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� A novel method for in-depth analysis of neonatal seizure detection algorithms is proposed.
� The analysis estimated how seizure features are exploited by automated detectors.
� This method led to significant improvement of the ANSeR algorithm.

a b s t r a c t

Objective: To describe a novel neurophysiology based performance analysis of automated seizure
detection algorithms for neonatal EEG to characterize features of detected and non-detected seizures
and causes of false detections to identify areas for algorithmic improvement.
Methods: EEGs of 20 term neonates were recorded (10 seizure, 10 non-seizure). Seizures were annotated
by an expert and characterized using a novel set of 10 criteria.
Methods: ANSeR seizure detection algorithm (SDA) seizure annotations were compared to the expert to

derive detected and non-detected seizures at three SDA sensitivity thresholds. Differences in seizure
characteristics between groups were compared using univariate and multivariate analysis. False detec-
tions were characterized.
Results: The expert detected 421 seizures. The SDA at thresholds 0.4, 0.5, 0.6 detected 60%, 54% and 45%
of seizures. At all thresholds, multivariate analyses demonstrated that the odds of detecting seizure
increased with 4 criteria: seizure amplitude, duration, rhythmicity and number of EEG channels involved
at seizure peak. Major causes of false detections included respiration and sweat artefacts or a highly
rhythmic background, often during intermediate sleep.
Conclusion: This rigorous analysis allows estimation of how key seizure features are exploited by SDAs.
Significance: This study resulted in a beta version of ANSeR with significantly improved performance.
� 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Full term neonates with neurological conditions such as
hypoxic-ischaemic encephalopathy (HIE), stroke and meningitis
are at high risk of developing seizures. There is accumulating evi-
dence from animal models (Wirrell et al., 2001) and human studies
(Glass et al., 2009) that neonatal seizures impose additional dam-
age to the brain above and beyond the underlying aetiology.
Prompt detection and treatment of seizures is therefore of para-
mount importance to optimize developmental outcome.

Clinical diagnosis of seizures is challenging, partly because
clinically silent seizures can represent up to 85% of the total seizure
burden (Bye and Flanagan, 1995) and over diagnosis based on
clinical signs alone is common (Murray et al., 2008). Amplitude-
integrated EEG (aEEG) is used in many neonatal intensive care
units (NICUs), however comparison of seizure detection using
EEG and aEEG has shown that many seizures seen on EEG are
missed using aEEG alone (Rennie et al., 2004; Bourez-Swart et al.,
2009).

It is now generally accepted that EEG is the only reliable means
of accurately detecting all seizures in neonates and neonatal
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intensive care units are increasingly adopting prolonged EEG
monitoring. These recordings may last hours or days, particularly
for neonates with HIE who are cooled for 72 h. Although
therapeutic hypothermia has been shown to reduce the seizure
burden in this group (Low et al., 2012), seizures remain a problem.
EEG is a complex signal that is prone to rhythmic artefacts which
can mimic seizure patterns and requires highly trained experts to
review and identify seizures. Experts are generally not available
during unsociable hours and NICU staff generally lack EEG training
and many feel unsupported in interpretation (Boylan et al., 2010).
There is a high risk of both over and under diagnosis of seizures in
neonates in the NICU.

There is therefore a pressing need to develop a reliable and robust
automated seizure detection method for full multi-channel neonatal
EEG. To meet this need, a novel automated seizure detection algo-
rithm (SDA) has been developed for term neonates by our group
(Mathieson et al., 2016), which is based on analyzing 55 features of
seizures and using a support vector machine classifier for decision-
making (Temko et al., 2011a). This algorithm (ANSeR) is currently
undergoing clinical validation in NICUs across Europe in the ANSeR
study (https://clinicaltrials.gov/ct2/show/NCT02160171).

In assessing the basic performance of SDAs engineers typically
tend to produce ‘event’ based metrics including the percentage of
seizures detected (seizure detection rate) and false detection rates,
commonly quoted as false detections per hour (FD/hr). They may
also use ‘epoch’ based metrics by segmenting the EEG to derive val-
ues for sensitivity (the amount of correctly identified seizure activ-
ity or seizure burden) and specificity (the amount of correctly
identified non-seizure activity) (Temko et al., 2011b). While this
primary analysis is essential, to fully understand the strengths
and limitations of SDA performance and make informed modifica-
tions to improve performance, it is necessary to understand the
characteristics or ‘nature’ of the seizures being missed, the specific
causes of false detection and their relative contribution to the sum
of false detections. Electrophysiologists, with an expert knowledge
of neonatal EEG and the recording conditions in the NICU, are well
placed to perform this type of analysis.

Although several algorithms have already been developed to
automatically detect neonatal seizures, detailed analysis of this kind
is often only anecdotally or partially discussed in previous perfor-
mance assessment papers (Altenburg et al., 2003; Aarabi et al.,
2006; Navakatikyan et al., 2006; Deburchgraeve et al., 2008; Mitra
et al., 2009; Temko et al., 2011a; Mathieson et al., 2016).

The aim of this study was to introduce a comprehensive
methodology for SDA performance analysis taking an electrophys-
iological approach by manually scoring multiple features of each
seizure and examining differences in these features between
detected and non-detected seizure groups and also fully character-
izing and grouping all false detections and types of artefact when
present. In this work the alpha version of the ANSeR algorithm
was used as an example. The analysis of seizure features included
initial univariate then multivariate analysis in order to assess
whether a particular seizure feature was a determinant of seizure
detection after the other features had been controlled for. This
was done to identify areas for targeted improvement of the alpha
version of the algorithm during the process of SDA development.
2. Methods

2.1. Automated seizure detection algorithm

A detailed description of the original alpha version of our SDA is
given by Temko et al. (2011a). The EEG for each channel is initially
pre-processed including filtering, artefact removal and segmenta-
tion into epochs. During the preprocessing step, simple high fre-
quency artefacts are automatically removed by applying a
threshold to the signal energy. Fifty-five features of the EEG are
then extracted and the feature vectors fed into a support vector
machine (SVM), a learning algorithm that has been pre-trained
on EEG data containing seizures. The SVM outputs are converted
using a sigmoid function into a probability of seizure between 0
and 1 for each epoch. The probability output is then smoothed
by a moving average filter and compared to a threshold. Using
the reader interface (Fig. 1) the threshold can be manually varied
between 0 and 1 at intervals of 0.1. Comparison of the SVM prob-
ability output with the threshold is then converted into binary
decisions, initially for each channel, then for all channels. The out-
put has now been incorporated into a custom reader shown in
Fig. 1. The EEG reader displays the EEG and the upper portion dis-
plays a graph showing the probability of seizure with the adjusta-
ble threshold, above which a seizure is classified (red) if breeched
by the probability trace. The adjustable threshold allows the sensi-
tivity of the algorithm to be manipulated to accommodate patients
with high levels of artifact and false detection rates. The time,
channel and duration of seizure are displayed and exportable as
a text file.

2.2. EEG recording

EEG recordings on 20 term neonates, 10 with seizures and 10
seizure-free, were recorded in the neonatal units at University Col-
lege Hospital, London and University College Hospital, Cork, Ire-
land. These 20 neonates were drawn as the first 20 cases from a
randomized list of 70 neonates used in another study to validate
standard performance metrics of the SDA (Mathieson et al.,
2016), recorded between January 2009 and October 2011. Record-
ings were made using the NicoletOne monitor (Carefusion, Wis-
consin, USA) using the 10:20 recording system adapted for
neonates, using the following electrodes F4, F3, T4, T3, C4, C3, CZ,
O2 and O1. The EEG was recorded at a sampling rate of 250/s or
256/s and with a filter bandwidth of 0.5–70 Hz and displayed using
a bipolar montage.

2.3. Seizure analysis

All seizures were annotated on the original Nicolet EEG file at
the beginning and end by an experienced electroencephalographer
(SM) and the annotation list, which includes a quantification of sei-
zure duration based on the annotations, was exported as a text file,
which was then imported into Excel for further analysis. EEGs were
identified by SM by reviewing the entire EEG page by page and sei-
zures identified on the basis of electrographic evidence. Seizures
annotated by SM were verified by a clinical neurophysiologist
(RMP), blinded to patient details, by reviewing the EEG at the time
of the annotation by SM. All recordings were also analyzed by the
SDA (alpha version) post acquisition and text files of the SDA anno-
tations for onset time, duration and channel of peak detection
exported for three sensitivity thresholds (0.4, 0.5 and 0.6). From
visual observation these were thought to include the most clini-
cally relevant detection thresholds i.e. maximum number of detec-
tions with acceptable false detection rates.

The seizure annotations of SM were taken as the ‘gold standard’
for seizure detection. Seizure annotations were compared with
those of the SDA to divide seizures into 2 groups, namely those
detected and non-detected by the SDA. False detections were also
separated for later classification.

Prior to determining which seizures were/were not detected by
the SDA, all seizures detected by SM were individually quantified/
scored under 10 criteria outlined in Table 1 for later comparison
between the two groups of detected and non-detected seizures
by the ANSeR SDA. In particular, seizure features analyzed included
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Fig. 1. Automated seizure detection algorithm. Lower panel shows EEG reader displaying a seizure. Upper panel shows output of SDA. Blue trace is a graph of the
probability of seizure. When the trace breeches an adjustable sensitivity threshold a seizure is designated, the trace turns red and an annotation of seizure time and
duration is created.
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seizure signal signature features (1–5), temporal context or evolu-
tion of seizure (6–8) and seizure spatial context (9–10). Criteria for
seizure morphology categorization and background pattern were
adapted from Patrizi et al. (2003).

2.4. Statistical analysis

Univariate and multivariate mixed effects logistic regression
analyses were performed to investigate and quantify the effects
of seizure features on seizure detection. In the models, features
were included as fixed effects and Baby ID as a random effect.
The diagnostic accuracy of the models was assessed using the area
under the receiver operator characteristic curve (AUC) and the cor-
responding 95% confidence interval (CI). Features that were statis-
tically significant in the univariate analysis were candidate
variables for the multivariate analysis. The features included in
the final multivariate model were selected using backward step-
wise deletion. Collinearity among the features was investigated
prior to inclusion in the multivariate model and when collinearity
was an issue, the feature with the highest AUC in the univariate
analysis was included. Results are presented as odds ratios (OR)
and 95% confidence intervals. The Mann–Whitney U test was used
to compare the distribution of false detection rates between sei-
zure and non-seizure neonates. Separate analyses were performed
for each threshold. Statistical analysis was performed using Stata
13.0 (Texas, USA). All tests were two-sided and a p-value < 0.05
was considered to be statistically significant.

2.5. False detections

False detections (FD), defined as where the SDA had made a
detection at the three SDA thresholds analysed that were not coin-
cident with the seizure annotations of SM, were characterized and
grouped under the following categories; respiration artefact, ECG/
pulse artefact, chewing/sucking artefact, bad/loose electrode arte-
fact, patient movement (including patting/stroking), electronic
equipment artefact, sweat artefact, unclassified artefact, false
detection with no obvious artefact. Where no artefact was detected
during a false detection, a description of the EEG during the false
detection was given under the headings; normal background;
highly rhythmic EEG background, sharp waves, low amplitude EEG.

2.6. Ethical approval

Ethical approval was obtained for this study from the UCLH
trust and the East London and the City Research Ethics Committee
(REC reference number: 09/H0703/97) and by the Clinical Research
Ethics Committees of the Cork Teaching Hospitals. Written
informed consent was obtained from one parent of each neonate
who participated in the study.
3. Results

3.1. Patients

Patient demographics are shown in Table 2.

3.2. Seizure detection and false detection rates

There were 421 seizures initially detected in a total of 1262.9 h
of EEG (mean 63.1). RMP confirmed seizures in 419 of the 421
events annotated by SM (99.76%). The seizure detection/false
detection rates for the SDA for seizure neonates are given in Sup-
plementary Table S1a and the false detection rates for non-
seizure neonates are given in Supplementary Table S1b. At lower
thresholds (higher sensitivity) more seizures were detected but
the false detection rate is also higher. Seizure detection rates and
false detection rates fall as the sensitivity is decreased (threshold
raised). False detection rates between seizure and non-seizure neo-
nates were not significantly different at the 3 thresholds tested
(threshold 0.4 p = 0.579, threshold 0.5 p = 0.280, threshold 0.6
p = 0.218).

3.3. Seizure features as predictors of automated seizure detection

The results of the univariate and multivariate analysis of seizure
features as predictors of seizure detection for the three SDA sensi-
tivity thresholds analysed are given in Table 3.

In the univariate analysis, for all 3 thresholds tested, 8/10 of the
seizure features were a significant predictor of automated seizure
detection. Higher peak amplitude, more frequency variability and
rhythmicity and greater seizure duration and numbers of channels
at seizure onset and seizure peak and change in morphology from
start to peak of seizure were associated with increased odds of sei-
zure detection. Seizure morphology at seizure peak was also a sig-
nificant predictor of seizure detection. The odds of seizure
detection was significantly higher in the spike and wave/sharp
wave and slow wave complex (SP + W/SH +W) group compared
to the rhythmic delta discharge (RDD) group at all thresholds. At
threshold 0.6, the odds of seizure detection was also significantly
higher in the sharp wave (SH) group compared to the rhythmic



Table 1
Seizure assessment criteria.

Variable group Variable Measurement
type: quantitative/
visual analysis

Measurement
unit

Method/category Purpose/comment

Seizure
signature

Seizure amplitude at
peak of seizure

Quantitative lV2 Measure peak to trough using
graticule on highest amplitude
discharge at midpoint of seizure

To quantify the maximum seizure
amplitude

Seizure
signature

Rhythmicity score Visual Number 1 = significant dysrhythmia
2 = minimal dysrhythmia
3 = highly rhythmic

Visual score of how rhythmicity/
frequency appears to change from second
to second over the seizure

Seizure
signature

Background EEG
score at time of
seizure

Visual Number 1 = normal
2 = moderate abnormality
3 = severe abnormality
*see below

To highlight context in which seizure are
detected/not detected

Seizure
signature

Seizure morphology
at onset

Visual Category 1 = rhythmic discharges of delta (RDD)
2 = rhythmic discharges of theta (RDT)
3 = rhythmic discharges of alpha
(RDA)
4 = spikes (S) or sharp waves (SH)
5 = sharp wave and slow wave (SH
+ W) complexes or spike and wave
complexes (SP + W)
*see below

To categorize dominant morphology of
seizure discharge at onset

Seizure
signature

Seizure morphology
at peak of seizure

Visual Category As above To categorize dominant morphology of
seizure discharge at peak (middle) of
seizure

Short-term
temporal
context or
evolution

Seizure duration Quantitative Seconds Duration derived from SM annotations
of start/end of seizure

To quantify seizure duration

Short-term
temporal
context or
evolution

Frequency variability
(over whole seizure)

Quantitative SD (Hertz) Using frequency graticule calculate
discharge frequency at:
A = start frequency (first 5 s)
B = peak frequency (mid seizure)
C = final frequency (last 5 s)
Frequency variability = standard
deviation A:C

To derive an estimate of the degree of
frequency variability over the span of the
seizure

Short-term
temporal
context or
evolution

Seizure morphology
change from onset to
peak

Quantitative Binary Y/N Comparison of seizure morphology at
start and peak

To assess change/variability of seizure
morphology within seizure

Spatial context Number of EEG
channels involved at
onset of seizure

Visual Number Count of number of EEG channels
showing seizure discharges

To estimate the size of the seizure field at
the start of the seizure

Spatial context Number of EEG
channels involved at
peak of seizure

Visual Number Count of number of EEG channels
showing seizure discharges

To estimate the size of the seizure field at
the peak of the seizure

* Adapted from Patrizi et al. (2003).

Table 2
Patients included in the study. HIE – hypoxic ischemic encephalopathy, MCA – middle cerebral artery, MAS – meconium aspiration syndrome, PPHN – persistent pulmonary
hypotension, Pb – Phenobarbitone, Mdz inf – Midazolam infusion, Ptn – Phenytoin.

Patient Electrographic seizures Y/N Aetiology Gestational age Gender Anti-epileptic medication Morphine Y/N

1 Y HIE grade 2 40 + 4 F 2 * Pb N
2 Y HIE grade 3 40 + 0 M 2 * Pb, Mdz inf Y
3 Y MAS, PPHN 40 + 5 F Nil Y
4 Y Stroke 39 + 2 M 2 * Pb, Ptn N
5 Y Intraparenchymal haemorrhage 41 + 2 F Pb N
6 Y Subdural haemorrhage 41 + 0 M 3 * Pb N
7 Y HIE grade 2 40 + 3 F Pb N
8 Y Septic emboli ? Encephalitis 39 + 3 M 2 * Pb, Mdz inf N
9 Y Right MCA stroke 40 + 3 M 2 * Pb, Mdz inf N

10 Y Left haemorrhagic infarction 39 + 2 M 2 * Pb N
11 N HIE grade 1 39 + 3 F Pb N
12 N Birth asphyxia 41 + 6 M Nil N
13 N HIE grade 1 41 + 6 F Nil N
14 N HIE grade 1 41 + 4 F Nil N
15 N MAS 41 + 0 F Nil Y
16 N HIE grade 1 41 + 2 M Nil N
17 N HIE grade 2 41 + 4 M Nil N
18 N HIE grade 2 39 + 1 M Nil Y
19 N HIE grade 1 38 + 2 F Nil N
20 N HIE grade 2 41 + 2 F Pb Y

S. Mathieson et al. / Clinical Neurophysiology 127 (2016) 2246–2256 2249



Table 3
Univariate and multivariate mixed effects logistic regression analysis investigating seizure features associated with seizure detection.

Threshold 0.4: logistic regression analysis Threshold 0.5: logistic regression analysis Threshold 0.6: logistic regression analysis

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

Outcome: seizure
detected

OR (95% CI) p-
value

OR (95% CI) p-
value

OR (95% CI) p-
value

OR (95% CI) p-
value

OR (95% CI) p-
value

OR (95% CI) p-
value

Peak amplitude 1.04 (1.03–1.05) <0.001 1.02 (1.01–1.04) <0.001 1.03 (1.03–1.04) <0.001 1.02 (1.01–1.03) <0.001 1.02 (1.01–1.02) <0.001 1.01 (1.01–
1.02)

<0.001

Number of channels-
seizure onset

1.55 (1.28–1.88) <0.001 1.6 (1.31–1.94) <0.001 1.43 (1.19–1.71) <0.001

Number of channels-
seizure peak

1.76 (1.46–2.13) <0.001 1.46 (1.14–1.86) 0.002 1.79 (1.50–2.13) <0.001 1.46 (1.15–1.86) 0.002 1.68 (1.43–1.98) <0.001 1.35 (1.07–
1.70)

0.011

Rhymicity <0.001 0.004 <0.001 <0.001 <0.001 0.015
Significant dysrhythmia 1 1 1 1 1 1
Minimal dysrhythmia 2.9 (1.57–5.38) 2.49 (1.08–5.75) 2.92 (1.58–5.38) 1.54 (0.69–3.45) 2.92 (1.49–5.72) 1.43 (0.58–

3.56)
Highly rhythmic 14.87 (7.07–

31.25)
4.96 (1.93–

12.78)
10.2 (5.21–

19.98)
4.43 (1.91–

10.24)
8.2 (4.13–

16.26)
3.03 (1.21–

7.60)

Seizure morphology-
onset

0.329 0.176 0.501

RDD 1 1 1
RDT 2.46 (0.68–8.84) 1.96 (0.78–4.93) 1.87 (0.78–4.48)
RDA 3.64 (0.36–

36.39)
3.8 (0.81–

17.88)
2.74 (0.32–

23.14)
SH 0.67 (0.30–1.49) 0.81 (0.49–1.35) 0.8 (0.41–1.57)

SH +W or SP +W 0.88 (0.49–1.58) 1.09 (0.68–1.74) 1.2 (0.70–2.03)

Seizure morphology-
peak

<0.001 <0.001 <0.001

RDD 1 1 1
RDT 7.46 (0.66–

84.06)
1.21 (0.18–8.36) 1.33 (0.18–9.63)

SH 1.85 (0.70–4.84) 2.51 (0.94–6.67) 3.33 (1.14–9.72)
SH + W or SP + W 5.38 (2.45–

11.78)
5.43 (2.46–

12.02)
7.68 (3.20–

18.46)

Change in morphology-
start to peak

<0.001 <0.001 0.012 <0.001 0.035

No 1 1 1 1 1
Yes 3.23 (2.01–5.19) 2.75 (1.79–4.24) 2.33 (1.21–4.48) 2.31 (1.50–3.56) 2.02 (1.05–

3.88)
Frequency variability 19.46 (8.35–

45.33)
<0.001 3.58 (1.32–9.66) 0.012 3.65 (2.05–6.48) <0.001 2.54 (1.64–3.93) <0.001

EEG background 0.873 0.946 0.656
Normal 1 1 1

Mildly abnormal 0.85 (0.45–1.60) 0.93 (0.52–1.64) 1.32 (0.72–2.41)
Severely abnormal 0.98 (0.25–3.82) 1.06 (0.39–2.91) 1.28 (0.41–3.98)

Seizure duration (secs) 1.02 (1.02–1.03) <0.001 1.02 (1.01–1.03) <0.001 1.02 (1.02–1.03) <0.001 1.02 (1.01–1.02) <0.001 1.02 (1.02–1.03) <0.001 1.02 (1.01–
1.02)

<0.001

(1) Features with p > 0.05 in the univariate analysis were excluded from the multivariate analysis. (2) The multivariate model was selected using backward stepwise deletion. (3) The variable ‘‘Number of channels at seizure onset”
was not included in the multivariate model due–colinearity with the feature ‘‘Number of channels at seizure peak”.
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delta discharge (RDD) group. Seizure duration had the highest AUC
across all thresholds (Supplementary Table S2).

Multivariate analysis was performed to determine if a particular
feature remained a significant predictor of automated seizure
detection after controlling for the other features. Collinearity was
an issue between the seizure features ‘‘number of channels at sei-
zure onset” and ‘‘number of channels at seizure peak” and hence
only number of channels at seizure peak was included in the mul-
tivariate analysis, as this had the higher AUC in the univariate anal-
ysis. For all 3 thresholds tested, four of the features; seizure
duration, amplitude, rhythmicity and number of EEG channels
involved in the seizure at peak of seizure, were statistically signif-
icant predictors of seizure detection. Higher peak amplitude, more
rhythmicity and greater seizure duration and numbers of channels
at seizure peak were associated with increased odds of seizure
detection. For thresholds 0.5 and 0.6, change in morphology from
start to peak of seizure was also associated with increased odds
of seizure detection. For threshold 0.4, higher frequency variability
was associated with increased odds of seizure detection.

The AUCs (95% CI) for the multivariate model at all 3 ANSeR
sensitivity thresholds was significantly better (threshold 0.4
p < 0.001, threshold 0.5 p < 0.001, threshold 0.6 p = 0.023) than
the highest AUC in the corresponding univariate analysis (seizure
duration) as shown in Supplementary Table S2, suggesting high
accuracy of the multivariate model.

Typical examples of detected seizures and non-detected sei-
zures are shown in Fig. 2.

3.4. Categorization of false detections

The results of the categorization of false detections are shown in
Table 4. For the 3 thresholds tested, respiration artefact was the
most common cause of false detection followed by ‘no artefact
identified’ and then sweat artefact. When false detections occurred
and no artefact was identified, the background was often (approx-
Fig. 2. Typical detected/non-detected seizures. (A) Detected seizure- high amplitude, gen
(B) Non-detected seizure- low amplitude, no change in morphology or frequency, some
imately 59–65%) classified as highly rhythmic. Pulse/electrocardio-
gram artefact and movement/handling artefact also contributed to
considerable numbers.

The distribution across patients of the three most prevalent
causes of false detections for sensitivity threshold at 0.4 (Fig. 3a)
was not evenly spread and often a single patient recording was
responsible for the majority of false detections in certain cate-
gories. For example 232/278 (83.5%) of false detections due to res-
piration artefact were seen in patient 2 and 104/149 (69.8%) of
false detection due to sweat artefact were seen in patient 15. False
detections where no artefact was identified (most often a highly
rhythmic background EEG) were more distributed across several
patients.

Fig. 3b indicates how the number of false detections vary with
SDA threshold sensitivity (0.4 = most sensitive, 0.6 = least sensi-
tive) for the 3 most common causes. As expected, the number of
false detections decreases as the sensitivity threshold increases
(SDA becomes less sensitive). False detections due to respiration
artefact show a moderate drop off with decreasing sensitivity
while sweat and ‘no artefact detected’ false detection rates drop
much more sharply with decreasing SDA sensitivity. The different
rates of false detection drop-off are due to these waveforms gener-
ating different SDA seizure probability levels. For example, respira-
tion artefact is a highly rhythmic artefact, closely mimicking
seizure morphology, often resulting in high seizure probability
output from the SDA (Fig. 4a) whilst sweat artefact is a semi-
rhythmic intermittent artefact generally producing a lower seizure
probability (Fig. 4b) thus as the sensitivity threshold is raised, a
greater relative proportion of false detections remain under the
threshold.

4. Discussion

This study sought to define a set of comprehensive criteria
(Table 1) to analyse the characteristics of neonatal seizures to
eralised, evolves from rhythmic delta discharges to sharp and slow wave complexes.
dysrhythmia, single EEG channel.



Table 4
Results of categorization of false detections. FD false detection. Numbers represent numbers of false detections for each category. Percentages in columns 2–8 represent
percentage of overall false detections for each category. Where no artefact was identified on the EEG at the time of the false detection (column 8), a description of the background
is given in column 9 (FD No artefact: comment). The percentages and numbers in column 9 therefore represent a breakdown of the totals in column 8.

SDA
threshold

FD respiration
artefact

FD ECG/Pulse
artefact

FD bad
electrode
artefact

FD head movement /
Handling artefact

FD sweat
artefact

FD unclassified
artefact

FD No artefact
identified

FD No artefact:
comment

0.4 278 (34.7%) 34 (4.2%) 21 (2.6%) 57 (7.1%) 160
(19.9%)

29 (3.6%) 221 (27.6%) 132 (59.73%) Highly
rhythmic EEG,
67 (30.32%) normal
background,
20 (9.05%) sharp
waves,
2 (0.9%) low
amplitude EEG

0.5 249 (47.9%) 42 (8.1%) 11 (2.1%) 16 (3.1%) 97 (18.7%) 19 (3.7%) 96 (18.5%) 55 (57.29%) Highly
rhythmic EEG,
25 (26.04%) normal
background,
15 (15.63%) sharp
waves,
1 (1%) low amplitude
EEG

0.6 221 (64.6%) 43 (12.5%) 4 (1.2%) 4 (1.2%) 14 (4.1%) 10 (2.9%) 46 (13.5%) 30 (65.22%) Highly
rhythmic EEG,
11 (23.91%) normal
background,
5 (10.87%) sharp
waves
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determine how the variability of these characteristics affected sei-
zure detection of the SDA and to identify the key seizure features
which were not exploited and main causes of false detections in
order to identify areas for targeted improvement of the algorithms
performance.

In previous SDA performance analysis studies, authors tend to
only give anecdotal examples of missed seizures for their algo-
rithms (Navakatikyan et al., 2006; Deburchgraeve et al., 2008),
often described as short, arrhythmic, low amplitude or focal.
Others have only examined the effect of a single parameter, seizure
duration, on detection rate. Altenburg (Altenburg et al., 2003)
found that their algorithm only detected seizures that were over
100 s in length. Assessments of the ANSeR algorithm (Temko
et al., 2011a; Mathieson et al., 2016) similarly found that the poor-
est detection performance occurred when seizures were shortest
(<1 min). Mitra (Mitra et al., 2009) gave more quantification
describing missed seizures as either slow (>0.4 Hz) pseudosinoidal
discharges (30%), high frequency (>6 Hz) with a depressed back-
ground (2%), arrhythmic spikes with a depressed background
(15%) or short duration seizures (<20 s) in patients with longer sei-
zures (53%).

Similarly, in terms of sources of false detection, authors only
give subjective examples or descriptions. Aarabi (Aarabi et al.,
2006) cited electromyogram, patient and electrode movement
and signal saturations, while Deburchgraeve (Deburchgraeve
et al., 2008) cited bed heater electrical artefact, ventilator or respi-
ration artefacts or background rhythmicity as common sources of
false detection. Others again gave some quantification of false
detections; Mitra (Mitra et al., 2009) divided false detections into
four groups; ‘rhythmic background’, ‘single channel’, ‘noisy data’
and ‘artefacts’. Temko et al. (2011a) similarly divided false detec-
tion into 3 groups; ‘artefact free background activity (50%), ‘arte-
facts’ (45%) and ‘seizure-like’ activity (5%) describing the most
common forms of artefact causing false detection as ‘electrode dis-
connect’ (a slow semi-rhythmic high amplitude signal), ‘respira-
tion artefact’ and ‘patient movement/handling artefact’. These
authors however did not provide a quantitative breakdown of
the relative contributions of specific artefacts to false detection
rates. Some breakdown was given by Navakatikyan et al. (2006)
stating that 39% of false detections were attributable to respiration
or electrocardiogram/pulse artefact with rhythmic background
theta activity causing a further 14% of false detections and ‘elec-
trodes off’ artefact causing a further 15%.

Using the proposed methodology, the performance analysis of
the ANSeR SDA presented in this study is in line with previous
analysis (Temko et al., 2011a; Mathieson et al., 2016); as the SDA
threshold is raised, seizure detection and false detection rates drop
and there will always be a trade-off between picking a threshold
that detects a satisfactory number of seizures whilst having an
acceptable false detection rate. As the purpose of such an algorithm
ultimately is to alert the clinical team to the presence of seizures,
this trade off of which threshold is clinically acceptable can only
really be tested in a clinical setting. However, this is the first study
to provide an estimate of the contributions of key seizure features
to detector’s behaviour.

The multivariate analysis in this study has shown that only four
seizure features were consistent predictors of automated seizure
detection across all three ANSeR sensitivity thresholds tested
including: signal amplitude, the apparent rhythmicity of seizures
from second to second, seizure duration, and the number of EEG
channels involved in the seizure at the peak of seizure.

It is interesting to see that two of the four criteria come from
the seizure signal signature group (Table 1). In fact, the ANSeR soft-
ware relies on 55 features computed from the EEG signal that can
be seen as universal EEG signal descriptors. Many of these features
are energy-dependent and employ direct measures of amplitude
such as root mean squared (RMS) amplitude and methods of spec-
tral analysis during feature extraction such as total power and
band power, where power is the square of the EEG amplitude. Thus
seizure amplitude is expected to affect seizure detection rates.

Similarly, the increased rhythmicity of seizures from second to
second as a predictor of seizure detection is in keeping with the
findings of Mitra et al. (2009) and is expected as the SDA is tuned
to detect distinct rhythms that stand out from the background. For
example the ANSeR algorithm employs several measures of
entropy at the feature extraction stage on the premise that
background EEG with high complexity will have high entropy
while seizures with a small number of dominant rhythms will have



Fig. 3. (A) Distribution of common causes of false detections. (B) Change in number of false detection with sensitivity threshold for the 3 main causes of false detection.
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low entropy. Increased dysrhythmia in the seizure will increase the
entropy and make it more similar to the background.

The fact that the longer seizure duration and the increased
number of EEG channels involved at the seizure peak predicts
increased automated detection has previously been reported
(Altenburg et al., 2003; Navakatikyan et al., 2006; Deburchgraeve
et al., 2008; Mitra et al., 2009). This observation is thus related to
the computed metric rather than to the algorithmic solution.
Indeed, a seizure is claimed to be detected if it is detected any-
where within the spatio-temporal manifold. For example, a 5 min
long fully generalized seizure will be claimed detected if it is
detected for only, say, 30 s in a single EEG channel. This clinically
driven metric implies that increasing the number of involved chan-
nels and duration of seizure will statistically increase the chances
of the seizure to be detected regardless of the content of the SDA.

Interestingly, most of the temporal context group from Table 1
were not found to be a predictor of the seizure consistently across
different thresholds which clearly identifies the information that is
currently not exploited in the detector. The key seizure features in
this group such as increased frequency variability over the span of
the seizures, change in seizure morphology (rhythmic delta to
spike and wave/sharp wave and slow wave complexes) from start
to peak of seizure characterize increased variability within a sei-
zure event. On the contrary, the ANSeR SDA analyses 8 s overlap-
ping EEG segments and changes of these two features within a
given epoch are likely to be minimal as these changes tend to
evolve gradually over time. Clearly, the short-term classification
algorithm misses the information that is observable on a larger
temporal scale in terms of the morphology change from rhythmic
delta at the start of the seizure evolving to a spike and wave/sharp
wave and slow wave morphology at the peak, and that is another
potential area for improvement.

Fig. 2a shows a detected seizure which is highly rhythmic, of
high amplitude, involves multiple EEG channels and evolves in
morphology from a rhythmic delta to sharp wave and slow wave
complexes. In contrast, a typical non-detected seizure (shown in
Fig. 2b) is of shorter duration, lower amplitude, not changing in
morphology, has a degree of dysrhythmia and only involving a sin-
gle EEG channel.

Ultimately, these results suggest that the SDA should detect
major seizures and may miss short, low amplitude seizures of
arguably less clinical relevance.



Fig. 4. Effects of respiration and sweat artefacts on seizure probability output. (A) Highly rhythmic respiration artefact (lower panel) produces high probability peaks on SDA
output graph (upper panel). (B) Intermittent semi-rhythmic slow sweat artefact on EEG (lower panel) produces a lower seizure probability output on graph (upper panel).
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If only a proportion of seizures are detected by the SDA and only
a proportion are detected using aEEG, one might well ask what
benefit there is of using the SDA instead of aEEG. Firstly in terms
of seizures that are detected by the SDA, these will trigger and
alarm and prompt clinicians to investigate the EEG at the time of
the seizure or shortly after, leading to prompt administration of
anticonvulsants. This is not true of the aEEG which, although pro-
vides a snapshot overview of the EEG, is still subject to the same
periodic review as the EEG, such that seizure identification and
treatment may be delayed. Secondly the aEEG will only ever regis-
ter seizures that occur over the limited set of 2 or 4 electrodes from
which it is generated. The SDA analyses a montage of 9 electrodes
with a much broader coverage of the brain such that there is a
greater potential to detect seizures. Even if seizures do not breech
the SDA threshold and trigger an alarm, they may generate a peak
on the SDA probability trend (which effectively summarizes all
EEG channels as its output is the channel of highest probability)
which can be used in the same way as the aEEG during periodic
review to investigate areas of interest on the EEG. The aEEG is
not only used for seizure detection and has additional important
functions to provide a simple ‘snapshot’ assessment of brain func-
tion and the identification of sleep cycling. As such, the aEEG and
SDA trend should both be viewed as valuable adjuncts to the EEG.

The analysis of false detections has highlighted several factors.
Firstly it has highlighted the most common causes of false detec-
tion; namely respiration, sweat and a highly rhythmic background
pattern. Respiration artefact was also cited by previous authors as
a common source of false detection (Navakatikyan et al., 2006;
Deburchgraeve et al., 2008; Temko et al., 2011a). A highly rhythmic
background pattern was also a source of false detection for previ-
ous authors (Navakatikyan et al., 2006; Deburchgraeve et al.,
2008; Mitra et al., 2009). Observationally, an increase in back-
ground rhythmicity was often associated with the ‘intermediate’
or ‘slow wave sleep’ pattern of quiet sleep in which an increase
in semi-rhythmic background delta activity is observed.

Secondly, artefacts causing false detection may not be evenly
spread across patients with some patients having high levels of
artefact that will cause frequent false detection and alarms while
other will have little or none. This suggests that the algorithm
may perform less well for a small number of patients and better
than expected for the majority. Implementing a variable sensitivity
threshold in the SDA in the future should enable the user to desen-
sitize the algorithm for patients with frequent false detections,
although of course there will be a reduction in seizure detection
performance. Thirdly, some artefacts such as respiration artefact
are likely to be more persistent at higher sensitivity thresholds
than others and along with prevalence, should be taken into
account when prioritizing artefact rejection strategies.

Pulse/electrocardiogram artefact and movement/handling arte-
fact also contributed significant numbers of false detections. Pul-
satile artefact, caused by proximity of an electrode to a pulsing
blood vessel, in particular, can cause very rhythmic runs of delta
activity on the EEG mimicking seizures, and can be seen over pro-
longed periods. This artefact is identifiable as it will be fairly
invariant and will be timelocked to the independently recorded
ECG trace as will ECG artefact. Similarly, respiration artefact will
be timelocked to the respiration trace recorded from the abdomen.
Movement/handling artefacts, particularly those involving patting
(winding), stroking or repetitive manipulations from physiother-
apy, can create high amplitude and/or rhythmic artefacts on the
EEG. Where these artefacts appear ‘seizure-like’ the video record-
ing is invaluable in identifying these waveforms as artefact.

The reason for these artefacts or waveforms causing false detec-
tions is due to the fact that they constitute rhythmic stereotyped
patterns, often with an increase in amplitude above the baseline,
fulfilling many of the changes in frequency, power, amplitude,
auto-regression, entropy and other parameters that the SDA is
tuned to classify as seizures.

The proposed analysis of the ANSeR SDA performance outlined
several areas of potential improvement. In particular, one key
observation, that artefacts due to respiration, pulse and sweat
often occur inprolonged runs, raising the probability baseline of
the SDA output over a prolonged period, resulted in an adaptive
modification which has been made to the alpha versions of the
ANSeR SDA. The beta version now involves comparison of the prob-
ability graph at a given time to the ‘local’ preceding probability
baseline. A comparison of the algorithm’s performance with/with-
out the modification showed a significant increase in the area
under the ROC curve from 93.4% to 96.1% and a reduced false
detection rate from 0.42FD/hr (without adaption) to 0.24FD/hr
(with adaption) while maintaining an equivalent detection of sei-
zure burden at 70% (Temko et al., 2013). A further validation of
the beta version of the SDA on a large set of 70 unedited EEGs
has been published showing similar performance (Mathieson
et al., 2016) which indicates the increased robustness of the ANSeR
algorithm which was achieved as a byproduct of the analysis pre-
sented in this study.

Future studies will apply the same methodology outlined in this
paper to the beta version of ANSeR, investigate the potential effect
of anticonvulsants on seizures that persist and the performance of
the SDA and aim to produce teaching material to improve the abil-
ity of users to discriminate true seizures from false detections at
the point of SDA detection.
5. Conclusion

Due to the variability inherent in neonatal seizure and the
numerous artefacts present in prolonged recordings in the inten-
sive care environment, automated detection of neonatal seizure
is a highly challenging problem. The analysis presented here has
elucidated several aspects of the performance of the SDA from a
neurophysiological perspective. In particular, it allows estimating
the degree at which seizure relevant information is exploited in
SDAs. The analysis applied to the ANSeR algorithm identified a
number of directions for potential improvement and has since
improved performance in the beta version of the ANSeR algorithm.
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