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Abstract. Interactive scribble-and-learning-based segmentation is at-
tractive for its good performance and reduced number of user interaction.
Scribbles for foreground and background are often imbalanced. With the
arrival of new scribbles, the imbalance ratio may change largely. Failing
to deal with imbalanced training data and a changing imbalance ratio
may lead to a decreased sensitivity and accuracy for segmentation. We
propose a generic Dynamically Balanced Online Random Forest (DyBa
ORF) to deal with these problems, with a combination of a dynami-
cally balanced online Bagging method and a tree growing and shrinking
strategy to update the random forests. We validated DyBa ORF on UCI
machine learning data sets and applied it to two different clinical appli-
cations: 2D segmentation of the placenta from fetal MRI and adult lungs
from radiographic images. Experiments show it outperforms traditional
ORF in dealing with imbalanced data with a changing imbalance ratio,
while maintaining a comparable accuracy and a higher efficiency com-
pared with its offline counterpart. Our results demonstrate that DyBa
ORF is more suitable than existing ORF for learning-based interactive
image segmentation.

1 Introduction

Image segmentation plays an important role in a wide range of medical image
processing and analysis tasks. Accurate and automatic segmentation remains
difficult to achieve in many applications. Alternatively, user-interactive segmen-
tation methods are widely used for higher accuracy and robustness. For example,
TurtleSeg [9] uses initial user-provided contours in a few 2D slices for 3D seg-
mentation. Graph Cuts [2] and Random Walks [5] learn a probability model from
user-provided scribbles drawn on the foreground and background. To achieve a
good interaction efficiency, machine learning methods [11, 6, 10] have been used
to learn image features from the user inputs with reduced amount of interaction.

For interactive segmentation methods that learn from user-provided scrib-
bles, several issues in the interaction and learning process should be considered.
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Firstly, scribbles given at once are not always sufficient, and new scribbles can
be added to rectify the segmentation results. To save additional training time
when new scribbles arrive, online learning is preferred and is expected to achieve
a correct rate of classification which is comparable with learning from scratch.
Secondly, the amount of scribbles for the background and the foreground may be
largely imbalanced. This could lead to a high error rate of classification for the
minority class [4]. Furthermore, when more scribbles are added, the imbalance
ratio between the foreground scribbles and background scribbles may change
greatly. The learning algorithm should be adaptive to the changing imbalance
ratio in order to deal with the imbalance problem correctly every time new
scribbles are added.

In recent years, Random Forests [3] have been prevailingly used in computer
vision and medical image analysis tasks due to their efficiency and high perfor-
mance. For interactive segmentation [8], the sequential arrival of scribbles can
be handled by Online Random Forests (ORF) [7]. However, the data imbalance
problem was not explicitly addressed in that work . The ORF-based segmen-
tation used by Barinova et al. [1] handles imbalanced data by re-sampling the
training data with different sampling rates for different classes, but it assumes
that the imbalance ratio of different classes does not change during online learn-
ing. The shortcoming is that when newly arrived training data leads to a large
change of the imbalance ratio, the trees are not adapted to the new imbalance
ratio. As a result, such forests may have a decreased accuracy of classification
compared with their offline counterpart in interactive segmentation.

In this work, we propose a generic Dynamically Balanced Online Random
Forest (DyBa ORF) to deal with incremental and imbalanced training data
with a changing imbalance ratio. We applied DyBa ORF to two different appli-
cations: learning-based interactive segmentation of the placenta from fetal MRI
and adult lungs from radiographs. In such applications, the segmentation task is
challenging due to the low contrast between the target and background and inho-
mogeneous appearance of the target. This motivates us to use high level features
combined with DyBa ORF-based learning rather than a traditional Gaussian
Mixture Model, which is often used to model low dimensional features and not
well suited to online learning. We investigated how DyBa ORF outperforms tra-
ditional ORF in these two applications, with its ability to achieve a comparable
accuracy and higher efficiency compared with its offline counterpart.

2 Methods

Traditional Online Random Forests. A Random Forest [3] is a set of N
binary decision trees with split nodes and leaf nodes. A split node executes a
binary test to propagate a sample to its left or right child. A leaf node stores all
the training samples that have been propagated to it and uses the distribution of
class labels in that leaf for prediction. To overcome over-fitting, the training set
of each tree is obtained by randomly re-sampling (a.k.a. Bagging) the original
training set for the forest. To deal with online learning, the ORF [7] uses online
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Bagging to model the sequential arrival of data as a Poisson distribution Pois(λ)
with a rate λ. Each tree is updated on each new training sample k times where
k ∼Pois(λ) and the expectation of k is λ. To deal with imbalanced data, Barinova
et al. [1] used different λ for different classes based on the imbalance ratio. After
receiving new data which leads to a new imbalance ratio (which may or may
not be equal to the previous one), their method samples them with a rate based
on the new imbalance ratio to grow existing trees, but does not update the set
of existing sampled training data which has been sampled with a rate based on
the old imbalance ratio. Thus, it fails to be truly adaptive to imbalance ratio
changes.

Dynamically Balanced Online Bagging. For the sake of simplicity and
without loss of generality, we focus on a binary classification problem. Suppose at
an initial stage of online learning, the training data for the forests is represented
by a tuple S0(P0,N0) where P0 (N0) is a set of positive (negative) data. The
initial imbalance ratio is defined as γ0 = |N0|/|P0|. To deal with imbalanced
data, we down-sample the majority class for efficiency [4]. Supposing Pois(λ)
is used to re-sample the minority class, Pois(λp0) and Pois(λn0) are used to
re-sample P0 and N0 respectively:

λp0 =

{
λ, if γ0 ≥ 1.0

λγ0, otherwise
; λn0 =

{
λ/γ0, if γ0 ≥ 1.0

λ, otherwise
(1)

Thus each sample in P0 (N0) is expected to be sampled λp0 (λn0) times. We

denote the sampled training set for one tree as Ṡ0(Ṗ0, Ṅ0), where Ṗ0 and Ṅ0 are
sampled from P0 and N0 respectively. |Ṗ0| has an expectation of λp0|P0| and

|Ṅ0| has an expectation of λn0|N0| = λn0γ0|P0| = λp0|P0|. Thus, the sampled

training data Ṡ0 is balanced and used to generate the tree.
When a set of new training data S ′(P ′,N ′) arrive, S ′ is added into S0. A

merged training data set S1(P1,N1) is obtained with a new imbalance ratio of
γ1 = |N1|/|P1|. In an offline situation, Pois(λp1) and Pois(λn1) should be used

to sample P1 (obtain Ṗ1) and N1 (obtain Ṅ1) respectively, where λp1 and λn1
are defined based on γ1 and λ in the same way as shown in Eq.(1). Instead of
sampling P1 and N1 to get Ṗ1 and Ṅ1 from scratch, we dynamically update Ṗ0

and Ṅ0 to obtain Ṗ1 and Ṅ1: we generate an Add Set A and a Remove Set R
from both S ′ and S0 based on the imbalance ratio change in the following way.

For S ′, a standard balanced sampling procedure is applied by using Pois(λp1)

and Pois(λn1) to sample P ′ (obtain Ṗ ′) and N ′ (obtain Ṅ ′) respectively and get
a sampled subset Ṡ ′(Ṗ ′, Ṅ ′). Ṡ ′ is added to A.

For S0, we deal with its positive subset P0 first. With the new Poisson dis-
tribution Pois(λp1), each sample in P0 is expected to be sampled λp1 times.
The expected difference of sampling rate between before and after P ′ arrives
is δp0 = λp1 − λp0. If δp0 > 0, it means after the new data arrives, more posi-
tive data should be sampled from P0 in order to keep the same sampling rate
Pois(λp1) as used for P ′. We additionally sample P0 with Pois(δp0) to get an
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Add Set Ap, and add it to A. If δp0 < 0, it means after the new data arrives, less

positive samples from Ṗ0 are needed to keep the same sampling rate Pois(λp1) as
used for P ′. We generate a random number r ∼Pois(|δp0| × |P0|) and get min(r,

|Ṗ0|) samples from Ṗ0. We denote these sampled data as a Remove Set Rp, and
then add Rp to R.

The same steps are used to deal with S0’s negative subset N0, so that either
an Add Set An or a Remove Set Rn is obtained. Thus we get the whole Add Set
A = Ṡ ′ ∪Ap ∪An and the whole Remove Set R = Rp ∪Rn. To get the updated

training sample set Ṡ1 for a tree on the fly, we remove R from Ṡ0 and add A to
it: Ṡ1=(Ṡ0 −R)∪A. Thanks to the way R and A are generated, Ṡ1 is balanced
and adapted to the new imbalance ratio γ1.

Tree Growing and Shrinking. Instead of reconstructing trees from scratch,
we use the Remove SetR and Add Set A to update an existing tree that has been
constructed based on Ṡ0, to make the updated tree adapted to the imbalance
ratio change. Each sample in R and A is propagated from the root to a leaf.
Assuming a sub set Rl of R and a sub set Al of A fall into one certain leaf l
with an existing sample set Sl old, the sample set of l is updated as Sl new =
(Sl old − Rl) ∪ Al. Then tree growing or shrinking is implemented on l based
on Sl new. If |Sl new| > 0, a split test is executed for l and its children are
created (growing) if applicable based on the same split rules as used in the tree
constructing stage [3]. If |Sl new| = 0, l is deleted (shrinking). Its parent merges
the left and right child and becomes a leaf. The parent of a deleted leaf is tested
for growing or shrinking again if applicable.

Applying DyBa ORF to Interactive Image Segmentation. In our image
segmentation tasks, DyBa ORF learns from user-gradually-provided scribbles,
and it predicts the probability each pixel being foreground. The features are
extracted from a 9×9 region of interest (ROI) centered on each pixel [8]. We
use gray level features based on the mean and standard deviation of intensity,
histogram of oriented gradients (HOG), Haar wavelet, and texture features from
gray level co-occurrence matrix (GLCM). The probability given by DyBa ORF
is combined with a Conditional Random Field (CRF) [2] for a spatial regular-
ization.

3 Experiments and Results

DyBa ORF was compared with three counterparts: 1) a traditional ORF [1] with
multiple Poisson distributions based on Eq. (1) (MP ORF), 2) a traditional ORF
with a single Poisson distribution Pois(λ) (SP ORF), and 3) an offline counter-
part (OffBa RF) which learns from scratch when new data arrives. The param-
eter settings were: λ = 1.0, tree number 50, maximal tree depth 20, minimal
sample number for split 6. The code was implemented in C++1.

1 The code is available at https://github.com/gift-surg/DyBaORF
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Fig. 1. Performance of DyBa ORF and counterparts on UCI QSAR biodegradation
data set. Training data was gradually obtained from 50% to 100%.

Validation of DyBa ORF. Firstly, we validate DyBa ORF as an online learn-
ing algorithm with four of the UCI data sets2 that are widely used: QSAR
biodegradation, Musk (Version 1), Cardiotocography and Wine. The positive
class labels for them are ”RB”,”1”,”8” and ”8” respectively. Each of these data
sets has an imbalance between the positive and negative class. We used a Monte
Carlo cross-validation with 100 repetition times. In each repetition, 20% pos-
itive samples and 20% negative samples were randomly selected to constitute
test data. The remaining 80% samples were used as training data T in an on-
line manner. The initial training set S0 contained the first 50% of T and it was
gradually enlarged by the second 50% of T , with 5% of T arriving each time in
the same order as the appeared in T .

Table 1. Comparison of G-mean on four UCI data sets after 100% training data arrived
in online learning. The bold font shows values that are not significantly different from
the corresponding results of OffBa RF(p-value>0.05). The G-mean of SP ORF on Wine
is zero due to classifying all the samples into the negative class.

Data Set
Imbalance
Ratio γ

G-mean (%)
OffBa RF DyBa ORF MP ORF SP ORF

Biodegradation 1.23±0.47 83.33±2.50 83.57±2.55 81.80±2.90 80.92±2.98
Musk (version 1) 0.72±0.36 82.78±4.44 83.06±4.08 73.83±6.95 81.65±4.93
Cardiotocography 19.16±3.46 97.06±1.69 97.09±1.56 95.52±1.16 87.59±5.41
Wine 27.42±2.90 76.14±3.34 76.50±3.91 74.99±4.39 0.00±0.00

We measured the update time when new data arrived, sensitivity, speci-
ficity, and G-mean which is defined by G-mean=

√
sensitivity× specificity. Ta-

2 http://archive.ics.uci.edu/ml/datasets.html
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User-provided Foreground User-provided Background Segmentation Result Ground Truth 

DyBa 
ORF 

MP 
ORF 

SP  
ORF 

OffBa 
RF 

(a) Segmentation of placenta from fetal MRI    (b) Segmentation of adult lungs from radiographs 

Probabiltiy Probabiltiy Probabiltiy Probabiltiy After Using CRF After Using CRF 

Scribbles 

Fig. 2. Visual comparison of DyBa ORF and counterparts in segmentation of (a) pla-
centa from fetal MRI and (b) adult lungs from radiographs. The first row in each
sub-figure shows two stages of interaction, where scribbles are extended with changing
imbalance ratio. Probability higher than 0.5 is highlighted by green color. The last
column in (a) and (b) show the final segmentation and the ground truth.

ble 1 shows the final G-mean on all the four datasets after 100% T arrived.
The performances on the QSAR biodegradation data set are presented in Fig. 1,
which shows a decreasing sensitivity and increasing specificity for SP ORF and
MP ORF. In contrast, OffBa RF keeps high sensitivity and G-mean when the
imbalance ratio increases. DyBa ORF achieves a sensitivity and specificity close
to OffBa RF, but its update time is much less when new data arrives.

Interactive Segmentation of the Placenta and Adult Lungs. DyBa ORF
was applied to two different 2D segmentation tasks: placenta segmentation of
fetal MRI and adult lung segmentation of radiographs. Stacks of MRI images
from 16 pregnancies in the second trimester were acquired with slice dimension
512×448, pixel spacing 0.7422mm×0.7422mm. A slice in the middle of each
placenta was used, with the ground truth manually delineated by a radiologist.
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Table 2. G-mean and Dice Score(DS) of DyBa ORF and counterparts in placenta and
adult lung segmentation. G-mean and DS(RF) were measured on probability given by
RFs. DS(CRF) was measured on the result after using CRF. tu is the time for forests
update after the arrival of new scribbles. The bold font shows values that are not
significantly different from the corresponding results of OffBa RF(p-value>0.05).

Method G-mean(%) DS(RF)(%) DS(CRF)(%) Average tu(s)

Placenta

OffBa RF 84.24±4.02 74.97±7.20 89.32±3.62 1.80±0.92
DyBa ORF 83.09±4.18 75.25±6.88 89.17±3.73 0.42±0.22
MP ORF 78.21±8.12 71.98±9.76 85.14±9.13 0.37±0.18
SP ORF 74.49±6.94 69.40±8.55 79.32±12.07 0.53±0.26

Adult
Lungs

OffBa RF 90.80±2.30 86.87±3.89 94.25±1.62 7.40±1.17
DyBa ORF 90.08±2.36 86.69±3.56 94.06±1.64 1.52±0.43
MP ORF 85.51±3.82 82.95±4.43 90.53±3.59 1.14±0.30
SP ORF 83.38±5.52 80.93±6.70 87.27±9.18 2.19±0.68

Lung images and ground truth3 were downloaded from the JSRT Database4.
Data from the first 20 normal patients were used (image size 2048×2048, pixel
spacing 0.175mm×0.175mm) . At the start of segmentation, the user draws an
initial set of scribbles to indicate the foreground and background and the RFs
and CRF are applied. After that the user gives more scribbles several times and
each time RFs are updated and used to predict the probability at each pixel.

Fig 2 shows an example of the placenta and adult lung segmentation with
increasing scribbles. In Fig 2(a) and 2(b), lower accuracy of MP ORF and SP
ORF compared with OffBa RF and DyBa ORF can be observed in the second
and third column. Quantitative evaluations of both segmentation tasks after the
last stage of interaction are listed in Table 2. We measured the G-mean and Dice
score (DS) of the probability map thresholded by 0.5, DS after using CRF, and
the average update time after the arrival of new scribbles. Table 2 shows DyBa
ORF achieved a higher accuracy than MP ORF and SP ORF, and a comparable
accuracy with OffBa RF, with largely reduced update time.

4 Discussion and Conclusion

Experiment results show that SP ORF had the worst performance, due to its lack
of explicitly dealing with data imbalance. MP ORF [1] performed better, but it
failed to be adaptive to imbalance ratio changes. OffBa RF, which learns from
scratch for each update, and DyBa ORF, which considers the new imbalance
ratio in both existing and new data, were adaptive to imbalance ratio changes.
DyBa ORF’s comparable accuracy and reduced update time compared with
OffBa RF show that it is more suitable for interactive image segmentation.
In addition, the results indicate that the MP/SP ORF needs some additional
user interaction to achieve the same accuracy as obtained by DyBa ORF. This

3 http://www.isi.uu.nl/Research/Databases/SCR/
4 http://www.jsrt.or.jp/jsrt-db/eng.php
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indirectly demonstrates that our model is helpful in reducing user interaction
and saving interaction time. Future works can be done to further investigate the
performance of DyBa ORF in reducing user interaction in segmentation tasks.

In conclusion, we present a dynamically balanced online random forest to
deal with incremental and imbalanced training data with changing imbalance
ratio, which occurs in the scribble-and-learning-based image segmentation. Our
method is adaptive to imbalance ratio changes by combining a dynamically bal-
anced online Bagging and a tree growing and shrinking strategy to update the
random forests. Experiments show it achieved a higher accuracy than traditional
ORF, with a higher efficiency than its offline counterpart. Thus, it is better for
interactive image segmentation. It can also to be applied to other online learning
problems with imbalanced data and changing imbalance ratio.

Acknowledgements. This work was supported through an Innovative En-
gineering for Health award by the Wellcome Trust [WT101957]; Engineering
and Physical Sciences Research Council (EPSRC) [NS/A000027/1], the EP-
SRC (EP/H046410/1, EP/J020990/1, EP/K005278), the National Institute for
Health Research University College London Hospitals Biomedical Research Cen-
tre (NIHR BRC UCLH/UCL High Impact Initiative), a UCL Overseas Research
Scholarship and a UCL Graduate Research Scholarship.

References

1. Barinova, O., Shapovalov, R., Sudakov, S., Velizhev, A.: Online Random Forest
for Interactive Image Segmentation. In: EEML. pp. 1–8 (2012)

2. Boykov, Y., Jolly, M.P.: Interactive Graph Cuts for Optimal Boundary & Region
Segmentation of Objects in N-D Images. ICCV 2001. 1(July), 105–112 (2001)

3. Breiman, L.: Random Forests. European Journal of Mathematics 45, 5–32 (2001)
4. Chen, C., Liaw, A., Breiman, L.: Using random forest to learn imbalanced data.

University of California, Berkeley pp. 1–12 (2004)
5. Grady, L., Schiwietz, T., Aharon, S., Westermann, R.: Random walks for interac-

tive organ segmentation in two and three dimensions: Implementation and valida-
tion. In: MICCAI 2005. vol. 3750, pp. 773–780 (2005)

6. Harrison, A.P., Birkbeck, N., Sofka, M.: IntellEditS: Intelligent learning-based ed-
itor of segmentations. In: MICCAI 2013. vol. 8151, pp. 235–242 (2013)

7. Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: Online random forests.
In: ICCV Workshops 2009. pp. 1393–1400 (2009)

8. Santner, J., Unger, M., Pock, T., Leistner, C., Saffari, A., Bischof, H.: Interactive
Texture Segmentation using Random Forests and Total Variation. BMVC 2009 pp.
66.1–66.12 (2009)

9. Top, A., Hamarneh, G., Abugharbieh, R.: Active learning for interactive 3D image
segmentation. In: MICCAI 2011. vol. 14, pp. 603–10 (2011)

10. Wang, G., Zuluaga, M.A., Pratt, R., Aertsen, M., David, A.L., Deprest, J., Ver-
cauteren, T., Ourselin, S.: Slic-Seg: slice-by-slice segmentation propagation of the
placenta in fetal MRI using one-plane scribbles and online learning. In: MICCAI
2015. pp. 29–37 (2015)

11. Yang, W., Cai, J., Zheng, J., Luo, J.: User-friendly interactive image segmentation
through unified combinatorial user inputs. IEEE TIP 19(9), 2470–2479 (2010)


