown in Fig. 2.13. Since

FRF admits multiple hardware implementations, additional constraints must be enforced

in its definition. Overall, hybrid precoding systems allow reducing both the analog

hardware and signal processing complexities at the expense of a reduced flexibility when

compared with fully-digital designs [147, 195–197]. The operation of hybrid analog-

digital systems in realistic systems is explored in Chapter 8, where the importance of

accounting for the particularities of performing part of the signal processing on the RF

domain is highlighted.
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Chapter 3

Power-Efficient

Tomlinson-Harashima Precoding

3.1 Introduction

One of the main factors that reduces the energy efficiency of Tomlinson-Harashima

precoding (THP) is the power loss that this system inherently introduces. This power

loss is produced by the implementation of the modulo operation at the transmitter and at

the receivers as a way of guaranteeing that the transmission power is constrained [51,52].

The power loss acquires a significant importance in low-order modulation systems and it

produces an increase in the transmission power caused by the change in the distribution

of the transmit symbols after the precoding process [31,51,52].

Several modifications to THP have been examined in previous works with the aim

of reducing the power loss. An alternative based on tilting the constellations of the

data symbols is analyzed in [53]. The specific tilting angle is adaptively decided at

the transmitter depending on the input symbols, and must be conveyed or estimated

at the receiver. This reduces the system performance either due to angle estimation

errors or the necessity of feedforwarding the angles. A solution to overcome these prob-

lems has been proposed in [56], where the authors present an algorithm to optimize the

compromise between the performance loss and the power gains, by tilting the trans-
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mit constellation. The transmit power can be also reduced for a given performance by

modifying the order in which the users are encoded [31]. Particularly, the improvement

in the multi-user setting is achieved by performing a reordering of the input data and

the rows of the channel matrix according to the Bell Laboratories Layered Space-Time

(BLAST) criterion [198]. In [54], a modification of the transmit signal based on the

quality-of-service requirements at the receivers is proposed. In this work, a transmit

power reduction is proposed after expanding or shrinking the entire user constellations

depending on the user requirements. However, this implies that the total transmission

power is not constrained and that the optimal expansion factor cannot be known in

advance. An alternative technique to reduce the effect of the power loss is complex do-

main interference optimized THP (CIO-THP) [55]. This strategy is based on modifying

the symbol of the first encoded user to optimize the interference in the pre-subtraction

process subject to a SNR threshold of the corresponding receiver, therefore reducing the

power required for precoding.

The technique proposed in this chapter minimizes the power loss effect by directly

scaling the information symbols of a number of users as opposed to CIO-THP to better

align the resulting interference to the symbols of interest. By doing so, the power to

cancel this optimized interference is drastically reduced. In this strategy, the optimum

scaling factors are obtained by solving an optimization problem with SNR constraints at

the receivers, i.e., the proposed technique can be viewed as a non-trivial enhancement of

CIO-THP where expanding the optimization to more users poses new challenges in the

design of the optimization problem. Indeed, a change in the definition of the required

conditions to ensure a threshold performance at the receivers is necessary due to the

use of the modulo operator at the receivers as opposed to CIO-THP where the modulo

operator need not be taken into account in the optimization.
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3.2 Power-Efficient THP (PE-THP) by Adaptive Symbol

Scaling

3.2.1 Conventional THP

Tomlinson-Harashima precoding (THP) is a nonlinear technique that successively

subtracts the known interference at the transmitter [31]. While both minimum mean

square error THP (MMSE-THP) and zero forcing THP (ZF-THP) criteria can be applied

to define the matrices involved in the precoding process [199], this chapter concentrates

on ZF-THP for brevity reasons. The complete block diagram of the proposed power-

efficient THP (PE-THP) is shown in Fig. 3.1, where x̃ ∈ CN×1 represents the equivalent

transmit symbols, y ∈ CK×1 denotes the received signals and n ∈ CK×1 ∼ CN (0, σ2IK)

denotes the standard additive white-Gaussian noise vector with variance σ2. In line

with conventional ZF-THP, the proposed scheme first lower triangularizes the downlink

MISO channel H ∈ CK×N by using the LQ decomposition [31]

H = L · FH. (3.1)

Here, K represents the number of single-antenna users, N is the number of antennas

at the BS, F is a unitary matrix and L is a lower left triangular matrix. Throughout

this chapter, the BS is assumed to have a perfect knowledge of the channel H and, for

simplicity, N = K is considered as per [31]. By using the resultant matrices from the

LQ decomposition, the equivalent THP channel can be represented by the lower left

triangular matrix

B = G ·H · F, (3.2)

where the diagonal matrix of scaling coefficients G is obtained from the main diagonal

of the matrix L as

G = diag
({

L−1
}
n,n

)
. (3.3)

The scaling operation is performed by each of the receivers and it ensures that the main

diagonal of B is formed by ones for correct interference presubtraction. After performing
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Figure 3.1: Block diagram of the proposed PE-THP.

these operations, the resulting MISO channel can be equivalently described as



r1

r2

...

rK


=



1 0 · · · 0

b2,1 1 · · · 0

...
... · · ·

...

bK,1 bK,2 · · · 1





x1

x2

...

xN


+



n1

n2

...

nK


, (3.4)

where r = [r1, r2, . . . , rK ]T is the received signal after the THP processing at the re-

ceivers.

THP-based systems implement B−1 at the transmitter to guarantee that the received

symbols are interference-free. However, since a straight implementation of this solution

increases the transmission power dramatically, a modulo operation is applied to avoid

this [31]. The modulo function ensures that the transmitted symbols lie inside the

Voronoi region of the original constellation and is given as

[p] modL = p−
⌊

Re(p) + L/2

L

⌋
L− i

⌊
Im(p) + L/2

L

⌋
L, (3.5)

where Re (·) and Im (·) represent the real and imaginary parts of the input symbol

respectively and L ∈ R+ is the base of the modulo operation that depends on the

selected modulation as described below. Subsequently, conventional THP obtains the

transmitted symbols x̃k as

x̃k =

[
uk −

k−1∑
l=1

bk,lx̃l

]
modL , k ∈ {1, . . . ,K} , (3.6)

where bk,l denotes the k, l-th coefficient of the matrix B and uk is the constellation
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symbol intended for the k-th user.

At the receiver, the equalized signal for the k-th user after the modulo operation is

defined as

rk =


g1,1 · y1, if k = 1,

[gk,k · yk] modL, if k = {2, . . . ,K} ,
(3.7)

where, as represented in Fig. 3.1, it can be observed that the receiver of the first encoded

user does not implement the modulo operation, since there is no interference to pre-

subtract in the precoding process.

In the rest of this chapter, unless stated otherwise, it has been assumed that the

original data symbols uk are selected from the Q-QAM constellation Q = {aR +

iaI |aR, aI ∈ {±1,±3, ... ± (
√
Q − 1)}}. These symbols are normalized by the factor

fnor =
√

2(Q− 1)/3 to ensure that the average energy of the constellation symbols is

independent of the modulation order. Additionally, the base L of the modulo operation

in THP can be easily calculated for Q-QAM modulations as L =
√
Q/fnor.

3.2.2 Overview of Complex Domain Interference Optimized THP

(CIO-THP) [55]

The modulo operation in (3.6) introduces a power loss, particularly significant for

low-order modulations, due to the resultant uniform distribution of the symbols xk, k ∈

{1, . . . ,K} [31]. The power loss is formally defined as the ratio

PL =
E {Pt}
NE {Es}

, (3.8)

where Es is the average symbol power of the original constellation and E {Pt} represents

the actual average transmission power after the modulo operation and symbol scaling.

CIO-THP reduces the power loss of conventional THP by scaling the symbol of the

first user such that the interfering signals are better aligned with the symbols to transmit

[55]. To accomplish this, CIO-THP defines a complex scaling factor a = ar + iai that

modifies the amplitude and phase of the first user’s symbol u1. The scaling factor is
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selected in such a way that the total transmit power Pt of the modified transmit signal

x̃ ∈ CN×1 is minimized.

To secure a performance threshold, the norm of the transmit symbol of the first user

must be lower bounded. Specifically, the scaling factors a for different phase-amplitude

modulations are deducted in [55] as a function of the SNR required at the receiver γ,

which for the first user reads as

SNR1 =
Es|a|2

g2
1,1σ

2
≥ γ. (3.9)

Here, g1,1 is the first element of the diagonal matrix G, σ2 denotes the noise variance

at each receiver and the factor Es|a|2 is the symbol energy after applying the scaling

factor a = ar + iai.

CIO-THP is based on the fact that, since the first user experiences no interference,

the modulo operation is not required and the symbol of this user can be scaled arbitrarily

subject to a SNR requirement. The scaling of other users is, however, more challenging

as described in the following.

3.2.3 Proposed Zero Forcing Power-Efficient THP (ZF PE-THP)

Intuitively, the above power gains can be enhanced by allowing the symbols of further

users to be scaled and thus adding new variables to the former optimization problem.

These new optimization variables correspond to the extra scaling factors that are as-

signed to a specific number of users K̃ > 1. Therefore, instead of just scaling the first

user as in CIO-THP, the proposed PE-THP considers that the scaling factors can be

applied to a larger number of users. This effectively increases the number of variables to

optimize, making possible to generally find better solutions to the power minimization

problem. Specifically, the adjusted symbols of PE-THP, ũk, can be expressed as

ũk = αrku
r
k + iαiku

i
k , k ≤ K̃

ũk = uk , k > K̃ (3.10)
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where αrk and αik represent the real and imaginary parts of the scaling factor for the

k-th user αk , αrk + iαik, which are defined in Sec. 3.2.4. With these modified scaling

factors, the precoded signal for the k-th user is obtained as

x̃k(α̂k) =

[
ũk −

k−1∑
l=1

bk,lx̃l(α̂k−1)

]
modL , k ∈ {1, . . . ,K} , (3.11)

where α̂k−1 ∈ C(k−1) denotes the scaling factors that are applied to the k − 1 user

symbols previously encoded. The difference in this formulation with respect to the

original THP defined in (3.6) resides in that now the user symbols are modified by

the scaling factors selected to minimize the transmission power. This in turn affects

the interference generated from the users already precoded when generating the k-th

transmit symbol x̃k(α̂k). Also note that in PE-THP the processing at the receivers

remains identical to the one performed in THP as per (3.7).

3.2.4 Definition of the Scaling Factors in PE-THP

Based on (3.11), the main objective of PE-THP is to find the scaling factors that

better align the interference with the symbols to transmit to reduce the transmit power.

These scaling factors can be calculated by solving the optimization problem

minimize
α

{
K∑
k=1

|x̃k(α̂k)|2
}

(3.12)

subject to Φ̃(αrk, α
i
k) for 1 ≤ k ≤ K̃,

where Φ̃(αrk, α
i
k) are a set of constraints that depend on the received SNR requirements

as detailed in the following. The optimization problem (3.12) has been proven to be

convex in [55] for CIO-THP (K̃ = 1) under the assumption that the symbol replicas of

the extended constellation are given. Note that the same argument holds when more

optimization variables are added as this does not affect the conclusions obtained in

[55]. Therefore, the solution to the optimization problem can be obtained numerically if

the assumption holds by solving a non-linear least squares problem for which there are

several algorithms already available [200, 201]. Since the above condition is not always
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Figure 3.2: Regions that contain all possible values for the optimized constellation
symbols in (a) the first user of PE-THP (CIO-THP) and (b) PE-THP

for users 2 ≤ k ≤ K̃.

guaranteed, a low-resolution search can be applied before the execution of the non-linear

least squares algorithm for guaranteeing a close-to-optimal solution.

The definition of the constraints in PE-THP differs from the one used in CIO-THP.

This is because, in contrast to CIO-THP where the first receiver does not apply the

modulo operation, in PE-THP the users 2 ≤ k ≤ K̃ must execute it to guarantee

that the signal to transmit lies inside the boundaries of the Voronoi region. In other

words, the scaling factors in PE-THP are not only lower bounded by the received SNR

thresholds as depicted in Fig. 3.2(a) for CIO-THP. In this figure, the four constellation

symbols for the example of 4-QAM are represented by different geometric figures and d

denotes the minimum Euclidean distance (MED) in the constellation. In fact, decision

thresholds must be imposed in all directions around the information symbols in the

signal constellation for these users. This is necessary because the signal constellation

is infinitely replicated in all directions after applying the modulo function [55]. Hence,

since all information symbols are adjacent to different ones in any direction as shown in

Fig. 3.2(b), new detection thresholds must be imposed to avoid decoding errors. Note

that this new restriction does not affect user 1 since its receiver does not implement the

modulo function. Consequently, the first user in PE-THP will only have a lower SNR

threshold as it is depicted in Fig. 3.2(a). In this figure, the shaded region represents the

set of feasible solutions that satisfy the imposed thresholds.
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It is clear from the above that decision thresholds around the symbols for users

2 ≤ k ≤ K̃ will have both upper an lower limits. For these users, the area that

contains all possible solutions for the scaled symbols, ψk, is a square whose center is

the original symbol uk, and one of his vertices (the closest to the origin) is the symbol

that corresponds to the one obtained when multiplying the original user symbol by the

minimum scaling factor. This region is represented by the colored area in Fig. 3.2(b).

Considering this, a different threshold can be defined by each of the users according to

their specific requirements to secure a threshold performance. In particular, for two-

dimensional constellations in which all their symbols have the same energy such as

4-QAM the scaling factors must satisfy

|αr,ik | ≥ βk, for k = 1

βk ≤ |αr,ik | ≤ 2− βk, for 2 ≤ k ≤ K̃ (3.13)

where the modulation-dependent parameter βk is defined as

βk ,
√
γkg

2
k,kσ

2/Es. (3.14)

Here, γk represents the performance threshold at the k-th receiver and Es is the energy of

the constellation symbol without considering the scaling factor effect. These constraints

guarantee that the distance between any of the solutions obtained by the optimization

problem and the boundaries of the Voronoi region is equal or greater than the minimum

required to satisfy the receiver’s threshold performance as shown in Fig. 3.2(b). As

an illustrative example, the resulting optimization constraints αrk, α
i
k are calculated in

Table 3.1 for the most practical binary phase-shift keying (BPSK), 4-QAM and 16-

QAM modulations, although extension to higher-order modulations is straightforward.

It should be pointed out that in general the constraints γk are a function of the distance

between symbols d. The reason for this is that the average error rate in these cases

depends on the distances between neighboring symbols rather than just on the absolute

symbol power. Indeed, the constants that limit the upper and lower bounds for the

scaling factors in these constellations vary depending on the energy of the real and
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Table 3.1: Optimization constraints Φ̃(αrk, α
i
k) for selected modulations

Optimization Constraints Φ̃(αrk, α
i
k)

BPSK
αr1 ≥

√
γ1g21,1σ

2 and αi1 : N/A, k = 1√
γkg

2
k,kσ

2 ≤ αrk ≤ 2−
√
γkg

2
k,kσ

2 and αik : N/A, 2 ≤ k ≤ K̃

4QAM
αr1 ≥

√
γ1g21,1σ

2 and αi1 ≥
√
γ1g21,1σ

2, k = 1√
γkg

2
k,kσ

2 ≤ αrk ≤ 2−
√
γkg

2
k,kσ

2 and
√
γkg

2
k,kσ

2 ≤ αik ≤ 2−
√
γkg

2
k,kσ

2, 2 ≤ k ≤ K̃

16QAM

β
{r,i}
k ,

√
γkg

2
k,kσ

2/E
{r,i}
s

k = 1


βr1 ≤ αr1 ≤ 2− βr1 and βi1 ≤ αi1 ≤ 2− βi1 for u1 = {±1± i}/

√
10

αr1 ≥ βr1 + 2/3 and βi1 ≤ αi1 ≤ 2− βi1 for u1 = {±3± i}/
√

10

βr1 ≤ αr1 ≤ 2− βr1 and αi1 ≥ βi1 + 2/3 for u1 = {±1± 3i}/
√

10

αr1 ≥ βr1 + 2/3 and αi1 ≥ βi1 + 2/3 for u1 = {±3± 3i}/
√

10

1 < k ≤ K̃
{

β
{r,i}
k ≤ α{r,i}k ≤ 2− β{r,i}k for Re (uk) = 1/

√
10 or Im (uk) = 1/

√
10

β
{r,i}
k + 2/3 ≤ α{r,i}k ≤ 4/3− β{r,i}k for Re (uk) = 3/

√
10 or Im (uk) = 3/

√
10

imaginary parts of the symbols to scale E
{r,i}
s . Further, to maintain the coherence with

the objective of reducing the transmit power, the lower threshold of the scaling factors

is fixed to |α{r,i}k |2 = 1 in badly conditioned channels where it is impossible to guarantee

a certain threshold at the receivers without increasing the total transmission power.

3.2.5 Expansion of Optimization Regions with PE-THP

To illustrate the expanded optimization domains for PE-THP, a visual analysis of

the signal generation process in CIO-THP and PE-THP is represented in Fig. 3.3 for

N = K = 3. In this figure, uk, k ∈ {1, . . . ,K} , are the original symbols for each user,

x̃k, n ∈ {1, . . . ,K} , represent the transmit symbol of the k-th user, and the regions

ψk, k ∈ {1, . . . ,K} , represent the possible scaled symbols ũ when the entire set of

feasible solutions to the optimization problem (3.12) is considered. Moreover, according

to (3.11), each of the possible scaled symbols ũ generates a different transmit signal x̃,

represented by the colored regions χk, k {1, . . . ,K}. In other words, the shaded regions

illustrate all the signals that could be transmitted when considering the scaling factors

that satisfy the optimization constraints. In this illustrative example, u1 = (−1+ i)
√

1
2 ,

u2 = (1−i)
√

1
2 , u3 = (−1−i)

√
1
2 are represented by the circles in each of the sub-figures.

First, in Fig. 3.3(a) the precoding operation is depicted for CIO-THP. It can be seen

that the area that includes all the feasible symbols for the first user, ψ1, is lower bounded

by Υ1 = β1u
r
1 = β1u

i
1 in accordance with (3.10) and (3.13). When a solution (point)
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Figure 3.3: Visualization of the regions with the possible solutions of the opti-
mization process for (a) K̃ = 1 and (b) K̃ = 2.

x̃1 of the region ψ1 = χ1 is selected, specific transmit symbols x̃{2,3} of the sets χ{2,3}

are also chosen by conventional THP encoding. Here, χk represent the set of possible

transmit signals for the k-th user generated by the different scaling factors that can be

selected for the symbol of the first user. Mathematically, the set χk of the k-th user

depends on the previous ones as χk = ψk −
∑k−1

l=1 bk,lχl, i.e., more feasible solutions

to the transmit symbols x̃k can be obtained as the size of the first region increases.

The function of the optimization process is to find the solution that minimizes the total

transmission power (Pt = 0.948). The final transmit symbols x̃k are also included in

Fig. 3.3(a), represented by the red dots.

The idea behind PE-THP is to increase the size of the regions χk from which the

transmit symbols are selected to improve the results of the optimization. This effect

is noticeable in Fig. 3.3(b) where the proposed technique has been applied to K̃ = 2

optimized users. In this figure, it can be seen that now the regions χ{2,3} are larger

compared to the ones in CIO-THP. This is caused by the possibility of also modifying

the symbol of the second user u2, which in turn not only increases the range of possible

constellation symbols for this user in the expanded region ψ2, but also the ranges of

transmit symbols for both users 2 and 3 in the regions χ{2,3}. In other words, now

there are more degrees of freedom to select the transmit symbol of the third user χ3 =

f(u3, χ{1,2}) as the space occupied by the previous regions is larger. As a result, the total
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transmission power Pt = 0.82 of the solutions x̃{1,2,3} obtained in PE-THP is smaller

than in CIO-THP due to the more relaxed optimization involved.

3.3 Power Loss Analysis

The power loss analysis of this section builds upon the one in [55]. Therefore, to

avoid extensive repetition the power loss of the proposed technique is shown by leaning

on the key results from [55] and highlighting the differences in the analysis for PE-

THP. In particular, the Gaussian-Modulo distribution is employed, since it provides an

accurate approximation to the probability density function (PDF) of the output symbols

of a THP system where an adaptive symbol scaling of the first user is performed [55].

Here, this approach is extended to derive an upper bound of the power loss in the more

generic case of PE-THP.

Without considering the modulo operation, in PE-THP the transmit symbols are

generated as the subtraction between the scaled user symbols and the interference from

the previously encoded users as shown in (3.6). Since the interference term is influenced

by the lower triangular matrix B, in the Gaussian-Modulo approximation the entries

bk,n are approximated as bk,n ∼ CN (0, σ2
k,N ) with variance [55]

σ2
k,N =

1

2(N − k + 1)
, (3.15)

In this expression and for the rest of the sections a frequency flat Rayleigh fading channel

H ∼ CN (0, 1
KN IK ⊗ IN ) is considered to facilitate a direct comparison with [55].

Following the Gaussian-Modulo analysis [55], the distribution of the real or imaginary

parts of the transmit symbols in CIO-THP and PE-THP can be approximated as x̃k ∼

CN (±µ̃
k,K̃,N

, σ̃2
n,K̃,N

) for the case of 4-QAM. Here, the upper bound of the variance

σ̃2
k,K̃,N

=
1

2(N − k + 1)

[
|α

1,K̃
|2 +

k−1∑
l=2

(
µ̃2
l,K̃,N

+ σ̃2
l,K̃,N

)]
(3.16)

has to be computed iteratively due to the dependence of the transmit symbol of the
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k-th user on the previously encoded ones. The constant |α
1,K̃
|2 denotes the average

scaling factor for the first user which, as opposed to CIO-THP, varies with the number

of optimized users K̃. It should be remarked that in PE-THP the scaling factors are

determined on an instantaneous basis to minimize the total transmit power. Therefore,

the use of the average value |α
1,K̃
|2 to approximate the variance of the transmit signal

provides an upper bound to the real variance since this symbol-by-symbol dependence

is not included. It should be also noted that, from (3.16), the main difference in PE-

THP with respect to the previous approaches is that the average value, µ̃
n,K̃,N

, of the

transmit symbols is further reduced due to the increased range of feasible solutions to

the optimization problem. What is more, it is precisely this term the one that reflects

the improvement of the proposed technique since its value depends on the additional

scaling factors introduced by PE-THP (c.f. [55]).

The effect of the modulo operation in the transmit signal also has to be considered

to obtain an approximation of the power loss in PE-THP. Specifically, the tails of the

PDF of x̃k that fall outside the Voronoi region of the constellation are folded back inside

its limits, an effect that can be modeled by adding replicas of the original Gaussian

PDF in the centers of the extended constellation symbols [55]. Formally, the resulting

Gaussian-Modulo distribution for the considered 4-QAM constellation is given by

p̂[x](x, σ̃
2
k,K̃,N

) =
1∑

l=−1

p

(
x, µ = µ̃

k,K̃,N
+

4l√
2
, σ̃2

k,K̃,N

)∣∣∣∣
√

2

0

+ p

(
x, µ = −µ̃

k,K̃,N
+

4l√
2
, σ̃2

k,K̃,N

)∣∣∣∣
√

2

0

, (3.17)

where it is assumed that a good approximation of the resulting PDF can be obtained

by considering a limited number (Llim = 6) of overlapping distributions.

From the distribution of the transmit symbols (3.17), it is possible to determine

the second moment P
k,K̃,N

= E
{

([x̃k] modL)2
}

of the distribution for the k-th user by

solving

P
k,K̃,N

= 4

1∑
l=−1

∫ √2

0
x2 · p

(
x, µ = ±µ̃

k,K̃,N
+

4l√
2
, σ̃2

k,K̃,N

)
dx. (3.18)

Here, the symmetry between the real and imaginary parts of the transmit symbols have
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been exploited to obtain (3.18). The above result holds for the 4-QAM constellation

assumed throughout this work with Voronoi region defined in the two-dimensional space

ν̃ ∈
[
−
√

2,
√

2
]
. However, note that this analysis can be directly applied to other

constellations by modifying the limits of the Voronoi region and the centers of the

replicas. As a result of the above analysis, the Gaussian-Modulo approximation of the

power loss for PE-THP systems with a 4-QAM modulation can be expressed as

LPE−THP

K̃,N
=
α2

1,K̃

N
+

4

N
×

M∑
k=2

1∑
l=−1

∫ √2

0
x2p

(
x, µ = ±µ̃

k,K̃,N
+

4l√
2
, σ̃2

k,K̃,N

)
dx, (3.19)

where it has been considered that the transmit power of a Q-QAM constellation without

the power loss effect is P no−PL
t = 1. In this expression, the mean value µ for the k-th

user and the average scaling factor for the first user |α
1,K̃
|2 are obtained via Monte Carlo

simulations due to the difficulty of determining these analytically. Finally, the solution

of the integral in (3.19) can be expressed as

LPE-THP
K̃,N

=
α2

1,K̃

N
+

2√
2πN

K∑
k=2

1∑
l=−1

{
2σ̃

[
e−

µ2

2σ̃2 − (
√

2 + µ)e−
(µ−
√
2)2

2σ̃2

]

+
√

2π(σ̃2 + µ2)

[
erf

(
2−
√

2µ

2σ̃

)
+ erf

(
µ√
2σ̃

)]}
, (3.20)

where erf(x) denotes the error function defined as erf(x) = 2√
π

∫ x
0 e
−t2dt.

Note that in (3.20), the dependence of the power loss with K̃ and N is implicitly

included in both the average value of the transmit symbols, µ̃
k,K̃,N

, and the average

scaling factor for the first user, α
1,K̃

. Since this dependence is intractable analytically,

in the following a semi-empirical approximation to the power loss in terms of K̃ and N

is introduced. This approximation is based on a second-order polynomial expression of

the form

LPE-THP
K̃,N

' c20K̃
2 + c02N

2 + c11NK̃ + c10K̃ + c01N + c00, (3.21)

where the constants ckl ∈ < are determined via least-squares curve fitting to the original

formula [202]. This expression shows the direct relationship between the power loss

and the design parameters K̃ and N . The constants ckl depend on the modulation
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order Q and the performance thresholds γ. As shown in the sequel, by appropriate

selection of ckl, the approximation closely resembles the real behavior of the power loss

for a wide range of scenarios.

3.4 Power Consumption Analysis

Although the total transmission power may be reduced, PE-THP tends to have a

higher complexity compared to THP, which therefore introduces a trade-off between

transmit power and complexity. This extra signal processing complexity is caused by

the necessity of solving the optimization problem defined in (3.12). In this section, the

resulting complexity for PE-THP is calculated and this result is used to compare its

power efficiency with THP to evaluate the above mentioned trade-off. Towards this

end, the power consumption is computed by following a standard model as specified in

Sec. 2.1.3. Specifically, the total power consumption is modelled as [40,65]

Ptot =

(
ξ

η

)
Pt +N · Pdyn + pc · C, (3.22)

where Pt refers to the transmission power and the rest of variables involved in (3.22) are

defined in Table 2.1. Throughout, a scenario-dependent transmit power Pt is considered,

whereas the efficiency factor corresponds to the one of a class-A amplifier, η = 0.35,

which is commonly used in this setting due to the linearity required to transmit a Q-

QAM signal [203]. ξ represents the average the modulation-dependent peak to average

power ratio (PAPR). The power consumed by the RF chain of each antenna adopts

a reference value of Pdyn = 34.4 mW [40, 65] and pc, which accounts for the power

consumption per 103 operations (C), is chosen as pc = 5.76 mW/kOps as per the

Virtex-5 FPGA family from Xilinx [204].

3.4.1 Complexity analysis

To calculate the overall complexity of the THP and PE-THP processes, the number of

floating-point operations (flops) required in a system where N = K has been determined.
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The results are detailed in Table 3.2 where, for simplicity, it has been assumed that a

multiplication (division) has the same complexity as a summation (subtraction). This

is a common assumption in the literature for this kind of analysis [205]. In addition, the

operations required to calculate the Hessian of a complex matrix are assumed negligible

with respect to the rest of the computations.

Table 3.2 shows that PE-THP increases the signal processing load due to the op-

timization problem required to compute the optimum scaling factors. The solution of

this optimization problem can be obtained by solving a nonlinear least squares problem

whose complexity can be divided into two parts: the one that depends on the mini-

mization algorithm itself, and another one that corresponds to the number of times that

(3.12) must be evaluated in the optimization process:

− The complexity of the minimization process can be estimated as O(Sit · Spar),

where Sit is the number of iterations and Spar refers to the number of parameters to

optimize [206]. In PE-THP, the parameters to optimize are the real and imaginary

parts of the scaling factors. Therefore, their number can be expressed as a function

of the number of users whose symbols will be modified, i.e., Spar = 2K. On the

contrary, the number of iterations of the minimization algorithm are problem-

dependent.

− Regarding the complexity of evaluating (3.12), the number of operations that must

be computed in each function evaluation can be directly extracted from Table 3.2.

The number of function evaluations, Sev, are dependent on the specific scenario.

According to the results of Table 3.2, the complexity of the minimization algorithm

can be considered negligible compared to the rest of the process. The reason for this is

that both the number of parameters to optimize and the average number of iterations

is not in the order of the rest of operations such as the number of function evaluations

Sev. Moreover, the optimization algorithm requires an initial approximation that is

provided by performing a low-resolution search prior the execution of the Trust-Region-

Reflective algorithm. This previous step is not considered in the complexity analysis

since, although performed for simplicity, it is only necessary for those scenarios where
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Table 3.2: Approximate complexity in number of floating-point operations in the
transmit signal generation of a PE-THP transmitter.

PE-THP

Operation Complexity in flops

qr(H) [205] C1 ' (16/3)N3

G = diag
({

L−1
}
k,k

)
C2 = N

B = G ·H · F C3 = 8N3 − 2N2

Sev×

{
x̃k =

[
ũk −

∑k−1
l=1 bk,lx̃l

]
modL,

Pt = x̃H · x̃
C4 ' Sev × (4N2 + 4N)

+Sev × (7N)

Trust-Region-Reflective minimization [206] C6 = O(2N · Sit)

s = Fx C7 = 8N2 − 2N

Total CPE-THP ' (40/3)N3 + (10 + Sev)N2 + 11SevN

the encoded symbol replicas are modified w.r.t. conventional THP [55]. Therefore, the

number of operations required by the PE-THP scheme is approximated as

CPE−THP ' CTHP + Sev · (4N2 + 12N). (3.23)

Here, the average number of function evaluations, Sev, can be computed via Monte Carlo

simulations to derive the average complexity of the proposed technique. To extract the

information about the dependence of Sev with N and K̃, a second-order polynomial

expression such as the one shown in (3.21) will be used in the sequel. This simpler

expression provides a good approximation to the Monte Carlo results and it facilitates

determining the dependence between the overall complexity and the above-mentioned

parameters.

3.4.2 Power Efficiency Maximization

For given performance requirements, a natural approach in the design of a commu-

nication system is to devise a scheme that minimizes the power consumption as defined

in (3.22). Indeed, it is clear that the power loss contributes to the overall power con-

sumption as the power required by the power amplifier PPA is affected by the increase in

the transmit power. For this reason, the reduction in the power loss that the proposed

technique introduces provides a valid alternative to improve the power consumption in
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THP-based systems. However, the complexity of the signal processing in PE-THP in-

creases with the number of optimized users K̃ due to the additional operations required

to solve the optimization problem defined in (3.12). Therefore, an analysis of the trade-

off between the reduction in the transmit power and the additional signal processing

consumption is necessary to determine the best number of users K̃ to optimize.

3.4.2.1 THP

The uniform approximation to the power loss [52] and the above complexity analysis

can be used to calculate total power consumption of a THP system, PTHP
tot . Substituting

these into (3.22), the total power consumption of a THP system can be expressed as

PTHP
tot ' Pp ·

(
ξ
η

)(
1 + Q

Q−1(K − 1)
)

K
+N ·Pdyn +pc ·

(40/3)N3 + 10N2 + 11N

103
, (3.24)

where Pp is the intended transmission power without considering the power loss effect.

3.4.2.2 PE-THP

The optimization of the overall power consumption in PE-THP has an additional

degree of freedom w.r.t. THP, i.e., the number of optimized users K̃. Therefore, to

minimize this metric and select the best number of users to scale K̃ it is necessary

to understand the dependence of the power loss and the complexity of the proposed

technique with N and K̃. However, since in PE-THP the theoretical approximations

of these quantities do not have an analytic form as a function of K̃ and N , this work

resorts to a curve fitting approximation based on the Monte Carlo simulation results to

obtain the desired closed-form expression

PPE-THP
tot ' Pp ·

(
ξ

η

)
· PPL(cPL) +N · Pdyn

+ pc ·
(40/3)N3 + (10 + PS(cS))N2 + 12PS(cS)N

103
. (3.25)
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Here, PPL(cPL) and PS(cS) represent the second-order polynomial approximation to the

power loss and Sev respectively with the set of coefficients c = [c20, c02, . . . , c00]T. Note

that, as mentioned above, the coefficients c of the polynomial approximation vary with

the modulation order Q and the specific performance thresholds γ. Once computed,

these coefficients can be used to determine the overall power consumption for given Pp,

K̃ and N , therefore providing a method to select the best number of users to optimize for

a variety of scenarios. Indeed, for given rate requirements, the maximum power efficiency

w.r.t. K̃ is found by minimizing PPE-THP
t , i.e. directly by taking the derivative of the

differentiable expression in (3.25). Specifically, the optimum number of users to scale

according to PE-THP is selected as

K̃opt =

∣∣∣∣∣
[

arg
K̃

{
∂PPE-THP

tot

∂K̃
= 0

}]∣∣∣∣∣ , (3.26)

subject to
∂2PPE-THP

tot

∂2K̃
> 0,

where |[.]| denotes the rounding operator to the closest integer and K̃opt ∈ {1, . . . ,K}.

3.5 Results and Discussion

To evaluate the improvement of the proposed technique with respect to the pre-

vious alternatives, numerical results have been obtained by performing Monte Carlo

simulations in MATLABr. Since they are the central subject of study of this The-

sis, the simulation results compare the performance and power-related aspects of THP,

CIO-THP and PE-THP with ZF. It should also be noted that, although not explic-

itly included here for reasons of brevity, the proposed technique can be adapted to the

MMSE-THP by considering the appearance of the interference at the receivers [199].

The simulation scenario assumes a transmitter with 4-QAM and 16-QAM modulations,

a flat Rayleigh fading channel which is perfectly known at the BS and N = K. It is

noted that the structure of the receivers is identical for PE-THP and THP. Moreover,

the optimization problem that must be solved in the PE-THP scheme has been imple-

mented via a two-step procedure has detailed in Sec. 3.2: a low-resolution linear search
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Figure 3.4: BER vs. SNR for THP, CIO-THP and PE-THP for N = K = 4
antennas and both 4-QAM and 16-QAM.

and a subsequent nonlinear least squares problem. The average number of iterations and

function evaluations, which are required to determine the algorithmic complexity, are

also calculated via Monte Carlo simulations. Moreover, the thresholds γk, k ∈
{

1, K̃
}

guaranteeing that the bit error rate (BER) performance is approximately preserved are

referred to as γA for notational convenience. In the following, SNR = Es/σ
2, where Es

denotes the energy per symbol prior scaling.

The results of Fig. 3.4 show the BER against increasing levels of SNR for THP,

CIO-THP and PE-THP with N = K = 4 antennas and K̃ = 4 optimized users. It can

be observed that both CIO-THP and PE-THP are able to approximately preserve the

performance of conventional THP in spite of the scaling procedure. A slight degradation

in the performance of PE-THP w.r.t. conventional THP and CIO-THP for 16-QAM can

be observed in this figure. This effect is caused by the existence of tighter optimization

constraints in this modulation. Additionally, the performance of the systems under

study with imperfect CSI is also shown in Fig. 3.4. The imperfect CSI has been modeled

following [207], where the channel estimation error is controlled by a parameter, τ ∈

[0, 1], that determines the accuracy of the acquired CSI, i.e., τ = 0 corresponds to

perfect CSI and τ = 1 implies that only statistical information is available. From the

results of this figure, it can be seen that the performance is deteriorated in a similar way
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Figure 3.5: Power loss vs. SNR for THP, CIO-THP and (a) PE-THP with K̃ = 2

or (b) PE-THP with K̃ = 4 for different received SNR thresholds and
4-QAM modulation.

for both conventional THP and the proposed scheme when τ = 0.1. In general, Fig.

3.4 proves that the performance of the PE-THP system can approximate the one of a

standard THP transmitter while, as demonstrated in the following, it is able to reduce

its transmission power.

Fig. 3.5 shows the power loss for different THP systems with N = K = 4 antennas

and a 4-QAM modulation as a function of the SNR. The results also include the theoret-

ical upper bounds as derived in section V. For ease of comparison, Fig. 3.5(a) includes

the results for K̃ = 2 optimized users whereas the number of optimized users rises up to

K̃ = 4 in Fig. 3.5(b). From the observation of the results for PE-THP with K̃ = 2 and

K̃ = 4, it can be concluded that the power loss decreases with the number of optimized

users independently of the selected threshold. Moreover, it is also shown that the power

loss is reduced as the SNR grows when a specific threshold γ is determined. This effect

is due to the possibility of further reducing the transmit power since, from Table 3.1,
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Figure 3.6: BER vs. power loss for THP, CIO and PE-THP. N = K = 4, 4-QAM,
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the range of values that the scaling factors can adopt in PE-THP depend on the noise

level at the receivers. Savings in the transmit power up to 33% and 15% w.r.t. THP

and CIO-THP respectively can be observed when the received performance thresholds

are fixed as a function of the SNR (γk = γA).

Fig. 3.6 studies the trade-off between the performance and power loss of the THP,

CIO-THP and PE-THP systems with varying thresholds γk, N = K = 4, 4-QAM, and

SNR = 29 dB. Significant gains in power for the proposed scheme of over 90% and

85% with respect to THP and CIO-THP can be observed for SNR thresholds where the

power optimization is relaxed without harming performance, in the region of uncoded

BER below 10−2. Performance is, however, affected for lower performance thresholds,

where evidently BER can not be guaranteed.

The performance vs. power loss trade-off is also depicted in Fig. 3.7 for THP, CIO-

THP and PE-THP systems in the same scenario of N = K = 4 and 4-QAM but under

different SNR conditions. Again, significant power savings for the proposed scheme can

be observed at high SNR values where the performance is not damaged. These power

gains tend to diminish for decreasing SNR values. From Figs. 3.6 and 3.7 it can be

seen that the proposed scheme offers significant power savings in the medium to high
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SNR regions where the power optimization is most effective, yielding a much reduced

transmission power.

The complexities of THP, CIO-THP and PE-THP are shown in Fig. 3.8 for the case

of 4-QAM and increasing γk. It can be seen that the number of operations required to

solve the optimization problem increases as the thresholds γk lower down. This effect

can be explained by taking into account that the range of possible solutions increases

when γk is made smaller, therefore complicating the minimization process since a larger

number of function evaluations Sev is required.

Fig. 3.9 depicts the normalized power consumption as a function of K̃ for different

intended transmit powers Pt in a system with N = K = 8, 16-QAM and γ = γA,

hence guaranteeing an approximate performance. Typical transmit power budgets cor-

responding to LTE BS, Picocell BS and WiFi BS are selected for reference to practi-

cal systems [5]. Moreover, Fig. 3.9 also includes the power consumption approxima-

tion described in (3.25). The polynomial coefficients obtained in these scenarios are

cPL = [0.01,−0.0018, 0,−0.12, 0.04, 0.88]T and cS = [0.51, 1.25,−0.1, 8.77, 0, 86,−3.24]T

for the power loss and for Sev respectively. It can be seen that the second-order polyno-

mial expression closely matches the empirical results for any K̃ and N , therefore making
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possible to select the best number of users to optimize without having to compute the

results for all possible combinations of these parameters. It can also be observed that the

optimum K̃ to minimize the overall power consumption, which corresponds to the min-

imum in each curve, increases as Pp does. Based on these results, it can be concluded

that the proposed technique is most useful w.r.t. THP and CIO-THP in the higher
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transmit power scenarios of the LTE BS and Pico BS, where the power consumed by

the power amplifier PPA dominates over the signal processing consumption.

3.6 Conclusions

In this work, a power efficient THP scheme has been proposed. Based on a power

consumption analysis, it has been concluded that it is possible to improve the results of

the previous approaches in terms of power loss by scaling the original user symbols. It

has been confirmed that the proposed technique can maintain the error rates of THP and

CIO-THP while, at the same time, decreasing their power loss. In this line, the benefits

of both CIO-THP and PE-THP have been shown to be particularly significant at large

SNRs, where transmission power savings larger than 50% have been demonstrated.

Critique: The above-mentioned enhancements come at the cost of a higher com-

putational complexity. Indeed, there exists a trade-off between performance and com-

plexity: while complexity increases when a higher number of users are scaled, this also

entails that the known interference can be better aligned with the symbols to transmit,

hence further reducing the transmission power. This suggests that the proposed scheme

is particularly suitable for MIMO setups with a small number of antennas, where the

signal processing complexity increase is constrained. Moreover, note that the optimal

scaling factors might be re-utilized without the need of solving again the optimization

problem if the channel remains constant, e.g., by implementing a lookup table for the

possible input symbol combinations. This aspect promotes the application of the pro-

posed scheme in slowly varying channels and in small scale MIMO systems, where the

number of possible input symbol combinations is reduced.
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Chapter 4

Pre-Scaling for Space Shift

Keying via Semidefinite

Programming

4.1 Introduction

Both space shift keying (SSK) and spatial modulation (SM) aim for reducing the

analog hardware complexity of conventional spatial multiplexing [18,19,158,167]. Specif-

ically, SSK and SM rely on encoding information into the active antenna indices, which

allows reducing the number of radio frequency (RF) chains employed for transmission,

when compared to the family of classic spatial multiplexing schemes [19, 158,167]. The

essential objective behind reducing the number of RF chains is to enhance the system’s

energy efficiency by lowering down the total power consumption [2].

While the development of strategies for improving the attainable performance has

been mostly concentrated on techniques at the receiver side [168–171], a parallel line

of research proposes to exploit the availability of channel state information (CSI) at

the transmitter for devising constellation shaping schemes [163, 174–177]. In this con-

text, [174] analyzes the design of amplitude and phase constellations for minimizing the

average bit error probability of SM, whereas [175] analytically studies the achievable
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transmit diversity order under different design conditions. SSK’s particular character-

istic of solely carrying information in the spatial domain has also been exploited for the

design of constellation shaping strategies in [163,176,177].

The maximization of the minimum Euclidean distance (MED) in the resultant SSK

and SM constellations via symbol pre-scaling has been the focus of [178–180]. In par-

ticular, the pre-scaling strategies developed in [178, 179] rely on forcing the received

SM constellation to resemble a classic quadrature amplitude modulation (QAM) con-

stellation from an inter-symbol distance perspective. However, the employment of the

regimes in [178, 179] may severely affect the system’s signal-to-noise ratio (SNR) due

to the stringent requirement of inverting the channel coefficients, which may become

critical for ill-conditioned channels. The scheme introduced in [180] mitigates this prob-

lem by solely applying a phase shift by the pre-scaling procedure. However, the above

designs only consider a single antenna at the receiver, which in turn simplifies both the

characterization and shaping of the received SM constellation.

The application of pre-scaling strategies to the more intricate systems with multiple

antennas at both communication ends has been promulgated in [181–184,208]. In partic-

ular, the schemes of [181,182] propose opportunistic power allocation methods for both

SSK and generalized SSK for the sake of improving their performance, which implies

that only the amplitude of the transmit signals is modified. By contrast, simultaneous

phase and amplitude pre-scaling is considered in the constellation randomization (CR)

technique of [183]. This low-complexity scheme relies on generating Ds complex-valued

scaling factors off-line, and subsequently employing those specific scaling factors that

maximize the MED. The schemes introduced in [184], which were developed in parallel

to the work described in this chapter [209], further improve the performance by employ-

ing a successive convex approximation technique for solving the resultant optimization

problems for maximizing the MED. Subsequent to this work, [208] has proposed algo-

rithms with the similar objectives of maximizing the MED and minimizing the bit error

rate (BER) of SM systems. However, the schemes devised in [208] for maximizing the

MED only concentrate on 2 × K MIMO systems. Interestingly, the authors in [208]

show that a criterion designed for directly minimizing the BER can provide noticeable
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improvements over schemes that solely aim at maximizing the MED.

Against the above contributions, this chapter considers the optimization of the pre-

scaling factors for SSK transmission via semidefinite programming. Specifically, the

original non polynomial (NP)-hard optimization problems are recast for the sake of

maximizing the performance of SSK transmissions via semidefinite relaxation (SDR).

This guarantees the applicability of the proposed pre-scaling designs to multi-antenna

aided receivers by carefully adapting the schemes introduced in [178–180]. Additionally,

this contribution aims at improving the performance of the strategy developed in [183] by

taking into account the channel conditions in the design of the pre-scaling vectors, while

reducing the signal processing complexity of the algorithms advocated in [184], where

multiple convex optimization problems have to be solved before reaching convergence.

4.2 Space Shift Keying with Pre-Scaling

The system model considered throughout this chapter is comprised of a transmitter

having N antennas, and a receiver equipped with K antennas, as shown in Fig. 4.1.

The SSK transmitter activates a single antenna based on the input bit stream, hence

conveying a total of blog2 (N)c bits per channel use, where b·c denotes the floor function.

Combining (2.1) and (2.28), the received signal y ∈ CK×1 can be expressed as

y = HWen + n = hnwn + n, (4.1)

where en ∈ CN×1 is the n-th column of the identity matrix IN , and n ∈ CK×1 ∼

CN (0, σ2IK) denotes the ubiquitous additive white-Gaussian noise vector. Moreover,

H ∈ CK×N ∼ CN (0, IK ⊗ IN ) represents the Rayleigh communication channel consid-

ered in the following and W ∈ CN×N = diag (w) is a diagonal matrix, with its n-th

diagonal coefficient given by wn and satisfying wHw = N , unless stated otherwise. Note

that the single-RF chain benefit of SSK transmission is preserved when pre-scaling is

employed, and that the pre-scaling coefficients that determine the amplitude and phase

of the transmitted symbols solely rely on the instantaneous channel coefficients, but not
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Figure 4.1: Block diagram of SSK transceiver with pre-scaling.

on the alphabet and input bits.

The optimal detection strategy of the receiver obeys the maximum likelihood (ML)

criterion of

n̂ = arg min
n
‖y − hnŵn‖2 , (4.2)

where hn is the n-th column of H and ŵn denotes the n-th pre-scaling coefficient es-

timated at the receiver side. In the following it has been assumed that the pre-scaling

coefficients ŵn and wn are computed independently at both the transmit and the receive

sides based on the perfect channel estimates. Hence, no feedforwarding of the pre-scaling

coefficients prior to data transmission is required.

The performance of the SSK transmission scheme considered is determined by the

pairwise error probabilities [165]

P (ek → em|H) = Q

(√
1

2σ2
‖hkwk − hmwm‖2

)
,∀ m 6= k, (4.3)

where m, k ∈ {1, . . . , N} denote the specific index of the antenna activated for trans-

mission and Q (·) represents the Q-function. It can be seen from (4.3) that the detection

performance of SSK is conditioned by the MED of the received constellation symbols

[165], which is given by

MED = min
m,k
‖hkwk − hmwm‖2 ,∀ m 6= k. (4.4)

The efficient design of the SSK pre-scaling coefficients based on the above metric con-

stitutes the focus of this contribution.

98



Chapter 4. Pre-Scaling for Space Shift Keying via Semidefinite Programming

4.2.1 MED Maximization

An appealing technique of improving the attainable performance of conventional

SSK transmission relies on maximizing the MED, while satisfying the maximum power

constraint. In this particular case, the optimal pre-scaling vector wopt can be obtained

as a solution of the optimization problem

P4.0 : maximize
w

min
m,k

m6=k

(
‖hkwk − hmwm‖2

)
(4.5)

subject to ‖w‖2 ≤ (PtN).

The constraint in (4.5) ensures having an average transmission power per channel use of

E
{
wH
nwn

}
= Pt, ∀ n ∈ {1, . . . , N}. The more tractable epigraph problem form of (4.5)

is given by

P4.1 : maximize
w,d

d (4.6)

subject to ‖hkwk − hmwm‖2 ≥ d, ∀ m 6= k

‖w‖2 ≤ (PtN).

Here, d represents the MED. Note that the above optimization problem is not con-

vex w.r.t. the optimization variable w due to the existence of non-convex quadratic

constraints [210,211].

4.2.2 Power Minimization

A problem of similar character to the above consists of procuring the pre-scaling

factors that minimize the average transmission power, while satisfying a given MED

threshold d. This optimization problem can be expressed as

P4.2 : minimize
w

‖w‖2 (4.7)

subject to ‖hkwk − hmwm‖2 ≥ d, ∀ m 6= k.
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4.3 Pre-Scaling Optimization for SSK via Semidefinite

Programming

The NP-hard nature of the nonconvex quadratically constrained quadratic problems

P4.1 and P4.2 motivates the development of potentially suboptimal reformulations [210–

212]. In particular, the optimization problems P4.1 and P4.2 are recast as semidefinite

programs by exploiting their resemblance to the sensor network location problem [210,

213], where the aim is to maximize the MED between adjacent sensor nodes.

4.3.1 MED Maximization

This section concentrates on reformulating the non-convex optimization constraints

of P4.1 via semidefinite relaxation [211]. First, the number of meaningful constraints in

the second line of P4.1 and P4.2 is determined. In particular, the number of non-identical

constraints is given by

Nc =
N∑
i=1

(N − i) =
N (N − 1)

2
, (4.8)

where the fact that for any xi, xj , i 6= j, the operation ‖xi − xj‖ is equivalent to ‖xj − xi‖

has been considered, which makes unnecessary to analyze the symmetrical terms. More-

over, the left-hand side of the quadratic constraints can be decomposed as

‖hkwk − hmwm‖2 =
K∑
i=1

∥∥h(k,i)wk − h(m,i)wm
∥∥2
, (4.9)

where h(k,i) refers to the i-th entry of hk. The i-th term of the summation in (4.9) can

be re-formulated as [213]

∥∥h(k,i)wk − h(m,i)wm
∥∥2

= Tr

(
e

(i)
(k,m)

(
e

(i)
(k,m)

)H
wwH

)
= Tr

(
AE

(i)
(k,m)

)
, (4.10)

where A , wwH, E
(i)
(k,m) , e

(i)
(k,m)

(
e

(i)
(k,m)

)H
, and e

(i)
(k,m) ∈ CN×1 is a vector with two

non-zero entries in the positions specified by k and m

e
(i)
(k,m) =

[
0, . . . , h(k,i), . . . ,−h(m,i), . . . , 0

]T
. (4.11)
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Let E(k,m) be defined as

E(k,m) ,
K∑
i=1

E
(i)
(k,m). (4.12)

Note that E(k,m) ∈ HN , ∀ k 6= m, where HN represents the set of (N ×N)-element

complex-valued Hermitian matrices. Then, by substituting (4.9), (4.10) and (4.12) into

(4.6), P4.1 can be recast as

P4.1 : maximize
A

d

subject to Tr
(
E(k,m)A

)
≥ d,∀ k 6= m

Tr (A) ≤ (PtN)

A � 0, rank (A) = 1. (4.13)

Here, A � 0 indicates that A is positive semidefinite, and is has been considered that

‖w‖2 = Tr
(
wwH

)
= Tr (A). The above optimization problem is equivalent to that

formulated in (4.6) and still remains NP-hard. However, a relaxed convex version of

P4.1 can be obtained by dropping the non-convex constraint rank (A) = 1, which results

in

P ′4.1 : maximize
A

d

subject to Tr
(
E(k,m)A

)
≥ d,∀ k 6= m

Tr (A) ≤ (PtN) , A � 0. (4.14)

The optimization problem (4.14) is convex in the optimization variables A and d, which

facilitates the employment of efficient convex solvers [211]. At this point, it should be

emphasized that the pre-scaling problem (4.14) differs from those conventionally em-

ployed for beamforming [214]. Specifically, there exists a larger number of optimization

constraints and these are distinct, since the information conveyed by SSK depends on

the distance between the symbols received when different antennas are activated. In-

stead, conventional beamforming problems aim at determining the beamforming vector

that maximizes the signal-to-interference-plus-noise ratio (SINR) at the receiver, since
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Figure 4.2: Impact of pre-scaling in the received constellations for a (4 × 1)-
element MISO system. (a) Conventional SSK and (b) Pre-scaled SSK.

the information is solely carried out via the traditional amplitude-phase constellations.

4.3.2 Power Minimization

Following a procedure akin to that employed for deriving P ′4.1 from P4.1, the semidef-

inite relaxation of P4.2 yields

P ′4.2 : minimize
A

Tr (A)

subject to Tr
(
E(k,m)A

)
≥ d,∀ k 6= m,

A � 0. (4.15)

4.3.3 Effect of the Optimization on the Received Constellation

Prior to characterizing the performance of the scheme considered, the effect of solv-

ing the optimization problem P ′4.2 in the received constellation is illustrated using an

intuitive example. Specifically, Fig. 4.2(a) shows the received constellation, when con-

ventional SSK transmission is employed, whereas Fig. 4.2(b) represents that under the

same channel conditions, but applying the pre-scaling coefficients designed following

P ′4.2 using d = 0.3. In both figures, the distinct constellation symbols are illustrated by

different geometrical shapes. The larger MED separation experienced by the constella-
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tion symbols of Fig. 4.2(b) demonstrates that the approach considered is indeed capable

of enhancing the MED, hence improving the overall performance of conventional SSK.

Moreover, the average transmission power of E {Pt} = 1 W for SSK is reduced in this

particular example to E {Pt} = 0.56 W thanks to the proposed pre-scaling. However,

the solutions obtained by solving the relaxed problems might become suboptimal in

terms of the attainable MED or the transmission power in P ′4.1 and P ′4.2, respectively,

as a consequence of removing the non-convex rank constraint. The characterization of

this aspect in the pre-scaling scheme considered motivates the following analysis.

4.3.4 Measuring the Impact of the Problem Relaxation

The pre-scaling vectors obtained by the SDR of the optimization problems P4.1 and

P4.2 only coincide with those of P ′4.1 and P ′4.2 when rank(A) = 1 [210]. This implies that

the pre-scaling vector w employed for transmission can be straightforwardly derived as

w = wopt = UΣ1/2, (4.16)

where wopt denotes the optimal pre-scaling vector solution to P4.1 and P4.2, while U and

Σ correspond to the eigenvectors and eigenvalues of A respectively, i.e., A = UΣUH.

However, the above-mentioned ideal condition rank(A) = 1 is not always satisfied,

and therefore randomization strategies have be employed for finding close-to-optimal

solutions [210,212]. Specifically, the pre-scaling vectors are obtained as [212]

w = cUΣ1/2v, (4.17)

where v is a vector comprised of the exponential random variables characterized by,

vi = ejθ̂i , θ̂i ∼ U(0, 2π], which are uniformly distributed on the unit circle of the complex

plane satisfying E
{
vvH

}
= IN . Here, the constant c guarantees that the problem

constraints are satisfied. It should be remarked that the solutions w obtained as a result

of (4.16) and (4.17) are sub-optimal when rank(A) 6= 1, i.e., W̃ , wwH 6= woptw
H
opt

and A 6= wwH [210,212].
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Table 4.1: Mean (µ) and standard deviation (σ) of F4.1 with Pt = 1.

N/K SSK-SDR SSK-CR SSK-MMD SSK

µ σ µ σ µ σ µ σ

2/1 1 0 1.27 0.39 1 0 6.35 21.1

4/2 1.4 0.37 1.96 0.55 1.08 0.09 4.66 9.8

4/3 1.31 0.32 1.8 0.43 1.07 0.08 3.03 2.61

An accurate characterization of the impact of the above degradation should rely on

contrasting the resultant value of the objective function, namely the MED attained or

the optimal transmission power, obtained by the optimization problems P4.1,P4.2 and

their relaxed versions P ′4.1,P ′4.2. This characterization is, however, impractical due to

the computational hardness of deriving the optimal solution to the original problems

P4.1 and P4.2 [210, 212]. Alternatively, the impact of relaxation can be characterized

by exploiting that the value, f
′?, of the objective function delivered by SDR provides a

useful bound to the optimal problem [212]. Therefore, a relevant figure of merit F can

be defined as [212]

F{4.1,4.2} =
f
′?
{4.1,4.2}

f{4.1,4.2}
, (4.18)

where f
′?
{4.1,4.2} denotes the specific value of the objective function in P ′{4.1,4.2}, when the

solution directly retrieved by the solver A is employed, while f{4.1,4.2} corresponds to

the particular value of the objective function obtained after applying (4.16) or (4.17),

i.e. by employing W̃ , wwH. In the above expressions, the subscripts refer to the

optimization problem considered, i.e., P4.1 or P4.2. At this point it should be clarified

that the solutions retrieved by the solver A are different from those obtained after

randomization W̃ when rank(A) 6= 1. The figure of merit F in (4.18) can also be

generalized both to SSK and to CR-aided SSK (SSK-CR) [183], as well as to SSK

maximum minimum distance (SSK-MMD) [209] to determine the solution’s proximity

to the optimal one.

Table 4.1 characterizes both the expectation and the standard deviation of F4.1, ex-

plicitly quantifying the degradation of the solutions provided by the schemes considered

in this work. In this particular case, f
′?
4.1 and f4.1 correspond to the MED obtained

by employing A and W̃ respectively. Note that F4.1 ≥ 1, since the MED bound f
′?
4.1
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obtained by the solver is always larger than or equal to the MED f4.1 attained after

randomization. Ds = 20 candidate scaling vectors are considered for SSK-CR [183,209].

Remarkably, the results of Table 4.1 show that both the proposed semidefinite relaxation

(SSK-SDR) and SSK-MMD always achieve the optimal solution for N = 2, which is a

consequence of the Shapiro-Barvinok-Pataki bound [184]. It can also be observed that

the proposed SSK-SDR pre-scaling is capable of reducing both the expectation and the

standard deviation of the figure of merit F , when compared to conventional SSK and

SSK-CR. In other words, the solutions retrieved by the proposed SSK-SDR are closer to

the solution of the optimal problem P4.1. Indeed, the results of Table 4.1 indicate that

the benefits offered by the proposed SDR-based technique become more pronounced for

reduced system dimensions. Simultaneously, it can be seen that the SSK-MMD algo-

rithm, which was published throughout the development of this work [209], is capable

of providing better solutions than the proposed SSK-SDR scheme. Nonetheless, in the

following it is shown that the closer proximity of the SSK-MMD solutions to the optimal

ones is achieved at the expense of a substantial increase in their computational com-

plexity, and that the performance differences remain modest for the small scale antenna

systems considered in this chapter.

4.4 Robust Design: Worst-Case Robustness to Imperfect

CSI

The acquisition of perfect CSI is generally infeasible due to the presence of noise or

finite quantization [215], an aspect not considered in the pre-scaling designs developed in

[178–180, 183] and Sec. 4.3. As a consequence, the performance of transmit pre-scaling

(TPS) techniques may be dramatically affected, since the actual received constellation

symbols will be different from the ones estimated at the transmitter. For this reason,

this section conceives robust designs to guarantee the target performance of the system

under imperfect CSI conditions. In particular, the design of schemes based on preserving

the required performance for the worst case of a bounded CSI error are presented. This

illustrative criterion has been selected due to the practicality of considering a given CSI
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acquisition error, above which the system’s performance is no longer guaranteed [214].

Clearly, following (4.10) and (4.11), the non-availability of perfect CSI should impact

the definition of the constraint matrices E(k,m) in (4.12) in order to meet the performance

target at the receiver. To account for this, the principles behind robust beamforming

designs can be exploited to ensure that the target performance of the system is preserved

[214]. In particular, the constraint matrices of the robust pre-scaling design can be

expressed as [216]

E(k,m) =
K∑
i=1

(
Ẽ

(i)
(k,m) + ∆

(i)
(k,m)

)
= Ẽ(k,m) + ∆(k,m), (4.19)

where the CSI uncertainty per receive antenna is modeled via an error matrix ∆
(i)
(k,m)

with a bounded Frobenius norm
∥∥∥∆(i)

(k,m)

∥∥∥
F
≤ ε

(i)
(k,m). For ease of notation and with-

out loss of generality, in the following ∆(k,m) ,
∑K

i=1 ∆
(i)
(k,m) and

∥∥∆(k,m)

∥∥
F
≤ ε(k,m).

The constant that upper-bounds the Frobenius norm of the error ε(k,m) establishes the

target performance depending on the accuracy of the available CSI. Moreover, Ẽ
(i)
(k,m)

corresponds to the constraint matrix for the i-th receive antenna and, similarly to (4.10)–

(4.11), it is given by

Ẽ
(i)
(k,m) = ẽ

(i)
(k,m)

(
ẽ

(i)
(k,m)

)H
, (4.20)

where ẽ
(i)
(k,m) can be expressed as

ẽ
(i)
(k,m) =

[
0, . . . , h̃(k,i), . . . ,−h̃(m,i), . . . , 0

]T
. (4.21)

At this point it is noted that the sparse structure of Ẽ
(i)
(k,m) must be incorporated into

the definition of the error constraint matrix ∆(k,m). Intuitively, this is because the CSI

estimation errors can only affect the non-zero entries of the constraint matrix Ẽ
(i)
(k,m).

To account for this, C(k,m) is defined as

C(k,m) =
{
C ∈ CN×N

∣∣cr,c = 0 ∀ ((r 6= k,m) ∧ (c 6= k,m))
}
. (4.22)

Here, C(k,m) represents the set of sparse matrices with non-zero entries determined by k
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and m. In the above expression, cr,c denotes the (r, c)-th entry of the matrix C and ∧

represents the logical function “and”. Clearly, Ẽ(k,m) ∈ C(k,m) and ∆(k,m) ∈ C(k,m). The

following sections illustrate the procedures for obtaining robust convex formulations of

the relevant problems considered in this work.

4.4.1 MED Maximization

Following a procedure similar to the one employed for deriving P ′4.1, the NP-hard

robust pre-scaling optimization problem that maximizes the MED at reception subject

to a total power constraint can be expressed as

P̃4.1 : maximize
A

d

subject to min
‖∆(k,m)‖F≤ε(k,m)

{
Tr
((

Ẽ(k,m) + ∆(k,m)

)
A
)}
≥ d,

Ẽ(k,m) + ∆(k,m) � 0, ∆(k,m) ∈ C(k,m),∀ k 6= m.

Tr (A) ≤ (PtN) ,

A � 0, rank (A) = 1. (4.23)

Note that the constraint matrices of the optimization problem (4.23), Ẽ(k,m) + ∆(k,m),

differ from those of the conventional problem defined in (4.13). Specifically, the con-

straints consider the worst-case scenario in which the Euclidean distance of the received

symbols is minimized for the matrices ∆(k,m) ∈ C(k,m) satisfying
∥∥∆(k,m)

∥∥
F
≤ ε(k,m).

Additionally, the fact that the matrices Ẽ(k,m) + ∆(k,m) are positive semidefinite, which

follows from their definition in (4.19)–(4.21), has also been considered [214, 216]. Since

finding a robust optimization problem that can be efficiently solved by applying stan-

dard convex optimization techniques is a key objective of this chapter, the following

theorem provides a SDR version of P̃4.1.

Theorem 4.4.1 Let A , wwH, where w represents the pre-scaling vectors to be op-

timized. Moreover, let Ẽ(k,m), be as defined in (4.19)–(4.21), while ε(k,m) is a predeter-
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mined constant. Then, a SDR version of P̃4.1 in (4.23) is given by

P̃ ′4.1 : maximize
A,B(k,m)

d

s.t.− ε(k,m)

∥∥B(k,m) −A
∥∥

F
− Tr

(
Ẽ(k,m)

(
B(k,m) −A

))
≥ d,

B(k,m) � 0, B(k,m) ∈ B(k,m), ∀ k 6= m

A � 0, Tr (A) ≤ (PtN) , (4.24)

where the optimization variables B(k,m), ∀k 6= m ∈ {1, . . . , N}, are the Lagrangian

multipliers of the inner optimization problem contained in P̃4.1, while B(k,m) is the set of

matrices satisfying B(k,m) =
{

B(k,m) ∈ CN×N
∣∣B(k,m),{r,c} = A{r,c} if Ẽ(k,m),{r,c} = 0

}
.

Here, (·){r,c}, represents the r, c-th entry of a matrix. Finally, the non-convex constraint

of rank (A) = 1 has been dropped.

Proof of Theorem 4.4.1 The proof can be found in Appendix A. �

The robust optimization problem P̃ ′4.1 can be solved with the aid of standard convex

techniques and it facilitates the design of pre-scaling vectors robust to imperfect CSI

conditions, as shown in Sec. 4.5.

4.4.2 Power Minimization

A similar procedure to the one detailed in Sec. 4.4.1 can be followed to obtain a

relaxed robust version of the optimization problem that minimizes the transmission

power subject to satisfying the performance thresholds P4.2, which can be expressed as

P̃ ′4.2 : minimize
A,B(k,m)

Tr (A)

s.t.− ε(k,m)

∥∥B(k,m) −A
∥∥

F
− Tr

(
Ẽ(k,m)

(
B(k,m) −A

))
≥ d,

B(k,m) � 0, B(k,m) ∈ B(k,m), ∀k 6= m

A � 0. (4.25)
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At this point it should be remarked that the original application of SDR to SSK de-

veloped in Sec. 4.3 facilitates the design of TPS schemes exhibiting robustness against

imperfect CSI. Also note that with respect to the existing robust designs found in the lit-

erature, such as the downlink beamforming schemes of [214,217], the constraint matrices

Ẽ(k,m) of the proposed designs (4.24) and (4.25) depend on the actual channel realization

and not on its second-order statistics [214]. This is because the instantaneous MED at

the receiver is used as a performance metric instead of the conventional average SNR,

an approach that is particularly suited to SSK transmission that substantially modifies

the definition of the relevant constraint matrices [178–180,214,217].

4.5 Results and Discussion

To evaluate the benefits of the proposed technique, this section presents numerical

results based on Monte Carlo simulations of conventional SSK without scaling (termed

as SSK in the figures), SSK using the constellation randomization of [183] with Ds = 20

candidate scaling vectors, termed as SSK-CR, the iterative algorithms developed in

[184], and the proposed SSK using SDR optimization, namely SSK-SDR. In this section

the nomenclature of [184] is maintained for coherence, i.e. the algorithm employed to

solve P4.1 is referred to as the SSK maximum minimum distance (SSK-MMD) regime,

whereas P4.2 is solved via the so-called SSK guaranteed Euclidean distance (SSK-GED)

algorithm. Throughout this section the convergence of the above SSK-MMD and SSK-

GED algorithms is deemed to be achieved when the Euclidean norm of the error between

the input and the output of the convex optimization problem performed every iteration

satisfies ξ ≤ 10−3. The performance of the systems constructed with the aid of the

non-relaxed optimization problems is not shown due to their intractable computational

complexity. The channel impulse response follows H ∈ CK×N ∼ CN (0, IK ⊗ IN ) and

is assumed to be perfectly known at the transmitter and the receiver unless otherwise

stated. Without loss of generality, it is assumed that the average transmit power is

restricted to Pt ≤ 1 for the conventional techniques and for the case of problem P ′4.1 of the

proposed scheme, unless stated otherwise. Small-scale MIMO systems are considered,
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Figure 4.3: BER vs. SNR for both (2× 2) and (4× 3) MIMO systems.

since the benefits of the proposed technique are maximized for this regime as discussed

in Sec. 4.3.4.

First, the BER performance upon increasing the transmit SNR = 1/σ2 is charac-

terized for both (2 × 2) and (4 × 3)-element MIMO systems in Fig. 4.3. In this case,

the comparison involves the MED maximization problem P ′4.1 upon varying the noise

power. It can be seen in Fig. 4.3 that while SSK-CR improves the conventional SSK

transmission by the TPS operation, the proposed scheme further enhances the attainable

performance by the proposed optimization. In these particular cases, the performance

of both SSK-MMD and SSK-SDR are almost indistinguishable. However, note that

this is achieved at the cost of a significantly higher computational complexity for SSK-

MMD, since multiple convex optimization problems must be solved, before convergence

is achieved. This is explicitly shown in Table 4.2, where both the average and the stan-

dard deviation of the computational time required to obtain the transmit pre-scaling

factors are portrayed for 104 channel realizations. These results indicate that SSK-SDR

is capable of offering a similar performance at a computational time up to 20 times

shorter than that required by the SSK-MMD algorithm [184]. Indeed, it can be ob-

served that the proposed SSK-SDR scheme offers a significantly smaller variation in

the computational time required for solving the optimization problems under different
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Table 4.2: Average (µ) and standard deviation (σ) of the computational time em-
ployed to compute the transmit pre-scaling factors with optimization-
based algorithms.

(N ×K) SSK-MMD SSK-SDR

µ σ µ σ

(4× 2) 3.85 sec. 3.9 sec. 0.24 sec. 0.025 sec.

(4× 3) 4.67 sec. 3.74 sec. 0.23 sec. 0.022 sec.
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Figure 4.4: BER vs. SNR for a (4× 2) MIMO system.

channel conditions.

Similar trends can be observed in Fig. 4.4, where the (4× 2)-element MIMO system

is examined. It can be seen that the SSK-MMD algorithm of [184] only offers a slight

improvement over the proposed SSK-SDR in the scenario considered. This entails that

the proposed SSK-SDR strategy provides the best performance-complexity trade-off,

since the SSK-MMD algorithm is significantly more complex as detailed in Table 4.2.

Additionally, Fig. 4.4 portrays the high diversity order provided by SSK-SDR thanks to

the enhanced MED. This is evidenced by the higher slope of the BER curve in line with

the definition of the diversity gain [30].

Fig. 4.5 shows the cumulative distribution function (CDF) of the equivalent transmit
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Figure 4.5: Empirical CDF of the transmission power for (4 × 2) and (4 × 3)
MIMO systems.

power1 for problem P ′4.2 and SSK-GED in the (4×2) and (4×3)-element MIMO systems,

for different values of the MED thresholds d. It can be observed that the (4 × 3)-

element MIMO system has a smaller spread in the transmit power values necessitated

for guaranteeing the required MED threshold, and this spread tends to increase upon

increasing the MED thresholds d. It is also shown that SSK-GED generally requires less

transmission power than SSK-SDR to satisfy a given MED threshold, as further analyzed

in the following. It should be noted that the transmit power spread results from the fact

that the MED threshold has to be satisfied under different channel conditions, which

imposes a transmit power variation.

To prevent repetition, in the following the focus is placed on the power minimization

problem for clarity, although it is clear that the MED maximization problem requires

a similar solution [214]. In this section, the estimated channel between the transmit

antennas and the k-th receive antenna with imperfect CSI is modeled as [207,215]

h̃k =
√

1− τ2hk + τqk, (4.26)

1Without loss of generality, we employ the equivalent transmit power defined as Tr
(
wwH

)
for the

results shown in the sequel. Note that the actual average transmit power is given by Pt = Tr
(
wwH

)
/N ,

since only one antenna is simultaneously active for transmission.
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where h̃k ∈ CN×1 denotes the imperfect CSI estimate available at the transmitter and

qk ∼ CN (0, IN )2. Here, τ is a parameter that determines the quality of the instan-

taneous acquired CSI ranging from perfect CSI (τ = 0) to the unavailability of the

instantaneous CSI (τ = 1). Here, ε(k,m) = ε = 2τ = 0.02, ∀ k 6= m for the robust

optimization problem P̃ ′4.2. The value of ε has been fixed similarly to [216] for illustra-

tive purposes and without loss of generality. For the cases of SSK and SSK-CR, the

scaling vector is multiplied by an appropriate factor in order to increase the separation

between the estimated received constellation symbols and to guarantee that the MED

constraint is satisfied with the aid of the available CSI estimate (not the true channel).

However, note that the actual received symbols are different from the ones estimated

at the transmitter due to the effect of the imperfect CSI. As a result, achieving the

true MED attained by the non-robust designs in the presence of imperfect CSI cannot

be guaranteed. By contrast, the robust schemes are able to guarantee that the MED

thresholds are satisfied, as detailed in Sec. 4.4. For practical reasons and without loss of

generality, the transmitter has a maximum transmission power of 20 Watts for a given

channel realization and the solutions having higher power requirements are treated as

infeasible. This constraint is realistic due to the technical limitations of the power am-

plifiers and it only takes effect for certain badly conditioned channels, since usually the

transmission power is considerably lower, as shown in Fig. 4.6.

Fig. 4.6 illustrates the average transmit power in Watts required for increasing MED

thresholds using SSK, SSK-CR, SSK-GED and the power minimization problems P ′4.2

and P̃ ′4.2 for (4 × 2) and (4 × 3)-element MIMO systems. The results of Fig. 4.6 show

that the proposed strategies are able to outperform SSK-CR while, simultaneously,

SSK-GED is able to provide better solutions in the considered scenarios. Note that the

SSK-GED approach is, however, significantly more complex than the proposed SSK-

SDR. The enhancements offered by the pre-scaling techniques are a direct consequence

of the solutions being closer to the optimal ones, as detailed in Sec. 4.3.4. In this case,

the transmission power required to satisfy a given MED threshold can be reduced when

2It should be noted that the worst-case robust design proposed in Sec. 4.4 is particularly suitable for
imperfect CSI models with a bounded error norm. Instead, this section considers an norm-unbounded
stochastic error model, since this kind of imperfect CSI characterization is more common and the benefits
of the proposed robust design can also be shown.
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Figure 4.6: Average transmission power vs MED thresholds for (a) (4 × 2) and
(b) (4× 3) MIMO systems.

compared with SSK-CR. Specifically, transmit power savings as significant as 2 Watts

for d = 3 in a (4× 2) system w.r.t. SSK-CR can be achieved, while a similar trend can

also be observed in the (4×3) scenario. It can be therefore concluded that the benefits of

the pre-scaling designs become more pronounced for large MED thresholds. Moreover,

similarly to [216,218], the results of this figure show the increase in the transmit power

necessary to compensate for the CSI uncertainty at the transmitter. In this particular

case it can be seen that, in spite of the required transmit power increase, the insightful

design offered by the robust SSK-SDR design philosophy still improves upon SSK-CR,

where the set of candidate scaling factors is randomly designed. By doing this, the

robust SSK-SDR design guarantees that the performance thresholds specified at the

receiver are satisfied, while this is not achieved by SSK, SSK-CR, SSK-GED, SSK-SDR

and other TPS approaches in the literature [178–180,183,184].

The above observation can be explicitly seen in Fig. 4.7(a) and (b), where the prob-

ability of feasibility is represented for increasing values of the MED thresholds for the

(4× 2) and (4× 3) MIMO systems, respectively. The feasibility probability is defined as

P (MED ≥ d), provided that the average transmission power required does not exceed 20

Watts for a given channel realization. The remaining cases are considered as infeasible

solutions. The same simulation parameters have been used to obtain the results of this
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Figure 4.7: Probability of feasibility vs. MED thresholds for (a) (4 × 2) and (b)
(4× 3) MIMO systems.

figure as in Fig. 4.6. By analyzing the results of Fig. 4.7 it can be concluded that the

proposed robust strategy offers the highest reliability, since the probability of outage is

reduced w.r.t. the non-robust alternatives that do not account for the presence of CSI

errors.

A more refined picture of the systems’ behaviour considered in this chapter under

imperfect CSI conditions is shown in Fig. 4.8, which represents the empirical probability

density function (PDF) of the MED at the receiver in a (4 × 2) MIMO system in the

presence of imperfect CSI by considering the same channel model and conditions as

those used in Fig. 4.6. The target MED at the receiver has been set to d = 1 and it is

denoted by the red bar in the figures. Note that the red bars are only shown for illustra-

tive purposes and do not represent the PDF over that range. The results of this figure

show that the proposed robust SSK-SDR design is capable of guaranteeing the MED

thresholds to be exceeded at the receiver. This is in contrast with the pre-scaling designs

introduced in [178–180,183,184], where achieving the system performance required can-

not be guaranteed, as depicted in Fig. 4.8(a), (b), (c) and (d) for the conventional SSK,

SSK-CR, SSK-GED, SSK-SDR and designs, respectively. Accordingly, the proposed

robust technique enables the application of TPS with MED guarantees in the case of

imperfect CSI, which cannot be achieved by the previous approaches. Moreover, the
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Figure 4.8: Empirical PDF of the MED of a (4×2) MIMO system under imperfect
CSI conditions with τ = 0.01 and d = 1 for (a) SSK, (b) SSK-CR, (c)
SSK-GED, (d) SSK-SDR, and (e) robust SSK-SDR.

benefits of the robust design can be clearly seen upon comparing Fig. 4.8(b) and (d).

In particular, it can be seen that the robust technique requires less transmission power

than SSK-CR, as shown in Fig. 4.6 and, simultaneously, the MEDs at the receiver are

significantly enhanced. This improvement comes at the cost of an increased variance

in the MED at the receiver w.r.t. the SSK-GED and SSK-SDR designs characterized

in 4.8(c) and (d), which, however, have a larger outage probability due to ignoring the

impact of inaccurate CSI [218].

4.6 Conclusions

This chapter has presented a TPS vector design based on convex optimization for

SSK systems. A pair of distinct optimization problems have been introduced, namely
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MED maximization under transmit power budget constraints and transmit power min-

imization under a MED constraint. By invoking SDR, a close-to-optimal TPS has been

designed for improving the power efficiency of small scale SSK systems with respect to

existing approaches by offering an enhanced performance for a given transmit power

budget, or equivalently, a reduced transmit power for achieving a given MED. Indeed,

power savings in the order of several Watts have been demonstrated for the systems with

stringent performance requirements considered in this chapter. Moreover, a robust de-

sign has been developed that is capable of guaranteeing the received MED target in the

presence of CSI errors at the transmitter, hence facilitating the use of TPS strategies,

when realistic imperfect CSI is available.

Critique: It should be noted the scalability of the proposed scheme to spatial

modulation with additional signal-constellation points or large-scale antenna systems is

limited, since increasing the number of constraints in the optimization problems harms

the solutions attained by the relaxed problems [184,210]. Moreover, while the proposed

scheme provides substantial performance improvements over conventional SSK trans-

mission, CSI at the transmitter is required and the peak-to-average power ratio (PAPR)

of the transmission is simultaneously increased. Still, significant power savings are ex-

pected due to the much reduced transmission power required as shown in the results of

this chapter. In the search for larger performance improvements, the later work [208]

suggests that performance could be enhanced by considering directly the BER instead

of the more limited MED as an optimization metric. However, slight performance im-

provements are expected for the small-scale systems considered in this chapter, since the

advocated solution is already close-to-optimal. Nevertheless, the consideration of this

metric for optimizing the performance in large scale antenna systems is of substantial

relevance, as explicitly pointed out in Sec. 9.2.
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Chapter 5

Compressive Sensing Based

Detection for Spatial Modulation

in Large Scale Antenna Systems

5.1 Introduction

Massive MIMO technologies aim at enhanching the spectral efficiency by incorpo-

rating a large number of antennas at the base stations (BSs) [11, 72, 101]. This leads

to communication systems in which the use of conventional linear detection and pre-

coding techniques becomes optimal in the large scale antenna limit [11, 72]. However,

the increased number of radio frequency (RF) chains have a considerable influence on

the energy efficiency, hence severely affecting the attainable benefits from this perspec-

tive [61]. To alleviate this impact, spatial modulation (SM) poses as a reduced RF-

complexity scheme by exploiting the transmit antenna indices as an additional source

of information [19,157,167].

Up to this point, the literature of SM has mostly focused on developing strategies

for point-to-point links [19, 157, 167, 169, 180, 183]. For instance, several low-complexity

detectors that approach the performance of the optimal maximum likelihood (ML) es-

timation have been proposed [170–172, 219]. In this context, the use of a normalized
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compressive sensing (CS) detection algorithm as a low-complexity solution for space

shift keying (SSK) and generalized space shift keying (GSSK) peer-to-peer (P2P) sys-

tems was considered in [172, 173]. In this work, the authors apply a normalization to

the channel matrix before the application of the greedy compressive detector to enhance

performance. However, the authors restrict its application to single-user SSK and GSSK

systems, which constrains its use to low data rate transmission.

More recently, the use of SM has been extended to the multiple access channel (MAC)

as a way of enhancing the achievable rates of the conventional single-antenna devices

considered in this setting [159, 185, 186]. A number of related works have concentrated

on the design of detection schemes to account for the particularities of the large scale

MAC. The employment of a message passing detection (MPD) algorithm is proposed

in [187, 188] for the MAC with a large number of antennas at the BS. This algorithm

offers a performance improvement with respect to conventional MIMO systems with

identical attainable spectral efficiency. However, both the storage requirements and the

total number of operations are conditioned by the large number of messages transmit-

ted between all the nodes, which must be updated in every iteration [220]. A more

complex local search detection algorithm based on finding the local optimum in terms

of the maximum likelihood cost is also introduced in [187, 188]. An iterative detector

for large scale MAC is developed in [189]. Here, the authors decouple the antenna and

symbol estimation processes to reduce the global detection complexity. The algorithm

introduced in [190] accounts for the sparsity and signal prior probability of SM trans-

mission in the MAC. In this work, the use of stage-wised linear detection is discarded

due to its high complexity and the authors propose a generalized approximate message

passing detector. A related approach has been developed in [191] to deal with quantized

measurements and spatial correlation. Still, the above algorithms do not fully account

for the particularities of iterative detection processes and the complexity benefits that

can be obtained by leveraging the principles behind CS algorithms.

This chapter introduces an energy-efficient detector based on CS for the MAC of SM

systems with large scale BSs. In particular, it is shown that the signal structure of SM

in the MAC can be exploited to provide additional information and improve the per-
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formance of CS algorithms [221, 222]. Moreover, the use of a large number of antennas

in the MAC eliminate the error floor that greedy CS techniques show in noisy scenarios

for practical uncoded bit error rates (BERs) [172]. Indeed, contrary to the common

CS knowledge, in this chapter it is demonstrated by means of a thorough complexity

analysis that the trade-off between complexity and performance is especially favourable

for CS-based detection schemes in scenarios with a large number of receive antennas.

Furthermore, in this chapter the energy efficiency and signal processing complexity of

the proposed strategy is compared with the conventional zero forcing (ZF) and mini-

mum mean square error (MMSE) linear detectors. In particular, it is shown that the

improvements offered by the proposed technique allow enhancing the energy efficiency

achieved by these detectors with comparable complexity. In fact, the detailed complex-

ity analysis provides valuable insights regarding the algorithms that must be employed

to solve the ZF and MMSE detection problems in large scale SM-MIMO systems.

5.2 Preliminaries

5.2.1 System Model of the Multiple Access Channel (MAC)

The model considered throughout this chapter characterizes the MAC of a multi-user

MIMO system comprised of K mobile stations (MSs) with nt antennas each, and a single

BS with N receive antennas as illustrated in Fig. 2.12. The total number of antennas

allocated at the MSs is denoted as K = K ×nt. Similarly to (2.11), the behavior of the

multiple access system is described in this chapter by

y = Gx + n, (5.1)

where the relevant variables are identical to those defined in Sec. 2.2.1. In this chapter,

n ∈ CN×1 ∼ CN (0, σ2IN ) and G ∈ CN×K ∼ CN (0, IN ⊗ IK), unless stated otherwise.

As typically assumed in the SM detection literature, the BS is expected to have a perfect

knowledge of the communication channel G [11, 19].

Throughout this chapter it is assumed that the data symbols transmitted by the
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active antennas belong to a normalized Q-QAM constellation satisfying E {Es} = 1,

where Es refers to the symbol energy. Based on this, the total average signal-to-noise

ratio (SNR) of the MAC can be expressed as

SNR =
E
{
xHx

}
σ2

=
S · E {Es}

σ2
, (5.2)

where K ≤ S ≤ K is the total number of antennas simultaneously active amongst the

MSs.

5.2.2 Multiple Access Spatial Modulation

This section describes the operation of generalized SM transmission with a single RF

chain, since particularization to conventional SM is straightforward by letting S = K and

forcing the number of antennas per user to be a power of two [167,223]. Throughout this

chapter the term SM is employed when referring to both conventional and generalized

SM for ease of description. In SM, each transmitter conveys the same constellation

symbol by activating a given number of antennas na according to the input bit sequence

[19, 167, 223]. Without loss of generality, in the following it is assumed that the users

activate the same number of antennas, i.e. S = na ×K. Mathematically, the transmit

signal xk ∈ Cnt×1 of the k-th SM transmitter can be expressed as [167]

xk =
[
0 · · · sql1 · · · s

q
lk
· · · 0

]T
, (5.3)

where lk ∈ {1, . . . , nt} denotes the active antenna index and sq represents the q-th

symbol of the transmit constellation Q, in coherence with the notation introduced in

Sec. 2.3.2. The number of bits that can be encoded on the antenna indices is b ,⌊
log2

(
nt

na

)⌋
[167, 223]. Therefore, the number of possible antenna combinations at the

transmitter is given by r = 2b. This determines the cardinality of A, the set comprised

of the possible active antenna groups with Al being the l-th element. Note that there

may be invalid antenna groups to preserve an integer length of the bit stream. The

composite transmit vector x ∈ CK×1 is obtained by concatenating the transmit signals
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as x =
[
xT

1 xT
2 · · ·xT

K

]T
. Note that, while a conventional MIMO transmitter is able to

convey BMIMO = nt · log2(Q) bits, a single SM transmitter encodes BSM = b+ log2(Q)

bits in every channel use.

At the receiver, detection schemes exploit the channel knowledge to determine the

active antennas and the conveyed constellation symbols [19]. Among these, the optimum

detector follows the ML criterion and its output reads as

x̂ = arg min
s̃p
‖y −Gs̃p‖22 . (5.4)

Here, the signal s̃p ∈ CK×1 belongs to the set that includes all the possible transmit

signals Γ and ‖·‖p denotes the `p norm. The cardinality of Γ, |Γ| = (Q× r)K , exponential

with the number of users K, establishes an upper bound on the complexity of SM

detection.

5.2.3 Large Scale Antenna Systems (LSAS) and Low-Complexity De-

tection

The large scale MIMO theory focuses on analyzing the benefits of communication

systems with a large number of antennas at the BS [11, 72]. One of the fundamental

results in this field states that, provided that N � K, the received signal after linear

detection g ∈ CK×1 satisfies

g = F (Gx + n)
a.s.

−−−−→
N→∞, K=const.

x, (5.5)

where F ∈ CK×N is a linear detection matrix that for the matched filter (MF), ZF and

MMSE detectors reads as [33]

F
MF

= GH, (5.6)

F
ZF

= G† =
(
GHG

)−1
GH, (5.7)

F
MMSE

=
(
GHG + ςI

)−1
GH. (5.8)
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In the above, ς = K/SNR [33]. Let g{u} be the decision vector corresponding to the

u-th user. The sub-optimal but low-complexity approach of decoupling the estimation of

the spatial and amplitude-phase modulated symbols is adopted in the sequel [186,224].

Specifically, the estimated active antenna indices Âl and the transmitted constellation

symbol q̂ for the u-th user are obtained from (5.5) as

Âl = arg max
l

∥∥∥g{u}Al

∥∥∥
2
, (5.9)

q̂ = D
(
g
{u}
Âl

)
, (5.10)

where g
{u}
{Al,Âl}

represent the entries of the decision vector of the u-th user g{u} deter-

mined by the sets Al and Âl respectively, and D denotes the demodulation function.

Note that the necessary increase in the number of transmit antennas when SM is

employed degrades the performance of the above-mentioned detectors due to the worse

conditioning of the channel matrix. For this reason, this chapter proposes a solution

inspired by CS to take advantage of the large scale MIMO benefits. In other words, the

following sections concentrate on scenarios where N � K does not necessarily hold but

N � K brings the massive MIMO effect.

5.3 Straightforward Application of CS Algorithms for SM

Detection

The main issue with the conventional ZF and MMSE linear detectors when applied to

SM and generalized SM detection is that the entire channel matrix G ∈ CN×M must be

employed for detection even though only S columns contribute to the acquisition of the

amplitude-phase signal information. This can be circumvented by exploiting the sparsity

of SM signals to further enhance the performance attained by linear detectors. The

signals conveyed by SM are defined as S-sparse because they only contain S � K non-

zero entries equal to the number of antennas simultaneously active S [172]. This property

has been exploited by CS to improve signal estimation from compressive measurements.

Specifically, CS capitalizes on signal sparsity to guarantee a reliable signal recovery with
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efficient algorithms [225,226]. The CS measurements y ∈ RN×1 of a sparse signal x can

be expressed as [226–228]

y = Φx + e, (5.11)

where x ∈ RK×1 represents the original sparse signal, Φ ∈ RN×K is the measurement

matrix, and e ∈ RN×1 is a measurement error term. Note that the complex-valued

system in (5.1) can be straightforwardly re-expressed to resemble the real-valued one

in (5.11) [172]. In this chapter, the similarity between (5.1) and (5.11) is exploited to

improve the detection performance of the conventional linear MIMO detectors.

In CS, the restricted isometry property (RIP) determines whether signal recovery

guarantees are fulfilled or not for any communication channel Φ = G [226,227]. For the

case of the MIMO channel, the RIP of order S is satisfied for a channel matrix G if, for

any S-sparse signal x, the relationships

(1− δS)‖x‖22 ≤ ‖Gx‖22 ≤ (1 + δS)‖x‖22 (5.12)

hold for a constant δS ∈ (0, 1). For instance, a matrix comprised of independent and

identically distributed Gaussian random variables is known to satisfy δS ≤ 0.1 provided

that N ≥ cS log (K/S), with c being a fixed constant [227]. Note that this kind of

channel communication matrix conventionally arises in rich scattering environments

with Rayleigh fading [11].

Once the signal measurements are acquired and contrary to the ML detector given

in (5.4), the detection of the SM signals in CS relies on the sparsity of SM transmission

to generate an estimate. For the case with δ2S <
√

2 − 1 [228] (5.4) can be solved in a

low-complexity CS-inspired fashion as

minimize ‖x‖1

subject to ‖Gx− y‖2 ≤ µ̃, (5.13)

In the above expression the constant µ̃ limits the noise power ‖n‖2 ≤ µ̃. Although the

above optimization problem can be solved with well-known convex approaches, these
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alternatives are often computationally intensive, so faster techniques that offer a trade-

off between performance and complexity such as greedy algorithms are commonly used

instead [227].

From the vast variety of CS greedy algorithms, this section selects one of the most

efficient schemes to approximate the solution of (5.13): the Compressive Sampling

Matching Pursuit (CoSaMP) [229]. The CoSaMP is a low-complexity algorithm that

goes through an iterative reconstruction process to recover both the active antenna in-

dices and the amplitude-phase information of the transmitted signals. Moreover, this

algorithm provides optimal error guarantees for the detection of sparse signals since,

similarly to the more complex convex algorithms, a stable signal recovery is guaranteed

under noisy conditions with a comparable number of receive antennas [229]. The results

obtained in the sequel show that the large number of antennas at the BS motivates the

employment of this algorithm for SM detection by performing a thorough complexity

analysis as opposed to [172,229]. Moreover, as the structure of the transmitted signals in

the MAC is not accounted for in the generic CS detection, the following section proposes

an approach specifically tailored for the considered scenarios to improve the detection

performance.

5.4 Proposed Spatial Modulation Matching Pursuit

(SMMP)

One of the key characteristics of conventional greedy CS algorithms is that no prior

knowledge of the sparse signal other than the number of non-zero entries is assumed.

However, when applied to the proposed scenario, this condition can generate situations

in which the output of the detector does not have physical sense. For instance, the

detected signal could have more than one active antenna per user, which is not possible

when conventional SM modulation is used [19]. This undesired operating condition

is caused by the noise and inter-user interference effects that arise in the MAC. To

mitigate these, the proposed sub-scheme incorporates additional prior knowledge about

the distribution of the non-zero entries in the transmitted signal to further enhance
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Algorithm 1 Spatial Modulation Matching Pursuit

Input: G, y, S, na, S̃, imax.
1: Output: x̃iend , S-sparse approximation
2: x̃0 ← 0, i← 0 {Initialization}
3: while halting criterion false do
4: r ← y −Gx̃i {Update residual}
5: i ← i+ 1
6: c ← GHr {MF to estimate active antenna indices}

{7–11: Detect na indices with largest energy per user}
7: Ω ← ∅
8: for j = 1→ K do
9: M ← {(j − 1) · nt, . . . , j · nt − 1}

10: Ω ← M
(
arg max {|c|M|}na

)
∪ Ω

11: end for
{12–13: Detect remaining S̃ − S highest-energy indices}

12: c (Ω) ← 0
13: Ω ← arg max {|c|}(S̃−S) ∪ Ω

14: T ← Ω ∪ supp
(
x̃i−1

)
{Merge supports}

15: b|T ← G†T y {Least squares problem}
16: b|T C ← 0

{17–21: Obtain next signal approximation}
17: x̃i ← 0
18: for j = 1→ K do
19: M ← {(j − 1) · nt, . . . , j · nt − 1}
20: x̃i|M(arg max{|b|M|}na) ← max {|b|M|}na

21: end for
22: end while

performance [221].

The detection algorithm introduced in this chapter is referred to as spatial modula-

tion matching pursuit (SMMP) to explicitly indicate that it corresponds to a particu-

larization to SM operation of the structured CoSaMP iteration developed in [222]. In

particular, SMMP reduces the errors in the identification of the active antennas by ex-

ploiting the known distribution of the non-zero entries [221,222]. This also improves the

convergence speed of the algorithm as less iterations are required to determine the active

antenna indices. While it is intuitive that the concept behind this strategy could be in-

corporated to other CS detection algorithms, this section concentrates on the CoSaMP

algorithm for clarity.

The pseudocode of the proposed strategy is shown in Algorithm 1 for convenience
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and its operation can be described as follows [222,229]:

1. Computation of the residual. The algorithm starts by producing an estimate of

the largest components of the transmitted signal to identify the active antennas

[229]. For this, SMMP employs the residual signal r ∈ CN×1 given by

r , y −Gx̃i = G
(
x− x̃i

)
+ n, (5.14)

where x̃i ∈ CK×1 is the approximation of the transmit signal at the i-th iteration.

The residual signal concentrates the energy on the components with a largest error

in the estimated received signal ỹ = Gx̃i [83, 189].

2. Generation of the decision metric for determining the active antennas. Subse-

quently, the decision metric employed to determine the plausible active antennas

c ∈ CK×1 is obtained as the output of a MF and can be expressed as

c = GHr. (5.15)

3. Determination of the plausible active antennas from the current residual. From

the decision metric obtained in (5.15), the active antenna estimation process forms

a set Ω of decision variables with cardinality |Ω| = S̃ ≥ S. The set Ω provides an

estimate of the plausible active antennas. Note that these entries do not have to

correspond to the S coefficients with highest estimated energy in the transmitted

signal as in the CoSaMP algorithm [229]. For instance, let x = [0, 0,−1, 0|0, 1, 0, 0]

be the signal transmitted in a MAC with K = S = 2 users with nt = 4 antennas

each and BPSK modulation. The total number of transmit antennas is K =

nt × K = 8. Then, the set Ω in the conventional CoSaMP algorithm could be

formed by any S = 2 entries of the set of integers ΥCoSaMP = {1, 2, . . . , 8} without

any restriction. This contrasts with the considered SMMP algorithm, in which

the set Ω is formed by at least na = 1 entry of the set Υ1
SMMP = {1, 2, 3, 4} and

another one from Υ2
SMMP = {5, 6, 7, 8}. In simple terms, the proposed algorithm

forces that at least na entries per user are selected as it exploits the knowledge
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that ∥∥xk∥∥0
= na, k ∈

{
1, . . . ,K

}
, (5.16)

where ‖·‖0 determines the number of non-zero entries [225,227]. This is represented

in lines 7-11 of Algorithm 1, where the arg max {·}p and max {·}p functions return

the indices and the entries of the p components with largest absolute value in

the argument vector, and ∅ denotes the empty set. The remaining S̃ − S entries

are instead selected as the entries with largest energy independently of the user

distribution. These additional entries aim at improving the support detection

process by involving the LS problem, which offers an enhanced performance in the

antenna identification with respect to the estimate provided by the MF [11].

4. Determination of the final set of plausible active antennas by incorporating those

from the previous iteration. Once the entries with highest error energy in the

current residual have been estimated, the set T is obtained as

T , Ω ∪ supp
(
x̃i−1

)
, (5.17)

where supp (·) identifies the indices of the non-zero entries. This set provides a final

estimate of the plausible active antennas used for transmission by incorporating

the ones considered in the previous iteration [83].

5. Solution of a linear least squares (LS) problem. The set T determines the columns

of the matrix G employed for solving the unconstrained linear LS problem given

by

minimize
b|T

‖GT b|T − y‖22 → b|T = G†T (Gx + n) , (5.18)

where b|T denotes the entries of b ∈ CK×1 supported in T . This notation differs

from GT , which refers to the submatrix obtained by selecting the columns of G

determined by T .

The LS approximation is a crucial step as the complexity reduction and the perfor-

mance improvement w.r.t. conventional linear alternatives depend on the efficiency

of this process [229]. This procedure can also be seen as implementing a ZF de-
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tector in which, instead of inverting all the columns of the channel matrix, only

the columns that have been previously included in the support are inverted. This

allows exploiting the large scale MIMO detection benefits as the equivalent ZF

detector generally satisfies N � 2S̃ [72]. Due to the possibility of employing dif-

ferent algorithms to solve LS problems, a detailed analysis of their complexity is

developed in Sec. 5.5.1.

6. Approximation of the transmitted signal. After solving the LS problem, the signal

approximation of the i-th iteration x̃i is built by selecting the entries with largest

energy at the output of the LS problem based on a user-by-user criterion following

(5.16). Finally, the sparse output of the algorithm x̃iend is obtained after the

algorithm reaches the maximum pre-defined number of iterations imax or a halting

criterion is satisfied [229].

Overall, although sub-optimal for a large but finite number of antennas, the proposed

scheme exploits the high performance offered by linear detection schemes together with

the structured sparsity inherent to SM transmission to reduce complexity. Indeed, a

fundamental difference of the proposed approach with respect to the conventional CS

approach is that over-determined scenarios are also considered, i.e., communication sys-

tems whereN ≥ K. Also note that, although shown via iterative structures in Algorithm

1, the additional operations required in the considered algorithm can be implemented

via vector operations with reduced computational time.

Regarding the compromise between complexity and performance of the considered

technique, it should be noted that several parameters can be modified to adjust this

trade-off [229]:

− Number of entries detected at the output of the MF (S̃): The parameter S̃ de-

termines the dimensions of the LS problem, hence severely affecting the signal

processing complexity. It also influences the detection performance since the so-

lution is conditioned by the LS matrix GT .

− Maximum number of iterations of SMMP (imax): The total number of iterations
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determines the complexity and detection accuracy of the algorithm. This pa-

rameter can be used to adjust the performance depending on the computational

capability of the BS as shown hereafter.

− Maximum number of iterations of the iterative LS (iLS
max): The accuracy of the LS

solution is improved in every iteration when iterative algorithms are used [230].

Hence, there exists a trade-off between complexity and performance that can be

optimized at the BS depending on the communication requirements. As this pa-

rameter greatly affects the global complexity, a detailed study of the required

number of iterations is developed in Sec. 5.6.

5.5 Complexity Analysis

The analysis of the computational complexity is commonly performed by determining

the complexity order. This is the approach adopted in [172, 187, 229] to determine the

complexity of the proposed algorithms. Instead, this chapter adopts a more precise

approach since, as shown in the following, the complexity order does not provide an

accurate characterization of the total number of operations due to the iterative nature of

the greedy CS-based algorithms. In fact, as opposed to the results obtained in [172] and

[229], it is actually concluded that the LS problem can dominate the global complexity.

5.5.1 Complexity of the Least Squares Problem

An efficient implementation of the LS algorithm is required to reduce the complexity

of the proposed approach since otherwise it can dominate the total number of floating

point operations (flops) [229]. In general, the methods to solve the LS problem can be

classified according to their approach to obtain the solution into direct and iterative

procedures [230]:

− Direct methods include the QR and the Cholesky decompositions and they are

based on producing a system of equations that can be easily solved via backward

and forward substitutions. The total number of flops is conditioned by the costly

131



Chapter 5. Compressive Sensing Based Detection for Spatial Modulation in LSAS

Table 5.1: Complexity in number of real floating-point operations (flops) to solve
a m× n least squares problem.

Operation Complexity in flops

G†y via QR decomposition [205,230]

− QR decomposition

− Intermediate computations and back substitution

CLS
T ' 8n2m−

(
8
3

)
n3 + 8mn+ 4n2

− C1 = 8n2m−
(
8
3

)
n3

− C2 = 4n2 + 8mn

G†y via Cholesky decomposition [230,232]

− C = GHG

− Cholesky decomposition

− Intermediate computations, forward and back-
ward substitutions

CLS
T ' 4n2m+

(
4
3

)
n3 + 8mn+ 11n2

− C1 = 4n2m

− C2 =
(
4
3

)
n3 + 3n2

− C3 = 8n2 + 8mn

G†y via Richardson Iteration [205,229,230]

− SVD to compute optimal α

− Richardson iterations

CLS
T '

(
16
3

)
n3 + iLS

max × (24mn+ 6n)

− C1 =
(
16
3

)
n3

− C2 = iLS
max × (24mn+ 6n)

G†y via Conjugate Gradient [229,230]

− Algorithm without initial approximation

− Algorithm with initial approximation

− Conjugate Gradient iterations

CLS
T ' C1,{1,2} + iLS

max × (16mn+ 27n)
− C1,1 = 8mn+ 7n

− C1,2 = 16mn+ 18n

− C2 = iLS
max × (16mn+ 27n)

decompositions that must be performed at the beginning of each channel coherence

period [231].

− Iterative methods solve the LS problem by refining an initial solution based on

the instantaneous residual [230]. These approaches prevent the storage intensive

decompositions required by direct methods, an aspect especially beneficial in the

proposed scenario due to the large dimensions of the channel matrix G.

The number of flops of the QR decomposition, Cholesky decomposition, Richardson

iteration and conjugate gradient (CG) LS algorithms are detailed in Table 5.1. Note that

the fact that each complex calculus involves the computation of several real operations

have been taken into account in Table 5.1. Moreover, similarly to Chapter 3, it has been

considered that a real product (division) has the same complexity of a real addition

(subtraction) [205].

Regarding the complexity of the Richardson iteration, note that it depends on a

parameter 0 < α < 2/λ2
max(G) that determines the convergence rate of the algorithm

[230]. In the last expression, λmax(A) denotes the maximum singular value of an ar-

132



Chapter 5. Compressive Sensing Based Detection for Spatial Modulation in LSAS

bitrary matrix A. The determination of this parameter becomes necessary if a high

convergence speed is required and these additional operations are included in Table 5.1.

Concerning the CG algorithm, Table 5.1 shows that the complexity differs depending on

the availability of an initial approximation to the LS solution [230]. This difference must

be considered because, as opposed to the other detectors, the complexity reduction of

the greedy CS-based approach is based on the increasing accuracy of the approximations

as the algorithm evolves, hence improving the convergence speed as explained in Sec.

5.4.

The comparison between direct LS methods shows that, even though the QR de-

composition is more numerically accurate, it also is more complex than the Cholesky

decomposition [231]. Therefore, the Cholesky decomposition is preferred for the con-

sidered scenario due to the high dimensions of the matrices involved in the LS problem

[231]. Regarding the complexity of iterative methods, the results in Table 5.1 describe

the reduction of the complexity order when compared to the direct methods pointed

out in [229]. However, this improvement does not guarantee a reduction in the number

of operations as the total complexity is highly dependent on the number of iterations

required until convergence as shown in Sec. 5.8.

5.5.2 Overall Complexity of the Proposed Algorithm

Based on the above analyses, a tight upper bound on the total number of real flops of

the ZF and SMMP detectors is shown in Table 5.2. The complexity of the ZF detector

is solely determined by the operations required to solve the LS problem. Therefore, the

increase in the number of transmit antennas of SM may have a significant impact on

the total complexity. This is because, while K = K for the conventional large-scale

MIMO scenarios with single-antenna users, the relationship K = K × nt is satisfied for

SM transmitters in the MAC. However, the performance improvements offered by SM

justify the complexity increase at the BS, where computational resources are expected

to be available [159].

Additionally, it should be pointed out that the flop calculation for the proposed
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Table 5.2: Complexity in number of real floating-point operations (flops) of dif-
ferent large scale MIMO detectors.

Detector Complexity in flops

Zero Forcing detector

− QR factorization

− Cholesky factorization

− Richardson iteration

− Conjugate gradient

− CQR ' 8K2N −
(
8
3

)
K3 + 8KN + 4N2

− CChol ' 4K2N +
(
4
3

)
K3 + 8KN + 11K2

− CRich '
(
16
3

)
K3 +

[
iLS
max × (24KN + 6K)

]
− CCG ' (8KN + 7K) +

[
iLS
max × (16KN + 27K)

]
SMMP

− Matched filter

− Least Squares problem

– First SMMP iteration

– Rest of SMMP iterations

− Compute residual

CSMMP ' imax × (8KN + 8SN) + C1
LS +

[
(imax − 1)× Ci>1

LS

]
− CMF = 8KN

− Least Squares problem (CLS)

– C1
LS. CLS

T with m = N , n = S̃ and C1,1 for CG.

– Ci>1
LS . CLS

T with m = N , n =
(
S̃ + S

)
and C1,2 for CG.

− Cres ≈ 8SN

algorithm has been performed for the worst-case scenario in which none of the S entries

from the previous SMMP iteration coincide with the S̃ coefficients selected at the output

of the MF. This means that the average number of operations is generally smaller than

the one shown in Table 5.2. In spite of this, this tight upper bound allows us to determine

the conditions under which CS-based detection is convenient.

The total number of real flops and the BER for an illustrative LSAS scenario are

shown in Table 5.3. The relevant system parameters are N = 128, K = S = S̃ = 12,

nt = 8, imax = 2, SNR = 5 dB and 4-QAM modulation. The number of CG iterations

iLS
max is set to ensure the maximum attainable performance. Overall, it can be observed

that the SMMP algorithm offers a considerable performance improvement with reduced

complexity. The results of Table 5.3, which are further developed in Sec. 5.8, also allow

concluding that the use of iterative LS algorithms for conventional linear detection may

be able to reduce the detection complexity over a channel coherence time. Note that the

solution of the LS problem is not exact in these cases, which influences the resulting BER

as shown in Table 5.3. This results in a performance improvement for the conventional

ZF detector due to the energy concentration on the components that correspond to the

active antennas. In this line, the complexity benefits attained by the use of iterative LS

algorithms motivate the study of their convergence speed in the following section.
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Table 5.3: Complexity and BER of a system with N = 128, K = S = S̃ = 12,
nt = 8, imax = 2, SNR = 5 dB and 4-QAM modulation.

Detection scheme Complexity BER

ZF - Cholesky decomposition 6098 kflops 2.1× 10−2

ZF - Iterative CG detection 696.5 kflops 1× 10−3

SMMP - Cholesky decomposition 618.5 kflops 1.12× 10−5

SMMP - Iterative CG detection 507 kflops 2.08× 10−5

5.6 Convergence Rate of Iterative Least Squares Algo-

rithms in LSAS

The complexity of SMMP highly depends on the number of iterations required to

obtain a solution to the LS problem. Although the required number of iterations to

achieve convergence cannot be known in advance due to the random nature of the

communication channel, this section provides two expressions to determine the number

of iterations depending on the required output accuracy: a straightforward but less

accurate one based on an asymptotic analysis, and a more complex and precise one

that resorts to the cumulative distribution function (CDF) of the channel condition

number. This offers a more refined and intuitive approach than the one adopted in

[229], since the resultant expressions directly depend on the number of antennas of the

communication system. Furthermore, the following study can be used to determine

whether it is convenient from a numerical perspective to use iterative LS algorithms to

solve the ZF problem when applied to LSAS without SM.

The convergence rate of the iterative LS methods is determined by the condition

number of the LS matrix GL ∈ CN×|L| [229, 230]. Throughout this section, L is a

set defined as L , T when the SMMP algorithm is used whereas it is given by L ,

{1, 2, . . . ,K} for ZF. The standard condition number Θ ∈ [1,∞] of the matrix GL is

defined as [230,233]

Θ (GL) =
λmax (GL)

λmin (GL)
=

√
σmax

(
GH
LGL

)
σmin

(
GH
LGL

) =
√

Ξ (W), (5.19)

where λmax (·) and λmin (·) denote the maximum and minimum singular values of the
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argument matrix respectively, σmax (·) and σmin (·) denote the maximum and minimum

eigenvalues, and Ξ (W) refers to the modified condition number defined in [233]. In the

last equality, W ∈ Cs×s is a Wishart matrix with t degrees of freedom W ∼ CWs (t, Is)

defined as [233,234]  W , GLG
H
L , if N ≤ |L|,

W , GH
LGL, otherwise.

(5.20)

In the above, s = min(N, |L|) and t = max(N, |L|).

To characterize the convergence rate of iterative LS in setup considered in this chap-

ter, this section elaborates on the results of conventional and LSAS theory related to

the distribution of the condition number of complex Gaussian and Wishart matrices

[233,234]. Throughout, the focus is placed CG algorithm for brevity, but similar conclu-

sions can be derived for other iterative LS methods [229,230]. In particular, the residual

generated by each iteration of the CG algorithm satisfies [230]

∥∥∥bi −G†Ly
∥∥∥

2
≤ 2 · %i ·

∥∥∥b0 −G†Ly
∥∥∥

2
, (5.21)

where the index i denotes the iteration number, bi is the LS approximation at the i-th

iteration and % is defined as

% =
Θ (GL)− 1

Θ (GL) + 1
. (5.22)

Based on the above result, an upper bound in the number of CG iterations can be

expressed as [230]

iLS <
1

2
Θ (GL) · log

(
2

ι

)
, (5.23)

where ι is the relative error defined as

ι =

∥∥∥bi −G†Ly
∥∥∥

2∥∥∥b0 −G†Ly
∥∥∥

2

. (5.24)

From the above expressions it can be concluded that the convergence speed of the

iterative LS methods increases when a smaller number of entries are selected at the

output of the MF in the proposed algorithm. This is because the large number of

136



Chapter 5. Compressive Sensing Based Detection for Spatial Modulation in LSAS

antennas available at the BS greatly favours the convergence of the CG due to the

reduced condition number of the LS matrix. This is characterized by the following

proposition on the convergence of the CG algorithm in the large antenna number limit.

Proposition 5.6.1 An upper bound in the number of iterations required by the LS CG

algorithm to achieve a relative error reduction of ι under large-scale MIMO conditions

is given by

iLS <
1

2
·

∣∣∣∣∣1 +
√
β(|L|)

1−
√
β(|L|)

∣∣∣∣∣ · log

(
2

ι

)
, (5.25)

where the function β(V ), V ∈ Z+ is defined as

 β(V ) = N/V if N ≥ V,

β(V ) = V/N otherwise.
(5.26)

Proof of Proposition 5.6.1 The proof is provided in Appendix B. �

In spite of being valid in a large number of cases, the probability of requiring a

higher number of iterations for certain badly conditioned channels cannot be quantified

with the above approximation. For this reason, the analysis of the CDF of the modified

condition number FΞ

(
ξ̂
)

= P
(

Ξ ≤ ξ̂
)

with ξ̂ ≥ 1 developed in [233] is leveraged

in the sequel. Specifically, let σ , [σ1, σ2, . . . , σs] be the ordered eigenvalues of the

Wishart matrix defined in (5.20) so that 0 < σs ≤ . . . ≤ σ1. Moreover, let V(σ) be the

Vandermonde matrix with m,n-th entry Vm,n = σm−1
n [26, Section 4.6]. The CDF of

the modified condition number Ξ of an uncorrelated central Wishart matrix is given by

[233, Equation (9)]

FΞ

(
ξ̂
)

=

[
s∏

m=1

(s−m)!
s∏

n=1

(t− n)!

]−1 s∑
l=1

∫ ∞
0
|Υ|dσs. (5.27)

Here, |Υ| denotes the determinant of the matrix Υ, whose m,n-th entry υm,n is defined
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as

υm,n =

 γ(t− s+m+ n− 1, ξ̂σs)− γ(t− s+m+ n− 1, σs) , m 6= l

Vm,sVn,sσ
t−s
s e−σs , m = l

(5.28)

where γ(a, b) is the lower incomplete gamma function given by γ(a, b) =
∫ b

0 e
−tta−1dt.

Equations (5.27) and (5.28) facilitate estimating the CDF of the condition number of

a communication channel, which in turn is necessary to determine the number of LS

iterations as shown in the following. Using the above results, the following theorem can

be stated:

Theorem 5.6.1 The probability that a given number of LS iterations iLS
max suffices to

achieve a relative error reduction of ι in the LS CG algorithm is given by

P (iLS ≤ iLS
max) = FΞ

[2 · iLS
max

log
(

2
ι

)]2
 . (5.29)

Proof of Theorem 5.6.1 The proof is given in Appendix C. �

The result of Theorem 5.6.1 characterizes the trade-off between accuracy and com-

plexity of the CG when the number of LS iterations is varied. In other words, (5.29)

characterizes the impact of varying the number of iterations of the CG algorithm in the

performance of the ZF and the proposed SMMP detector. Overall, the results derived in

this section allow concluding that the conditions of large-scale MIMO greatly favor the

use of the iterative algorithms thanks to the reduced difference between the maximum

and minimum singular values of the communication channel, which in turn ensures a

fast convergence [11,230]. This effect is enhanced by the proposed algorithm due to the

operation with a better conditioned matrix than conventional ZF or MMSE detectors.

In other words, even though several LS problems are solved when the SMMP algorithm

is employed, the overall complexity can be reduced w.r.t. the conventional ZF or MMSE

detectors because the dimensions of the LS matrices are smaller and the convergence

speed of the iterative algorithm is faster.
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5.7 Energy Efficiency

The study of the energy efficiency becomes especially important in the uplink of

multi-user scenarios due to the necessity of finding energy-efficient schemes that allow

increasing the battery lifetime [2]. In particular, the energy efficiency is expressed as

the spectral efficiency per milliwatt of total consumed power by using the metric [59,

65,161,190]

ε =
Se∑K
k=1

Pk
subject to BER ≤ BERobj. (5.30)

Here, BERobj is the objective average BER, Se refers to the spectral efficiency in bits per

channel use (bpcu), and Pk is the total power consumption of the k-th MS in milliwatts

required to achieve a given BERobj. However, as highlighted in Sec. 2.1.3, the power

consumption models for the uplink are not as developed as those for the downlink. For

this reason, this chapter resorts to the power consumption model and values employed

in [59]. The total power consumption per MS can be therefore expressed as [59]

Pk = PC,k + PPA,k = [naPψ + PΨ] +

 nt∑
j=1

(
ξ

η

)
· pk,j

 . (5.31)

In the previous expression, PC,k = Pψ +PΨ denotes the total circuit power consumption

excluding the power amplifier (PA) and it is divided into two components: Pψ that

represents the circuit power consumption that depends on the number of active antennas

per MS, na, and PΨ that corresponds to the static power consumption and it is fixed to

a reference value of 5 mW per MS [59]. In particular, Pψ comprises the additional power

consumption required to activate the circuitry of the RF chains and the digital signal

processors for transmission. Both Pψ and PΨ are assumed to be identical for all MSs.

Moreover, PPA,k =
∑nt

j=1

(
ξ
η

)
· pk,j refers to the power consumption of the PA. In the

last expression, pk,j refers to the power of the signal that is required to be transmitted

by the j-th antenna, the factor ξ is the modulation-dependent peak to average power

ratio (PAPR) and η = 0.35 corresponds to the PA efficiency [65]. Based on the above,

the global energy efficiency can be expressed as

ε =
Se∑K

k=1

{
[naPψ + PΨ] +

[(∑nt
j=1

(
ξ
η

)
· pk,j

)]} , subject to BER ≤ BERobj. (5.32)
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5.8 Results and Discussion

Monte Carlo simulations in MATLABr have been designed to characterize the per-

formance and energy efficiency improvements of the proposed technique. To maintain

the coherence with the SM literature, a comparison between LSAS and SM systems

with identical attainable spectral efficiencies is provided. The performance and energy

efficiency results of spatial multiplexing systems with identical number of transmit an-

tennas have not been represented in these figures to avoid congestion and because they

exhibit a worse behaviour when compared to the spatial multiplexing systems considered

here. In the following, SM-ZF and SM-MMSE refer to the linear ZF and MMSE detec-

tors introduced in Sec. 5.2.3, SM Generic CS denotes the CoSaMP algorithm without

the improvement described in Sec. 5.3, and the techniques with MIMO on their descrip-

tion correspond to those of a conventional MIMO scenario without SM. For reasons of

brevity, this section concentrates on S̃ = S for the generic and SMMP CS algorithms.

Note that this decision entails a minimization of the computational complexity for the

CS-based algorithms following the results of Table 5.2. Additionally, the MPD algo-

rithm is also considered in spite of its increased computational complexity [187]. The

performance results, unless stated otherwise, have been obtained with an exact solution

of the LS problem via Cholesky decomposition.

Fig. 5.1 characterizes the performance of the above-mentioned detectors in a scenario

with N = 128, K = 16, nt = 4, na = 1 corresponding to the single active antenna SM,

and a resulting spectral efficiency of Se = 64 bpcu. The results of this figure have been

obtained with imax = 2 iterations of Algorithm 1, which ensures a reduced complexity

when compared to the algorithms developed in [187]. Note that an error floor is expected

due to the non-feasible solutions produced by the generic CS algorithm. This, however,

cannot be appreciated in these results since the large number of antennas considered

at the BS moves the error floor to very low BER values [172]. Fig. 5.1 shows that the

proposed algorithm is able to reduce the required transmission power by more than 4 dB

w.r.t. conventional MIMO with nt = 1 and 16-QAM to achieve a target BER of 10−4.

Moreover, it is portrayed that SMMP approaches the performance of the more complex
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SM Generic CS, 4−QAM.
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MIMO-ZF. nt = 1, 16−QAM.
MPD algorithm, 4−QAM.
MIMO-ZF. nt=2, 4−QAM.

Figure 5.1: BER vs. SNR for N = 128, K = S = 16, nt = 4, na = 1, imax = 2,
S̃ = S and Se = 64 bpcu.

MPD and outperforms the SM-ZF detector. This is because the proposed strategy

is able to iteratively identify the active antenna indices and then perform a selective

channel inversion with a matrix of reduced dimensions. Instead, the performance of

conventional MIMO with two active antennas per user approaches the performance of

SMMP. However, note that in this case the power consumption and complexity of the

MSs is increased due to the additional RF chains implemented.

Fig. 5.2 shows the performance of the considered detectors in a scenario with N =

128, K = 16, nt = 7, generalized SM with na = 2 active antennas per user, and

a resulting spectral efficiency of Se = 96 bpcu. The results of this figure show that

generalized SM systems with SMMP detection are capable of improving the performance

of conventional MIMO systems employing the same number of RF chains (‘MIMO-ZF.

nt = 1’). The use of SMMP also allows outperforming conventional MIMO systems with

a pair of RF chains (‘MIMO-ZF. nt = 2’) for the range of practical BERs. Moreover, it

can be seen that the SMMP algorithm clearly improves the performance of other linear

detectors such as the SM-MMSE detector. In the following, the simulation results are

focused on single active antenna SM for reasons of brevity, although it is clear that the

resultant conclusions also extend to generalized SM transmission.
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Figure 5.2: BER vs. SNR for N = 128, K = 16, nt = 7, na = 2, imax = 3,
S̃ = S = 2K and Se = 96 bpcu.
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MIMO-ZF. nt=1, 16−QAM.

MIMO-ZF. nt=2, 4−QAM.

Figure 5.3: BER vs. SNR for N = 128, K = S = 32, nt = 4, na = 1, imax = 3,
S̃ = S and Se = 128 bpcu with (a) perfect and (b) imperfect CSI
(τ = 0.25).

The number of users is increased from K = 16 of Fig. 5.1 to K = 32 in Fig. 5.3, which

shows a scenario especially favourable for the proposed technique. Fig. 5.3 shows that the

proposed strategy is able to provide an enhancement of up to three orders of magnitude

in the BER at high SNR values w.r.t. conventional large-scale MIMO, and both ZF and

MMSE detectors in SM. The performance improvement offered by SM when compared to
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conventional MIMO transmission is coherent with the behaviour described in [159,166].

The effect of acquiring inaccurate channel state information (CSI) on the performance is

also shown in Fig. 5.3(b). The imperfect CSI is modeled following G̃ =
√

1− τ2G+τQ,

where τ ∈ [0, 1] regulates CSI quality and Q ∈ CN×K ∼ CN (0, IN ⊗ IK) characterizes

the channel estimation error [215]. The results of this figure for τ = 0.25 highlight the

robustness of SMMP when compared to traditional CS-based detection, which makes it

the best alternative in terms of performance under imperfect CSI.

Although not extensively studied in this chapter for reasons of brevity, the impact

of inter-antenna correlation at the MSs plays an important role in the benefits attained

by SM over conventional MIMO schemes. Indeed, up to this point it has been con-

sidered that the antennas placed at the MSs are uncorrelated, which constitutes the

best scenario for SM. However, spatial correlation arises in realistic scenarios due to

the limited physical space available at the MSs. Fig. 5.4 characterizes the impact of

correlation on the comparison between SM and conventional MIMO. In particular, the

simple exponential channel correlation model is employed, i.e. [235,236]

Gk = ZkR
1
2 , (5.33)

where Gk ∈ CN×nt , k ∈
{

1, . . . ,K
}

denotes the channel of the k-th user, Zk ∈ CN×nt ∼

CN (0, IN ⊗ Int) and R is the exponential correlation matrix, which is assumed identical

for all users and is given by [235,236]

R =



1 te · · · tnt−1
e

te 1 · · · tnt−2
e

...
... · · ·

...

tnt−1
e tnt−2

e · · · 1


, (5.34)

where te ∈ [0, 1] is the exponential parameter [235, 236]. The evolution of the BER

against increasing te is shown in Fig. 5.4 for the same simulation setup illustrated in

Fig. 5.1 with SNR = 6 dB. The results of Fig. 5.4 indicate that the performance benefits

provided by SM when compared with conventional MIMO transmission vanish for large
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Figure 5.4: BER vs. te for N = 128, K = 16, nt = 4, S̃ = S, SNR = 6 dB,
imax = 2 and Se = 64 bpcu.

te. Indeed, while the proposed scheme shows a robustness against correlation, there

is a point (te ≈ 0.7) where incorporating a single antenna at the terminals is more

effective. Intuitively, this occurs because identifying the active MS antennas becomes

more difficult at the BS due to the similarity of their channels, hence degrading the

performance of SM.

Fig. 5.5 shows the trade-off between performance and complexity in real flops for

a MAC with N = 128, K = 16, na = 1, Se = 64 bpcu, imax = 2, S̃ = K and

SNR = 6 dB. The number of antennas per user is nt = 4 when SM is used, whereas it is

nt = 1 and nt = 4 for conventional MIMO. Note that the complexity and performance

of the CG algorithm varies depending on the number of iterations as explained in Sec.

5.5.1. From the results of this figure it can be concluded that the SMMP approach

offers the best performance with a restrained complexity. When compared to LSAS

with the same spectral efficiency and alike number of RF chains (‘MIMO-ZF, nt = 1’),

the use of SM increases complexity due to the higher number of antennas at the MSs,

but in turn offers a performance improvement of more than two orders of magnitude.

This improvement is not as significant with respect to the spatial multiplexing system

with the same number of antennas (‘MIMO-ZF, nt = 4’), where instead the complexity

is dramatically reduced. Fig. 5.5 also shows the complexity improvements that can
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Figure 5.5: BER vs. complexity for N = 128, K = S = 16, nt = 4, na = 1,
SNR = 6 dB, Se = 64 bpcu, imax = 2, S̃ = S with different LS
methods.

be obtained when the iterative CG algorithm termed ‘ZF-SM. Conjugate Gradient’

considered in this chaper is employed to solve the LS problems against traditional direct

methods such as ‘ZF-SM. QR decomposition’ and ‘ZF-SM. Cholesky decomposition’

in Fig. 5.5. The number of iterations and, inherently, the complexity can be adjusted

depending on the BER required at the BS. This result suggests that the use of the CS-

based detection is especially convenient in fast fading scenarios with a reduced channel

coherence period. This is because whereas CS-based detection methods perform the

same computations in every channel use, the linear detectors solved with direct methods

focus the intensive computations at the beginning of the coherence period and reduce

their complexity afterwards [4].

A similar conclusion can be obtained from the results of Fig. 5.6, where the focus

is on controlling the attainable performance by varying the number of LS iterations in

the CG algorithm. Also note that, as opposed to the conclusions achieved in [172,229],

the iterative LS algorithm accounts for 60% of the global detection complexity, hence

justifying the need of an accurate complexity characterization. Altogether, it can be

concluded that the proposed strategy offers significant performance improvements with

similar complexity, when compared with conventional detection schemes in systems with
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Figure 5.7: Energy efficiency vs. number of users K to achieve BER = 10−3.
N = 128, nt = 4, na = 1. Pψ = 20 mW.

identical number of antennas.

Regarding the energy efficiency of the CS-based detection, Fig. 5.7 shows this metric

for an uncorrelated MAC with N = 128 and a varying number of users. The transmission

power is varied depending on the number of users so that BERobj = 10−3 in (5.30). The

circuit power consumption depending on the number of active antennas is set to a
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Figure 5.8: Energy efficiency vs. number of users K to achieve BER = 10−3.
N = 128, nt = 4, na = 1. Pψ = 10 mW

realistic value of Pψ = 20 mW [65], and the noise variance is fixed to σ2 = 0.01. Note

that the PAPR factor of the single-antenna users is increased w.r.t. SM due to the use

of a higher modulation order Q. From the results of this figure it can be concluded that

the use of SM allows to significantly increase the energy efficiency of conventional LSAS

for low and intermediate system loading factors. This improvement due to the reduced

circuit power consumption and PAPR was already noticed in [237] for the downlink

of small-scale P2P systems. Moreover, the proposed technique outperforms the rest of

conventional detectors, hence constituting an energy-efficient alternative in the MAC.

Fig. 5.7 also shows that, in spite of the transmission energy savings that can be

obtained when nt = 2 and 4-QAM are used in MIMO systems, the increased circuit

power consumption caused by the higher number of RF chains penalizes the energy

efficiency. To show this effect, in Fig. 5.8 we reduce the power consumed by the RF

chains Pψ to half, i.e., Pψ = 10 mW. By doing so, now it can be seen that the use of

a MIMO system with nt = 2 outperforms the option of having single-antenna devices.

Still, the energy efficiency of the SM alternatives is significantly higher than the one

of MIMO strategies for a low and intermediate number of users due to the reduced

transmission power required to compensate the inter-user interference.
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5.9 Conclusions

In this chapter, a low-complexity detection algorithm for SM has been presented.

The proposed strategy is based upon CS by incorporating the additional structure and

sparsity of the signals transmitted in the MAC. The results obtained in this chapter indi-

cate that the benefits of the proposed algorithm are maximized when a large number of

receive antennas are implemented at the BS, due to its faster convergence and improved

performance. Indeed, it has been shown that the proposed CS-based detection for SM

can achieve energy efficiency improvements of up to 90% with respect to traditional

systems with single-antenna terminals, for the scenarios explored in this chapter.

Critique: At this point, it should be noted that SM schemes motivate the employ-

ment of single-carrier modulation to fully exploit the additional dimension introduced

to the transmit constellation [158]. This might complicate their incorporation to ex-

isting mobile standards, where multi-carrier modulations are conventionally employed

instead [1]. Furthermore, note that SM systems need larger CSI acquisition periods

than systems with single-antenna mobile terminals, due to the larger number of anten-

nas implemented. This could affect the resultant spectral efficiencies in fast varying

communication channels. The consideration of more realistic channel models for eval-

uating the correlation at both the BS and the MSs also seems necessary to assess the

attainable performance of SM in practical communications systems.
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Chapter 6

Low-Complexity Large Scale

Antenna Systems: Incomplete

Channel State Information

6.1 Introduction

One of the fundamental concerns in the deployment of large scale antenna systems

(LSAS) relates to fitting an excessive number of antennas in constrained physical spaces

[11,101,112]. This leads to an increased inter-antenna correlation due to insufficient an-

tenna separation, which may affect the system capacity unless conveniently approached

[11, 111, 114, 150, 238]. In this context, the excessive number of antennas deployed in

LSAS makes the consideration of these effects critical. The significant power consump-

tion introduced by the additional radio frequency (RF) chains implemented in massive

MIMO systems can also have a negative impact on the energy efficiency [61]. Moreover,

the collection of accurate channel state information (CSI) complicates the application

of LSAS to frequency division duplex (FDD) scenarios. This is because the CSI acqui-

sition time of the conventional FDD approaches can be proportional to the number of

antennas allocated at the base station (BS) [11,69].

The above-mentioned challenges have been explored in a number of related works.

149



Chapter 6. Incomplete Channel State Information for LSAS

For instance, the effects of fitting a massive number of antennas in size-constrained struc-

tures have been studied in [101, 111, 112, 239]. Specifically, [101] explores the impact of

physical space constraints on the sum rate performance of LSAS, whereas [111] demon-

strates that inter-user interference does not vanish in the large antenna limit when the

physical size of the antenna array is constrained. The influence of the power consump-

tion of the RF circuitry on the energy efficiency and strategies to reduce the number of

electronic components have been considered in [4, 61, 64, 80, 192]. Additionally, several

alternatives have been proposed to improve the acquisition of the CSI for both time

division duplex (TDD) and FDD systems (see, e.g., [80–82, 87, 88, 240] and references

therein). Some of these works exploit the appearance of low-rank channel matrices due

to the inter-antenna correlation of massive antenna arrays or finite scattering to en-

hance the channel estimation process. Particularly related to the strategy developed

in this chapter is [241, 242], where the large correlation between adjacent antennas is

exploited to optimize the design of the feedback information during the CSI acquisition

stage of FDD systems. In line with these contributions, this chapter explores a solution

particularly tailored for size-constrained antenna arrays that addresses several of the

above-mentioned challenges.

Specifically, this chapter proposes a strategy to optimize the trade-off between the

quality of the acquired CSI and the energy efficiency in tightly packed antenna arrays

with a large number of antennas. The proposed scheme is based on exploiting inter-

antenna correlation to relax CSI acquisition by completely disposing with the CSI of a

subset of antennas. This is done by deactivating a number of antennas during the pilot

training stage, hence acquiring incomplete information of the global communication

channel. After this process, the CSI of the antennas that were inactive during the CSI

acquisition stage is obtained by simply averaging the instantaneous CSI of the neighbour

antennas that collected this information. As a result, the signal processing load and the

power consumption of the RF circuitry during the CSI acquisition process is reduced at

the cost of decreasing the accuracy of the channel estimation. Indeed, this benefit holds

true for the data transmission stage as well, which motivates studying the effects that the

number of antennas without instantaneous CSI has on the performance, computational
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load and energy efficiency of size-constrained massive BSs.

In particular, although the collection and use of incomplete CSI has notable implica-

tions in the implementation of both TDD and FDD scenarios, this chapter concentrates

on TDD systems for both reasons of simplicity and for their practical importance in

LSAS [11, 13, 69]. In this setting, it is observed that the transmission performance of

massive MIMO BSs deployed in constrained physical spaces is highly tolerant to the

acquisition of incomplete CSI. Overall, this translates to significant potential gains in

the energy efficiency due to the simultaneous reduction in the number of RF chains and

signal processing load offered by the proposed scheme.

6.2 System Model

6.2.1 TDD System Model and CSI Acquisition

A generic multi-user TDD system comprised of K single-antenna users and a large

scale BS with N � K antennas is considered in this chapter, where the essential results

obtained in Chapter 2 are reproduced for convenience. The communication channel fol-

lows a block-fading propagation model, hence remaining constant throughout a number

of ηcoh symbols in which a frame is conveyed, and varying independently between frames

[215]. Initially, the CSI is acquired at the BS via the predefined orthogonal training sig-

nals transmitted from the mobile stations (MSs) during the first ηtr ≥ K symbol slots

[79, 243]. Specifically, let G ∈ CN×K denote the uplink communication channel matrix

in coherence with Chapter 2. Similarly to (2.19), the signal received by the BS during

the training stage is given by [79,84]

P =
√
ρul ·GΘ + N, (6.1)

where Θ ∈ CK×ηtr represents the orthogonal training signals transmitted by the users,

ρul is the signal-to-noise ratio (SNR) of the reverse channel, and N ∈ CN×ηtr is an

additive white Gaussian noise matrix with independent and identically distributed (i.i.d.)

entries ni,j ∼ CN (0, 1). The training signal matrix is given by Θ = [θ1, . . . ,θK ]T,
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where θk ∈ Cηtr×1 denotes the orthogonal training signal assigned to the k-th user. The

correlation of the received signals during the training stage with the pilot sequences

yields the decision metric [72,79,84]

P̂ =
(√
ρtr ·GΘ + N

)
ΘH =

√
ρtr ·G + NΘH, (6.2)

where ρtr represents the effective training SNR [72] and NΘH ∼ N. The estimated up-

link channel can be directly obtained from (6.2) by applying estimation strategies such

as those based on minimizing the mean square error (MMSE) [84, 85]. Moreover, pro-

vided that channel reciprocity holds, the downlink channel H can be straightforwardly

obtained as the conjugate transpose of the uplink estimate, i.e. H = GH [72].

Once the pilot transmission stage is completed, the remaining symbol slots ηcoh −

ηtr of the channel coherence time are used for downlink and uplink data transmission

[79, 243, 244]. By particularizing (2.1), the signal received by the k-th MS during a

downlink symbol slot can be expressed as

yk =
√
ρf · gH

k x + nk, (6.3)

where x ∈ CN×1 denotes the symbols transmitted by the BS, gH
k ∈ C1×N represents the

downlink communication channel from the BS to the k-th user, ρf denotes the SNR of

the forward link, and nk ∼ CN (0, 1) is the standard additive white Gaussian noise. In

this massive MIMO setting, linear precoding strategies approach the performance of the

more computationally complex non-linear schemes, hence making their use convenient

[11,72]. For this reason, the transmit signal is decomposed as

x = ν · Fu =
Fu√

E {Tr [FHF]}
, (6.4)

where F ∈ CN×K represents an arbitrary linear precoding matrix, u ∈ CK×1 denotes the

user constellation symbols to be conveyed, and ν = 1/E
{√

Tr [FHF]
}

[72]. Here, Tr (·)

is the trace of a matrix and the normalization constant ν guarantees that the average

transmission power is constrained to Pt = E
{
xHx

}
= 1. To maintain the focus on the
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proposed concept, this chapter concentrates on zero-forcing (ZF) precoding, although it

is clear that the benefits of the proposed strategy also apply to other precoding schemes.

As indicated in (2.8), the signal transmitted by the ZF precoder is given by

x = ν ·
(
G̃H
)†

u =
G̃
(
G̃HG̃

)−1
u√

E
{

Tr

[(
G̃HG̃

)−1
]} , (6.5)

where G̃H represents the estimate of the downlink channel available at the BS.

6.2.2 Physically-Constrained Channel Model for 2D Antenna Arrays

In contrast to previous chapters, where uncorrelated channels were considered, this

section describes the physical channel model that will be employed in the following

to characterize the particular properties of size-constrained massive MIMO BSs, which

constitute the focus of this chapter [84,87,101,111,207]. The consideration of these phys-

ically constrained structures is motivated by the possible deployment of future massive

MIMO transceivers within the limited spaces of today’s BSs. Accordingly, the MIMO

arrays might experience transmit correlation and mutual coupling that will be dependent

on the increasing number of antenna elements. In particular, since large scale BSs are

expected to be implemented in 2D and 3D antenna structures that allow packing more

elements in a fixed physical space, this section describes the physical channel model of

a planar antenna array [11]. In this study, the effects of mutual coupling are neglected

since they can be compensated by impedance matching techniques [245]. Therefore, the

propagation channel from the k-th user to the BS can be expressed as [84,207]

gk = AH
k zk, (6.6)

where zk ∼ CN (0, IDk), Dk corresponds to the number of directions in which the angular

domain is divided, and Ak ∈ CDk×N is the steering matrix containing the Dk transmit

steering vectors of the antenna array. The transmit steering matrix of the k-th user is
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given by [101,207]

Ak =
1√
Dk

[
aT(φk,1, θk,1), . . . ,aT(φk,Dk , θk,Dk)

]T
. (6.7)

Here, the directions of departure (DoD) of the k-th user are characterized by φk,n ∈

[φmin
k , φmax

k ] and θk,n ∈ [θmin
k , θmax

k ], which specify the azimuth and elevation angles of

departure respectively. The transmit steering vectors of an arbitrary rectangular array

can be expressed as [106]

a(φk,n, θk,n) =
[
1, ej2π[dh sin(θk,n) sin(φk,n)], . . . , (6.8)

ej2π[(Mh−1)dh sin(θk,n) sin(φk,n)+(Mv−1)dv sin(θk,n) cos(φk,n)]
]
.

Here, dh and dv denote the inter-antenna spacing in the horizontal and vertical axes

normalized by the carrier wavelength λ, and Mh and Mv represent the number of anten-

nas allocated in the horizontal and vertical axes respectively. Clearly, dh = dv for the

particular case of uniform rectangular arrays (URAs). The total number of antennas is

therefore given by N = Mh ×Mv. Moreover, to provide a fair comparison, this chapter

considers that the horizontal and vertical inter-antenna distances at the BS are given

by

d{h,v} =
L{h,v}(

M{h,v} − 1
) , (6.9)

where L{h,v} denotes the fixed horizontal and vertical lengths of the antenna array. The

total surface in which the antennas are deployed is denoted as L = Lh × Lv. Note that

the above model assumes that there is no spatial correlation between users, a reasonable

consideration since the inter-user distance is usually larger than λ [101].

Remark: Since the physical space dimensions of the antenna array are predetermined,

the above entails that the inter-antenna correlation depends on the total number of

antennas installed. This model accurately captures the inter-antenna correlation that

arises due to insufficient antenna separation, which constitutes the focus in the following.

Remark: Linear antenna arrays can be regarded as a particular
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case of the described rectangular array by letting Mv = 1 and setting

θk,n = π/2 ∀ k ∈ {1, . . . ,K} , n ∈ {1, . . . , Dk} [101].

6.3 Relaxing the CSI Acquisition: Incomplete CSI

The dense deployment of antenna arrays leads to an increased correlation between the

antenna elements, which also translates to a larger similarity between the communication

channels of closely spaced antennas [11, 101]. This circumstance motivates considering

the practicability of collecting the CSI for a subset of antennas during the CSI acquisition

stage and analyzing its effects in the operation of the communication system. Formally,

let the set that indexes all the antenna elements allocated at the BS be defined as

N = {1, . . . , N} . (6.10)

Each entry of the set indexes the n-th antenna of the planar array An as shown in Fig.

6.1(a). Furthermore, let the sets B ⊂ N and C ⊂ N be defined as two subsets of N

satisfying

B ∩ C = ∅, B ∪ C = N . (6.11)

In the previous expressions, ⊂, ∪ and ∩ denote the subset, union and intersection of sets

respectively. Specifically, the subset B indexes the antennas whose CSI has been acquired

during the pilot training stage, and C determines the antennas without instantaneous

CSI availability. Subsequently, |B| = Nc ≤ N and |C| = N−Nc determine the number of

antennas with and without instantaneous CSI knowledge respectively. Here | · | denotes

the cardinality of a set.

The proposed scheme aims at limiting the collection of instantaneous CSI to a num-

ber of antennas Nc ≤ N . Subsequently, the large inter-antenna correlation that arises in

tightly packed antenna arrays is exploited to determine the CSI for the rest of antennas.

In other words, only the antennas indexed by the subset B will be active during pilot

signal reception, and the averages of the information acquired will be subsequently used
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Figure 6.1: (a) Example of CSI distribution for Mh = 4, Mv = 3 and Nc = 7.
(b), (c) Basic CSI distribution patterns. Black and white elements
represent antennas with and without acquired CSI respectively.

as CSI for the remaining antennas for the purposes of precoding and detection. This

brings the following critical benefits that will be studied in the following:

− The signal processing load of the channel estimation and signal transmission pro-

cesses can be dramatically reduced. This can be attained by limiting the number

of antennas simultaneously active during pilot reception and by performing an

insightful design of the transmit signals.

− The number of receive RF chains activated throughout the pilot training and

downlink transmission stages is constrained to Nc, hence potentially reducing the

circuit power consumption of the related circuitry.

At this point it is remarked that the incomplete acquisition process affects the deci-

sion metric obtained after pilot correlation in (6.2), which for ηtr = K can be expressed

as

P̂
∣∣
[B,K]

=
√
ρtr ·G

∣∣
[B,K]

+
(
NΘH

) ∣∣
[B,K]

, (6.12)

where C
∣∣
[T1,T2]

represents the sub-matrix obtained by selecting the rows given by T1

and the columns specified by T2. In this notation, the sets K = {1, . . . ,K} and N =

{1, . . . , N} are commonly employed to select all the columns or rows depending on the

context. Similarly, c
∣∣
[T ]

is employed to denote the sub-vector obtained by selecting the

entries determined by T . Throughout this chapter, ck,n denotes the n-th entry of the

vector ck for ease of notation.
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After the incomplete channel estimation process, the channel of the k-th user can be

expressed as

g̃k
∣∣
[B]

= ĝk, (6.13)

g̃k
∣∣
[C] = f

(
g̃k
∣∣
[B]

)
, (6.14)

where ĝk ∈ CNc×1 denotes the uplink channel of the k-th user for the antennas with CSI

acquired during the training stage (subject to CSI acquisition errors), and f(·) : CNc →

C(N−Nc) is a linear function whose definition will be considered in the following.

6.3.1 Distribution of the CSI on the Antenna Array

The definition of B, C and f(·) impacts the performance and complexity of the pro-

posed scheme. Ideally, an optimization problem could be formulated for determining the

antennas that collect instantaneous CSI during the pilot training stage. The objective

of this problem would be minimizing the effect of the incomplete CSI acquisition on the

accuracy of the resulting channel estimate. This however entails significant complex-

ity and is therefore out of the scope of this study, which focuses on a low-complexity

CSI distribution and averaging approach. For this reason, this chapter proposes a CSI

distribution strategy that leverages on the use of predefined CSI distribution patterns.

The considered scheme aims at obtaining a low-complexity solution by exploiting the

following intuition: the larger the correlation between the channels without instanta-

neous CSI and the channels employed to derive their CSI, the smaller the CSI error

introduced. In other words, for any antenna deactivated during the training stage, there

must be others with their instantaneous CSI available in its proximity. Specifically, the

proposed CSI distribution procedure is based on the combination of the two basic CSI

distribution patterns shown in Fig. 6.1(b) and (c) with colored subsets. In these figures,

the black and white antennas represent the antennas with and without instantaneous

CSI acquired during the training stage respectively. These patterns facilitate an efficient

distribution of the CSI for the cases (Nc/N) ≥ (1/3) that are explored in the following1.

1Note that this is adequate since it will be shown that (Nc/N) ≥ (1/3) is required to obtain a
satisfactory performance in realistic massive MIMO systems. This is because the double polarized
antennas to be employed in future deployments occupy a physical space that might impede placing
them arbitrarily close.
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Algorithm 2 Pseudocode of the CSI distribution algorithm

Input: N,Nc,Mh,Mv

1: Output: B, C
2: B, C ← ∅ {Initialization}
{3− 4 : Maximum and minimum number of antennas with instantaneous CSI per row}

3: Nmax ← dNc/Mve
4: Nmin ← bNc/Mvc
{5 − 6 : Number of rows with the maximum and minimum number of antennas with CSI

per row}
5: Mmax ← (Nc −MvNmin)
6: Mmin ←Mv −Mmax

7: {Bmin,Bmax ← Create reference CSI distribution patterns per row with Nmin (Bmin) and

Nmax (Bmax) antennas with CSI by combining the basic patterns shown in Fig. 6.1(b) and

(c) and adding additional antennas with CSI where required}
8: for j = 0→ (Mv − 1) do
9: if j < Mmin then

10: B ← B ∪ Bmin

11: else
12: B ← B ∪ Bmax

13: end if
14: Bmin ← {Circular shift of Bmin to determine the antennas with CSI in the j-th row for

j < Mmin}
15: Bmax ← {Circular shift of Bmax to determine the antennas with CSI in the j-th row for

j ≥Mmin }
16: end for
17: C ← BC

The pseudocode of the proposed CSI distribution procedure is shown in Algorithm

2, where ∅ represents the empty set, (·)C denotes the complement of a set, and b·c and

d·e denote the floor and ceiling functions, respectively. An illustrative example of the

application of this strategy is shown in Fig. 6.1(a) for the case of Mh = 4, Mv = 3

and Nc = 7. The application of Algorithm 2 generalizes the CSI distribution process to

more complicated cases. Overall, this representative example shows that the proposed

CSI distribution aims at maximizing the number of adjacent antennas with acquired

CSI for each antenna without this information to efficiently exploit the inter-antenna

correlation.

The operation of the proposed CSI distribution algorithm can be described as follows:

Initially, the number of antennas per row with instantaneous CSI is determined by

assigning a similar number of antennas with CSI per row to evenly distribute the CSI.

For instance, Fig. 6.1(a) shows that the first Mmin = 2 rows of antennas have Nmin = 2
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antennas with CSI, whereas the last one has Nmax = 3 antennas with CSI. After this,

the antennas with CSI are distributed for each row by combining the antenna patterns

depicted in Fig. 6.1(b) and (c), and adding antennas with CSI to these to ensure that

the total number of antennas with CSI per dimension is the one previously specified.

For instance, Fig. 6.1(a) shows that the CSI in the first row of antennas is distributed by

consecutively combining two of the antenna patterns described in Fig. 6.1(b), whereas

for the CSI distribution in the third row an additional antenna with CSI has been added.

Note that the additional antennas with CSI are solely required for the cases (Nc/N) >

1/2, and that their specific positions have shown to have a negligible performance impact.

Subsequently, the patterns are shifted circularly to determine the distribution of the CSI

in the following rows. This is illustrated in Fig. 6.1(a), where it can be seen that the CSI

distribution of the second row is obtained by shifting the distribution of the previous

one. This procedure ensures that the CSI of the antennas is evenly distributed, thus

reducing the distance of the antennas with and without instantaneous CSI.

Remark: The employment of the basic CSI distribution patterns does not restrict

the proposed scheme to a solution with fixed Nc. Instead, they facilitate analyzing

the complexity-performance trade-off that arises for varying Nc, since different system

requirements might motivate the employment of distinct solutions as studied in the

following.

After defining the sets B and C, the remaining step consists on determining the CSI

of the antennas that were inactive during the training stage. Let Tn denote the n-th

entry of a set. Then, the CSI of the antennas without instantaneous CSI is obtained

by averaging the CSI of the closest antennas with this information. Subsequently, the

Cn-th entry of the channel vector of the k-th user can be expressed as

g̃k,Cn =
1

MCn

MCn∑
i=1

ĝ
k,BCni

. (6.15)

Here, MCn denotes the number of neighbour antennas with indexes BCn ⊂ B employed

to average the CSI for the Cn-th antenna. In other words, the CSI of a given antenna

without instantaneous CSI knowledge is obtained by averaging the CSI of the antennas
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belonging to BCn . The global estimated communication channel with incomplete CSI

after the averaging operations can be therefore expressed as

G̃ = LHĜ, (6.16)

where Ĝ ∈ CN×K is the estimated channel matrix formed by the entries that correspond

to the antennas active during the training stage, which are given by ĝk
∣∣
[B]

, and zeros

elsewhere. Moreover, L ∈ RN×N describes how the available CSI is combined to obtain

the CSI for the rest of the antennas. This matrix is referred to as the CSI averaging

matrix and its n-th column is given by

L
∣∣
[N ,n]

=


I
∣∣
[N ,n]

, ∀ n ∈ B,

1
Mn

rBn , ∀ n ∈ C,
(6.17)

where I
∣∣
[N ,n]

∈ ZN×1 denotes the n-th column of an N ×N identity matrix, and rBn ∈

ZN×1 is a vector with all its entries set to zero except for those found in the positions

given by the set Bn, which are equal to one. Similarly to (6.15), Mn corresponds to the

number |Bn| of antennas employed for interpolating the CSI of the n-th antenna. Note

that L = IN when complete CSI is acquired.

Remark: Although more intricate strategies can be implemented, this chapter focuses

on the simple averaging operation for reasons of illustration and for not detracting

the attention from the basic principle introduced here. Moreover, this operation is

especially practical due to both the hardware and the signal processing advantages

detailed hereafter.

6.3.2 Implications of the Acquisition of Incomplete CSI

The averaging of the CSI has several implications on a range of communication

aspects such as the signal processing load or the hardware complexity that are considered

in this section.
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Figure 6.2: Block diagram of the proposed transmission scheme. Black and white
antennas represent elements with and without acquired CSI respec-
tively.

6.3.2.1 Dimensionality Reduction of the Received Training Signals

Inherently, the dimensions of the received training signals are reduced when incom-

plete CSI is acquired. An immediate consequence of this is that only Nc ≤ N RF

chains remain active during the pilot training stage, which facilitates reducing the total

power consumption of standard channel estimation approaches [79]. Simultaneously, the

computational complexity of the CSI estimation process is reduced due to the smaller

dimensions of the acquired pilot signals. Particularly, apart from a decrease in the com-

plexity of the conventional pilot correlation process shown in (6.2), the dimensionality

reduction can be particularly beneficial when complex channel estimation strategies are

employed due to the polynomial dependence of their complexity on Nc [85, 87]. This

comes at the cost of introducing an error in the channel estimate, which clearly de-

pends on the inter-antenna distance, the quality of the acquired CSI, and the number

of antennas with instantaneous CSI as studied in Sec. 6.4.

6.3.2.2 Data Transmission Stage: Reduced RF-Chain Implementation

The differences in the estimated channel with full and incomplete CSI have a direct

effect on the achievable rates of the system that will be explored in Sec. 6.7. However,

the incomplete acquisition of CSI also produces an interesting relationship between the
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signals transmitted from the different antennas, which can be re-expressed as

x = ν · Fu⇐⇒


x
∣∣
[B]

=
F
∣∣
[B,K]

· u

E
{√

Tr [FHF]
} ,

x
∣∣
[C] =

(
L
∣∣
[B,C]

)H
· x
∣∣
[B].

(6.18)

for the conventional matched filter (MF), ZF and regularized ZF precoding schemes. The

above expression entails that the signals of the antennas that were deactivated during

the training stage can be obtained by combining the signals generated for the antennas

whose CSI was acquired. This has a direct consequence on the signal processing load

per transmitted symbol, since the signal generation for the set C can be done in the

analog domain by signal splitting and combining to avoid the computation of x
∣∣
[C] in

the baseband processing stage. This dispenses with the need of N −Nc RF chains w.r.t.

conventional designs as shown in Fig. 6.2.

6.4 CSI Error Under Incomplete CSI

First, it should be clarified that in the following the term imperfect CSI is employed

when solely describing CSI acquisition errors, whereas the term incomplete CSI is re-

served for the cases in which the CSI of a subset of antennas is not acquired. The acqui-

sition of incomplete and imperfect CSI impacts on the quality of the channel estimated

and the resulting performance of precoding and detection schemes. For this reason, this

section concentrates on characterizing the error introduced by the proposed strategy in

the channel estimation process. The channel estimate generated after incomplete CSI

acquisition for the k-th user (6.16) can be re-expressed as [72]

g̃k = gk − gk, (6.19)

where gk ∈ CN×1 represents the error introduced by the acquisition of incomplete

and imperfect CSI. Similarly to the previous chapters, the imperfect estimate of the
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communication channel for the antennas with CSI is characterized as [207,215]

ĝk
∣∣
[B]

=

(
AH
k

(√
1− τ2

kzk + τkqk

)) ∣∣∣∣
[B]

, (6.20)

where qk ∼ CN (0, IDk) is independent of zk [207, 215] and τk is a variable that models

the quality of the acquired CSI. The stochastic imperfect CSI model employed in (6.20)

facilitates the derivation of intuitive expressions for characterizing the behaviour of the

proposed scheme. In particular, τk = 0 indicates that perfect CSI is collected, whereas

τk = 1 corresponds to the case where only statistical information is available at the

transmitter. Moreover, the error of the channel after the averaging operation for a

relevant antenna without CSI is clearly conditioned by its position on the antenna array,

the inter-element spacing, and the number of antennas selected for averaging. In the

following the impact of the incomplete and imperfect CSI acquisition on the accuracy

of the channel estimation is modeled by using the channel error factor [231]

∆k =
E
{
‖gk‖

2
2

}
E
{
‖gk‖22

} =
E
{
‖gk − g̃k‖22

}
E
{
‖gk‖22

} . (6.21)

Specifically, since the focus of this chapter is placed on physically-constrained systems,

the following theorem details the behaviour of the above metric for the channel model

introduced in Sec. 6.2.2.

Theorem 6.4.1 Let the communication channel be described as gk = AH
k zk with zk ∼

CN (0, IDk) for a given Ak. Also let ĝk
∣∣
[B]
∈ CNc×1 be the noisy channel estimate of the

channel modeled by following (6.20). Moreover, consider the channel of the antennas

without CSI to be computed by averaging the imperfect CSI from the nearby antennas

as described in Sec. 6.3. Then, the channel error factor is given by

∆k =
1

N

∑
n∈B

τ2
kRk

∣∣
[n,n]

+
1

N

∑
n∈C

Rk

∣∣
[n,n]

+
1

(Mn)2

∑
i∈Bn

Rk

∣∣
[i,i]

−
2
√

1− τ2
k

Mn
Re

(∑
i∈Bn

Rk

∣∣
[n,i]

)
+

2

(Mn)2 Re

 ∑
i,j∈Bn,i>j

Rk

∣∣
[j,i]

 , (6.22)

where Rk is the correlation matrix of the channel of the k-th user given by Rk =
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E
{
gkg

H
k

}
= AH

k Ak. Moreover, Bn and Mn represent the indices and total number of

antennas employed for computing the CSI of the n-th antenna as defined in Sec. 6.3

respectively.

Proof of Theorem 6.4.1 The proof of Theorem 6.4.1 is provided in Appendix D. �

The above theorem characterizes the impact of applying the proposed strategy based

on the entries of the channel correlation matrix of the true channel, the number of

antennas with and without instantaneous CSI, the number of antennas employed for

the averaging operation, and the quality of the acquired CSI. In the following, a set of

relevant corollaries based on the results of Theorem 6.4.1 are derived.

Corollary 6.4.1.1 Dependence of ∆k on τk. The channel error factor ∆k is an in-

creasing function of the imperfect CSI parameter τk for transmitters in which the chan-

nels of the neighbour antennas are strongly correlated, i.e., those channels satisfying

Re
(∑

i∈Bn Rk

∣∣
[n,i]

)
> 0.

Proof of Corollary 6.4.1.1 The proof follows from the analysis of the terms in (6.22)

influenced by the factor τk

t1 =
1

N

∑
n∈B

τ2
kRk

∣∣
[n,n]

, n ∈ B, (6.23)

and

t2 = −
2
√

1− τ2
k

Mn
Re

(∑
i∈Bn

Rk

∣∣
[n,i]

)
, n ∈ C. (6.24)

Clearly, both terms are increasing functions of τk provided that Re
(∑

i∈Bn Rk

∣∣
[n,i]

)
> 0,

which holds true when the channels of the adjacent antennas are severely correlated. �

Note that the above corollary corroborates the intuition that the collection of imper-

fect CSI during the training stage influences the quality of the channel approximation

generated for the antennas deactivated throughout this process. This can be explained

by the dependence of t2 on τk.

Additionally, it is also intuitive that the channel error factor ∆k is an increasing

function of the inter-antenna distance d for the ranges typically considered, since the
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Figure 6.3: ∆k vs. inter-antenna spacing for azimuth sector angles of π, π/4 and
π/8 radians (URA) and π/4 (ULA). N = 144, Nc = N/2 and K = 16.

inter-antenna correlation depends on this parameter. However, explicitly showing this

for the physical channel model described in Sec. 6.2.2 and a general case is infeasible due

to the complexity of the expressions involved. For this reason, the following corollary

explores the particular case of a uniform linear array (ULA) with reduced angle spreads,

which can arise naturally as manifested by the one-ring correlation model [25].

Corollary 6.4.1.2 Dependence of ∆k on d. Let the antennas at the BS be placed

in a ULA configuration. Moreover, consider that perfect CSI is acquired for the active

antennas during the training stage, N/Nc ≥ 2 and small angle spreads such that sin(φ) ≈

φ and cos(φ) ≈
(
1− φ2/2

)
. Then, the channel error factor ∆k is a monotonically

increasing function of the inter-antenna spacing d.

Proof of Corollary 6.4.1.2 The proof of Corollary 6.4.1.2 is given in Appendix E. �

The above observation can be explicitly seen in Fig. 6.3, which represents the vari-

ation of the theoretical and empirical metric ∆k in (6.21) for increasing values of inter-

antenna spacing when the channel model of Sec. 6.2.2 is employed. The theoretical

results in Fig. 6.3 and Fig. 6.4 have been obtained by direct application of (6.22). These

results consider transmitter with either Mh = Mv = 12 (URA) or Mv = 1 and Mh = 144

(ULA) antennas, Nc = N/2, and K = 16 users. The number of angular directions is
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spacings d. N = 144 and K = 16.

arbitrarily set to Dk = 50 in (6.7) [84], and the elevation angles of departure are equidis-

tributed within sector angles of π/3 radians. Note that, while other arbitrary choices

for Dk could be adopted, the modification of this parameter does not modify the trends

and conclusions derived in the following. The different azimuth angle spreads, π, π/4

and π/8 radians, characterize the effects of having a limited angle spread on the pro-

posed scheme. For simplicity, τk = τ,∀ k ∈ {1, . . . ,K}. In this figure and throughout

this chapter the number of antennas whose CSI is averaged are selected depending on

the number of antennas with CSI as follows. On the one hand, for the cases in which

(Nc/N) ≥ (1/2), only the CSI of the vertically and horizontally adjacent antennas

with CSI is averaged. On the other hand, when the number of antennas with CSI is

further reduced so that (Nc/N) < (1/2), the CSI of the diagonally adjacent antennas

is employed to guarantee that the CSI of a sufficient number of antennas is averaged.

Altogether, it can be seen that the error of the channel generated after the averaging op-

eration decreases as the antenna inter-spacing is reduced. This can be explained by the

larger correlation experienced between neighbour antennas, which also increases when

the angle spread is constrained.

The evolution of ∆k for a varying number of antennas with CSI is shown in Fig.

6.4 for the same setup of Fig. 6.3. This figure considers an azimuth angle spread of
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π radians for the URA BS and of π/4 for the ULA BS, and different inter-antenna

spacings d. From the results of this figure it can be concluded that small variations in

the number of antennas with CSI strongly influence the error for Nc/N < (1/2), whereas

this impact is reduced for Nc/N ≥ (1/2). Intuitively, the reason for this behaviour is

related to the number of antennas whose CSI is averaged for a given antenna without

CSI, and it is especially pronounced for the ULA BS. Furthermore, it can be seen that

the theoretical derivation closely resembles the empirical results in both Fig. 6.3 and

Fig. 6.4 with perfect (τk = 0) and imperfect CSI (τk = 0.2).

6.5 Complexity Analysis

This section characterizes the improvements offered by the proposed strategy re-

garding the signal processing load. Specifically, it is shown that the smaller number of

antennas simultaneously active during the CSI acquisition procedure reduces the num-

ber of required signal processing operations for channel estimation and precoding. This

section follows the analysis of [244] for reasons of reference.

The signal processing operations performed in a TDD communication system can

be divided into three different stages, namely CSI acquisition stage, downlink signal

transmission, and uplink signal reception as illustrated in Fig. 2.4 [243, 244]. These

stages correspond to the communication phases in which the channel coherence time is

divided and their respective lengths determine the global complexity as shown in the

following.

6.5.1 CSI Acquisition Stage

Throughout this stage, the BS receives the pilot signals transmitted by the MSs

and uses these to estimate the communication channel [79, 243, 244]. For simplicity, it

is considered that the coherence time of the long-term statistics is significantly larger

than the channel coherence time. The above entails that a significant portion of the

operations to perform the channel estimation after the pilot correlation process remain
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valid for a large number of coherence blocks. This makes the pilot correlation process

dominate the complexity per coherence block [85]. The total number of real floating-

point operations (flops) of this procedure as performed in (6.2), Ctr, depends on the

training length in number of symbols ηtr and is given by [205,232,244]

Ctr = 8NcKηtr
(a)
= 8NcK

2, (6.25)

where (a) holds because it is considered that orthogonality between the pilot training

signals of the system users is preserved by letting ηtr = K [244]. Similarly to the previ-

ous chapters in this Thesis, the common assumption that real multiplications (divisions)

have the same complexity of real additions (subtractions) has been followed [205]. More-

over, it is also considered that complex additions and multiplications involve two and

six real floating-point operations respectively [205,232].

6.5.2 Data Transmission (Downlink) Stage

The complexity of the downlink stage is determined by the operations required to

generate the precoding matrix at the beginning of each coherence period, and the op-

erations to generate the transmitted signal in every channel use [244]. For the sake of

brevity, in the following it is considered that the ZF precoding matrix is computed via

the conventional singular value decomposition (SVD) approach. Other strategies such

as the Cholesky decomposition have been shown to offer similar complexity results for

the scenarios considered in this chapter [231]. In particular, let G̃H = UΣVH be the

SVD of the estimated downlink channel matrix. Here, U ∈ CK×K and V ∈ CN×N

are unitary matrices comprised of the left and right singular vectors of G̃H respectively,

and Σ ∈ CK×N is a diagonal matrix containing the ordered singular values of G̃H.

The pseudo-inverse precoding matrix can be subsequently obtained from the SVD as(
H̃H
)†

= VΣ−1UH. The complexity of this process is given by

Cdl
inv = Cdl

SVD + Cdl
div + Cdl

mult =
(
24K3 + 16K2N

)
+K +

(
2KN + 8K2N

)
, (6.26)
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where Cdl
SVD characterizes the complexity of performing a complex SVD, Cdl

div refers to

the complexity of dividing the K real diagonal elements of Σ, and Cdl
mult accounts for

the operations required to multiply a complex full matrix with a real diagonal matrix

and two full complex matrices [205]. Note that this computationally intensive operation

only has to be performed at the beginning of each channel coherence period, since the

result stays valid as long as the channel remains approximately constant.

In conventional MIMO systems, the pseudo-inverse matrix must be multiplied with

the symbols to be transmitted to generate the final precoded signal x ∈ CN×1 [244].

However, the proposed strategy obtains the signal output of N−Nc antennas by splitting

and combining the signal components of x
∣∣
[B]
∈ CNc×1 in the analog domain, hence

reducing the dimensions of the required matrix-vector multiplication2. Based on this

observation, the complexity of computing the precoding signal can be expressed as

Cdl
pr = 8NcKηdl, (6.27)

where ηdl denotes the number of symbol periods assigned to downlink transmission.

The complexity benefits offered by the proposed in the precoding stage can be clearly

observed in (6.27), since the resulting signal processing load is a linear function of the

number of antennas with acquired CSI, Nc. Combining (6.26) and (6.27), the global

complexity of the precoding process during a channel coherence period can be expressed

as

Cdl = Cdl
inv + Cdl

pr ≈ 24K3 + 24K2N + 8NcKηdl. (6.28)

6.5.3 Data Reception (Uplink) Stage

The operations to be performed during the data reception stage mirror the ones

to be performed during data transmission. In the case of TDD systems, the detection

matrix is readily obtained from the precoding one by exploiting channel reciprocity and

the relationship
(
H̃H
)†

=
(
H̃†
)H

. Therefore, the complexity of the uplink stage can be

2The computational load of the signal generation process can also be reduced when each antenna has
its dedicated RF chain [246].
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Table 6.1: Complexity in number of floating-point operations (flops) of a base
station with incomplete CSI.

Communication phase Complexity in flops

CSI acquisition stage
− Pilot correlation − Ctr = 8NcKηtr

Downlink stage
− Signal generation
− Precoding matrix

− Cdl
pr = 8NcKηdl

− Cdl
inv =

(
24K3 + 16K2N

)
+K +

(
2KN + 8K2N

)
Uplink stage
− Signal detection − Cul = 8NKηul

Total complexity − Ctot ≈ 24K3 + 24K2 (N +Nc/3) + 8K (Ncηdl +Nηul)

computed as

Cul = 8NKηul, (6.29)

where ηul stands for the number of symbol periods assigned to the uplink stage.

6.5.4 Total Complexity

The total complexity is given by

Ctot ' Cul + Cdl + Ctr, (6.30)

where, in general, Cul � Cdl since more time resources are conventionally allocated to

the downlink transmission, i.e., ηul � ηdl [1]. This entails that the operations performed

during the downlink stage dominate the global complexity, which maximizes the benefits

of the proposed scheme due to the reduced complexity required for precoding as shown in

Table 6.1. The complexity with full CSI corresponds to Nc = N in all expressions above.

6.6 Achievable Rates and Energy Efficiency

6.6.1 Downlink Achievable Rates with Incomplete CSI

This section concentrates on the effects that the use of incomplete CSI has on the

spectral and energy efficiency of the communication system. With this purpose and
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following [215], the ergodic downlink sum rates of the communication system are defined

as

Rsum =
ηdl

ηcoh
· E

{
K∑
k=1

Rk

}
, (6.31)

where ϕ = ηdl/ηcoh accounts for the loss in the time dedicated to downlink transmis-

sion due to the required CSI acquisition and uplink stages. Moreover, a set of ergodic

achievable rates E {Rk} can be expressed as [72]

E {Rk} = B log2 (1 + γk) = BSk, (6.32)

whereB stands for the system bandwidth, Sk represents the achievable spectral efficiency

of the k-th user, and γk refers to the associated SINR for the k-th user given by [72,79]

γk =
ν2|E

{
gH
k fk
}
|2

1
ρf

+ ν2 var
(
gH
k fk
)

+ ν2
∑

i 6=k E
{
|gH
k fi|2

} , (6.33)

where fk ∈ CN×1 corresponds to the k-th column of the precoding matrix F. The

availability of incomplete and imperfect CSI impacts on the resultant SINR γk via the

precoding vectors fk. This chapter employs the above sum rate expression to study the

improved energy efficiency of the proposed approach in the following.

6.6.2 Energy Efficiency Model

Since the proposed technique presents reduced hardware and signal processing com-

plexities, this section relies on one of the energy efficiency models introduced in Sec.

2.1.3 to characterize these improvements. Specifically, the energy efficiency is expressed

in this chapter as [4, 57,60,61,116]

ε =
Rsum

Ptot
, (6.34)

where Rsum refers to the system achievable sum rates in bits per second defined in (6.31)

and Ptot denotes the total power in Watts consumed during transmission, which can be
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further decomposed as [5, 61]

Ptot =
PPA + PRF + PBB

(1− σDC) (1− σMS) (1− σcool)
. (6.35)

Here, σDC and σMS characterize the losses of the DC-DC and main power supplies

whereas σcool refers to the active cooling losses as detailed in Sec. 2.1.3 [60]. These

losses scale linearly with the power consumption of the electronic components and an

accurate characterization of their values has been provided in [5, 60] for different BSs.

Moreover, PPA denotes the average power required by the power amplifiers (PAs) and

is given by

PPA =
Pt

η
, (6.36)

where η corresponds to the PA efficiency and Pt refers to the power required at the output

of the power amplifiers. Note that only Nc PAs are required to generate the output

signals as shown in Fig. 6.2. Moreover, PRF denotes the active power consumption of

the electronic components in the RF chains without accounting for that of the power

amplifiers. Therefore, PRF can be further expressed as

PRF = Nc (PDAC + Pmix + Pfilt) + Psyn, (6.37)

where Psyn represents the power consumed by the frequency synthesizer, and PDAC,

Pmix and Pfilt denote the power consumption of the digital-to-analog converters (DACs),

signal mixers and filters included in each RF chain respectively [61, 247]. Additionally,

PBB = pcC corresponds to the power consumption of the digital signal processor (DSP).

Here, pc determines the power consumption per real flop and C refers to the average

number of real flops per second determined in Sec. 6.5. Since PRF depends on the

transmission power, it should be noted that the power consumption of the RF circuitry

components for the different BSs has been approximated by scaling the data available

in [247], which is considered to correspond to a macro BS, by a proportionality factor

that relates to the BSs currently deployed [5, 60].
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Table 6.2: Power consumption of micro and femto base stations.

Parameter Micro Femto

Total transmission power [5], Pt 38 dBm 17 dBm

Power amplifier efficiency [57], ς 0.38

Digital-to-analog converter [5, 247], PDAC 7.8 mW 0.46 mW

Signal mixer [5, 247], Pmix 15.2 mW 0.9 mW

Signal filtering [5, 247], Pfilt 10 mW 0.6 mW

Frequency synthesizer [5, 247], Psyn 25 mW 1.5 mW

Computational efficiency [116], p−1
c 12.8 Mflops / mW

DC-DC losses [5], σDC 0.075 0.09

Main supply losses [5], σMS 0.09 0.11

Cooling losses [5], σcool 0 0

6.7 Results and Discussion

To demonstrate the performance and complexity of the proposed strategy, this sec-

tion presents numerical results obtained via Monte Carlo simulations. The simulation

setup consists of a BS with a planar array comprised of N antennas, a transmission

channel following the physical channel model described in Sec. 6.2.2, and K single-

antenna receivers. For a fair comparison, all transmitters have the same physical size

independently of N . The channel model considers the practical case of imperfect CSI

acquisition unless otherwise stated, an equal number of angular directions Dk = 50 in

(6.7), and that the angle spread of the azimuth and elevation angles of departure is

fixed to π and π/6 radians respectively [106]. The imperfect CSI scenario is modeled

considering MMSE estimation for the active antennas after the pilot training stage as

per (6.12)–(6.14) with ρtr = 15 dB [72]. The azimuth and elevation angles of depar-

ture of each user are considered to be independent and to follow a random uniform

distribution within the relevant angle spread [101,207]. The following results consider a

standard LTE frame with a duration of 10 milliseconds comprised of 10 subframes with

14 OFDM symbols each [1]. For the complexity and energy efficiency results of this

section, we arbitrarily consider a short channel coherence block comprised of ηcoh = 140

time/frequency symbol slots. Moreover, the uplink-downlink configuration 4 of LTE
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Figure 6.5: Spectral efficiency per user (Sk) vs. SNR for L = 10.9λ2. N = 144
and N = 72, K = 12 and Nc = N/2 for incomplete CSI acquisition.

TDD is followed, in which a total of 7 subframes are used for downlink transmission [1].

This determines the time spent for CSI acquisition and data transmission, which in turn

influences the signal processing complexity and the achievable sum rates as per (6.30)

and (6.31) respectively.

The performance of the communication systems considered in this chapter can be

observed in Fig. 6.5, where a comparison of the spectral efficiency per user in (6.32) is

shown for increasing levels of SNR. In this figure, the antennas are deployed in an area

of L = 10.9λ2 and both systems with complete and incomplete CSI are considered. In

the following, the number of users is fixed to K = 12, and the performance for N = 144

(Mh = Mv = 12) and N = 72 (Mh = 9,Mv = 8) antennas with full CSI is depicted as a

reference. This establishes an inter-antenna distance d = 0.3λ in Fig. 6.5 for the cases

of N = 144. Moreover, it is considered that Nc/N = 1/2 for the case of incomplete CSI

acquisition. Overall, the results of Fig. 6.5 show that the proposed strategy operates

close to a system with N antennas, full CSI and the same number of RF chains for the

low-to-intermediate SNR region. Note that the large number of antennas implemented

massive MIMO systems also motivate their operation in this region due to their improved

spectral efficiency and the need of limiting the total power consumption [61, 72]. This
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Figure 6.6: Spectral efficiency per user (Sk) vs. ratio of antennas with CSI
(Nc/N). N = 144, K = 12 and SNR = 10 dB.

validates the benefits of using incomplete CSI in this range as well as the employment

of the proposed scheme based on the basic CSI distribution patterns shown in Fig. 6.1.

It can also be observed that the performance of the incomplete CSI scheme is limited

by the errors introduced by the averaging procedure at high SNRs when perfect CSI

is considered. Moreover, it can be seen that the consideration of imperfect CSI also

bounds the performance of conventional transmission strategies at high SNRs, hence

minimizing the differences between the schemes with full and incomplete CSI.

The effect of Nc on the performance of the proposed strategy can be observed in

Fig. 6.6, where the spectral efficiency vs. the percentage of antennas with CSI is shown

for a fixed SNR of 10 dB. From the results of this figure it can be concluded that a

larger number of antennas with CSI is required as the inter-antenna spacing increases to

reach a given percentage of the ultimate performance obtained when (Nc/N) = 1. This

result is intuitive since the communication channels of the different antennas exhibit a

lower correlation for larger antenna separations, hence degrading the performance of the

proposed scheme due to the errors introduced by the averaging procedure. In spite of

this, it can be seen that activating half of the antennas during the training stage for

d = 0.3λ suffices to achieve 75% of the maximum system throughput with full CSI and

d = 0.5λ, where the occupied area is larger.
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Figure 6.7: Spectral efficiency per user (Sk) vs. inter-antenna distance (d/λ).
N = 144, K = 12 and SNR = 10 dB.

The impact of varying the inter-antenna distance on the spectral efficiency per user

can be clearly seen in Fig. 6.7, where an identical setup to that of Fig. 6.6 has been

considered. Fig. 6.7 characterizes the trade-off that arises by varying the inter-antenna

distances: while the proposed scheme reduces the CSI approximation errors for small

inter-element spacings, the loss produced by a larger spatial correlation can harm the

spectral efficiency. In this line, the results of Fig. 6.7 allow determining the optimal

inter-antenna distance for a given ratio of antennas with CSI (Nc/N).

The number of real flops during the precoding stage and the global communication

per frame are depicted in Fig. 6.8(a) and (b) respectively for increasing levels of Nc.

The results of this figure show the notable complexity savings that can be experienced

when the proposed incomplete CSI scheme is employed. Specifically, it can be seen that

the number of precoding-related operations of the proposed scheme can be dramatically

reduced w.r.t. a system with the same number of antennas but full CSI acquisition. This

translates to a significant reduction of the global complexity as depicted in Fig. 6.8(b).

The global complexity reduction can be explained by noting that the complexity of the

precoding process accounts for a significant part of the global signal processing load,

hence maximizing the benefits of the incomplete CSI scheme.

176



Chapter 6. Incomplete Channel State Information for LSAS

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

T
o

ta
l 
c
o

m
p

le
x
it
y
 (

M
fl
o

p
s
)

 

 

N = Nc = 144.
N = Nc = 72.
N = 144. Varying Nc.

0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Ratio of antennas with CSI (Nc/N)

P
re

c
o

d
in

g
−

re
la

te
d

 c
o

m
p

le
x
it
y
 (

M
fl
o

p
s
)

 

 

N = Nc = 144.
N = Nc = 72.
N = 144. Varying Nc.

0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio of antennas with CSI (Nc/N)(a) (b)

Figure 6.8: (a) Precoding-related complexity and (b) total complexity per frame
for increasing Nc. K = 12 users, ηcoh = 140, ηtr = K = 12 and
ηdl = 7× 14.

Fig. 6.9 depicts the energy efficiency metric (6.34) for increasing levels of spectral

efficiency and Lh = Lv = 3.3λ. The results of this figure have been obtained by fixing

the total noise power Bσ2 to 10 dBm for reference, by setting the total system band-

width to B = 20 MHz, and by computing the transmission power required to achieve

a given spectral efficiency [1]. Moreover, since the circuit power consumption varies

depending on the total transmission power [5], a linear interpolation of the data shown

in Table 6.2 has been performed to estimate the approximate power consumed by the

RF chains. For simplicity, it has been considered that the analog signal combining and

splitting processes do not introduce any additional losses, i.e., the considered schemes

have the same transmission power. It should be remarked that, although dynamic power

losses appear in the power combining process [248], determining the additional power

consumption required by the transmission chains is intricate due to the possibility of

designing different solutions for their compensation as studied in Chapter 8.

The results of Fig. 6.9 show that, under a moderate antenna correlation, deactivating

half of the antennas during the pilot training stage constitutes the most energy-efficient

alternative for a wide range of spectral efficiencies. In particular, it can be seen that using

the proposed scheme is beneficial for low and intermediate spectral efficiencies. Instead,

conventional massive MIMO strategies become more energy-efficient for large spectral
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Figure 6.9: Energy efficiency vs. sum spectral efficiency for L = 10.9λ2. N = 144
and N = 72, K = 12.

efficiencies. This behaviour can be explained by noting that the energy efficiency benefits

of the proposed scheme are especially noticeable when the circuit power consumption

strongly influences the total power consumption. Note that this can potentially occur

in massive BSs due to the significant increase in the number of RF components required

when compared with traditional BSs [60,61]. In these cases, reducing the number of RF

chains is beneficial for the global energy efficiency as shown in Fig. 6.9. As higher spectral

efficiencies are required, the dominant factor in the total power consumption is the power

consumed by the power amplifiers following (6.35), which is not affected by the reduced

number of RF chains offered by the proposed strategy. Nevertheless, it should be noted

that the incomplete CSI schemes are capable of offering significant flexibility benefits

as well as reductions of the signal processing complexity, hence extending their range of

application to high spectral efficiencies where the computational load is expected to be

cumbersome [78].

The effect of the percentage of active antennas during the training stage on the

energy efficiency metric is shown in Fig. 6.10 and Fig. 6.11 for microcell and femtocell

BSs respectively. The power consumption values from Table 6.2 have been employed

for each of the scenarios. The results are shown for SNR = 10 dB and a varying

inter-antenna distance d. From the results of these figures it can be concluded that
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Figure 6.10: Energy efficiency vs. ratio of antennas with CSI (Nc/N) for a micro-
cell scenario and varying inter-antenna distance d. N = 144, K = 12
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Figure 6.11: Energy efficiency vs. ratio of antennas with CSI (Nc/N) for a femto-
cell scenario and varying inter-antenna distance d. N = 144, K = 12
and SNR = 10 dB.

reducing the number of active antennas during the training stage and the inter-antenna

spacing can be beneficial from an energy efficiency perspective. Specifically, Fig. 6.10

shows that a large percentage of the maximum energy efficiency attained for d = 0.5λ

and Nc = N = 144 can be obtained by acquiring CSI for half of the antennas and

d = 0.3λ. Note that in this second case the size of the deployed massive antenna array
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is reduced w.r.t. the case of d = 0.5λ. Moreover, Fig. 6.11 shows that the energy

efficiency is maximized for the femtocell scenario when Nc = N/2 = 72 antennas are

active during the CSI acquisition process and the distance between antennas is d = 0.4λ.

Intuitively, this occurs because the small loss in the achievable rates is compensated by

the substantial reduction experienced in the power consumption of the RF components

and the DSP.

6.8 Conclusions

In this chapter, a low-complexity scheme to exploit the inter-antenna correlation

that arises in space-constrained massive MIMO BSs has been presented. The proposed

strategy reduces the required number of RF chains by deactivating a number of antennas

during the CSI acquisition stage. Subsequently, the CSI for the remaining neighbour

antennas is obtained by averaging the information acquired. This is also extended to

the transmission stage, where a reduced RF chain approach is illustrated. Overall, the

results presented in this chapter confirm that the proposed scheme is able to approxi-

mately preserve the performance of tightly-packed BSs, while simultaneously reducing

the computational complexity and enhancing the energy efficiency. Specifically, it has

been shown that systems with inter-antenna distances in the range d = 0.3 − 0.4λ can

halve the number of RF chains w.r.t. the number of antennas, and still achieve a large

percentage of the rates attained by a full RF-chain system with d = 0.5λ, at low to

intermediate SNRs for the scenarios considered in this chapter.

Critique: In the context of incomplete CSI acquisition, the consideration of alter-

native and more intricate channel models that capture the behaviour realistic propa-

gation enviroments seems of interest for an accurate assesment of its potential benefits

[249]. Indeed, the performance results shown in this chapter should be affected by

the consideration of mutual coupling, which would generally reduce the performance

of space-constrained systems [104, 235]. It is also apparent that there exists a physical

limit in the number of antenna elements that can be implemented in a fixed physical

space, when the individual antenna dimensions are considered. Moreover, it is intuitive
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that the proposed strategies for determining the antennas with instantaneous CSI and

for interpolation are intrinsically sub-optimal. This is because the essential objective of

this chapter is provide a low-complexity approach. However, more complex strategies

with enhanced performance for distributing the CSI could also be devised. These alter-

native strategies could also account for non-stochastic CSI error models different from

that considered in Sec. 6.4, since realistic least squares (LS) and minimum square error

(MMSE) criteria are conventionally employed for channel estimation [72].
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Chapter 7

Low-Complexity Large Scale

Antenna Systems:

Reduced-Connectivity Antenna

Selection

7.1 Introduction

Large scale antenna systems (LSAS) motivate the design of novel digital and analog

signal processing strategies, since the economic cost, power consumption, and hardware

and digital signal processing complexities of systems with a dedicated RF chain per

antenna might become burdensome [13,20,74]. For this reason, this chapter concentrates

on the selection of a reduced number of antennas based on their channel conditions,

which has been posed as a feasible alternative for reducing the complexity in both small

and large scale MIMO systems [23,117,118].

As already highlighted in Sec. 2.3.1, the classical literature of antenna selection (AS)

has concentrated on the development of low-complexity selection algorithms and on an-

alyzing their performance [23,117–128]. Related literature has also focused on the study
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of the acquisition of channel state information (CSI) [129–131] and the energy efficiency

improvements [132–134] of AS systems. A number of practical implementation aspects

are also raised in [135,136]. More recently, the implementation of AS as a means of re-

ducing the excessive number of radio frequency (RF) chains in LSAS has also attracted

considerable interest [21, 137–146]. Particularly relevant in this context are the results

presented in [21,146,148] and Chapter 8 of this Thesis, which illustrate that a large por-

tion of the full-RF massive MIMO rates can be attained via AS in realistic propagation

scenarios, hence motivating the practical application of AS in LSAS. However, none of

the above-mentioned works presents a comprehensive analysis of a critical aspect: the

design of the RF switching matrix that implements the AS.

The RF switching matrix represents the hardware components required in AS for

interconnecting the RF chains with their selected antennas in implementations with a

reduced number of RF chains [118,135]. Indeed, the collosal growth of antenna numbers

in LSAS also increases the complexity of RF switching, hence making these components

a significant performance factor. In spite of acknowledging the crucial importance of this

component [118], the impact of the switching network on the performance and energy

efficiency of AS has been commonly ignored in the related literature. Only recently, the

consideration of the insertion losses (ILs) and the complexity of switching matrices in

LSAS have been considered in [147] and [146]. Specifically, [147] considers a switching

network that only connects each RF chain to predefined subsets of antennas for reducing

the complexity of switching between the large number of antennas required at millimeter

wave frequencies. Similarly, [146] proposes to implement the switching matrix via binary

switches to alleviate the ILs. However, this comes at the expense of reducing the input-

output connectivity of the resultant switching architecture, which is partially-connected

(PC). Still, these works do not perform a through and detailed analysis of the hardware

implications behind their designs and only focus on specific implementations such as

binary switching matrices.

Considering the above, this chapter generalizes the above-mentioned works to arbi-

trary switching architectures and concentrates on providing a detailed analysis of switch-

ing networks to characterize their influence in AS systems. In particular, this chapter
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presents a number of specific hardware implementations of switching matrices that are

optimized under different criteria such as the number of internal connections or the

power losses. In this context, an accurate characterization of their ILs is provided, since

they are critical for LSAS due to the large number of inputs (RF chains) and outputs

(antennas) required. Moreover, architectures with limited connectivity are considered

as a means for reducing the complexity of the fully-flexible (FF) switching networks,

which instead facilitate the selection of any plausible subset of antennas and attain

the maximum theoretical performance of AS. The performance loss introduced due to

the limited connectivity for power-based (PB) AS systems is also determined in this

chapter, since PB-AS can offer a superior performance when practical CSI acquisition

procedures are considered. Altogether, the results and generalized designs considered in

this chapter provide a comprehensive view of the impact of RF switching matrices on

the performance, hardware architecture and energy efficiency of AS systems.

7.2 Preliminaries

7.2.1 Downlink System Model

Consider a time-division duplex (TDD) multi-user MIMO system comprised of a base

station (BS) with N transmit antennas and K single-antenna mobile stations (MSs) such

as that introduced in Chapter 2. The BS incorporates K ≤M ≤ N RF chains to convey

K independent data symbols to the MSs via AS. Similarly to (2.1), the composite signal

y ∈ CK×1 received by the MSs can be expressed as

y =
√
ρH[M]x + n, (7.1)

where the relevant variables have been already defined in Sec. 2.1, n ∈ CK×1 ∼

CN (0, IK) and H[M] ∈ CK×M is a submatrix of H built by selecting the columns spec-

ified by the set M ⊆ {1, . . . , N} with cardinality |M| = M . Here, A ⊆ B denotes that

A is a subset of B. Moreover, E
{
xHx

}
= K and ρ represents the average transmission

power per mobile terminal.

185



Chapter 7. Reduced Connectivity for Antenna Selection in LSAS

7.2.2 Antenna Selection Benchmarks

The capacity C of the downlink system described in (7.1) is given by [250]

C = max
P

(
ηdl

ηcoh

)
log2 det

(
IK + ρPH[M]

(
H[M]

)H)
, (7.2)

where ηdl is the number of symbols dedicated to downlink transmission and ηcoh de-

notes the number of symbols where the channel remains constant, as shown in Fig. 2.4.

Moreover, P ∈ RK×K is a diagonal power allocation matrix satisfying
∑K

i=1 Pi,i = K.

A conventional criterion for AS consists in maximizing the system’s capacity C, which

results in the optimization problem [121,148]

P7.1 : maximize
S,P

log2 det
(
IK + ρPHSHH

)
subject to

N∑
i=1

Si,i = M, (7.3)

Si,i ∈ {0, 1} , ∀ i ∈ {1, . . . , N} ,

where S ∈ BN×N is a diagonal binary matrix satisfying

Si,i =


1, if i ∈M,

0, otherwise.

(7.4)

The optimization problem P7.1 is not convex due to the binary constraints Si,i ∈

{0, 1} ,∀ i ∈ {1, . . . , N} [211]. However, these constraints can be relaxed to the weaker

0 ≤ Si,i ≤ 1, hence turning P7.1 into the convex optimization problem [134,146,148]

P7.2 : maximize
S,P

log2 det
(
IK + ρPHSHH

)
(7.5)

subject to

N∑
i=1

Si,i = M,

0 ≤ Si,i ≤ 1,∀ i ∈ {1, . . . , N} .

The final solution is attained by selecting the antennas corresponding to the M largest

diagonal entries in S. At this point it should be noted that P7.2 can also have additional
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constraints depending on the specific architecture of the RF switching matrix, since

there might be specific antenna combinations that cannot be simultaneously selected

due to having a limited input-output connectivity [146]. For ease of exposition, this

section assumes that P7.2 is solved while satisfying these constraints and leave their

detailed definition for Sec. 7.4.

In resemblance with [148], one can compute the system’s capacity for AS by first

optimizing (7.5) over S while setting P = IK , which produces S̃?. Subsequently, the

user power allocation matrix P̃? is computed by solving P7.2 with S̃? fixed. This is

a convex optimization problem with a waterfilling-type solution [251]. Note that this

procedure is particularly efficient for large ρ’s, since the optimal power allocation matrix

P? ≈ IK in P7.2 [250]. Moreover, this chapter also considers the practical linear zero-

forcing (ZF) precoder, whose sum rates can be obtained as the resultant value of the

objective function in the optimization problem [148]

P7.3 : maximize
D

(
ηdl

ηcoh

) K∑
i=1

log2 (1 + ρDi,i) (7.6)

subject to
K∑
i=1

Di,i

((
HS̃?HH

)−1
)
i,i

= K,

where D ∈ RK×K is the diagonal power allocation matrix for ZF. The solution to P7.3

can also be obtained via conventional water-filling [76]. Note that while S̃? obtained from

P7.2 does not necessarily maximize P7.3, this choice adopted in [146, 148] is supported

by the results in [126], where it is shown that employing S̃? has a slight impact on

the resultant system’s performance when compared with other AS methods specifically

designed for linear precoders.

7.2.3 Channel State Information Acquisition for AS Systems

The optimization problems P7.2 and P7.3 defined in Sec. 7.2.2 can only be solved

provided that knowledge of the channel response H is available at the BS. However,

CSI acquisition poses a major challenge in AS systems with reduced RF chains since,

as opposed to full RF chains systems, the CSI acquisition requires multiplexed training
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slots to obtain full CSI for all transmit antennas.

7.2.3.1 Instantaneous CSI Acquisition for full-RF systems (M = N)

The conventional training stage in TDD systems where M = N consists of the

transmission of orthogonal training sequences from the users to the BS throughout

K ≤ ηtr ≤ ηcoh training symbols [74, 252]. Considering channel reciprocity, the signal

received at the BS Ytr ∈ CN×ηtr can be expressed as [74,252]

Ytr = HHΘ + N, (7.7)

where the interpretation of the relevant variables is given in (2.19) and ni,j ∼ CN (0, σ2
tr).

The communication channel H can be directly estimated from (7.7) via least-squares

(LS) estimation by correlating the received signal with the known unitary pilot sequences

[84,85]

ĤH =
(
HHΘ + N

)
ΘH = HH + NΘH. (7.8)

Minimum mean square error (MMSE) estimation is also commonly applied provided

that the channel statistics are known at the BS [85].

7.2.3.2 Instantaneous CSI Acquisition for reduced-RF systems (M < N)

In contrast with the full-RF system considered in (7.7), the AS system considered in

this chapter only implements M ≤ N RF chains. This constraint entails that only M

signals from the antenna ports can be processed simultaneously, i.e. the training signal

received after K training symbols reads as

Ỹtr =
(
H[M]

)H
Θ + Ñ, (7.9)

where Ỹtr ∈ CM×ηtr and Ñ ∈ CM×ηtr is comprised of independent and identically

distributed (i.i.d.) entries following ñi,j ∼ CN (0, σ2
tr). As a result, only partial CSI

H[M] of the overall channel matrix H can be derived from (7.9). This entails that a
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multiplexed training stage is required to estimate the channels of all N antennas [129].

Indeed, the minimum number of training symbols required to estimate the channel in

AS systems with a reduced number of RF chains is given by

ηAS
tr = K ×

⌈
N

M

⌉
, (7.10)

where d·e rounds to the highest closer integer. While this extended training might have

a negligible impact on the attainable sum rates of slowly varying channels with large

ηcoh, their influence can instead be significant for fast varying channels, a trade-off that

will be explicitly studied in Sec. 7.7 for LSAS. The resultant number of symbol periods

dedicated to downlink data transmission is given by

ηdl = ηcoh − ηul − ηtr = ηcoh − ηul −
(
K ×

⌈
N

M

⌉)
, (7.11)

where ηul refers to the number of symbols employed for uplink data transmission, as

illustrated in Fig. 2.4.

7.2.3.3 Power-Based AS (PB-AS) for reduced-RF systems (M < N)

An elegant solution to the CSI acquisition problem in AS systems consists in adopting

a selection decision hinging on the norm of the channel entries. With this purpose, let

h =
[
‖h1‖2 , · · · , ‖hN‖2

]
∈ R1×N be a vector comprising the channel power measured

per antenna element, where hi denotes the i-th column of H. The diagonal selection

matrix S defined in (7.4) can be obtained as

P7.4 : maximize
S

hS (7.12)

subject to

N∑
i=1

Si,i = M,

Si,i ∈ {0, 1} , ∀ i ∈ {1, . . . , N} ,

This strategy is commonly referred to as power-based (PB) or norm-based AS. The

solution to the PB-AS of P7.4 is straightforward for the case of FF architectures, i.e.
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[23]

S̃? = max
M
‖hi‖2 , (7.13)

where max
M

(·) selects the largest M entries. While sub-optimal, PB-AS is capable of

reducing the amount of time resources spent for CSI acquisition in systems where RF

power meters instead of full RF chains are attached to each antenna port [129]. This is

because a) the channel power information can be acquired from the prior uplink stage

and b) this information can be subsequently employed for AS as per (7.12). Therefore,

the number of pilot symbols employed for downlink transmission ηdl for the case of

PB-AS can be expressed as

ηdl = ηcoh − ηul − ηtr = ηcoh − ηul −K, (7.14)

since instantaneous CSI is only required for the M antennas chosen for data transmission

and ηtr = K [74] is considered.

7.2.4 Sources of Losses in the RF Switching Matrices of AS

The design of the RF switching matrix in AS plays a fundamental role in the over-

all system performance [118]. Among the multiple technical aspects that should be

considered from a system-level design perspective, the most relevant ones are:

− Insertion losses (ILs). RF switching matrices introduce ILs that generally grow

with the number of input and output ports [253,254]. This is a critical parameter

for LSAS, where both the number of RF chains and antennas are significantly

large [11,12,69,146].

− Coupling between ports. The coupling of the switching matrix determines the frac-

tion of the signals that appear at a specific port, but were intended for other ports.

This parameter depends on the network of connections inside the switching matrix

and the power leakage of the internal switching devices (e.g., FET transistors or

electromechanical switches) [255].
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− Transfer function balance. The transfer function of each input-output combination

between RF chain and antenna element should be ideally identical to ensure that

the baseband model (4.1) accurately characterizes the system’s operation [118].

From the above three sources of losses, this chapter concentrates on the ILs. This is

because a) transfer function imbalances can be compensated via calibration prior to the

normal system operation [118] and b) coupling between internal switching ports can be

in the order of −20 to −30 dB, hence effectively making unintentional power transfers

between nearby ports negligible [256]. Instead, the ILs introduced by switching matrices

with a large number of input and output ports can be in the order of 2-3 dB [254], hence

dominating the overall performance loss. For this reason, Sec. 7.3 firstly explores a

number of implementations of conventional FF switching matrices, with emphasis on

the number of switching components required and the associated ILs. Subsequently, PC

switching matrices with an arbitrary number of input (RF chains) and output (antennas)

ports are introduced in Sec. 7.4 as a means for reducing both the ILs and the hardware

complexity of FF designs.

7.3 Fully-Flexible (FF) Switching for Antenna Selection

RF switching matrices in conventional AS have two essential requirements: a) con-

necting each RF chain to the antenna ports (full flexibility) and b) allowing bidirectional

switching for uplink-downlink operation [118, 253]. These characteristics promote the

implementation of the so-called blocking switching matrices, where the interconnection

between the input and the output ports is performed by concatenating a number of

switches of smaller size [253, 254]. An illustrative example of a blocking switching ma-

trix is shown in Fig. 7.1(a), where the block diagram of a 4 × 8 switching matrix can

be observed. This figure shows that a large switching matrix is comprised of two main

switching stages (represented by the dashed boxes in the figure) with multiple switches

of smaller size: one stage at the RF-chain ports, referred to as RF-chain switching

stage in the sequel, and a subsequent stage at the antenna ports, referred to as antenna

switching stage.
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Figure 7.1: Block diagrams of FF architectures: (a) a conventional 4×8 switching
matrix with each input port connected to every output port (FF-
FC) and (b) a switching matrix minimizing the number of internal
connections (FF-MC).

Each of the above two switching stages is comprised by a number of smaller switches

with a smaller number of ports, which will be referred to as basic switches in the fol-

lowing. Indeed, the RF-chain switching stage of Figure 7.1(a) illustrates that several

of these basic switches can be concatenated to produce the desired number of ports

[254]. The basic switches considered in this chapter conventionally follow the nomen-

clature SPXT (single-pole X-throw) which refers to the number of separate ports with

independent signals that the basic switch can control (poles) and the number of differ-

ent signal paths that the switch allows for each pole (throws) [256, 257]. For instance,

a SP3T switch is capable of routing one signal from or towards three different ports

(throws). The range of basic switches is usually SP2T-SP10T and their cost and ILs

generally grow with the number of output ports [256, 257]. Without loss of generality,

the SP2T-SP4T basic switches detailed in Table 7.1 are considered for the illustrative

architectures shown in this chapter [256].

Conventional AS systems consider FF switching matrices between the M RF chains

and the N antenna ports, which allows any possible combination of M antennas to
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Table 7.1: Basic SPXT switches

Switch type Model [256] Insertion loss

SP2T PE42422 L2 = 0.25 dB

SP3T PE42430 L3 = 0.45 dB

SP4T PE42440 L4 = 0.45 dB

be simultaneously selected. However, a number of implementations for the design of

switching matrices with varying complexity and IL can be implemented. Importantly,

different architectures may result in RF-chain and antenna switching stages with differ-

ent number of ports (throws). An accurate characterization of the maximum number

of throws per switching stage is crucial, since they determine overall IL of the critical

signal path, i.e. the signal path with largest power losses.

With the above purpose, let TRF and TAN be the maximum number of throws per

RF chain (TRF) in the RF-chain switching stage or per antenna (TAN) in the antenna

switching stage, as represented in Figure 7.1(a). Let T denote the set with elements in

decreasing order given by the number of throws in the basic switches, i.e., T = {4, 3, 2}

for the basic switches considered in Table 7.1. Tj corresponds to the j-th entry in T

and the cardinality of T is |T | , Ns. Intuitively, Ns refers to the number of different

basic switches considered, i.e. Ns = 3 for the basic switches of Table 7.1. The total IL

measured in dB of the critical signal path L for a given switching architecture can be

computed as

L =

Ns∑
j=1

(
SRF
Tj + SAN

Tj

)
× LTj =

Ns∑
j=1

STj × LTj , (7.15)

where SRF
Tj and SAN

Tj represent the number of consecutive basic switches with Tj throws

that the signals cross in the RF-chain and in the antenna switching stages, respectively,

and LTj denotes the IL in dB introduced by a basic switch with Tj throws. For instance,

L2 = 0.25 dB, L3 = 0.45 dB and L4 = 0.45 dB for the basic switches considered in

Table 7.1. Moreover, STj , SRF
Tj + SAN

Tj refers to the total number of switches with Tj

throws in the critical signal path of the overall switching matrix.
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The number of basic switches with Tj throws crossed by the transmit signals in the

RF-chain and antenna switching stages can be iteratively computed as1

S
{RF, AN}
Tj = fact

(
Q
{RF,AN}
Tj , Tj

)
, j ∈ {1, . . . , Ns} , (7.16)

where fact (a, b) , b < a denotes the number of times b appears in the integer factorization

of a and Q
{RF,AN}
Tj is given by

Q
{RF,AN}
Tj =


T{RF,AN}, if j = 1,

Q
{RF,AN}
Tj−1

/
max

(
T
(
S
{RF,AN}
Tj−1

)
j−1 , 1

)
, otherwise.

(7.17)

In plain words, T
STj
j represents the number of throws obtained by STj subsequent switch-

ing stages comprised of basic switches with Tj throws, as described in the illustrative

example below.

Illustrative example: Let us illustrate the procedure for computing the IL in (7.15)

for a system with TRF = QRF
4 = 8 and TAN = 4. This can correspond to a system with

M = 4 and N = 8, as shown in Figure 7.1(a). In this case, multiple basic switches from

Table 7.1 are required at the RF-chain switching stage for connecting the RF chains

with the N = 8 antennas. Specifically, since QRF
4 = 8 as per (7.17), the number of

consecutive SP4T switching stages is SRF
4 = fact (8, 4) = fact (4× 2, 4) = 1 as per (7.16).

Substituting the above values in (7.17) for j = 2 results in QRF
3 = QRF

4 /T S
RF
4

1 = 8/4 = 2.

Consequently, SRF
3 = fact (2, 3) = 0. Since no SP3T switches are required, QRF

2 = 2 as

per (7.17) for j = 3, which entails that an additional stage of SP2T (SRF
2 = 1) switches

is required for implementing the TRF = 8 throws required for transmission per RF chain.

Overall, the transmit signal of each RF chain must always cross one SP4T (SRF
4 = 1)

and one SP2T (SRF
2 = 1) basic switches, as explicitly illustrated in Figure 7.1(a) by the

coloured signal path. This figure also shows that only one SP4T (SAN
4 = fact (4, 4) = 1)

switch is required per antenna element. More intricate examples are also provided in

Table 7.2 for the N = 32, M = 6 case.

1For simplicity, it has been considered that TRF and TAN can be factorized into the integers contained
in T .
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Table 7.2: Insertion losses introduced by the fully-flexible architectures in an AS
system with N = 32 and M = 6

Parameter FF-FC FF-MC FF-ML

TRF 32 27 32

TAN 6 6 6

QRF
{4,3,2} as per (7.17) QRF

{4,3,2} = {32, 2, 2} QRF
{4,3,2} = {27, 27, 0} QRF

{4,3,2} = {32, 2, 2}
{SP4T, SP3T, SP2T}
basic switches required

per RF chain
(
SRF
{4,3,2}

) SRF
{4,3,2} = {2, 0, 1} SRF

{4,3,2} = {0, 3, 0} SRF
{4,3,2} = {2, 0, 1}

QAN
{4,3,2} as per (7.17) QAN

{4,3,2} = {6, 6, 2} QAN
{4,3,2} = {6, 6, 2} QAN

{4,3,2} = {6, 6, 2}
{SP4T, SP3T, SP2T}
basic switches required

per antenna
(
SAN
{4,3,2}

) SAN
{4,3,2} = {0, 1, 1} SAN

{4,3,2} = {0, 1, 1} SAN
{4,3,2} = {0, 1, 1}

Total number of
{SP4T, SP3T, SP2T}
basic switches

(
S{4,3,2}

) S{4,3,2} = {2, 1, 2} S{4,3,2} = {0, 4, 1} S{4,3,2} = {2, 1, 2}

Total IL in dB (L) as
per (7.15). LTj given by
Table 7.1.

L = 2 × 0.45 + 1 ×
0.45 + 2 × 0.25 =
1.85 dB

L = 4 × 0.45 + 1 ×
0.25 = 2.05 dB

L = 2 × 0.45 + 1 ×
0.45 + 2 × 0.25 =
1.85 dB

Considering the above, this chapter explores three implementations for the design of

FF switching matrices:

1. Architecture 1. Conventional FF architecture with full connectivity (FF-FC). This

architecture is illustrated in Fig. 7.1(a), where it can be seen that each RF chain

is connected to every antenna port. In this particular case

TRF = N, and TAN = M. (7.18)

2. Architecture 2. FF architecture with minimum connectivity (FF-MC). This archi-

tecture minimizes the maximum number of ports at the RF-chain and antenna

switching stages. The block diagram of this architecture is shown in Fig. 7.1(b)

for an illustrative 3× 5 RF switching matrix. Here, it can be seen that there are

additional constraints regarding the connectivity of each antenna. For instance,

Fig. 7.1(b) shows that the first RF chain does not connect to antenna ports A-4

and A-5. In spite of this, a full flexibility is guaranteed provided that

TRF = N −M + 1, and TAN = min (M,TRF) . (7.19)

Overall, the FF-MC architecture selects the basic switches such that TRF and TAN
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are minimized, while ensuring that any combination of antennas can be simulta-

neously activated. For instance, Table 7.2 shows that, for the 6 × 32 switching

matrix, the TRF = 32 ports from the FF-FC switching architecture can be reduced

to TRF = 27 ports when the FF-MC architecture is employed. Hence, this ar-

chitecture aims to minimize the number of connections to simplify the hardware

design and possibly the hardware monetary cost.

3. Architecture 3. FF architecture with minimum losses (FF-ML). The FF-MC ar-

chitecture does not guarantee that the ILs are minimized, since designing networks

with larger TRF or TAN might actually reduce the total IL. This counter-intuitive

behaviour is illustrated in Table 7.2 for an AS system with N = 32 and M = 6,

where it can be observed that minimizing the TRF and TAN as per the FF-MC

architecture does not minimize the total IL. This is because the ILs introduced

by the basic switches vary depending on their number of ports as per Table 7.1,

an effect particularly noticeable for large TRF and TAN. In contrast, the FF-ML

architecture selects the TRF and TAN that minimize the IL by relaxing (7.19) into

TRF ≥ N −M + 1, and TAN ≥ min (M,TRF) . (7.20)

Note that while the different design criteria considered above guarantee full flexibility,

their IL can still be as significant as 2-3 dB for LSAS. For instance, it can be shown that

a system with N = 128 and M = 76 introduces ILs of L = 2.95, L = 3.2 and L = 3.4

dB for the FF-ML, FF-MC and FF-FC switching architectures, respectively. For this

reason, the following section concentrates on reducing the complexity of RF switching

matrices at the expense of reducing their flexibility.

7.4 Partially-Connected Switching Architectures and Re-

sulting AS Constraints

The significant IL and complexity of the FF matrices introduced for LSAS mo-

tivate the design of alternative low-complexity switching architectures [146]. This
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N
M

⌋
≥ 2 and (b)

⌊
N
M

⌋
< 2.

section considers a switching architecture with partial connectivity, referred to as

partially-connected (PC) architecture, with arbitrary N and M for alleviating the above-

mentioned concerns. Specifically, the PC architecture is designed to reduce the number

of internal connections and basic switches, i.e.

TRF =

⌈
N

M

⌉
, and TAN =


1, if

⌊
N
M

⌋
≥ 2,

2, otherwise,

(7.21)

where the maximum number of throws per RF chain in the RF-chain switching stage,

TRF, is defined to guarantee the essential constraint of connecting every antenna to at

least one RF chain. Moreover, (7.21) shows that there are two specific cases depending

on the ratio N
M and whose practical implications are considered in the following:

1. Case for
⌊
N
M

⌋
≥ 2. PC switching schemes satisfying this condition are those

where each antenna is connected to a single RF chain (TAN = 1). Accordingly,

basic switches SP3T or with a larger number of outputs have to be employed at

the RF-chain switching stage to ensure that all antennas can be employed for

transmission. An illustrative example is shown in Figure 7.2(a), where N = 5

and M = 2. In this architecture, it can be observed that one SP3T must be
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implemented at the RF-chain switching stage for guaranteeing that every antenna

is connected to one RF chain. Note that this architecture also comprehends the

particular case N/M = 2 considered in [146], where only binary (SP2T) switches

are required to ensure antenna connectivity.

2. Case for
⌊
N
M

⌋
< 2. In these architectures each antenna might be connected to more

than one RF chain (TAN = 2). Accordingly, employing basic switches SP2T suffices

to guarantee connectivity for all N antennas. A specific switching architecture

satisfying bN/Mc < 2 is shown in Figure 7.2(b) for N = 5 and M = 3. This figure

shows that at least one antenna is connected to more than one RF chain, hence

introducing additional ILs in the output switching stage when compared with the

case bN/Mc ≥ 2. However, incorporating additional RF chains simultaneously

enhances the rates, which results in a relevant trade-off that will be studied in

Sec. 3.5.

7.4.1 Optimization constraints for AS with Instantaneous CSI

Overall, the above PC architectures impose a limited flexibility in the antenna selec-

tion procedure, since the simultaneous selection of certain antenna combinations is not

implementable. In this context, the specific restrictions introduced by the partial connec-

tivity should be considered when defining the optimization problem P7.1 for selecting the

antennas as per Sec. 7.2.2. With this purpose, let N = {1, . . . , N} andM = {1, . . . ,M}

be sets indexing the antennas and the RF chains, respectively. The antenna subsets

N i, i ∈ {1, . . . , Scons} are defined as disjoint sets of antennas sharing at least one com-

mon RF chain, i.e. N 1∪N 2∪· · ·∪N Scons = N and N i∩N j = ∅,∀ i, j ∈ {1, . . . , Scons}.

Here, ∅ denotes the empty set and Scons denotes the number of constraints detailed be-

low. Similarly, Mi ⊂ M, i ∈ {1, . . . , Scons} represent disjoint sets of RF chains sharing

at least one common antenna. For the illustrative example of Figure 7.2(b), the setsMi

are defined asM1 = {1, 3}, since these RF chains inter-connect antennas N 1 = {1, 3, 5},

and M2 = {2}, which inter-connects antennas N 2 = {2, 4}. Intuitively, the cardinality

of the antenna groups sharing different RF chains (Scons) also represents the additional
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number of constraints required in P7.1 to account for partial connectivity, which is given

by

Scons = M −Nov, (7.22)

where Nov represents the number of antennas with the possibility of connecting to more

than one RF chain. This is because the partial connectivity architecture imposes an

additional constraint for every subset of antennas N i ⊂ N , i ∈ {1, . . . , Scons} , intercon-

nected with their corresponding subset of RF chains Mi ⊂ M, i ∈ {1, . . . , Scons}. For

instance, Figure 7.2(b) shows that only two out of antennas N 1 = {1, 3, 5} can be simul-

taneously active, since these antennas are only connected to two RF chains (|M1| = 2).

Similarly, only one antenna out of antennas N 2 = {2, 4} can be active because they

share a single RF chain (|M2| = 1).

Without loss of generality, this chapter considers that each RF chain is connected

to antennas physically separated as shown in Figure 7.2(a) and Figure 7.2(b)2. Based

on the above, the distance between antennas inter-connected to a given RF chain Ndist

can be defined as

Ndist =


M, if bN/Mc ≥ 2,

N −M, otherwise.

(7.23)

For instance, Figure 7.2(a) and (b) show that each RF chain connects to antennas

separated by Ndist = M = 2 and Ndist = N −M = 2 indices, respectively. Similarly, the

distance between the RF chains connected to a given subset of antennas Mdist is given

by

Mdist =


1, if bN/Mc ≥ 2,

N −M, otherwise.

(7.24)

For example, Figure 7.2(b) shows that RF chains M1 = {1, 3}, which inter-connect

antennas N 1 = {1, 3, 5}, are separated by Mdist = N − M = 2 because RF chain

M2 = 2 is situated in-between. Accordingly, N i and Mi for the non-adjacent antenna

2This consideration is motivated by the results obtained in [146] for real propagation environments,
where it was shown that inter-connecting a given RF chain to non-adjacent antennas provides a better
performance than the connection to adjacent antennas.
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connectivity considered in this chapter can be expressed as

N i =

{
i, i+Ndist, . . . , i+

(⌈
N − i+ 1

Ndist

⌉
− 1

)
Ndist

}
, (7.25)

where each RF chain connects to antennas with indices separated by Ndist and

Mi =

{
i, i+Mdist, . . . , i+

(⌈
M − i+ 1

Mdist

⌉
− 1

)
Mdist

}
, (7.26)

where each antenna connects to RF chains with indices separated by Mdist. Considering

the above, the convex AS optimization problem for general PC architectures can be

formulated as

P7.5 : maximize
S,P

log2 det
(
IK + ρPHSHH

)
(7.27a)

subject to
N∑
i=1

Si,i = M, (7.27b)

0 ≤ Si,i ≤ 1, ∀i ∈ {1, . . . , N} , (7.27c)∑
j∈N i

Sj,j = |Mi|, ∀ i ∈ {1, . . . , Scons} , (7.27d)

where w.r.t. P7.2 it can be seen that additional constraints due to PC have been added as

per (7.27d). Similarly to P7.2, the final solution to the AS can be obtained by choosing

the M largest entries in the solution of P7.5 compliant with the partial connectivity

constraints.

7.4.2 Optimization constraints for AS with Power-Based CSI

The specific RF switching architecture selected also determines the procedure for

performing AS based on the channel power at each of the antenna ports. Indeed, the

solution to select the antennas is not straightforward as per the case of FF RF switching

in (7.13), since additional constraints due to the partial connectivity must be incorpo-

rated to P7.4. As a result, the convex optimization problem for PB-AS under limited
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connectivity can be expressed as

P7.6 : maximize
S

hS, (7.28a)

subject to
N∑
i=1

Si,i = M, (7.28b)

0 ≤ Si,i ≤ 1, ∀ i ∈ {1, . . . , N} , (7.28c)∑
j∈N i

Sj,j = |Mi|, ∀ i ∈ {1, . . . , Scons} , (7.28d)

where the sets N i and Mi are defined in (7.25) and (7.26), respectively, and it can be

seen that new constraints are added w.r.t. P7.4 as per (7.28d). The final solution is

obtained by selecting the M largest entries satisfying the optimization constraints.

Similarly to the simplification of (7.13), the solution to P7.6 also admits a straightfor-

ward implementation. Specifically, the optimal solution can be obtained by combining

the |Mi| largest entries of h[N i] for each sub-array, i.e., M =
⋃

i∈{1,...,Scons}
max
|Mi|

h[N i].

7.4.3 Implications of Reducing Connectivity

The additional constraints introduced to the optimization problems P7.2 in P7.4 have

a number of practical system-level implications that can be described as follows:

− Insertion losses. The ILs introduced will be smaller in the design with partial

switching connectivity due to the smaller number of basic switches required to

implement the switching matrix. For instance, in the example of Table 7.2 for

M = 6 and N = 32, the ILs are reduced to L = 0.7 dB, since TRF = 6 and

TAN = 1, i.e. at most two basic switches (SP2T and SP3T) are required per RF

chain.

− Power-based AS. The complexity order of solving P7.4 and P7.6 for the FF and PC

switching networks is O (N log(N)) and O
(
max (|N i|) · log(max (|N i|))

)
, respec-

tively [258]. Note that multiple independent instances of the sorting algorithm

are required for solving the optimization problem P7.6, although each of these in-

stances have a reduced complexity when compared with that required for solving
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P7.4, since |N i| < N, ∀ i. Overall, the substantial hardware complexity savings

demonstrated in Sec. 7.7 motivate the employment of PC RF switching architec-

tures.

− System performance. Limiting the connectivity affects the number of possible an-

tenna combinations that can be selected. Due to its importance, this aspect is

studied in Sec. 7.5, where the performance loss w.r.t. FF architectures is charac-

terized for the relevant case of PB-AS.

− Baseband signal processing. The digital signal processor (DSP) must account for

the reduced connectivity in order to perform the precoding / detection operations.

This is because the order of the antenna channels might be different from the

conventional order at the antenna ports. Note that this might also happen for FF

architectures minimizing the number of connections (FF-MC) and the power losses

(FF-ML). For instance, consider the architecture shown in Fig. 7.2(a) and assume

that antennas N 2 = 2 and N 1 = 5 are those that maximize capacity. For correct

symbol-to-antenna mapping, the DSP should be aware that the channel employed

for precoding/detection might have a different order w.r.t. the conventional an-

tenna port order, since now the first RF chain will be connected to antenna port

5 whereas the second RF chain will be connected to antenna port 2.

− Analog hardware complexity. The employment of a reduced number of basic

switches and connections can reduce cross-coupling between hardware components

that are physically close, the time required for calibrating the input-output transfer

function and the overall economic cost for implementing the switching matrix.

7.4.4 Practical Hardware Implementation for PB-AS in LSAS

The solution advocated in [129] for reducing the CSI acquisition time in PB-AS is

based on implementing analog power estimators at each antenna as shown in Fig. 7.3(a),

i.e. NPM = N , where NPM refers to the number of power meters. Note that the speed

and resolution requirements of the analog-to-digital converters (ADCs) required in the

parallel power-meter chains can be relaxed due to the non-sensitive nature of the power
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Figure 7.3: Block diagram of different hardware implementations for measuring
channel power. (a) One parallel power meter chain per antenna and
(b) limited number of power meter chains with additional switches.

measurements. Nevertheless, additional data ports are required at the digital signal

processor (DSP) to acquire this data.

The excessive number of antenna implemented in LSAS also motivate the implemen-

tation of a considerable number of RF chains, even when AS is implemented [148]. Since

each RF chain also captures the channel power information during the uplink data stage,

this entails that the solution illustrated in Fig. 7.3(a) acquires a significant amount of

redundant data. This redundancy is eliminated in the architecture considered in Fig.

7.3(b), where only NPM = N −M power meters are required. The particular example

shown in Fig. 7.3(b) corresponds to an architecture with N = 2M . When compared

with the scheme of Fig. 7.3(a), it can be seen that, while an additional RF switches

are required, the number of parallel power-meter chains and data ports at the DSP

can be substantially reduced. Since the implementation with additional RF switches

is expected to be less economically demanding than the solution with additional power

meters, the former constitutes an attractive alternative for implementing AS in LSAS.
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7.5 Performance Analysis: Degradation due to Limited

Switching Connectivity

The partial connectivity architecture presented in Sec. 7.4 reduces the IL introduced

by the switching matrix at the expense of limiting the number of number of antenna

combinations that can be simultaneously selected, which entails a loss in performance.

This section characterizes this loss by following the intuitive approach adopted in [123]

for PB-AS. The reasons for focusing on the simpler PB-AS are twofold: a) its reduced

CSI acquisition time as detailed in Sec. 7.2.3 by use of RF power meters, and b) the

negligible performance loss introduced by this scheme when compared with the selection

based on instantaneous CSI for the channels considered in this chapter. Indeed, it will be

shown in Sec. 7.7 that, due to the above, PB-AS outperforms AS based on instantaneous

CSI in terms of sum rates when CSI acquisition overheads are considered.

7.5.1 Ergodic Capacity Approximation for FF-AS

The analysis developed in [123] essentially relies on approximating H[M] in (7.2)

by a matrix V ∈ CK×M with entries following an identical distribution but with each

column of the having different variances, i.e.

H[M] ≈ Vf(C) = TΓf(C), (7.29)

where T ∈ CK×M is a matrix whose entries follow the same distribution of those from

H, Af(C) indicates that A is a function of the specific switching connectivity and Γ ∈

RM×M is a diagonal matrix whose definition is considered in the following. Specifically,

let Bc =
∑K

i |hc,i|2 = ‖hc‖2 denote the norm of the c-th column of H and define Bt:N as

the t-th smallest column norm of H as per W = {B1:N < B2:N < · · · < BN :N}. Then,

the diagonal entries of Γ are given by [123]

θi,i = E [Bti:N ] /
√
K, ti ∈ {1, . . . , N} . (7.30)
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The definition of the indices ti is straightforward and deterministic for the case of FF

switching networks, since the PB-AS will always selects the antennas corresponding to

the largest column norms of H, i.e.

Γ = diag
(√

BN :N ,
√
BN−1:N , . . . ,

√
BN−M+1:N

)
/
√
K. (7.31)

A simpler approximation of the resultant channel in (7.29) can be obtained by av-

eraging the power scaling (PS) factors of the selected ordered statistics in (7.30), which

for FF switching networks yields

P̃FF =
1

KM

M∑
i=1

EH [BN−i+1:N ] , (7.32)

where EH denotes that the expectation is taken over the small-scale fading parameters

of the random channel H. For the case of uncorrelated Rayleigh flat-fading channels,

the first moment of the t-th ordered random variable Bt:N is given by [259,260]

EH [Bt:N ] =
N !

(M − 1)! (t− 1)! (N − t)!

t−1∑
r=0

(−1)r
(
t− 1

r

)

×
(K−1)(N−t+r)∑

s=0

as (N − t+ r)
(K + s)!

(N − t+ r + 1)K+s+1
, (7.33)

where as (N − t+ r) represent the polynomial coefficient of xs in the expansion

(
K−1∑
s

xs

s!

)N
= a0x+ a1x+ a2x

2 + · · ·+ aNx
N . (7.34)

Note that as (N − t+ r) can be recursively computed from a1 (·) [259,260]. The resultant

ergodic capacity with the PS approximation can be subsequently expressed as [123]

CPS−FF = ET

[
log2 det

(
IK + ρP̃FFTTH

)]
, (7.35)

where the expectation over T has been analytically derived in [261–263] for different

correlated and uncorrelated communication channels.
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7.5.2 Ergodic Capacity Approximation for PC-AS

While the approximation in (7.35) accurately characterizes the ergodic capacity at-

tainable by FF schemes, an optimal PB-AS cannot be guaranteed under limited con-

nectivity in general, since selecting the antenna combination with the largest column

norms of H might not be feasible due to the additional constraints imposed in the

optimization problem. Moreover, note that selecting some combinations of ordered col-

umn norms is more probable than selecting others, since the probability that the t-th

ordered coefficient Bt:N is not chosen is different for every t ∈ {1, . . . , N} as per the

specific input-output connectivity in the implemented switching matrix. This entails

that (7.31) and (7.32) are not longer valid for PC networks. For this reason (7.32) can

be further approximated by taking into consideration the probability of selecting a given

subset of the ordered set W = {B1:N < B2:N < · · ·BN :N}.

With the above purpose, let Gj , j ∈
{

1, . . . ,
(
N
M

)}
of cardinality |Gj | = M be dis-

crete sets containing a given combination of ordered column norms of H. For instance,

in the architecture shown in Fig. 7.2(a), the relevant sets Gj with non-zero probability

of being selected following a PB criterion are G1 = {1, 2}, G2 = {1, 3} and G3 = {1, 4}.

Note that the antenna with the largest power can always be selected even under par-

tial connectivity restrictions. Moreover, let Tj ∈ {0, 1} be a binary random variable

that determines whether the specific combination of columns of H determined by Gj

is selected or not. Intuitively, the limited connectivity restricts a given combination of

antennas Gj to be selected with a given probability. This entails that, in contrast with

(7.32), the expectation in (7.30) must also be taken with respect to the discrete random

variables Tj . Therefore, the performance of PB-AS for PC switching architectures can

be approximated by employing

P̃PC =
1

KM
ETj

[
M∑
i=1

EH

[
BGji :N

]]
, (7.36)

where Ai refers to the i-th entry of a set A and the outer expectation is taken over the

set of random discrete variables Tj . Closed-form expressions for the inner expectation in

(7.36) are already available for multiple channels such as those with Rayleigh flat-fading
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as per (7.33) [123]. Instead, the outer expectation corresponds to that of a discrete

random variable, which is given by

P̃PC =
1

KM

(NM)∑
j=1

(
M∑
i=1

EH

[
BGji :N

])
× P (Tj) =

(NM)∑
j=1

(
P̂j × P (Tj)

)
, (7.37)

where P (Tj) refers to the probability of jointly selecting the ordered channel columns

determined by Gj . The probabilities associated with selecting Gj can be computed

depending on the specific switching connectivity between the RF chains and the antenna

ports, and the particular channel characteristics. Specifically, P (Tj) can be decomposed

by following the chain rule of probability

P (Tj) = P

(
M⋂
i=1

selecting Gji

)
=

M∏
i=1

P

(
selecting Gji |

i−1⋂
r=1

selected Gjr

)
, (7.38)

where ∩ denotes the intersection of events. To simplify the derivation of the joint

probabilities in (7.38), this chapter concentrates on channels H adopting the form [11]

H = R
1
2 Z, (7.39)

where R ∈ CK×K is the deterministic channel covariance matrix and Z ∈ CK×N is a

matrix of i.i.d. random variables following zi,j ∼ CN (0, 1). Note that R is a diagonal

matrix with diagonal entries characterizing the large scale channel fading if the users

are placed sufficiently apart as detailed in (2.11) [11].

The above assumption entails that the probability of finding the t-th ordered statistic

Bt:N , t ∈ {1, . . . , N} at a given antenna is equal for all antenna elements N , which makes

computing the probabilities in (7.38) straightforward for a given connectivity matrix

C. An example of this derivation for N = 5 and M = 2 is provided in Appendix F

for completeness. Once the probabilities of selecting a given ordered channel column

combination P (Tj) in (7.37) are determined, an approximation to the analytical ergodic

capacity of AS systems with PC switching matrices can be expressed as

CPS−PC ≈ ET

[
log2 det

(
IK + ρP̃PCTTH

)]
. (7.40)
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Figure 7.4: Theoretical and simulated ergodic capacities (bits/s/Hz) vs. M . N =
8, K = 2 and ρ = 10 dB.

An alternative approximation to the ergodic capacity of PC switching matrices can

be derived by directly computing the expectation of the capacity over both the discrete

random variables Tj and T. In this particular case, the approximation of the ergodic

capacity is given by

CPS−PC ≈
(NM)∑
j=1

ET

[
log2 det

(
IK + ρP̂jTTH

)]
× P (Tj) , (7.41)

where P̂j is defined in (7.37).

The accuracy of the derived approximations can be observed in Fig. 7.4, which rep-

resents the ergodic capacity attained by the schemes considered in this chapter against

increasing M for a system with N = 8, K = 2 and ρ = 10 dB. Here, a small-scale MIMO

setup is considered for illustrative reasons since, as shown in Sec. 7.7, the differences

between the switching architectures vanish for large N . This figure also considers an

uncorrelated Rayleigh flat-fading channel and ignores the overheads associated with CSI

acquisition. In spite of this unfavourable assumption for the PB criterion, it can be seen

that the PB-AS approaches the performance attained of the instantaneous CSI-based

AS for different values of M , an observation consistent with previous works [23, 123].
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Fig. 7.4 also shows that only a slight performance loss is experienced for the switching

architecture with partial connectivity w.r.t. the FF scheme, which is also coherent with

the results obtained for N = 2M in the real propagation channels of [146]. The slight

performance loss can be explained by noting that, in general, there exists a large proba-

bility of selecting antennas with significant channel powers, even if these are not strictly

the largest ones as shown in Appendix F. This result combined with those obtained

in Sec. 7.7 motivate the employment of PB-AS with partial connectivity, especially for

LSAS where the ILs introduced by the switching matrices can be significant. Moreover,

Fig. 7.4 shows that the proposed approximations in (7.40) and (7.41) are able to capture

the performance loss produced by the partial connectivity architecture, hence validating

the approach adopted in this section.

7.6 Energy Efficiency with Insertion Losses

As highlighted throughout this Thesis, the enhancement of the communication’s

energy efficiency is a key driver for considering AS implementations in LSAS due to the

possibility of reducing the number of RF chains simultaneously active [61,146,148]. This

comes, however, at the expense of introducing additional ILs in the RF switching stage,

hence posing an energy efficiency trade-off that this chapter aims at characterizing. The

energy efficiency measured in bits/Joule/Hz can be expressed as [4, 57,61,116]

ε =
Rsum

Ptot
=

Rsum

PPA +MPdyn + PLO
, (7.42)

where Rsum refers to the sum rates in bits/s/Hz and Ptot is the total system power

consumption, which is decomposed as described in Sec. 2.1.3. Specifically, PPA = Pt
η is

the power consumed by power amplifiers (PAs) with efficiency η to produce an output

signal of Pt Watts. Moreover, Pdyn is the power consumed by the analog circuitry

required in each of the RF chains, and PLO denotes the power consumed by the local

oscillator.

To explicitly account for the impact of the ILs on the system’s energy efficiency,
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this chapter incorporates LIL directly in Pt above, that is, the RF switching matrix is

placed after the power amplifiers in the transmission chain [117, 118]. This entails that

power amplifiers in systems with AS will be required to produce output signals with

larger power to compensate for the ILs of the switching stage, i.e. PAS
t = P no−AS

t ×

LIL [117, 118]. While other hardware solutions such as placing the switching matrices

before the power amplifiers are certainly feasible, considering the impact of the ILs on

the resultant system’s energy efficiency also becomes more intricate. This is because

precise knowledge of the power amplifiers response, which is non-linear and component-

dependent, would be required to quantify the additional power required per RF chain.

Instead, the above consideration facilitates providing meaningful insights on the trade-

offs that arise when employing AS with the switching architectures considered in this

chapter, as shown in the following.

7.7 Results and Discussion

This section presents numerical results for characterizing the performance of the

switching architectures considered in this chapter. In particular, AS schemes based on

both PB and instantaneous CSI decisions are considered under uncorrelated Rayleigh

flat-fading channels. Moreover, this section shows the sum rates attained via dirty

paper coding (DPC) and for the more practical ZF precoder. The focus is placed on

characterizing the impact of varying the number of RF chains to provide guidelines for

determining their optimal number in AS systems implementing the realistic switching

architectures considered here. The results are obtained for LSAS, since the ILs and

complexity of the FF switching networks are critical in these systems due to both the

large number of RF chains and antennas deployed. For simplicity and without loss of

generality, the results obtained in the following consider that the power losses introduced

by the switching matrices correspond to those of the input-output combination with

largest IL, i.e. the critical signal path.

Fig. 7.5 represents the sum rates of the schemes considered in this chapter against

increasing number of RF chains M in a system with N = 128, K = 16 and ρ = 15
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Figure 7.5: Sum rates (bits/s/Hz) vs. M for DPC and ZF with FF and PC switch-
ing matrices. N = 128, K = 16, ρ = 15 dB and ηdl/ηcoh = 1.

dB. The instantaneous CSI is assumed to be acquired at no cost, i.e. ηdl/ηcoh = 1

is considered, while the impact of CSI acquisition is explained in subsequent results.

It can be observed that ZF approaches the performance of DPC as M grows, due to

the favourable propagation conditions experienced by LSAS [11, 12, 69]. The results

of Fig. 7.5 also show that there exists a very slight penalty when employing PB-AS

against the AS based on instantaneous CSI in LSAS, a phenomenon already observed for

small scale MIMO systems and for LSAS in realistic propagation environments [23,148].

Interestingly, it can also be observed that, independently of M , the performance of

PC-AS approaches that of the FF selection. This is occurs because, while not being

able to select the optimal antenna combination due to a limited switching connectivity,

there are numerous antennas combinations with a similar performance due to the large

number of antennas (channels) available to perform the selection.

The results of Fig. 7.6 illustrate the impact of considering a limited channel coherence

time and the need for training in AS for the same simulation of parameters of Fig. 7.5

with ηcoh = 200. This corresponds to a fast-varying communication channel [13]. With-

out loss of generality, Fig. 7.6 considers that 70% of the remaining time resources after

channel estimation are allocated to downlink transmission, i.e. ηdl = 0.7× (ηcoh − ηtr) in

(7.2), (7.6), (7.27a) and (7.28a), where ηtr is given by (7.11) and (7.14) for full-CSI and
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Figure 7.6: Sum rates (bits/s/Hz) vs. M for DPC and ZF with FF and PC switch-
ing matrices. N = 128, K = 16, ρ = 15 dB and ηcoh = 200.

PB-AS, respectively. Fig. 7.6 critically shows that full CSI acquisition becomes subopti-

mal and PB-AS becomes a more attractive approach when a realistic channel coherence

time is considered. This is because acquiring the instantaneous CSI to perform the

selection requires a larger training period, which results in a performance loss particu-

larly significant for reduced M . Instead, PB-AS can employ the NPM = N −M power

meters integrated in the analog stage for estimating the channel powers and, exploiting

channel reciprocity, for performing the selection without requiring accurate CSI for all

antennas. The results of Fig. 7.6 also indicate the most efficient ranges for selecting

M in the instantaneous CSI-based decision without power meters, since sudden rate

variations can be observed for increasing M due to the different training times required

as per (7.10). Specifically, the stepwise behaviour is a direct consequence of ηtr being

an integer multiple of K in (7.10), as per the multiplexed training operation detailed in

Sec. 7.2.3.

The results of Fig. 7.7 illustrate the sum rates against increasing values of N for

a system with M = 32, K = 16, ρ = 15 dB and ηcoh = 200. It can be observed that

increasingN does not always provide higher attainable rates for the case of instantaneous

CSI acquisition due to the larger training time required when M is fixed. Instead, it

can be observed that PB-AS strictly enhances the sum rates as N grows. Moreover,
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Figure 7.7: Sum rates (bits/s/Hz) vs. N for DPC and ZF with FF and PC switch-
ing matrices. M = 32, K = 16, ρ = 15 dB and ηcoh = 200.
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Figure 7.8: Insertion losses (dB) introduced by different switching architectures
vs. M . N = 128 and basic switching losses given in Table 7.1.

Fig. 7.7 also shows that the performance differences between FC and PC switching are

approximately preserved independently of N . Similarly to Fig. 7.6, the stepwise trend

is produced by the multiplexed training operation in (7.10).

Fig. 7.8 represents the ILs of (7.15) introduced by the FF and PC switching archi-

tectures considered in this chapter for N = 128 and increasing M . The basic switches

described in Table 7.1 are considered for implementing the switching network. The re-
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sults of Fig. 7.8 clearly show the benefits of considering PC architectures when compared

with the FF schemes, which motivates their employment when simultaneously consid-

ering their small performance loss depicted in Fig. 7.5-7.7. For instance, the ILs can

be reduced by up to 2.5 dB for M = N/2, which is the point with minimal IL for the

PC network and the specific case considered in [146]. This can be explained by noting

that TRF = 2 and TAN = 1 for M = N/2. Instead, implementing a larger M requires

additional RF switches at the output stage of the switching network as illustrated in

Fig. 7.2(b), hence introducing additional losses in the critical signal path. However,

note that considering a larger number of RF chains might also be required in realistic

systems for satisfying specific sum rate requirements.

Fig. 7.8 also shows that there are non-desirable areas where the power losses can be

substantially increased, if a FF architecture is preferred. As expected, the architecture

designed to minimize the power losses (FF-ML) introduces smaller ILs than those with

different criteria. Indeed, it can be observed that there are points where minimizing the

number of connections as per FF-MC also entails larger IL than both FF-ML and the

architecture with complete input-output connectivity (FF-FC). This counter-intuitive

behaviour can be explained by detailing the number of basic RF switches required at

the input switching stage, which is explicitly detailed in Table 7.2 for the illustrative

case of N = 32 and M = 6. Overall, the results of Fig. 7.8 provide meaningful insights

for the design of AS systems, since it can be observed that the ILs of different switching

architectures do not follow a monotonic trend with M . This behaviour, not considered

in the related literature, arises due to the differences in the ILs of the basic switches

and the specific number of ports TRF and TAN required at the input and output of the

switching matrices as analyzed in Sec. 7.3.

The total system power consumption Ptot in (7.42) is shown in Fig. 7.9 against

increasing values of M . Here, N = 128, Pt = 30 dBm and Pdyn = γ (Pt/100), i.e. γ

indicates the relative power consumption of each RF chain when compared with the total

transmission power. This approach is adopted to make the conclusions independent of

the specific transmission power, since the relative power consumption of the RF chains

when compared with the power consumed by the power amplifiers strongly depends on
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Figure 7.9: Total system’s power consumption vs. M with N = 128, Pt = 30
dBm and Pdyn = γ (Pt/100) for γ = {0.5, 5}.

the transmission power [5,60]. Fig. 7.9 considers γ = 0.5, which corresponds to a setup

where the PA power consumption generally dominates the total power consumption,

and γ = 5, where the circuitry power consumption dominates instead. Note that the

circuitry power consumption generally dominates in realistic systems such as those of

macro BSs with Pt = 46 dBm [5,60] and Pdyn = 1 W [4], which results in γ = 2.5.

The results of Fig. 7.9 illustrate the importance of reducing the ILs in the switch-

ing stage, since substantial power savings over FF-AS can be attained when employing

the PC architecture. Moreover, it can be observed that employing AS might be un-

favourable in systems where the power consumed by the PAs dominates (γ = 0.5), since

the additional PA power required to compensate for the additional ILs is not counterbal-

anced by the savings in the power consumption of the RF circuitry. In other words, the

most energy efficient option for FF-AS as per (7.42) may well be a MIMO system with

N = M , since the power consumption is reduced for N = M and the attainable rates

grow with M . Instead, significant enhancements in the total system power consumption

can be attained via PC-AS in systems where the RF power consumption dominates,

hence motivating their implementation in these setups.

The energy efficiency ε in (7.42) is shown vs.M in Fig. 7.10 for a ZF precoding system
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Figure 7.10: Energy efficiency ε vs. M for a ZF precoding system with N = 128,
Pt = 46 dBm, ηcoh = 200 and ρ = 15 dB.

with N = 128, K = 16, ρ = 15 dB, ηcoh = 200, Pt = 46 dBm, η = 0.38, Pdyn = 1 W and

PLO = 2 W [4,5,57,60]. Fig. 7.10 illustrates the benefits of employing both a switching

network with limited connectivity and relying on power estimates for performing the AS

decision. Specifically, it can be observed that the energy efficiency of the power-based

PC-AS is maximized for M ≈ 32, which can be explained by noting a) the significantly

reduced ILs when compared with smaller M in Fig. 7.8 and b) that a large portion of the

maximum attainable sum rates for M = 128 is already obtained for M ≈ 32 as shown

in Fig. 7.6. Note that, in spite of their reduced energy efficiency, the range M > 40 is

still of interest, since some systems may pose specific sum rate constraints that should

be met. Overall, Fig. 7.10 demonstrates the importance of considering the ILs in the

switching stage for energy-efficient system design.

7.8 Conclusions

This chapter has characterized the impact of implementing different RF switching

architectures in AS systems. The hardware features of a number of conventional FF

switching designs and RF switching matrices with reduced connectivity have been spec-

ified. This chapter has also characterized the performance loss introduced by these
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reduced-complexity architectures as well as relevant differences that should be consid-

ered when implemented in combination with power-based AS. Altogether, the results

obtained in this chapter motivate the employment of PC switching networks, particu-

larly for LSAS, in combination with power-based AS.

Critique: It should be noted that the theoretical performance analysis performed

in this chapter is only applicable to communication channels without correlation at the

BS and, therefore, a natural extension should consider more general channel models.

Moreover, the ideal assumption of having ideal hardware components in the parallel

power measurement chains has been adopted. Since low-quality components might be

employed in realistic implementations for minimizing the cost of these parallel chains,

accounting for hardware non-idealities seems necessary for determining the affordable

limits in the degradation of the power measurements.
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Chapter 8

Realistic Large Scale Antenna

Systems: Channel Measurements

and Hybrid Precoding Revisited

under Realistic RF Modeling

8.1 Introduction

The substantial increase in the number of antennas has motivated the development of

strategies such as those considered in Chapters 6 and 7 of this Thesis, where the essential

objective consists in reducing both the hardware and the signal processing complexity

challenges involved in the design of future communications systems. However, a vast

number of the conclusions that motivate the development of LSAS and low-complexity

analog-digital precoding systems for mmWave rely on theoretical assumptions that have

not been verified or do not hold in practice. For instance, the related literature con-

ventionally considers that massive MIMO channels adhere to the Rayleigh fading model

[11, 12, 69], or that there are no power losses in the analog stage of hybrid precoding

systems [20, 147, 193, 195, 264]. These observations motivate the contents introduced in

this chapter, which aim at bridging the gap between theoretical and practical commu-
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nications systems with a large number of antennas.

Pursuing the above-mentioned objective, this chapter commences by providing a

detailed description of measured large scale communication channels, whose analysis has

also constituted the focus of [21,148,265–267] and references therein. While this related

literature has mostly concentrated on evaluating the performance of linear precoding in

LSAS, this chapter complements and expands the conclusions derived in previous works

by relying on the measurements acquired in Bell Labs Stuttgart. Multiple aspects of the

radio channel such as inter-antenna correlation, average power received per antenna and

channel sparsity are studied. Moreover, the operation of reduced-RF designs is evaluated

in realistic propagation channels. Overall, particular focus is placed on assessing the

feasibility of reducing both the hardware and signal processing complexities of LSAS.

Subsequently, this chapter concentrates on hybrid analog-digital precoding and de-

tection schemes, which are essential in mmWave systems due to the reduced number of

degrees of freedom offered by the communication channel and the need of providing sub-

stantial beamforming gains [193]. However, the related literature generally disregards

the practical implications of signal processing in the RF domain [20, 147, 193, 195, 264],

which have been partly considered in [197, 268]. Instead, this chapter characterizes the

impact of considering realistic analog beamforming networks (ABFN) in the perfor-

mance of hybrid precoding schemes, hence providing useful insights for their design and

evaluation in practical systems.

8.2 Channel Measurements: Campaign and Analysis

The contents of this section aim at describing the technical parameters of the mea-

surements acquired by Dr. Vijay Venkateswaran and Dr. Pawel Rulikowski from Bell

Labs Dublin in cooperation with Bell Labs Stuttgart.

8.2.1 Measurement Campaign

The measurement setup is comprised of a BS array with N = 64 antennas and

a single-antenna mobile station (MS). The outdoor measurements were taken in the
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Figure 8.1: Overview of the measurement area in Bell Labs Stuttgart.

surroundings of the BL Stuttgart headquarters as illustrated Fig. 8.1. The red trace in

Fig. 8.1 represents the route followed by the MS throughout the set of measurements,

where a total of K = 14 different outdoor user positions separated by 5 − 10 metres

were recorded. The outdoor positions are subsequently combined to generate a multi-

user channel matrix, where each measurement represents an independent single-antenna

user [21, 148]. In each MS position, Npos = 9 consecutive channel measurements were

acquired and classified according to the relative position between the MS and the BS

into:

− 5 different user positions of line-of-sight (LOS) with a strong direct transmission

path.

− 5 different user positions of LOS with a significant number of multipath compo-

nents (partially blocked transmission).

− 4 different user positions of non-line-of-sight (NLOS) transmission.

As shown in Sec. 8.2.2, a number of channel metrics such as the number of significant

eigenvalues in the channel covariance matrix are coherent with this classification. The

results shown throughout this chapter are generally classified following the above channel

categorization.
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Figure 8.2: Schematic of the rectangular base station antenna array with N = 64
antennas.

The BS array is arranged in a rectangular topology as shown in Fig. 8.2. The

antenna elements are directional patch antennas with a 3 dB beamwidth of 115◦. The

antennas are distributed in Mv = 4 rows, which each row comprised of Mh = 16 antenna

elements. The inter-antenna spacing between adjacent rows of antennas is λ, whereas

the neighbouring column elements are separated by 0.5λ. Here, λ ≈ 11.5 cm represents

the wavelength. The mutual coupling between adjacent antenna elements is below −20

dB and they follow a ±45◦ cross-polarization. The measurements were acquired at an

operational frequency of 2.6 GHz occupying an approximate bandwidth of B = 18 MHz.

A total of Nsub = 300 subcarriers with a bandwidth of Bsub = 60 kHz are allocated in

the operational bandwidth.

The acquisition of the channel measurements is performed in an iterative manner

by simultaneously collecting the CSI of a group of Ng = 8 antennas over a time span

per group of Tg = 10 msec. This is required due to the limited number of RF chains

(M = 8) available in the measurement setup. A blank period of Tb = 10 msec, where

no CSI is acquired, is placed between different antenna group measurements. Based on

the above, an instantaneous realization of the global channel vector is acquired every

Tarray = (Tg + Tb) (N/Ng) = 160 msec. This procedure is subsequently repeated for

a number of channel acquisitions g, and the resultant channel estimate is obtained by

taking the expectation of the instantaneous channel realizations over an acquisition time

of Tmeas = gTarray. The time span, Tmeas, over which the expectation is taken is con-
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sidered to be smaller than the channel coherence time, which seems sensible due to the

static position of the MS and the lack of moving scatters in the surroundings. However,

the measurement procedure suffers from uncertainty, since the number of instantaneous

channel realizations g employed for computing the resultant channel estimates is un-

known.

8.2.2 Measurements Analysis

The acquired channel measurements are normalized in order to remove the path loss

effect and to perform a meaningful comparison with previously published results. Specif-

ically, the average channel power satisfies E
{
‖hl,k‖2

}
= N , where hl,k ∈ C1×N denotes

the baseband downlink communication channel for the l-th subcarrier of the k-th user,

and the expectation is taken over all N = 64 antennas and Nsub = 300 subcarriers [21].

In the following the subcarrier index, l, is omitted for ease of notation and the channel

subindex is left to denote the user number. The composite downlink communication

channel H ∈ CK×N can be subsequently expressed as H =
[
hT

1 ,h
T
2 , . . . ,h

T
K

]T
.

The acquired channel measurements are normalized in order to remove the path

loss effect and to perform a meaningful comparison with previously published results.

Specifically, the average channel power satisfies E
{
‖hl,k,n‖2

}
= 1, where hl,k,n ∈ C1×N

denotes the baseband downlink communication channel between the n-th antenna at

the BS and the k-th user, for the l-th subcarrier. The expectation in the previous

expression is taken over all N = 64 antennas and Nsub = 300 subcarriers of each

measurement instance [21]. In the following the subcarrier index, l, is omitted for ease of

notation and the channel subindex of hk ∈ C1×N is left to denote the user number. The

composite downlink communication channel H ∈ CK×N can be subsequently expressed

as H =
[
hT

1 ,h
T
2 , . . . ,h

T
K

]T
.

8.2.2.1 LOS and NLOS Measurement Classification

Fig. 8.3 validates the classification of the measurements in LOS and multipath-

dominant links performed based on the physical location of both the BS and the MSs.
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Figure 8.3: |E {hl} | vs. BS antenna index.

The results represent the average channel gain |E {hl} | for varying BS antenna indices.

The expectation is taken over all Nsub = 300 subcarriers and Npos = 9 consecutive

channel measurements recorded for a given user position, hence resulting in a total of

2700 distinct communication channels. Fig. 8.3 shows that |E {hl} | 6= 0 for the LOS-

dominant communication channels, whereas |E {hl} | ≈ 0 for the cases of LOS with

multipath and NLOS. This behaviour is consistent with the theoretical characterization

of LOS and NLOS communication channels, where the non-zero mean of a channel

with arbitrary statistics entails that there might be LOS propagation [85, 150]. The

theoretical implications of having non-zero mean channels should be considered, since

a large number of channel models assume |E {hl} | = 0 for deriving their conclusions

[150, 238]. It should be noted that, although present, the effect of the LOS component

in the channels classified as LOS with multipath components is not significant, i.e., a

behaviour similar to that experienced by NLOS channels is expected.

8.2.2.2 Temporal Stability

The analysis of the temporal stability in the acquired measurements for static po-

sitions of both the BS and the MS is performed in Fig. 8.4. Here, the instantaneous

normalization ‖hk‖2 = N has been employed to provide a meaningful comparison. A
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Figure 8.4: (a) MSE vs. measurement position index and, (b) |hk| vs. BS antenna
index for two consecutive measurements with identical BS and MS
physical positions and a randomly selected subcarrier.

slight variation in the channel coefficients of consecutive measurements could be ex-

pected for approximately static environments without moving particles in the surround-

ings [21]. However, Fig. 8.4(a) shows that the mean squared error (MSE)1 between all

the measurements acquired in a given physical position and a randomly selected channel

realization in the same position adopts a significantly high value for all K = 14 posi-

tions. Note that Fig. 8.4(a) represents the MSE averaged over the Nsub = 300 OFDM

subcarriers, N = 64 antennas and Npos = 9 measurements taken in the same physical

location. These results indicate that there exist significant differences in the channel

coefficients of consecutive measurements. This difference can be explicitly seen in Fig.

8.4(b), which shows the magnitude of the channel coefficients, |hk|, of two consecutive

channel responses for a random subcarrier index and physical location k ∈ {1, . . . ,K}.

Specifically, Fig. 8.4(b) shows that the amplitude of the channel coefficients substan-

tially differs for consecutive channel measurements acquired in the same physical loca-

tion. These notable temporal variations should be taken into account when considering

the accuracy of the acquired measurements since, for instance, there exists no guarantee

that the required relationship Tcoh > Tmeas is satisfied throughout the measurements.

1The employment of the mean squared error (MSE) as a metric to measure correlation is motivated
by the limited number of consecutive measurements acquired in the same physical position. In this
context, other metrics such as statistical correlation could be misleading due to the insufficient number
of acquired samples.

225



Chapter 8. LSAS: Channel Measurements and Hybrid Precoding Revisited

2 4 6 8 10 12 14 16
−5

0

5

Position along the array (antenna index)

N
o
rm
a
liz
e
d
 c
h
a
n
n
e
l 
p
o
w
e
r 
p
e
r 
a
n
te
n
n
a
 (
d
B
W
)

LOS

 

 

Row of antennas 1 
Row of antennas 2 
Row of antennas 3 
Row of antennas 4 

2 4 6 8 10 12 14 16
−2

−1

0

1

2

3

4

Position along the array (antenna index)

NLOS

 

 

Row of antennas 1 
Row of antennas 2 
Row of antennas 3 
Row of antennas 4 

2 4 6 8 10 12 14 16
−5

0

5

Position along the array (antenna index)

LOS with multipath

 

 

Row of antennas 1 
Row of antennas 2 
Row of antennas 3 
Row of antennas 4 

(a)

(b)

(c)

Figure 8.5: Normalized channel power (dBW) vs. column antenna index for the
Mv = 4 rows of the BS planar array for (a) LOS, (b) NLOS and, (c)
LOS with multipath scenarios.

Still, a number of results and conclusions derived in this chapter seem to be consistent

with other existing literature results, which suggests that the measurement procedure

was valid. This uncertainty should be resolved in future measurement setups for the

sake of accuracy.

8.2.2.3 Spatial Power Variation along the Antenna Array

The results of Fig. 8.5 show the variation of the normalized channel power in dBW

for different BS antennas. This figure considers a composite channel comprised of K = 4

simultaneous users with similar transmission characteristics, namely, LOS, NLOS and

LOS with multipath, and it represents the average channel power for the Nsub = 300

system subcarriers. For visual convenience, the normalized channel power is shown for

each row of antennas, where each row has Mh = 16 antennas as depicted in Fig. 8.2.

Note that the results shown of this figure can be directly compared with those of Fig.
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1(c) and (d) in [148].

Fig. 8.5 shows that there exists a substantial variation in the channel power of

different antennas. This has direct implication in the objective of reducing the number

of RF chains, since it suggests the possibility of directly deactivating the antennas that do

not significantly contribute towards the communication. This phenomenon was already

observed in [148], where the power variations of uniform linear array (ULA) are instead

smoother than in the measurements acquired in this work. This spatial fading could

be produced by the larger antenna aperture of LSAS, which makes antennas placed

farther apart to receive signals from different scattering clusters [269]. Considering that

the horizontal inter-antenna spacing is identical in both scenarios, providing a sensible

explanation for this phenomena requires further investigation. Interestingly, Fig. 8.5(a)

shows that the relative power variation is closer to 10 dB in the scenarios with strong

LOS transmission, which is larger than in the NLOS scenario shown in Fig. 8.5(b), where

the largest power variation is smaller than 7 dB. The larger power variation observed in

the LOS setup is consistent with the results of [148]. Moreover, the results of Fig. 8.5

indicate that the power of the communication channels is similar for vertically collocated

antennas, which suggests that their channels might be correlated. Note that this effect

is more pronounced for the scenarios with LOS components.

8.2.2.4 Channel Statistical Properties

The correlation between multiantenna channels is explicitly represented in Fig. 8.6,

where the magnitude of the entries in the channel covariance matrix |Rk| = |E
{
hH
k hk

}
|

of a random user k ∈ {1, . . . ,K} experiencing a NLOS condition is shown. The spatial

covariance matrix Rk is a function of the physical scattering media and the antenna

geometry [80, 270, 271]. Note that, although not shown for brevity, a similar structure

can also be observed for the communication channels with LOS components and other

users. To obtain this figure, each of the subcarriers are considered as independent

channel realizations [21] and sharing similar channel statistics. This strong assumption

is adopted due to the limited number of channel measurements and will be removed in

future studies. Fig. 8.6 shows that there exists a significant inter-antenna correlation
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Figure 8.6: Magnitude of the entries of the channel covariance matrix Rk =
E
{
hH
k hk

}
of a randomly selected user k with NLOS propagation.

that mostly depends on the relative physical position between radiating elements as

indicated by the peaks in the off-diagonal elements of Rk. Furthermore, this correlation

also exists in the elevation domain (between different rows of antennas) in spite of the

increased inter-antenna distance λ to prevent this effect. For instance, it can be seen

that there is a substantial correlation between antenna elements 1 and 17, which are

vertically adjacent as shown in Fig. 8.2. This suggests a lack of scattering clusters in the

elevation domain. The significant power variations experienced in the diagonal entries

are also consistent with the results shown in Fig. 8.5.

The impact of both the inter-element correlation and the inter-antenna channel power

variations on the eigenvalue distribution of the channel covariance matrices is shown

in Fig. 8.7. This figure considers K = 4 users and a separable Kronecker channel

model to derive the global channel covariance matrices of the LOS, NLOS and LOS

with multipath scenarios considered in this chapter, since it has been shown to provide

a compelling approximation in realistic scenarios [150, 272]2. Fig. 8.7(a) shows the

summatory function of the ordered eigenvalues for the acquired channels, whereas Fig.

2It should be noted that the accuracy of the Kronecker channel representation does not affect the
conclusions derived in this section.
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Figure 8.7: Summative eigenvalue function (%) of the channel covariance matrices
vs. number of selected eigenvalues of the acquired measurements with
(a) noise, and (b) without noise.

8.7(b) is obtained by eliminating the eigenvalue part that is assumed to correspond to

the measurement noise. For this, the practical consideration that the smallest channel

eigenvalue corresponds to noise in the measurement setup has been adopted. The results

demonstrate that a reduced percentage of eigenvalues represent a significant proportion

of the cumulative total, which hints the possibility of employing more intricate MIMO

techniques for reducing the number of RF chains [103]. As expected, this effect is more

pronounced for the LOS scenario when compared with the other setups, where the

eigenvalues are more distributed.

Fig. 8.8 shows the cumulative distribution function (CDF) of the channel singular

value spread, κ, for the different communication channels considered in this chapter and

K = 4 simultaneous users. The singular value spread is defined as [21]

κ =
λ2

max (H)

λ2
min (H)

, (8.1)

where λmax and λmin denote the maximum and minimum singular values of the channel

matrix H ∈ CK×N , respectively. The above singular value spread can be obtained as

the result of the channel singular value decomposition

H = UΣVH, (8.2)
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Figure 8.8: CDF of the singular value spread κ for (a) LOS, (b) NLOS and (c)
LOS with multipath scenarios. K = 4.

where the unitary matrices U ∈ CK×K and V ∈ CN×N contain the left and right

singular vectors of H respectively, and the entries of the diagonal matrix Σ ∈ CK×N

correspond to the channel singular values λk, k ∈ {1, . . . ,K}. The singular value spread

can be employed to measure the difficulty of spatially multiplexing the users to be simul-

taneously served [21]. In other words, κ ≈ 1 indicates that the users have approximately

orthogonal communication channels, whereas κ� 1 indicates that the users are difficult

to separate spatially.

The results of Fig. 8.8 show that there exists some degradation w.r.t. ideal Rayleigh

fading channels in the attainable singular value spreads for a large number of a antennas,

which is coherent with the results derived in [21]. The results are obtained for N =

{4, 32, 64} antennas allocated at the BS and P = 20 random antenna combinations per

channel realization have been employed to compute the resultant CDF for the cases

N = {4, 32}. The loss in channel orthogonality is particularly noticeable for the LOS

scenario, where the degradation is larger than 5 dB independently of the number of BS

antennas employed. Still, the results corroborate that a good spatial separation can be

achieved when increasing the number of antennas in the considered scenario with K = 4

users, a conclusion shared with [21], whose results can be directly compared with the

ones presented here.
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8.3 LSAS with a Reduced Number of RF Chains in Real-

istic Propagation Scenarios

The previous section shows that the measured large scale microwave channels have

a certain degree of sparsity due to the existing inter-antenna correlation and the large

channel power variations along the antenna array. The exploitation of channel sparsity

for reducing the number of RF chains has attracted considerable attention in the past

few years [80,114,192,193,273–275]. The exposition of this section is divided depending

on the domain where the channel sparsity is observable: 1) AS strategies that exploit

the sparsity in the antenna domain via H, and 2) the more generic eigenspace schemes

that exploit the limited number of channel degrees of freedom. Note that the concept of

degrees of freedom employed in [149,150] differs from the conventional one that refers to

the number of parallel data streams that can be simultaneously sustained. Specifically,

[149] employs this term to refer to the number of non-zero entries (or non-negligible ones)

of the equivalent channel matrix when expressed in the virtual domain, while it also

corresponds to the number of entries with non-negligible variances in the independent

matrix Hind ∈ CK×N of the more generic Unitary-Independent-Unitary (UIU) channel

model [150]

Hind = UH
RHUT. (8.3)

Here, the columns of UR ∈ CK×K and UT ∈ CN×N are unitary matrices(
URUH

R = IK and UTUH
T = IN

)
given by the eigenvectors of E

{
HHH

}
and E

{
HHH

}
,

respectively [150]. The entries of Hind are zero-mean, i.i.d. and can have different vari-

ances. In general, a channel is deemed to be sparse is a large number of entries in |Hind|

are zero or negligible when compared with the largest ones.

Remark: It can be shown that UT can be approximated as a submatrix of the

discrete Fourier transform (DFT) matrix for the case of critically spaced (d = 0.5λ)

uniform linear antenna arrays with a large number of antennas [80, 273]. Indeed, the

unitary DFT matrix, EDFT ∈ CN×N , forms a basis for the N -dimensional spatial signal

space in this particular case. For this reason, discrete lens antenna arrays such as
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Continuous Aperture Phased MIMO (CAP-MIMO) that perform this transformation in

the analog domain are proposed to be employed at millimeter wave frequencies [273].

Note that this strategy requires the employment of RF switching matrices as described

in Chapter 7, since only a subset of antenna feeders should be employed depending on

the specific propagation conditions.

8.3.1 Antenna Selection (AS)

The results shown in Fig. 8.5 and Fig. 8.6 indicate that there exist substantial dif-

ferences in the channel power of the antennas allocated at the BS. This effect seems

intrinsic to LSAS, since the power variation is more pronounced for large antenna aper-

tures. This motivates the selection of a reduced subset of antennas for transmission

based on the instantaneous CSI [148], which constitutes the subject of this section.

Fig. 8.9 shows the attainable achievable rates with zero forcing (ZF) precoding and

AS when a limited number of active RF chains are considered and K = 4 users with

similar channel conditions and equal power allocation are simultaneously served. Here,

the AS is based on choosing the antennas with largest average channel power over

all communication subcarriers, i.e. the power-based AS described in Chapter 7. To

facilitate direct comparison with [148], the downlink system model for AS follows the

model already introduced in Sec. 7.2, i.e.

y =
√
ρKH[M]x + n, (8.4)

where the involved variables have been already introduced in Sec. 2.1 and Sec. 7.2, M

denotes the subset of antennas selected, and ρ = −5 dB as per [148]. Note that the

cardinality of M represents the number of active RF chains M . Although suboptimal,

this strategy is able achieve a significant performance of the near-optimal convex selec-

tion at a significantly reduced complexity [148]. The results of Fig. 8.9 show that the

performance improvements offered by AS strongly depend on the propagation scenario,

which is coherent with the results obtained in [148]. Specifically, it can be seen that

relative performance gains close to 15% for the LOS scenarios can be achieved when
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Figure 8.9: Ergodic spectral efficiency with ZF precoding (bits/s/Hz) vs. M with
and without AS for LOS, LOS with multipath and NLOS channels.

M = 32 RF transceivers are active, whereas these gains are reduced to 4% and 10%

for the NLOS and LOS with multipath scenarios respectively. Based on these results

and those obtained in [148], it can be concluded that a sensible selection of the active

transceivers can provide noticeable performance improvements. Moreover, these perfor-

mance gains or, equivalently, the reduction in the number of RF transceivers required

to achieve a given performance are more significant for larger number of antennas at the

BS [148].

At this point it should be pointed out that energy-efficient LSAS should probably

not rely on activating a fixed number of antennas but rather on adapting the number

of simultaneously active antennas, based on the system load and propagation condi-

tions. This is because, for a given number of users, a large percentage of the maximum

achievable rates might be obtained by employing a reduced number of RF transceivers

and antennas. A clear example of this observation can be seen in Fig. 8.9, where more

than 75% of the maximum achievable rates obtained with M = N = 64 active antennas

can be achieved by just activating M = 32 antennas for all considered scenarios. In

other words, a large percentage of the maximum achievable rates can be achieved by

simple deactivating a number of antennas, even without optimizing the active subset as

in traditional AS. Indeed, this observation applies to a large variety of scenarios such
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those shown in [11,21,81,148].

While intuitively simple, a real implementation of the AS concept has several hard-

ware and system-related impediments. From the hardware point of view, the main tech-

nical complication of performing an AS with a reduced number of RF transceivers is the

implementation of a large number of RF switches, which can be particularly complex

for the considered system dimensions and might induce signal quality losses as detailed

in Chapter 7 [148]. This is the reason why [148] focuses on a solution with M = N RF

chains and single-pole single-throw (SPST) switches that are activated and deactivated

depending on the selected antenna (see Fig. 8.10(a)). While this alternative is more

flexible due to the possibility of employing a different number of antennas depending on

system conditions such as the user load, the design of an efficient RF switching matrix

should not be discarded due to the potential of reducing the number of RF transceivers

as detailed in Chapter 7. This alternative design is schematically shown in Fig. 8.10(b)

and (c), where it can be seen that the switching matrix is allocated after the M < N

RF transceivers in the chain. For convenience, the power amplifiers (PAs) have been

separated from the RF transceivers, since their location can have a significant impact

in the system design and resultant performance.

The number of amplifiers could be increased to NPA = N and placed after the switch-
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ing matrix to minimize the RF switching losses as shown in Fig. 8.10(c). This contrasts

with the design shown in Fig. 8.10(b), where the switching operation is performed after

the signals are amplified for transmission. This solution would also place less stringent

linearity requirements in the switching matrix, since the digital predistorsion technique

employed in the PA could be extended to the switching matrix for mitigating the signal

degradation as explicitly represented in Fig. 8.10(c). The selection of one alternative or

the other depends on a number of parameters such as the specific power requirements,

the number of antennas and RF transceivers available, the economical cost, etc.

8.3.2 Eigenspace Selection

This section aims at reducing the number of RF chains based on the sparsity on

the equivalent channel Hind in (8.3). This type of channel sparsity does not only rely

on exploiting the low power of the communication channels from a subset of antennas,

but also on other aspects such as the inter-antenna correlation or the limited number of

physical scatterers. Similarly to (8.4) and incorporating (8.3), the signals received by

the mobile stations after linear precoding can be equivalently expressed as [273]

y =
√
ρKHFu + n =

√
ρKH (UT)[M̃] FBBu + n =

√
ρKH̃indFBBs + n, (8.5)

where F ∈ CN×K = FRFFBB is the analog-digital precoding matrix and u ∈ CK×1

are the user symbols. In the previous expression, FBB ∈ CM×K represents the digital

baseband precoding matrix and FRF ∈ CN×M characterizes the analog signal processing

as detailed in Sec. 8.4.1. Moreover, FRF = (UT)[M̃] ∈ CN×M represents a submatrix

of UT in (8.3) built by selecting the columns with largest norm M̃ of the equivalent

channel Hind = HUT. In the previous expression, it has been considered that UR ≈ IK,

which occurs when the users are sufficiently separated and it has been verified in the

measurements [81]. The above selection is referred to as eigenspace selection in the

following, since the selection is performed based on the equivalent channel Hind = HUT.

Ideally, the semi-unitary matrix (UT)[M̃] could be implemented in the analog domain

via phase shifting networks as schematically represented in Fig. 8.11, hence effectively
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Figure 8.11: Block diagram of a transceiver architecture with a reduced number
of RF chains via phase shifting network.

requiring M ≤ N RF chains for transmission [196]3. Intuitively, |M̃| = M represents

the selected number of distinct angles of arrival (AoA) of the signals impinging into

the large scale antenna array when a ULA with an excessive number of antennas is

implemented at the BS [80, 103, 149, 150]. Under the same model, the total number of

distinct angles of arrival (AoA) is given by Narrival.

The above observations are supported by the results shown Fig. 8.12, where the

ergodic achievable rates of a BS serving (a) K = 4 users and (b) K = 8 users experi-

encing both NLOS and LOS with multipath channels are shown for increasing number

of active RF chains. The results have been obtained for an average SNR per user of

ρ = −5 dB in (8.5) [148], ZF precoding in the baseband, and assuming that the channel

statistics do not vary for the Nsub = 300 subcarriers and the Npos = 9 consecutive

channel measurements acquired in each user position. While it is acknowledged that

the above are strong assumptions, they are enforced by the limited number of available

measurements. It is also remarked that the eigenspace selection does not correspond to

physically separated beams as considered in [103], since the more generic formulation

developed in [150] is leveraged to derive the equivalent channel representation and se-

lect the channel eigendirections that result on the largest received power as per (8.5)

[148]. Fig. 8.12 shows that the rates attainable via AS can be further enhanced by em-

ploying eigenspace selection, and that the performance differences are maximized for an

intermediate number of active RF chains. Note that the eigenspace selection strategy

3While realizable, RF signal processing performing variable modifications of the signal amplitudes
such as those necessary for implementing FRF = (UT)[M̃] are not practical. This is because both

variable power splitters and phase shifters are required in general. Therefore, the results shown in the
following constitute an upper bound of the realistic performance that can be achieved with more realistic
hardware designs.
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Figure 8.12: Ergodic ZF achievable rates vs. M for different reduced-RF schemes
and ρ = −5 dB. (a) K = 4 users and (b) K = 8 users.

requires either the implementation of a lens combined with an RF selection procedure

similar to that of AS when the unitary matrices UT in (8.3) are fixed (e.g., ULAs with

a large number of antennas), or the design of an analog feeder network comprised of

phase shifters together with power splitters and combiners as detailed in Sec. 8.4.

At this point it should be noted that, in spite of its potential benefits, performing

signal processing operations in the RF domain to reduce the number of RF chains in-

troduces a number of challenges that are conventionally ignored in the related literature

[20,147,193,195,264]. For this reason, the following section aims at providing a realistic

model for hybrid analog-digital precoding systems.

8.4 Hybrid Analog-Digital Precoding Revisited under Re-

alistic RF Modeling

Up to this point, the conventional assumption adopted in the literature relying on

that no power losses are experienced in the RF stage of hybrid precoding systems has

been followed [20,147,193,195,264]. However, this section proposes to model the ABFN

as a bank of elementary RF components. The S-parameter representation of fully-

connected ABFN (FC-ABFN), comprised of power combiners, power dividers and phase
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shifters, reveals that there are significant power losses even when ideal components are

considered – a feature commonly ignored in the related literature and that promotes the

implementation of alternative ABFN [197,248]. Subsequently, the insertion losses (ILs)

found in real analog hardware components are incorporated for assessing the effective

performance of hybrid precoding systems. The models and results presented in this

section are supported by the detailed electromagnetic study of hybrid architectures

implemented in [197] and provide a realistic framework for performing a fair comparison

between hybrid schemes and fully-digital solutions.

8.4.1 Hybrid Precoding Systems

Consider a BS comprised of N antennas transmitting towards K ≤ N single-antenna

users. As already introduced in (2.1) and throughout this Thesis, this system can be

characterized as

y = Hx + n = GHx + n, (8.6)

where the relevant variables are defined in Sec. 2.1. Here, gH
k collects the frequency-flat

channel gains between the BS antennas and the k-th user, where gk = R
1
2
k zk denotes

the k-th column of G ∈ CN×K [80]. Here, zk ∈ CN×1 ∼ CN (0, IN ) and Rk ∈ CN×N

represents the channel covariance matrix. The transmitted signal in hybrid analog-

digital precoding systems can be decomposed as [193]

x = Fs = FRFFBBu, (8.7)

where u ∈ CK×1 ∼ CN (0, 1
K IK) comprises the modulated data symbols and F ∈ CN×K

is the composite precoding matrix. Here, FBB ∈ CM×K is the digital baseband pre-

coding matrix and FRF ∈ CN×M characterizes the ABFN. An illustrative example of

a hybrid precoding system is shown in Fig. 2.13. The signal-to-interference-plus-noise

ratio (SINR) of the k-th user is given by [215]

γk =
|gH
k fk|2∑

i 6=k |gH
k fi|2 + σ2

, (8.8)
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where fk ∈ CN×1 represents the k-th column of F. The ergodic sum rates in bits per

second can be expressed as [215]

R = BSe = B

K∑
k=1

E {log2 (1 + γk)} , (8.9)

where B denotes the system bandwidth and Se represents the sum spectral efficiency.

At this point it should be noted that traditional hybrid system models normalize

the composite precoding matrix F for satisfying a specific sum power constraint and

subsequently apply additional constraints to the RF precoder FRF. Instead, this section

aims at deriving the constraints of the RF precoder FRF based on a S-parameter analysis

of the specific hardware implementation of the ABFN. Specifically, ‖FBB‖2F = K is

imposed and ρ , K
σ2 . The above constraints guarantee a fair comparison between hybrid

and fully digital systems (FRF = IN ).

8.4.2 Fully-Connected Analog Beamforming Network

The architecture of a FC-ABFN is shown in Fig. 8.13, where three stages can

be clearly identified: a first one comprised of power dividers where each of the

M input signals is divided into N equal-power outputs characterized by the matrix

FD ∈ C(M ·N)×M , a subsequent one where M · N signals are phase shifted represented
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by FPS ∈ C(M ·N)×(M ·N), and a final stage where M signals are combined with power

combiners and coupled to N antenna ports characterized by FC ∈ CN×(M ·N). Based on

the above and in order to offer a complete view of the ABFN’s behaviour, the analog

beamforming matrix is decomposed as [197]

FRF = FC · FPS · FD. (8.10)

At this point it is noted that FRF is inherently defined by FPS, since both FC and FD are

fixed as shown in the following. A common design criterion for FPS consists in selecting

phase shifting values according to the transmit array response vectors at the angles

of departure from the transmitter [193, 197]. However, in general the specific phase

shifting values FPS can be obtained following multiple design criteria whose exhaustive

description is out of the scope of this Chapter, since they do not modify the conclusions

derived in the following [20,80,192,193].

Note that the decomposition in (8.10) is performed in the RF domain. Therefore,

an accurate description of their operation should be based on understanding the RF

characteristics of the specific components. For this reason the signal distribution in FRF

is defined based on the S-parameter representation of the hardware components involved

in FC, FPS and FD. Specifically, FD, which is comprised of Wilkinson power dividers

[248], can be modeled following a block diagonal structure

FD =

√
1

LSN



1N 0N . . . 0N

0N 1N . . . 0N
...

...
. . .

...

0N 0N . . . 1N


, (8.11)

where LS corresponds to the substrate power loss [248], and 1T ∈ NT×1 and 0T ∈ NT×1

represent the all-ones and all-zeros vectors respectively. In the sequel the substrate

losses are referred to as static power losses, since they only depend on the loss tangent

and the dielectric constant [248]. The phase shifting network matrix FPS is a diagonal
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matrix characterized by

FPS =
√

1/LPS · diag ([f1,1, f2,1, . . . , fN,M ]) , (8.12)

where LPS denotes the static power losses introduced by each phase shifter, and the

coefficient fi,j , ∀ i ∈ {1, . . . , N} and j ∈ {1, . . . ,M} corresponds to the i, j-th phase shift

of FRF normalized to satisfy ‖fi,j‖ = 1. The combining matrix FC can be expressed as

FC =

√
1

LCM
[diag (1N ) , . . . ,diag (1N )] . (8.13)

With respect to the losses in the combining stage, there are two dominant factors: First,

LC represents the static power losses introduced by the power combiners. Secondly, the

S-parameter representation of passive RF components reveals additional losses in the

form of the scaling coefficient 1/
√
M in (8.13). In other words, the adaptive nature

of FBB and the data symbols produce phase and amplitude mismatches in the signals

at the input of the power combiners, hence introducing a loss in the signal combining

process - an aspect not often considered in the related literature. This loss is referred

to as dynamic power loss and it should be remarked that it arises even for lossless

(ideal) analog hardware components [248]. The consideration of the dynamic power

losses entails that, in contrast with fully-digital precoding, the power amplifiers will

have to compensate for substantial signal-dependent losses in order to guarantee a given

transmission power. Indeed, (8.13) manifest power losses that scale linearly with M in

ideal FC-ABFN.

8.4.3 DFT Analog Beamforming Networks via Butler Matrices

While fully-connected networks allow designing arbitrary ABFN, the above discus-

sion has revealed that power combiners introduce substantial power losses. To alleviate

these losses, 4-port hybrid directional couplers can be considered instead of power com-

biners [248]. 4-port hybrid couplers can be seen as a variation of 2-point DFT, hence

enabling the implementation of higher order DFTs in the RF domain by stacking multi-
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Figure 8.14: Block diagram of a 4× 4 Butler matrix.

ple hybrid couplers and phase shifters consecutively [80,154]. Indeed a variation of this

approach, commonly referred to as Butler matrix, has been employed to generate orthog-

onal beams with minimal loss [80,154]. An illustrative example of a 4× 4 Butler matrix

is shown in Fig. 8.14, where the conventional structure comprised of NHYB = log2 (N)

and NPS = log2 (N)− 1 (N ≥ 2) hybrid coupling and phase shifting subsequent stages

can be observed, respectively. Based on the above, FRF can be expressed in the case of

Butler matrices as

FRF =
1√

(LPS)NPS (LHYB)NHYB

E
(M)
DFT, (8.14)

where LHYB are the static power losses introduced by each hybrid power coupler and

E
(M)
DFT ∈ CN×M is a submatrix of the EDFT ∈ CN×N DFT matrix [80]. For ULAs, EM

is defined by approximating Rk by a circulant matrix Ck and selecting the eigenvectors

corresponding to its largest eigenvalues, since the eigenvectors of Ck form a DFT matrix

[80]. For simplicity, this chapter ignores the additional static ILs introduced by the

switching matrix required in Butler-based designs, since a detailed analysis of these

power losses is intricate and can be found in Chapter 7.

8.4.4 Static Insertion Losses (IL)

The IL introduced by the additional RF components employed for hybrid beamform-

ing should be incorporated into a realistic system model for deriving the additional power

gains required in the RF stage and preserving the same output power of a fully digital

precoding solution. Illustrative values of these signal-independent losses are shown in

Table 8.1. It should be highlighted that, in general, the IL introduced in the mmWave

band grow with the frequency of operation and that the values of Table 8.1 correspond
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Table 8.1: Orientative insertion losses (IL) of the hardware components employed
in the design of analog beamforming networks.

- mmWave Sub 5 GHz

Three-port power dividers / combiners
(
L̄{S,C}

)
0.6 dB [276] 0.5 dB [277]

Hybrid couplers 0.5 dB [278] 0.15 dB [279]

Phase shifters 0.5 dB [280] 3.5 dB [281]

to the Ka frequency band.

In the following it is considered for simplicity that the (T + 1)-port power combiners

and dividers required in large ABFN are built by concatenating log2 (T ) three-port

structures [248]. Therefore, the overall static losses for the splitting and combining

stages are given by LS,dB = L̄S log2 (N) and LC,dB = L̄C log2 (M), where both L̄S and

L̄C are provided in Table 8.1.

8.4.5 Energy Efficiency

While reducing the number of RF transceivers, hybrid precoding schemes simulta-

neously incur in additional power losses as detailed in Sec. 8.4.2 and 8.4.3. A relevant

reason for reducing the number of active RF chains is enhancing the transmission’s en-

ergy efficiency, which constitutes the main subject of study in this Thesis. In coherence

with the models introduced in Sec. 2.1.3, this chapter defines the energy efficiency as [4]

ε =
R

Ptot
=
B
∑K

k=1 E [log2 (1 + γk)]

PPA +MPdyn + PLO
bits/Joule, (8.15)

where Ptot expressed in Watts (W) refers to the total power employed for transmission

and PPA = Pout/η denotes the power consumed by a power amplifier with efficiency

η = 0.39 to produce a signal output power of Pout = 40 W [4]. Note that the effective

output power of realistic hybrid precoding schemes will be reduced when compared with

their fully-digital counterparts due to both dynamic and static power losses. Moreover,

Pdyn = 1 W and PLO = 2 W denote the power consumed by each RF chain and the

frequency synthesizer respectively, derived by elaborating the values in [4].
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8.4.6 Results and Discussion

This section characterizes the performance and energy efficiency of realistic ABFN.

Although the conclusions derived in the following can be applicable to a vast number

of hybrid precoding designs, this section concentrates on the precoding scheme referred

to as joint spatial division and multiplexing (JSDM) [80], since it admits both fully-

connected and DFT-based designs. A ULA is considered and the one-ring channel

correlation model for microwave frequencies is adopted, where the i, j-th entry of Rk is

given by [80]

{Rk}i,j =
1

2∆

∫ ∆

−∆
ej

2π
λ
d(i−j) cos(ϑ+θ)dϑ, (8.16)

where d, ∆ and λ denote the inter-antenna spacing, angular spread and the wavelength

respectively. Moreover, θ represents the central azimuth angle between the BS and the

users. Similarly to [80], d = 0.5λ, ∆ = 15◦ and three user groups comprised of Kg = 4

single-antenna users each with θ1 = −45◦, θ2 = 0◦ and θ3 = 45◦ are considered. ZF

precoding with perfect channel state information is implemented in the digital domain

and bg is defined as the number of RF chains in the ABFN dedicated to serve the users in

group g, which depends on the eigenvalues of Rk [80]. Without loss of generality, asym-

metric power ratios at the output of the power dividers and a sub 5 GHz transmission

are considered in this section, since the general conclusions and observations derived in

this chapter are independent of the operating frequency. However, note that propaga-

tion [20], static ILs and RF power consumption at mmWave frequencies is different from

those below 5 GHz, which will shift the specific values shown in the sequel.

Fig. 8.15 considers N = 64 and shows the sum spectral efficiency against increasing

ρ for a fully digital precoding system and a hybrid JSDM system implemented via

both DFT and FC-ABFN (M = 32). The results depicted in Fig. 8.15 characterize

the performance loss experienced by the realistic FC-ABFN even when ideal analog

hardware components are considered, which can be explained by the dynamic power

losses introduced by the signal combiners. The performance degradation becomes even

more pronounced when the static IL are considered, making a realistic DFT network

outperform the FC-ABFN for a large range of ρ thanks to its reduced hardware losses.

244



Chapter 8. LSAS: Channel Measurements and Hybrid Precoding Revisited

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

ρ (dB)

S
u
m
 s
p
e
c
tr
a
l 
e
ff
ic
ie
n
c
y
 (
b
it
s
/s
/H
z
)

 

 

Fully digital precoding
Unrealizable fully−connected ABFN
Ideal fully−connected ABFN without static power losses
Realistic fully−connected ABFN of (8.10)
Ideal DFT ABFN without static power losses
Realistic DFT ABFN of (8.14)

Figure 8.15: Sum spectral efficiency (bits/s/Hz) vs. ρ. N = 64, K{1,2,3} = 4,
b{1,3} = 10 and b2 = 12.
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Figure 8.16: Sum spectral efficiency (bits/s/Hz) vs. ρ. N = 128, K{1,2,3} = 4
and varying number of RF chains.

In this context, the results of Fig. 8.15 also allow concluding that hybrid coupler based

DFT ABFN designs will be more spectrally efficient than FC-ABFN for large M . This

is because, as detailed in Sec. 8.4.2, the latter architecture introduces power losses that

scale proportionally to M even when ideal analog hardware components are considered.

Fig. 8.16 shows the sum spectral efficiency of realistic hybrid precoding schemes

against ρ in a system with N = 128 and different M . It can be observed that the

relative performance between DFT-based designs and FC-ABFN depends on both M
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and ρ. Moreover, Fig. 8.16 shows that a sensible selection of M should consider the

power losses’ impact on the performance. For instance, it can be seen that while M =

64 offers significant performance benefits over other alternatives for the DFT-based

implementations, both M = 32 and M = 64 offer a similar performance for the case of

FC-ABFN. This can be explained by noting that while implementing a larger M allows

for improved flexibility in the hybrid design [193], the network losses of FC-ABFN also

grow with M as per (8.13), an aspect not quantified in the related literature.

Fig. 8.17 represents the energy efficiency of the systems considered in Fig. 8.16 with

B = 20 MHz. The energy efficiency trends allow characterizing the essential trade-off

offered by hybrid schemes: while a largeM generally allows an increased design flexibility

[193], the overall power consumption is increased due to the additional analog hardware

components required as detailed in Sec. 8.4.5. Overall, it can be observed that, while

far from the fully digital system energy efficiency, hybrid schemes with reduced M are

still capable of offering energy efficiency gains over those with large M for different ρ’s,

since their reduced power losses are able to compensate for their theoretical performance

degradation.
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8.5 Conclusions

In this chapter, a set of results and implications in the design of LSAS based on the

set of measurements acquired in Bell Labs Stuttgart have been presented. In particular,

the acquired measurements indicate that a) the communication channels of different

antennas experience large power variations depending on their position, which suggests

the possibility of selecting a subset of antennas for transmission without significant per-

formance losses. Based on the acquired channel measurements and previous results, it

has also been argued that b) employing a flexible scheme that deactivates a number of

antennas depending on the communication conditions could significantly improve the

system’s energy efficiency. Moreover, it has been shown that c) the communication

channels can be considered sparse depending on the specific characteristics of the prop-

agation links between the BS and the mobile users. However, the results shown in this

chapter indicate that channel sparsity is not a general characteristic of microwave chan-

nels. A number of alternatives to exploit channel sparsity, which is expected to be more

significant at higher frequencies, and simplify the system design have been described.

Overall, a larger number of controlled channel measurements is required to assess the

feasibility of the reduced-RF alternatives considered in this chapter.

In line with the above, this chapter also describes the practical implications of em-

ploying ABFN in hybrid precoding systems when practical losses that are commonly

ignored, are taken into account. In particular, this chapter has concentrated on under-

standing their impact on the data rates and the energy efficiency. The results shown

here demonstrate that the performance of hybrid schemes critically depends on their

hardware implementation and provide insights for an efficient design and evaluation.

Specifically, it has been demonstrated that Butler-based designs provide a compelling

alternative to FC-ABFN, since the latter ones introduce power losses that scale up with

the number of RF chains.

Critique: It should be noted that the observations derived throughout this chapter

hold for the case where the ABFN are adjacent to the antenna ports, which is the solution

that minimizes the number of hardware components. Indeed, different conclusions could
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be attained depending on the specific position of the ABFN. However, these would be

component-dependent and, therefore, of reduced generality when compared with those

presented in this chapter.
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Conclusions

Enhancing the energy efficiency of future wireless communications is essential both

for guaranteeing a limited environmental impact and for their cost-effective deployment.

Simultaneously, increasing the number of antennas seems necessary for satisfying the

stringent spectral efficiency requirements posed by the vast amount of mobile devices to

be simultaneously served. Accordingly, this Thesis has proposed and explored a number

of strategies for enhancing the energy efficiency of multiple antenna communications

systems, where a number of practical insights have been revealed.

9.1 Summary and Conclusions of the Thesis

This Thesis commenced by providing a general overview of energy-efficient multiple

antenna systems in Chapter 2. Conventional precoding and detection schemes were

introduced and classical strategies for reducing the hardware complexity of systems

with a large number of antennas were presented. A number of shortcomings in these

strategies were identified, hence motivating the research carried out throughout this

Thesis.

− Chapter 3 proposed a power-efficient scheme for Tomlinson-Harashima precoding

based on adjusting the user constellation symbols. It was shown that this tech-

nique is capable of providing significant power savings with moderate performance
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losses, hence enhancing the energy efficiency of the communication. However,

these improvements come at the cost of an increased signal processing complexity.

Altogether, the central observations that can be derived from this chapter are:

C3.1. The proposed strategy is particularly effective in small scale antenna sys-

tems, where the power consumption of the power amplifiers dominates the

total system’s power consumption and the additional signal processing load

required is constrained.

C3.2. Systems with a large coherence time, small number of antennas and low-

order modulations, where the power loss introduced by THP is larger, also

motivate the employment of the proposed scheme. This is because the result

of the symbol- and channel-dependent optimization problem can be collected

in a lookup table.

− Improving performance of space shift keying (SSK) systems was the objective

of Chapter 4, where a pre-scaling technique hinging on semidefinite relaxation

(SDR) was designed. The results showed that transmission power savings in the

order of several watts when compared with existing schemes could be achieved

at a moderate complexity cost. The proposed scheme also accounts for imperfect

channel state information (CSI) acquisition, hence ensuring a robust operation in

realistic conditions. The following specific remarks can be derived from the results

of this chapter:

C4.1. The application of SDR for solving the pre-scaling problem in SSK is espe-

cially useful for systems with a small number of transmit antennas. This is

a consequence of a) the direct dependence of the number of constraints on

the number of transmit antennas and b) the degradation in the optimality

of the solutions retrieved after relaxation, for problems with a large number

of constraints [184,210].

C4.2. The performance enhancements demonstrated by the proposed scheme moti-

vate the acquisition of CSI at the transmitter, which is required for applying

pre-scaling techniques in SSK. However, since SSK transmitters incorporate
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a single radio frequency (RF) chain, the channel acquisition process could

diminish the time spent for data transmission. This observation leads to

the conclusion that pre-scaling strategies are particularly useful for systems

with a small number of antennas and a large channel coherence time.

− The fundamentals behind compressive sensing (CS) were leveraged in Chapter 5 for

devising a detector that improves the operation of spatial modulation (SM) in large

scale multiple access channels. The proposed CS-based detector demonstrated

signal-to-noise ratio gains in the order of 2 − 3 dB when compared with other

schemes for the LSAS considered in this Thesis. These enhancements directly

translate into energy efficiency improvements, hence motivating the incorporation

of multiple antennas at the mobile terminals for facilitating a more energy-efficient

data transmission. The central conclusions that can be extracted from the results

obtained in this chapter are:

C5.1. Incorporating multiple antennas to the mobile terminals without increasing

the number of RF chains and applying SM facilitates achieving spectral

and energy efficiencies larger than those obtained with conventional multi-

user MIMO systems with single-antenna mobile terminals. This conclusion

holds true as long as the antennas at the mobile stations are not severely

correlated and SM-specific detection algorithms are implemented.

C5.2. There exists a fundamental trade-off when the proposed detection algorithm

is implemented: while extended channel coherence times facilitate incorpo-

rating a large number of antennas at the mobile stations due to the larger

CSI acquisition time required by SM, it also diminishes the computational

benefits of the proposed strategy when compared with conventional linear

detectors. This is because the proposed algorithm performs an identical

number of computations for every detection, whereas linear detectors con-

centrate their complexity at the beginning of the channel coherence time

and subsequently perform low-complexity operations. Note, however, that

the proposed detection algorithm always outperforms linear detectors for
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the LSAS considered in this Thesis.

− The increasing correlation experienced by tightly packed antenna arrays was lever-

aged in Chapter 6 by incomplete CSI acquisition for reducing the complexity of

LSAS and enhancing their energy efficiency. In particular, a simultaneous sim-

plification in the hardware and signal processing was demonstrated by exploiting

the large inter-antenna correlation existing in physically-constrained LSAS. The

reduced number of RF chains required by the advocated scheme facilitates the de-

ployment of LSAS in communication channels with severe correlation. The results

of this chapter motivate the following critical observation:

C6.1. The proposed scheme is most useful in the low to mid SNR range and for

inter-antenna spacings in the range of 0.3λ − 0.4λ for the LSAS consid-

ered in this Thesis and without incorporating the effect of mutual coupling.

These inter-antenna distances are those where a) there exists sufficient inter-

antenna correlation for employing the proposed strategy without a signifi-

cant performance degradation and b) the spectral efficiency is not severely

reduced due to the increased correlation. Intuitively, these ranges should

not be severely modified when the effect of mutual coupling is incorporated,

since its impact is generally more pronounced for smaller inter-antenna dis-

tances [104].

− Chapter 7 concentrated on exploring the feasibility of employing simplified RF

switching architectures in antenna selection (AS) systems. RF switching matrices

designed with different optimization criteria such as the insertion losses (ILs) or

the number of required hardware components were evaluated. Indeed, the results

obtained in this chapter showed that the RF switching matrix design severely

influences the energy efficiency of the communication system and motivate the

following conclusions:

C7.1. RF switching architectures with a reduced connectivity are able to reduce

both the ILs and number of hardware components required by conventional

fully-flexible switching matrices, while showing negligible performance loses
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in the considered LSAS. Indeed, power savings in the order of 2-3 dB were

demonstrated in this chapter for the scenarios considered, values that hold

when the RF switching matrix is implemented after the power amplifiers.

However, it should be noted that this might not be the preferred alternative

in realistic designs, since a larger number of power amplifiers placed after the

switching matrix can be implemented if the overall power losses are reduced.

The study of this alternative is, however, system-dependent, hence making

its accurate characterization more challenging and the attainable conclusions

of reduced generality.

C7.2. The deployment of AS in systems with a large number of antennas at the

BS motivates the implementation of power-based AS in combination with

partially-connected switching matrices, particularly in channels with a short

coherence time. The above observation is motivated by the fact that AS

systems require a larger CSI acquisition time that depends on the ratio

between the number of antennas and RF chains, unless additional power

meters for power-based AS are implemented.

− This Thesis concluded by analyzing the performance of practical LSAS in Chapter

8. The channel measurements acquired in Bell Labs were employed for character-

izing signal propagation in LSAS, which demonstrated some sparsity that exhibits

in the form of inter-antenna correlation and substantial variations in the power

perceived by different antennas. Subsequently, this channel sparsity motivated

the evaluation of schemes with a reduced number of RF chains. The power losses

introduced by realistic hybrid precoding and detection systems were also charac-

terized. Overall, the following insights can be derived from the research presented

in this chapter:

C8.1. Reduced RF-chain schemes can be a compelling alternative for reducing the

complexity in LSAS due to their limited performance losses when compared

with designs with a dedicated RF chain per antenna. Note that this observa-

tion cannot be generalized, since systems with a larger number of users than

253



Chapter 9. Conclusions

that considered in the measurements of this chapter will probably require

fully digital precoding to guarantee favourable propagation conditions.

C8.2. Increasing the number of RF chains might not always be beneficial in hybrid

precoding designs with analog signal processing. This aspect is critical for

fully-connected beamforming networks due to the power losses introduced

in their power combining stage, which were shown to scale linearly with the

number of RF chains.

9.2 Future Work

As detailed above, the work and conclusions developed throughout this Thesis mo-

tivate further investigation in some research areas, which are identified and discussed

in this section. In particular, the author would like to propose the following specific

research lines for future work:

− Enhancing the performance of pre-scaling strategies for space shift key-

ing and spatial modulation. The pre-scaling strategy developed in Chapter 4

aims at enhancing the minimum Euclidean distance at the received constellation.

As another possibility, the direct consideration of alternative performance metrics

such as the bit error rate could facilitate attaining further performance improve-

ments, at the expense of complicating the algorithmic design and operation [208].

Moreover, some pre-scaling schemes such as the low-complexity constellation ran-

domization pre-scaling advocated in [183] fundamentally rely on the statistical

characteristics of the set of random pre-scaling vectors computed off-line for at-

taining a given performance. Therefore, an intuitive approach for enhancing the

performance of this scheme could be based on incorporating prior knowledge about

the particular channel statistics for ensuring that the set of candidate pre-scaling

vectors lie closer to the optimal.

− Spatial modulation in the multiple access accounting for realistic hard-

ware constraints at the mobile and base stations: The results and conclu-
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sions derived in Chapter 5 motivate further research with the objective of assessing

the realistic performance attainable by SM systems in the multiple access channel.

For instance, a detailed study on the impact of spatial correlation and mutual cou-

pling seems particularly significant, since the antennas might have to be tightly

packed at the mobile terminals. Similarly, incorporating the additional power

losses introduced by the symbol-speed RF switches required for transmission in

SM seems an area where relevant contributions could be offered.

− Incomplete CSI acquisition under different channel models and prop-

agation conditions: The scheme introduced in Chapter 6 was applied to ex-

ploit the inter-antenna correlation arising due to insufficient inter-antenna spac-

ing. However, severe channel correlation can arise from a variety of propagation

characteristics such as that of having a very narrow angular signal transmission.

Therefore, the acquisition of incomplete CSI could be extended to more generic

scenarios by accounting for the specific structure of the channel statistics. The

employment of alternative channel models such as [249] also seems a relevant re-

search line. Similarly, only activating a subset of antennas throughout the pilot

training stage of highly correlated frequency division duplex systems constitutes

an attractive alternative for enhancing their energy efficiency [242].

− Impact of temporal channel correlation and power-based decision on

the performance of antenna selection systems: Conventionally, systems

that implement the AS procedure based on the channel power rely on accurate

power measurements as per Chapter 7. However, the power measurements in

realistic AS systems that prefer not to extend the pilot training stage are based

on uplink data and not on the ideal unitary training sequences indicated in [129].

Therefore, errors in the measured channel power could be produced, hence affecting

the quality of power-based AS. Intuitively, these errors should depend on the length

and received power of the uplink data and their analytical characterization seems

of substantial interest. In a similar vein, the channel power measurements are

intrinsically suboptimal, since they only depend on the channel impulse response of

the previous uplink data stage [148]. Consequently, the temporal correlation of the
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channel plays a fundamental role in the quality of the AS for the subsequent data

transmission, i.e. if the channel varies rapidly, the channel power estimation might

not be useful for performing an accurate AS. Based on the above, determining the

limits in the temporal channel correlation for performing a reliable AS poses an

appealing challenge for future research.

− Reducing the number of antennas in LSAS via array thinning: This future

research line stems from the research project designed by Dr. Pawel Rulikowski

and Dr. Vijay Venkateswaran in Bell Labs for reducing the hardware and signal

processing complexity of LSAS detailed in Chapter 8. The essential idea con-

sists in employing array thinning strategies for reducing the number of antennas

without significantly harming the antenna array response [282–284]. Essentially,

array thinning aims at removing a subset of antennas while satisfying a set of

array-related requirements such as the maximum sidelobe level or the main lobe

beamwidth. While array thinning strategies have been previously employed for

reducing the number of antennas in massive radar applications, their application

to millimeter wave frequencies is mostly unexplored [284]. In this context, there

exists a clear energy efficiency trade-off that results from employing array thinning

strategies and that should be studied since, while the overall system complexity

can be reduced, the attainable performance might be simultaneously harmed.

− Analytical study of the impact of power losses on the performance of hy-

brid analog-digital communications systems. Chapter 8 presents a system

model accounting for the power losses introduced by realistic designs involving

analog signal processing. In real implementations, these power losses vary de-

pending on the position of the analog beamforming network relative to the rest of

the analog hardware components and they could be pre-compensated prior trans-

mission. Therefore, understanding the additional power consumption required

in realistic hybrid designs seems required for assessing their practical feasibility

[197]. In a similar line, Chapter 8 demonstrates that increasing the number of RF

chains simultaneously increases the power losses of the beamforming networks.

Consequently, determining the optimal number of RF chains optimizing different
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metrics such as the system’s energy efficiency also seems an interesting topic for

future research.

Overall, this Thesis has presented and analyzed a variety of energy-efficient designs,

with particular emphasis on communications systems with a large number of antennas.

It is hoped that the results and conclusions derived in this Thesis serve for deepening

the understanding of the challenges and practical issues involved in the design of future

multiple antenna systems as well as for enhancing their energy efficiency.
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Appendices

Appendix A. Proof of Theorem 4.4.1

The proof of the theorem is based on exploiting the resemblance between the opti-

mization constraints of P̃4.1 and the robust beamforming designs developed in [216,285],

and on reformulating the optimization constraints with the aid of the Lagrange dual

function [216–218]. Specifically, the proof commences by reformulating the optimization

constraints in the second line of (4.23), which constitute the optimal solution of the

optimization problem for a given value of the optimization variable A

minimize
∆(k,m)∈C(k,m)

Tr
((

Ẽ(k,m) + ∆(k,m)

)
A
)
− d

subject to Ẽ(k,m) + ∆(k,m) � 0,
∥∥∆(k,m)

∥∥2

F
≤ ε(k,m). (A.1)

This is a convex optimization problem associated with a Lagrange dual function given

by [211]

g
(
λ(k,m),B(k,m)

)
= inf

∆(k,m)

{
L
(
∆(k,m), λ(k,m),B(k,m)

)}
= inf

∆(k,m)

{
Tr
((

Ẽ(k,m) + ∆(k,m)

)
A
)
− d

+λ(k,m)

(∥∥∆(k,m)

∥∥2

F
− ε2(k,m)

)
− Tr

((
Ẽ(k,m) + ∆(k,m)

)
B(k,m)

)}
,

(A.2)

where inf {·} denotes the infimum of a function, L
(
∆(k,m), λ(k,m),B(k,m)

)
is the La-

grangian, while λ(k,m) and B(k,m) are dual variables [211]. The infimum of the La-
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grangian in (A.2) can be obtained by finding the point satisfying

∂L
(
∆(k,m), λ(k,m),B(k,m)

)
∂∆(k,m)

= 0, (A.3)

which is achieved for [216]

∆(k,m) =
BH

(k,m) −AH

2λ(k,m)
. (A.4)

Note that the particular structure of ∆(k,m) ∈ C(k,m) detailed in Sec. 4.4 has to be

considered, when defining the dual variable B(k,m) [217]. This is required for preserving

the sparsity that arises in the constraint matrices of the proposed optimization problem

Ẽ(k,m). With this objective, the set T(k,m) is defined as

T(k,m) =
{{
k(k,m),m(k,m)

}
,
{
k(k,m), k(k,m)

}
,
{
m(k,m), k(k,m)

}
,
{
m(k,m),m(k,m)

}}
.

(A.5)

In these indices represented as {a, b}, a refers to the row and b corresponds to the

column of the indexed matrix. Moreover, let Q(k,m) =
{
{r, c}

∣∣r, c ∈ 1, . . . , N
}

denote

the set containing all the indices of an (N ×N)-element matrix and S(k,m) = Q(k,m) −

T(k,m). Note that Sj indexes the zero-valued entries of the j-th constraint matrix Ẽ(k,m).

Following the above argument, the following relationship must hold to preserve the

structure of ∆(k,m) ∈ C(k,m)

B(k,m)|S(k,m)
= A|S(k,m)

, (A.6)

where A|S(k,m)
denotes the entries of the matrix X determined by S(k,m). This guarantees

that ∆(k,m) ∈ C(k,m) holds, since B|S(k,m)
−A|S(k,m)

= 0. For notational convenience,

B(k,m) is defined as the set of matrices satisfying (A.6). Considering this and substituting

(A.4) into (A.2), the Lagrange dual problem can be reformulated as [211]

maximize
B(k,m),λ(k,m)

−

(
Tr
(
Ẽ(k,m)

(
B(k,m) −A

))
+

∥∥B(k,m) −A
∥∥2

F

4λ(k,m)
+ λ(k,m)ε

2
(k,m) + d

)

subject to B(k,m) � 0, B(k,m) ∈ B(k,m), λ(k,m) ≥ 0. (A.7)
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At this point, note that (A.7) is an equivalent formulation of the optimization constraints

in (A.1) because strong duality holds, i.e. the duality gap is zero and the bound provided

by the Lagrange dual problem is tight [211]. This is because the (weaker) Slater condition

that entails strong duality holds, if there exists a solution satisfying Ẽ(k,m) +∆(k,m) � 0

and
∥∥∆(k,m)

∥∥
F
< ε(k,m). Since Ẽ(k,m) is positive semidefinite by definition, the above

condition is always satisfied and therefore there is no duality gap [211]. This entails that

P̃4.1 can be rewritten as

P̃4.1 : maximize
A,B(k,m)

d

s.t. max
B(k,m)∈B(k,m)

−
(

Tr
(
Ẽ(k,m)

(
B(k,m) −A

))
+ ε(k,m)

∥∥B(k,m) −A
∥∥

F
+ d
)
≥ 0,

B(k,m) � 0,A � 0, Tr (A) <= (PtN) , rank (A) = 1, (A.8)

where the dual problem that determines the constraints in the second line of (A.8) has

been already maximized w.r.t. λ(k,m). Finally, Theorem 4.4.1 is obtained by noting that

the constraints determined by the maximum function are immediately satisfied for any

feasible B(k,m) ∈ B(k,m) and by dropping the rank constraint, which completes the proof.

Appendix B. Proof of Proposition 5.6.1

The large scale limit theory establishes that the condition number of a channel matrix

GL ∈ CN×|L| with entries gm,n ∼ CN (0, 1) independent and identically distributed

(i.i.d.) converges almost surely in the asymptotic limit of transmit and receive antennas

to [234, Theorem 7.3]

Θ (GL) −−−−→
N,|L|→∞

1 +
√

1/β(|L|)
1−

√
1/β(|L|)

=

∣∣∣∣∣1 +
√
β(|L|)

1−
√
β(|L|)

∣∣∣∣∣ . (A.9)

Equation (A.9) provides a useful approximation to determine the maximum condition

number of a Rayleigh channel with a large number of receive antennas [11]. This can be

seen in Fig. 9.1, where the CDF of the condition number of a Rayleigh fading channel

matrix with N = 128 receive antennas is depicted. The number of columns is |L| = 8
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Figure 9.1: Empirical CDF and limit condition condition number for (a)N = 128,
|L| = 8 and (b) N = 128, |L| = 32.

and |L| = 32 for Figures 9.1(a) and (b) respectively. From the results of this figure it

can be concluded that the condition number of the channel matrix is below the bound

shown in (A.9) with a high probability. To conclude the argument, (A.9) is substituted

into (5.23).

Appendix C. Proof of Theorem 5.6.1

The first step to derive (5.29) is to note that the definition of the condition number

Ξ used in [233] varies with respect to the one employed in [230,234]. Attending to their

relationship, which is shown in (5.19), the CDF of the standard condition number Θ

can be expressed as

FΘ(θ) = P (Θ ≤ θ) = FΞ(θ2). (A.10)

In plain words, FΞ(θ2) gives the probability that for a given constant θ, the condition

number of the LS matrix is below that value. The solution to the above expression

can be immediately obtained via numerical integration [233]. Once the CDF of the

standard condition number has been characterized, the number of iterations of the CG

algorithm in the considered scheme can be determined. Particularly, by using (5.23)

the probability that a given number of of LS iterations iLS
max achieves a relative error
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reduction of ι can be expressed as

P (iLS ≤ iLS
max) = P

(
Θ ≤ 2 · iLS

max

log
(

2
ι

)) . (A.11)

The proof is completed by substituting (A.11) into (A.10).

Appendix D. Proof of Theorem 6.4.1

The proof of Theorem 6.4.1 relies on determining the error factor for the antennas

with imperfect CSI and the antennas whose CSI is derived following the CSI averaging

procedure described in Sec. 6.3. First, note that ∆k in (6.21) can be further decomposed

as

∆k =
E
{∑

n∈B |gk,n|2 +
∑

n∈C |gk,n|2
}

E
{∑N

n=1 |gk,n|2
} (a)

=

∑
n∈B E

{
|gk,n|2

}
+
∑

n∈C var
(
gk,n

)
N

,

(A.12)

where gk,n denotes the error of the channel from the n-th antenna of the BS to the k-th

user and var (·) denotes the variance of a random variable. In the above expression,

(a)
= holds because it is considered that the channel for the n-th antenna without CSI

is generated by following the averaging operation (6.15) and E {ĝk} = E {gk} = 0,

which entails that var
(
gk,n

)
= E

{
|gk,n|2

}
. Moreover, the channel coefficients of the

physically-constrained model defined in (6.6) clearly satisfy E
{
|gk,n|2

}
= 1.

The proof continues by placing the focus on the two terms found in the numerator

of (A.12). In particular, it can be seen that the first term only involves the antennas

with instantaneous CSI availability and accounts for the errors due to imperfect channel

estimation. The factors of this term can be expressed as

E
{
|gk,n|2

}
= τ2

kE
{(

Ak

∣∣
[D,n]

)H
qkq

H
k Ak

∣∣
[D,n]

}
= τ2

kRk

∣∣
[n,n]

, n ∈ B, (A.13)

where {Ak}[D,n] denotes the n-th column of the transmit steering matrix Ak defined in

(6.7). Instead, the second term of the numerator in (A.12) characterizes the combination
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of the errors introduced by having an inaccurate channel estimate and the averaging

operation for the antennas without CSI. By combining (6.15) and (6.19) this factor can

be re-expressed as

var
(
gk,n

)
= var

(
gk,n −

1

Mn

Mn∑
i=1

ĝk,Bni

)
, n ∈ C, (A.14)

which corresponds to the variance of a subtraction of complex correlated random vari-

ables due to the compactness of the antenna array. This expression can be rewritten by

iterative application of the statistical identities

var (X ± Y ) = var (X) + var (Y )± 2 Re (cov (X,Y )) ,

cov (X ± Y,Z) = cov (X,Z)± cov (Y,X) , (A.15)

where cov (·, ·) denotes the covariance between two random variables and Re (·) repre-

sents the real part of the argument. As a result,

var

(
gk,n −

1

Mn

Mn∑
i=1

ĝk,Bni

)
= var (gk,n) +

1

(Mn)2

∑
i∈Bn

var (ĝk,i)

− 2

Mn
Re

(∑
i∈Bn

cov (gk,n, ĝk,i)

)
+

2

(Mn)2 Re

 ∑
i,j∈Bn,i>j

cov (ĝk,j , ĝk,i)

 , n ∈ C.

(A.16)

The terms involved in the above formulation can be further decomposed and given as

a function of the true channel correlation matrix Rk. With this purpose, cov (gk,n, ĝk,i)

can be obtained as

cov (gk,n, ĝk,i) = cov

(
gk,n,

(√
1− τ2

kgk,i + τkgk,i

))
=
√

1− τ2
kRk

∣∣
[n,i]

, (A.17)

where it has been considered that zk is uncorrelated with qk in (6.20) [215]. The rest

of the terms involved in (A.16) can be obtained similarly, and are omitted here for

brevity. Finally, (6.22) is obtained by substituting (A.13) and (A.16) into (A.12), which

completes the proof.
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Appendix E. Proof of Corollary 6.4.1.2

The objective of the proof is to show that the channel error factor ∆k is a mono-

tonically increasing function of d for the physical channel model described in Sec. 6.2.2,

i.e.,

∂∆k

∂d
=

∂

∂d

{∑
n∈C

[
− 2

Mn
Re

(∑
i∈Bn

Rk

∣∣
[n,i]

)
︸ ︷︷ ︸

S1

+
2

(Mn)2 Re

 ∑
i,j∈Bn,i>j

Rk

∣∣
[j,i]


︸ ︷︷ ︸

S2

]}
> 0.

(A.18)

Here, the terms independent of d and the factor
√

1− τ2
k have been removed from (6.22),

since τk = 0 when perfect CSI is considered as per (6.20). In the following the user index

k is also dropped for notational convenience. The i, j-th entry of the channel correlation

matrix R for a ULA following the physical channel model described in Sec. 6.2.2 can be

expressed as

R
∣∣
[i,j]

=
1

D

D∑
m=1

ej2πd(j−i) sin(φm), (A.19)

where D denote the total number of angles of arrival (AoA) and φm is the m-th azimuth

AoA. In the following it is shown that

Qn =
∂S1

∂d
+
∂S2

∂d
> 0, ∀ n ∈ C, (A.20)

which in turn ensures that (A.18) holds. Here, since the real part of a function is not

analytic, it is convenient to express S1 and S2 in (A.18) as

S1 = − 1

Mn

(∑
i∈Bn

R
∣∣
[n,i]

+ R
∣∣
[i,n]

)
, (A.21)

and

S2 =
1

(Mn)2

 ∑
i,j∈Bn,i>j

R
∣∣
[j,i]

+ R
∣∣
[i,j]

 . (A.22)

For the case of ULAs and N/Nc ≥ 2, the CSI for each of the |C| antennas without

CSI is obtained by averaging the CSI of the Mn = 2 adjacent antennas. Note that
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this is a consequence of the application of the basic CSI distribution pattern shown in

Figure 6.1(b). Therefore, S1 can be re-expressed as

S1 = −
(
R
∣∣
[n,i]

+ R
∣∣
[i,n]

)
. (A.23)

Substituting (A.19) into (A.23) and differentiating w.r.t. d results in

∂S1

∂d
=

4π

D

D∑
m=1

sin(φm) sin(2πd sin(φm)), (A.24)

where it has been considered that (n− i) = 1 because the CSI of the adjacent antennas

is averaged, and sin(φ) =
(
ejφ − e−jφ

)
/2j. Following a similar process while noting that

the distance between the antennas with CSI used for averaging satisfies (i − j) = 2 in

(A.22), ∂S2
∂d can be expressed as

∂S2

∂d
=

2π

D

D∑
m=1

sin(φm) sin(4πd sin(φm)) (A.25)

(a)
=

4π

D

D∑
m=1

sin(φm) sin(2πd sin(φm)) cos(2πd sin(φm)),

where the trigonometric identity sin(2φ) = 2 sin(φ) cos(φ) has been employed in
(a)
=.

Subsequently, substituting (A.24) and (A.25) into (A.20), Qn can be written as

Qn =
4π

D

D∑
m=1

sin(φm) sin(2πd sin(φm)) (1− cos(2πd sin(φm))) . (A.26)

To conclude, the small-angle approximations sin(φ) ≈ φ and cos(φ) ≈
(
1− φ2/2

)
are

incorporated into (A.26), which yields

Qn =
4π(2πd)

D

D∑
m=1

φ2
m

(
(2πdφm)2

2

)
> 0, (A.27)

and completes the proof.

266



APPENDICES

Appendix F. Computation of the Joint Probabilities in (7.38)

This Appendix outlines the procedure for computing the probabilities P (Tj) in (7.38)

for completeness. In particular, this is done for the PC architecture in Fig. 7.2(a) for

reasons of illustration, where a scheme with M = 2 and N = 5 is considered. As detailed

in Sec. 7.5, the sets containing the combinations of the ordered column norms with non-

zero probability of being selected are G1 = {1, 2}, G2 = {1, 3} and G3 = {1, 4}. P (T1)

is given by

P (T1) = P
(

selecting G1
1

⋂
selecting G1

2

)
= (A.28)

(a)
= P

(
selecting G1

1

)
P
(
selecting G1

2 |selected G1
1

)
(A.29)

(b)
= P

(
G1

1 = {2, 4}
)
P
(
selecting G1

2 |G1
1 = {2, 4}

)
(A.30)

+ P
(
G1

1 = {1, 3, 5}
)
P
(
selecting G1

2 |G1
1 = {1, 3, 5}

)
(A.31)

(c)
=

2

5
× 3

4
+

3

5
× 2

4
=

3

5
. (A.32)

In the above expressions,
(a)
= is a direct application of (7.38),

(b)
= divides the conditional

probability of selecting the second antenna with the largest channel norm depending on

whether the antenna with the largest norm were antennas G1
1 = {1, 3, 5} or antennas

G1
1 = {2, 4} and

(c)
= considers that the probability of finding Bi:N , i ∈ {1, . . . , N} at a

given antenna port is equal for all antenna elements N .

A similar procedure can be employed to compute P (T3), which reads as

P (T3) = P
(

selecting G3
1

⋂
selecting G3

2

)
= (A.33)

(a)
= P

(
G3

1 = {1, 3, 5}
)
P
(
selecting G3

2 |G3
1 = {1, 3, 5}

)
(A.34)

(b)
=

3

5
P
(

not selecting B2:N

⋂
B3:N |G2

1 = {1, 3, 5}
)

(A.35)

=
3

5
× 2

4
× 1

3
=

1

10
, (A.36)

where
(a)
= and

(b)
= hold because the only possibility of selecting the antenna with the

G3
2 = 4-th largest norm is that the channels with the first, second and third largest

norms are in antennas {1, 3, 5}. Finally, P (T2) = 1− P (T1)− P (T3) = 3
10 .
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