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Abstract

We consider a male and a female in a courtship encounter over continuous time. Both 

parties pay participation costs per unit time. The game ends when either one or other 

of the parties quits or the female accepts the male as a mate. We assume that there is a 

binary variable which determines whether the male is a “good” or “bad” type from the 

female’s point of view, according to either his condition or his willingness to care for 

the young after mating. This variable is not directly observable by the female, but has 

fitness consequences for her: she gets a positive fitness payoff from mating with a 

“good” male but a negative fitness payoff from mating with a “bad” male. We assume 

also that a “good” male has a higher ratio of fitness benefit from mating to fitness cost 

per unit time of courtship than a “bad” male. We show that, under suitable 

assumptions, there are evolutionarily stable equilibrium behaviours in which time-

extended courtship takes place. A “good” male is willing to court for longer than a 

“bad” male; in this way the duration of a male’s courtship signals his type, and acts as 

a costly handicap. By not being willing to mate immediately the female achieves a 

degree of screening because the posterior probability that the male is “good”, 

conditional on his not having quit the game, increases with the duration of courtship.

Introduction

In most species the reproductive success of males is largely governed by the ability to 

secure matings with receptive females (see for example Odendaal et al., 1985; 

Andersson and Iwasa, 1996), and increases with the number of females they mate 

with. Females, in contrast, invest greater resources into nurturing offspring, which 

limits the number of offspring they can produce; their reproductive success may 

depend to a significant extent on the quality of the males they mate with. This 



consideration may be sufficient for females to be choosy about which males they mate 

with even when delaying mating involves a cost (Moore and Moore 2001, Yamanoi et 

al., 2006).

Active female choice gives rise to selection pressure on male physiological and 

behavioural traits that influence a male’s chance of being chosen by females, leading 

to the evolution of male signalling strategies (Dawkins, 1993; Johnstone, 1997). As in 

many signalling problems there is scope for deceit (Krebs and Dawkins 1984); this 

has the potential to reduce the credibility of signals. The seminal work of Spence 

(1973) showed that if a signal has the property that the benefit from signalling, 

relative to the cost, depends on the signaller’s type, then a stable game-theoretic 

equilibrium may be possible in which signals tend to be informative to the receiver. In 

biology this notion leads to the ‘handicap principle’ (Zahavi and Zahavi, 1997), 

giving rise to evolutionarily stable outcomes in which superior males, from the point 

of view of a potential female mate, produce signals that are difficult or costly for 

inferior males to replicate (Grafen 1990a).

Courtship signalling by males has a variety of forms including adornments, bright 

colouration and extravagant displays (Andersson, 1994). Males may offer material 

gifts (e.g. Alcock, 1998; Vahed, 1998; Miller, 2000, Kondoh, 2001, Pizzari, 2003; 

Tryjanowski and Hromada, 2005). The female may obtain direct fitness benefits from 

such gifts in the form of enhanced nutrition for herself or direct investment in the 

provisioning of offspring (Gwynne, 1984). Edible nuptial gifts however, are not 

always of significant nutritional value to the female (Wedell, 1993). Gifts may also 

consist of inedible tokens (Vahed, 1998; Stalhandske, 2001, 2002). Even when 



nutritionally valuable gifts are offered in the majority of cases, offering a worthless 

gift can still be a successful strategy (LeBas and Hockam, 2005). In some 

circumstances, sending a signal with small functional benefits for the receiver may be 

advantageous to the signaller by giving the receiver added incentive to pay attention 

to the signal (Roberts, 1998). In contrast, Sozou and Seymour (2005), modelling 

courtship as a sequential game, argue that there is an important role for gifts that are 

costly to the male but worthless to the female. Because the gift is worthless to the 

female (and in the model she incurs a cost in accepting it), the male will not be 

exploited by a ‘gold digger’ who has no intention of mating with him. This fits within 

a sexual selection framework in which the male pays a cost of signalling to the 

female, and the female also pays a cost of screening the male (Pomiankowski, 1987).

In many cases, however, courtship involves not a single, instantaneous gift or act, but 

rather ongoing expenditure over a period of time. Courtship feeding in birds may 

involve several episodes before and after copulation (Nisbet, 1973).  In black-horned 

tree crickets the duration of courtship feeding varies between males and appears to 

influence the number of fertilisations achieved by a male (Brown and Kuns, 2000). 

The Blue Bird of Paradise displays to a female by hanging upside down and 

vocalising for a prolonged period of time (Frith and Beehler, 1998). In modern human 

societies courtship typically involves a series of dinners and other outings. As well as 

direct costs to the male, these activities cost time and may therefore involve a 

significant opportunity cost to both sexes, i.e. a loss of the use of the time for other 

purposes.



Where long courtship involves a net cost to the female, this raises the question: why 

does she not avoid (or reduce) this cost by deciding immediately (or more quickly) 

whether or not to mate with the male? It may be that a female cannot perfectly assess 

the male’s quality because of random errors in the signal (Luttbeg 1996); with more 

observation time or repeat observations these random errors are reduced.  There is, 

however, another possibility: that the duration of a male’s courtship effort may in 

itself constitute a useful signal to the female. It is this possibility which the present 

study addresses.

We consider courtship as a game extended over time. With respect to post-mating 

payoffs the game is similar to that considered by Sozou and Seymour (2005). In 

particular males are always willing to mate but differ in some trait – genetic quality, 

or ability or willingness to provide paternal care – necessitating choosy behaviour by 

females. However, whereas Sozou and Seymour (2005) consider a single gift at a 

specific point in time, in the present study the courtship process involves a gradual 

accumulation of costs to both the male and the female over time. This can be 

conceptualised as a cycle of the male giving a small gift to the female repeated over 

many rounds, with a net cost to both parties over each cycle (i.e. the cost of the 

female’s time exceeds the value of the gifts to her).  However, the model considered 

here does not require that the courtship process necessarily involves “gifts” as such. 

Instead, each cycle can simply involve some form of costly act by the male, for 

example a courtship display, directed specifically at the female involved in the 

encounter (not a broadcast advertisement to females in general); the female also 

incurs some cost for participating in the process (e.g. a time-cost while she is 

observing the male).



2. The model

2.1 Representing fitness consequences of a courtship encounter

A female and a male meet and engage in a courtship encounter which may lead to 

mating resulting in the production of offspring. Payoffs represent the fitness gain or 

loss arising from the encounter. We explicitly model only a single encounter, but this 

should be understood as an episode within an underlying biological process in which 

males and females may experience several encounters in the course of a breeding 

period. A player gaining a payoff of exactly zero is neither better off nor worse off 

than if the encounter had not taken place. That is, any player may gain or lose from a 

courtship encounter relative to their prospective outside options. The expected 

payoffs from such options can therefore be set to zero when analyzing a single 

(representative) encounter. A positive payoff represents a fitness gain from the 

encounter and a negative payoff represents a fitness loss. Thus if the female gets a 

negative payoff from mating, this means that she would have done better not to mate 

on that encounter but instead to hold out for the prospect of mating with a better male 

in a future encounter.

2.2 Male type

We assume that there is a variable which characterizes the male but which is not 

known a priori to the female. This can be regarded as the male’s type. In common 

with Sozou and Seymour (2005), for simplicity we will consider this to be a binary 

variable. The male’s type is either “good” (G) or “bad” (B). The case of an arbitrary 



number of male types is considered in Appendix C, where it is shown that the result is 

essentially the same as for the binary case. 

We assume that a female gets a positive payoff from mating with a good male, and a 

negative payoff from mating with a bad male. We assume that a male always gets a 

positive payoff from mating, but that the ratio of his gain from mating to his cost of 

courtship is higher for a good male: that is, courtship effort is, relatively speaking, 

more costly for a bad male. These assumptions are presented more formally in section 

2.3.

The most straightforward interpretation of a male’s type is that it is a measure of his 

condition: a good male is in good condition; a bad male is in poor condition. A female 

should prefer to mate with a male in good condition if male condition is positively 

correlated with genetic quality, or in species with paternal care, a female should prefer 

to mate with a male in good condition if such a male is a better provider of care. If a 

male in good condition additionally has a lower cost of producing a strong courtship 

signal relative to his gain from mating, then the signal can act as an honest indicator 

of his condition, and a female should prefer to mate with a male producing a strong 

courtship signal (Parker, 1982; Grafen, 1990a; Grafen 1990b). In the model presented 

here, the duration of a male’s courtship effort constitutes the strength of his signal.

An alternative interpretation of male type, proposed by Sozou and Seymour (2005), is 

modelled on species with facultative post-mating paternal care, e.g. humans. It is

assumed that the male makes a subjective assessment of the female’s attractiveness, 



and finds her either attractive, or unattractive. The female does not know for sure her 

own attractiveness to the male. The female’s attractiveness to the male is a noisy 

indicator of her quality. The male values the chance of mating with her more highly if 

she is attractive to him, and in this case he will stay after mating and help raise the

offspring. If she is unattractive he will still mate with her if given the opportunity, but 

will then desert, resulting in a negative payoff to the female. In this interpretation, a 

male discriminates between females: from his perspective they are not all the same. A 

female should accordingly discriminate between males on the basis of their intentions 

towards her (Camerer, 1988).

These interpretations of the game are mathematically equivalent in this model. The 

key features of the payoff structure of the game are:

1. The female gets a positive payoff from mating with a good male and a 

negative payoff from mating with a bad male. 

2. A good male values mating with the female, relative to the costs of courtship, 

more highly than a bad male.

We assume that the female has objective, internalised prior probabilities for male 

type, determined by natural selection, and possibly by a limited degree of juvenile 

learning. The prior probability that a (random) male will be good (G) is Pf , and 

1 Pf  is the probability that he will be bad (B). We assume that 0 < Pf  < 1.



2.3 Payoffs from mating

Following Sozou and Seymour (2005), we assume that if mating takes place, the 

fitness payoffs to both players will depend on the male’s type. A male gets a higher 

payoff if he is good (G) rather than “bad” (B). 

Let K = G (good) or B (bad) be the type of the male. The male and female expected 

payoffs from mating are denoted by M(K) and F(K), respectively. We define the 

possible payoffs by:

M (G)  Am , M (B)  Dm , (1a)

F(G)  Af , F(B)  C f , (1b)

where we assume:

Am  Dm  0 , (2a)

Af  0 , C f  0 . (2b)

Thus, the female obtains a positive payoff from mating only if the male’s type is good 

(1b, 2b); if his type is bad, her payoff from mating with him is negative.  However, 

any male will always mate with a female if given the opportunity because he always 

gets a positive payoff, though this payoff is higher if his type is good (1a, 2a)1. 

                                                
1In this formulation we have assumed that the male gets a higher benefit from mating if he is a good 

type, but he pays the same cost of courtship per unit time whether he is a good or bad type. An 



If the female mates with a random male without any further information beyond the 

prior probability of his type being good, her expected payoff is

Eprior
F  Pf Af  (1 Pf )C f . (3)

This may or may not be positive. If it is negative, the female cannot benefit from 

mating with the male, and she will refuse to do so (i.e. quit the encounter 

immediately), and receive zero payoff. If Eprior
F  is positive, she can receive this 

expected payoff by mating immediately. If Eprior
F  is zero, she is indifferent between 

these two options. 

However, a third option is to attempt to gain additional information about the male’s 

type before mating by engaging in extended courtship. This will be profitable if there 

is a prospect of obtaining a positive expected payoff higher than Eprior
F . In what 

follows we investigate equilibrium solutions with extended courtship.

2.4 Cost of courtship

In Sozou and Seymour (2005), the male signals his type to the female by offering a 

single costly gift. Here we consider courtship as a continuous process extended over 

                                                                                                                                           
alternative formulation would be to assume that the male gets the same fitness payoff from mating

whether he is a good or bad type, but that his cost of courting the female per unit time is greater if he is 

bad. Either assumption is equally acceptable in our model as the male’s behaviour is determined by the

ratio of his cost of courtship per unit time to his benefit from mating. Our results depend on this ratio 

being smaller if the male is a good type rather than a bad type, i.e. G < B  (see Table 1). 



time, and assume that this involves positive costs to both sexes. The female achieves a 

degree of screening by not being willing to mate immediately with the male, and the 

duration of a male’s courtship effort constitutes a signal of his type.

Regardless of whether or not mating takes place, if the male expends time and effort 

courting the female he will incur a cost, and the female may also incur costs for time 

spent being courted by the male. In the human context, for example, suppose 

courtship involves a series of restaurant meals paid for by the male. Then the male 

must incur the cost of the meals and the cost of his time. The female gets a nutritional 

benefit from the meals, but must incur the cost of her time spent in restaurants. The 

cost of time is an opportunity cost. We assume that this opportunity cost exceeds the 

nutritional benefit to the female from each meal. Each individual meal may involve 

relatively small costs to the male and the female, but a number of meals over a long 

time period may add up to a significant total cost to both parties.

2.5 The courtship process

The game proceeds in continuous time. During courtship the male pays a constant 

cost x per unit time and the female pays a constant cost  per unit time. We assume 

that x and  are environmentally determined variables. They are not strategic variables 

that either party can manipulate.

The game ends in one of three possible (independent) ways:

a) The female mates with the male.

b) The female quits the game without mating.



c) The male quits the game and mating does not occur.

We assume behaviours are defined by constant probabilities per unit time or rates for 

each of the above processes. Thus, the female mates with a male at rate  . The

female quits without mating at rate , and a male of type K quits against a female at 

rate qK . We then look for optimal values of these rates, where the male’s rates are a 

best reply to those of the female and the female’s rates are a best reply to those of a 

male who is good with probability Pf and bad with probability (1 – Pf), to define a 

Nash equilibrium.

The above continuous time description of the game can be thought of as derived from 

a discrete-time game consisting of a sequence of rounds, each of short duration t , by 

taking the limit t  0 . Each round of the discrete-time game will then consist of a 

sequence of moves. For example, in each round the male can decide to quit, with 

probability qGt  if his type is good, and qBt  if his type is bad. Similarly, the female 

quits without mating with probability t . If neither party quits, the female mates 

with probability t , and the game then terminates. If none of these termination 

events occur, the game proceeds to the next round. Such a sequential interpretation is 

illustrated in Fig 1. However, it should be noted that the order in which events occur 

is irrelevant to first order in t , and hence the continuous-time limit is compatible 

with many different sequential interpretations. 

FIG 1 HERE



2.6 Duration and outcomes of the game

Consider a courtship encounter between a female and a male of type K. As stated in 

section 2.5, the game ends in one of three ways: the male quits the game and mating 

does not occur; the female quits the game without mating; or the female mates with 

the male. The rates for these possible events are qK,  and  respectively. The total 

rate (i.e. probability per unit time) for the game ending is given by the sum of these 

rates, and hence is equal to qK +   + . The duration of the game will therefore be 

exponentially distributed, with an expected duration given by TK  1 (qK   ) . 

The probability that the game ends with the male quitting is qKTK. The probability that 

the game ends with the female quitting without mating is TK. The probability that the 

game ends with mating taking place is TK .

2.7 Total payoffs from the game

As long as the game continues, the male pays a cost x per unit time. Thus, the

expected total cost to the male is xTK . The probability that the game ends with 

mating taking place is TK , and in this case the male gains fitness payoff M (K ) . 

Thus, the male’s expected payoff is EK
M  M (K )TK  xTK . From (1a), this yields: 

EG
M 

Am  x

qG   
, (4a)

EB
M 

Dm  x

qB   
. (4b)



Similarly, let EF be the unconditional expected payoff to a female, allowing for the 

fact that she does not know the male’s type. Then EF can be written as [Pf  

(expected payoff if the male is good)] + [(1 - Pf)  (expected payoff if the male is 

bad)]. That is:

EF  Pf

Af  
qG   

 (1 Pf )
C f  

qB   
. (5)

The first term in (5) corresponds to the female’s prospect of being courted by a good 

male: she has a positive fitness term from the possibility that mating will occur, but a 

negative term from her expected cost of time spent in courtship. The second term 

corresponds to her prospect of being courted by a bad male: both the possibility of 

mating with such a male and the time spent in courtship constitute fitness costs for 

her. The payoff (5) therefore may be decomposed into components:

EF  E
F  E

F , (6)

where:

E
F  expected gain from mating  Pf

Af

qG   
 (1 Pf )

C f

qB   








,

(6a)

E
F  expected cost of courtship  Pf

1

qG   
 (1 Pf )

1

qB   








.

(6b)



Note that E
F  is always non-negative, whereas E

F  can be positive, negative or zero. 

2.8 Evolutionary equilibria

A male’s strategy is a vector sM  (qG ,qB )  of quitting rates, and a female’s strategy is 

a vector sF  (,) of quitting and mating rates. A Nash Equilibrium (NE) is a pair of 

strategies, (sM
 ,sF

 ) , such that neither player can get a higher expected payoff by 

adopting a different strategy, i.e.:

EF (sM
 ,sF

 )  EF (sM
 ,sF ) for all sF, and (7a)

EK
M (sM

 ,sF
 )  EK

M (sM ,sF
 ) for K = G or B, and all sM. (7b)

That is, each strategy sM
  and sF

  is a best reply to the other. 

We look for mating solutions with extended courtship, i.e. Nash equilibria in which 

mating is not immediate and occurs with probability greater than zero. We analyse the 

game in a series of steps, progressively making deductions about the nature of any 

such solutions of the game. Evolutionary stability of equilibria is discussed in section 

3.6 and in Appendix A.

3. Analysis

3.1 Notation for detailed analysis

We define the following cost-benefit ratios (each having the dimensions of time-1):



G 
x

Am

,  B 
x

Dm

, G 

Af

,  B 


C f

. (8)

Table 1 summarises the notation used in this paper.

Note that (2a) implies that 0 G  B . In other words, the ratio of the male’s cost 

per unit time of courting the female to his gain from mating is smaller if his type is 

good.

Table 1. Major symbolic notation used in this paper with the associated meaning.

Female Male

Symbol Meaning Symbol Meaning

- - Pf
Prior probability that male type is 

“good”

Af
Fitness gain to female from 

mating with a good male 

Am
Fitness gain to a good male from 

mating

C f
Fitness cost to female from 

mating with a bad male 

Dm
Fitness gain to a bad male from mating 

EF Total expected payoff to a female 

from courtship

EK
M Total expected payoff to a male of 

type K (= G or B) from courting

 Cost of courtship per unit time x Cost of courtship per unit time

 Rate of quitting against male qK
Rate of quitting by male of type K (= 

G or B)

 Rate of mating with courting 

male

q̂B
Lower bound for qB to define a Nash 

equilibrium (section 3.5) 

 L  Af (L = G);   C f  (L = B) K x Am   (K = G); x Dm   (K = B)



Ratio of female’s cost per unit 

time for participating in the 

courtship process to her gain or 

loss from mating with a male of 

type L

Ratio of male’s cost per unit time for 

courting to his gain from mating, 

where K represents the male’s type

Using the notation of (8), the male expected payoffs (4a, b) can be expressed as:

EG
M  x

 G

G qG     , EB
M  x

 B

B qB     . (9)

Notice that the male gets a positive payoff if and only if the female’s mating rate  is 

higher than the ratio of the male’s courtship cost per unit time to his gain from mating 

(G if he is a good type, or B if he is a bad type).

The female’s expected payoff (5) may be expressed as:

EF   Pf

  G

G qG     (1 Pf )
   B

 B qB    











. (10)

Notice from the first term inside the curly brackets in (10) that, even if the female is 

sure that the male’s type is good (i.e. if Pf 1), the female’s mating rate  must be 

greater than G for her to get a positive expected fitness benefit from the game. If it is 

less, then her expected cost of time spent on courtship will be greater than her gain 



from mating (unless she quits immediately with  = , in which case she will spend 

no time on courtship and mating will not occur).

A summary of the main findings of the analysis that follows is given at the end of this 

section, in section 3.8.

3.2 The female never quits

If the female is to obtain a positive total expected payoff EF  E
F  E

F  (see equation 

(6a)), the expected fitness cost of the time she spends being courted, E
F , must be less 

than her expected fitness gain from mating E
F . This requires that she must mate with 

a sufficiently high rate: specifically   G  (see (10)). Otherwise her expected payoff 

would be negative, and she would do better by quitting immediately (i.e.  = ) to 

obtain a zero payoff. Thus, an equilibrium with mating requires that   G  and 

finite.

We now show that a female strategy with  > 0 cannot be optimal. Consider such a 

strategy, (, ), with positive  and  finite. If this is not worse for the female than 

quitting immediately then it must give a non-negative expected payoff, i.e. 

EF (,)  E
F (,)  E

F (,)  0. As she has a positive expected cost of courtship 

E
F (,) , it follows that her expected gain from mating E

F (,)  must also be 

positive. Now consider the alternative female strategy (0,  +); this has the same 

expected duration of courtship, but the female never quits and the game is more likely 

to end in mating. From (6b), the alternative strategy has the same expected cost of 



courtship, i.e. E
F (0,  )  E

F (,) . However, from (6a), the female’s expected 

gain from mating is now E
F (0,  )  (  )   E

F (,) . Thus, since E
F (,)  is 

positive and  > 0, it follows that E
F (0,  )  E

F (,) , and hence for total 

expected payoffs, that EF (0,  )  EF (,) . Therefore the alternative strategy 

gives the female a higher total expected payoff.

This shows that any female strategy (, ) that involves quitting with positive 

probability (i.e. with  > 0 and  finite) and that gives a positive expected payoff will 

be less fit than a strategy that involves never quitting. 

If the female mates immediately (i.e.  = ), then she receives expected payoff Eprior
F

given by (3), which is independent of .  Hence, any finite value of  is irrelevant to 

her expected payoff if she mates immediately. There is therefore no loss of generality 

in assuming that   0  in this case also. Hence, in any equilibrium with mating, we 

can assume that the female never quits (i.e.   0 ). 

Now observe from (10) that the condition EF 0,  0 for a positive expected payoff 

for the female if she never quits may be expressed in the form:

Pf 
G   B  qG   

G   B  qG    B  G  qB    . (11)



3.3 A good male never quits

From the result in section 3.2 that, if she does not quit immediately, the female’s 

optimal quitting strategy is  = 0, it follows that the male and female expected payoffs 

(9, 10) reduce to:

EG
M  x

 G

G qG    , EB
M  x

 B

B qB    , (12)

EF   Pf

  G

G qG    (1 Pf )
   B

 B qB   











. (13)

The female’s strategy is now completely determined by her choice of mating 

frequency  . The male’s strategy is determined by his quitting vector sM  qG ,qB . 

Table 2 shows the male’s best reply (BR) to various values of  , and in turn the 

female’s best reply   to each quitting strategy sM . 

Table 2. Five cases (column 1), with possible ranges of the female mating rate 

given in column 2. The third and fourth columns give the best reply (BR) male 

quitting strategies to any   in the given range. The fifth column gives the female’s 

best reply   to the male quitting strategy defined in the third and fourth columns.

Case  range BR qG BR qB BR 

1  G  B   undetermined

2  G  B undetermined  

3 G    B 0  

4 G    B 0 undetermined undetermined



5 G  B   0 0 

From the male’s point of view, the game is very much like a war of attrition (Maynard 

Smith, 1974): he is waiting for a resource (mating) and faces a constant hazard rate of 

 for gaining the resource. The ratio of his cost of courtship per unit time to the value 

of the resource to him is G (if he is good) or B (if he is bad). If   is less than this 

ratio he should quit immediately. If  is greater than this ratio he should wait 

indefinitely without quitting. If  is exactly equal to this ratio then all values of his 

quitting rate are equal best replies, giving him an expected payoff of zero.

Cases 2 and 3 in Table 2 cannot define Nash equilibria since the values of   in the 

second and fifth columns are incompatible. For values of   in case 1, the male cannot 

obtain a positive payoff from any female, and so the best he can do is to quit 

immediately to obtain zero payoff. In this case there is no courtship. In contrast, 

values of   in case 5 are so large that the male’s best strategy is never to quit. The 

female’s best reply is then to mate immediately, since she cannot avoid mating with a 

bad male by waiting for him to quit first. 

It follows that the only possible Nash equilibria in which mating occurs arise from 

cases 4 and 5, with extended courtship being possible only in case 4. In both these 

cases qG  0 , i.e. a good male does not quit.



3.4 Best reply strategies

The female’s best reply choice of   to a bad male’s quitting strategy qB  is obtained 

by maximizing EF ()  given by (13). To find this value, consider

1


dEF

d
 Pf

1

2
 (1 Pf )

qB  B

 B qB   2
.

There are several cases.

If qB   B  then dEF d  is always positive, and EF ()  is monotonically increasing 

in  . Hence EF ()  is maximized at    . From (13), (8) and (3), EF ()  Eprior
F , 

and it follows that the female should mate immediately if Eprior
F  0 , but should quit 

immediately if Eprior
F  0  (to obtain payoff 0). If Eprior

F  0 , the female is indifferent 

between these two options. 

If qB   B , then dEF d  0  if and only if:

1
qB




(1 Pf )(qB   B )

Pf B

. (14)

This holds for any   0  when the right-hand-side is  1. That is, when

qB 
 B

1 Pf

. (15)



Again, the female’s best reply is to mate immediately (   ) if Eprior
F  0 , but to quit 

immediately if Eprior
F  0 .  Clearly condition (15) includes the case qB   B .

Finally, if 

qB 
 B

1 Pf

, (16)

then (14) yields a unique, finite value   (qB )  at which EF  is maximized. This is 

given by:

(qB ) 
qB Pf B

(1 Pf )(qB   B )  Pf B

. (17)

The denominator of (qB )  is positive when (16) holds, and clearly (qB )  as 

qB   B (1 Pf ) . At the other extreme, (qB )  as qB  . It is easy to show 

that (qB )  has a unique minimum at qB  q , where q  2 B 1 Pf , and that 

min
  (q)  2 B Pf 1 Pf . From case 4 of Table 2, the requirement that qB

defines a Nash equilibrium is that qB  is a solution of (qB ) B , and it follows from 

the above analysis that this will be the case if and only if min
 B , which gives:

Pf 
B

2 B B







2

. (18)



Further, if this inequality is strict, then there are exactly two such solutions for qB . 

We denote these by q0
  and q1

  with q0
  q  q1

  (see Fig 2). Clearly, (18) will always 

hold if  B  is sufficiently large, and from the definition (8) this holds if either the 

courtship cost x is large, or the fitness gain Dm  to a bad male from mating is small. 

On the other hand, if  B  is sufficiently small, then (18) is not satisfied, and in this 

case there can be no equilibrium solutions with extended courtship. The female’s best 

response is then either to mate immediately (if she gets a positive payoff) or to quit 

immediately (otherwise). This case arises if either the courtship cost x is small or the 

fitness gain Dm  is large. 

FIG 2 HERE

3.5 The condition for the female to get a positive payoff

When (16) holds, so that there may be extended courtship equilibria, it remains to 

consider whether the condition (11) for a female to obtain a positive expected payoff 

also holds. Substituting the values qG  0 ,   B  (from case 4 of Table 2) we find 

that (11) holds if and only if  B  G  and qB  q̂B , where:

q̂B  B

(1 Pf )G  B  B 
Pf B B G  1












. (19)



It is possible to obtain q̂B  q0
  q1

 , in which case both q0
  and q1

  are Nash equilibria 

(and from section 3.6 below, q1
  is then evolutionarily stable). It is also possible to 

obtain q0
  q1

  q̂B , in which case there are no Nash equilibria. In this case, the 

female cannot obtain a positive payoff by mating (either immediately or otherwise), 

and she should quit immediately. These cases are illustrated in Fig 2. 

3.6 Evolutionary stability

As we have seen in the preceding analysis, there are two possible Nash equilibria 

determined by bad male quitting strategies q0
 , q1

 . In both cases the female’s mating 

strategy is   B . We have also seen (Fig 2) that often q0
  is not compatible with 

(11) (i.e. q0
  q̂B ), and sometimes neither q0

  nor q1
  is compatible with (11). As 

noted above, if (11) is not satisfied, there cannot be a Nash equilibrium with mating as 

females would always do best to quit immediately without mating. However, 

sometimes both strategies are compatible with (11) (i.e. q̂B  q0
  q1

 – see Fig 2). In 

this section we show that if q1
  is compatible with (11), and therefore an equilibrium 

solution, then it is evolutionarily stable, but if q0
  is compatible with (11) it is 

evolutionarily unstable. 

Fig 3a shows the female’s best reply curve   (qB ) , and Fig 3b shows the male’s 

best reply curve qB  qB
 () . First consider the equilibrium (qB ,)  (q0

,B ) . 

Suppose a small perturbation decreases qB  below q0
 . Then the female’s best reply

satisfies (qB )  B  (Fig 3a). Thus, there will be selection pressure to increase 



above  B . But then the male’s best reply is qB
 ()  0 (Fig 3b). It follows that there 

will be selection pressure to decrease qB  still further, and hence the equilibrium 

(q0
,B )  is unstable. Similarly, a small perturbation in qB  above q0

  will be amplified 

by selection. 

The reverse argument applies to the equilibrium (q1
,B ) , so that small perturbations 

in qB , either above or below q1
 , will die out under selection pressure. If a small 

perturbation increases   above B , then the male’s best reply is qB
 ()  0 . There 

will therefore be selection pressure to decrease qB  below q1
 . But then the female’s 

best reply is (qB )  B , so there will be selection pressure to reverse her excursion 

above   B . A similar argument applies to a small perturbation that decreases 

 below  B . 

FIG 3 HERE

More generally, a perturbation away from equilibrium has the form 

(q1
,B ) (q1

  r,B  s)  with r and s small. Assuming an evolutionary dynamics 

which tends to move qB  and   in the direction of best replies, the possible 

evolutionary trajectories are illustrated in Fig 4. However, this picture is inconclusive, 

and suggests that there could be cycles around equilibrium. In Appendix A we 

consider stability with respect to a particular class of best reply evolutionary 

dynamics, and show that (q1
,B )  is in fact locally asymptotically stable with respect 

to any dynamics in this class. 



FIG 4 HERE

3.7 Equilibrium outcomes

We have shown that there are three possible equilibrium behaviours for the female: a) 

quit immediately, in which case no courtship or mating occurs; b) mate immediately; 

c) engage in extended courtship. It is optimal for the female to quit immediately, 

giving her a payoff of zero, if she cannot obtain a positive payoff from behaviour b) 

or behaviour c). Conversely, if her payoff Eprior
F (equation (3)) from immediate mating 

is positive then this will be better than quitting immediately. But if she can get a 

higher payoff from engaging in extended courtship, then her best strategy is to engage 

in extended courtship rather than to mate immediately.

Using equation (3) and the notation (8), Eprior
F  is positive if and only if Pf  Pf

 , 

where:

Pf
 

G

G   B

. (20)

As discussed in section 3.4, the Nash equilibrium with extended courtship, 

(qB ,)  (q1
,B ) , can exist only if Pf 

2 , where   B (2 B  B )  (see (18)), 

and the female can obtain a positive payoff from this behaviour only if q1
  q̂B , given 

by (19). In this case, the female’s expected payoff from extended courtship is 

necessarily larger than Eprior
F .



In this section, we regard the female cost-benefit parameters G  and  B  as fixed, and 

consider the possible female equilibrium behaviours as functions of the male 

parameters Pf , the prior probability that a male is good, and  B , a bad male’s cost-

benefit ratio.

From this perspective, Pf
  (equation (20)) is fixed and   is a function of  B . Thus, 

the region in the (Pf , B ) -plane in which Eprior
F  is negative is separated from the 

region in which it is positive by the line Pf  Pf
  (Fig 5).  Similarly, the threshold in 

the (Pf , B ) -plane separating the region in which q1
  exists from the region in which 

it does not is determined by the relation Pf  
2 . That is, by the curve 

 B  2 B Pf 1 Pf .

The equilibrium quitting rate for a bad male, q1
 , when it exists, may or may not give 

the female a positive payoff. By definition, q1
  is the larger root of the equation 

(qB ) B , in which (qB ) , given by (17), is a function of Pf . Thus, q1
  is a 

function of Pf  and  B . Clearly, the threshold q̂B , given by (19), is also a function of 

Pf  and  B . It follows that the region in the (Pf , B ) -plane in which there is a Nash 

equilibrium with extended courtship is defined by the relations q1
  q̂B  and Pf 

2 .

In Appendix B we show that these conditions define a curve B  f (Pf ) , with 

f (Pf ) a continuous, monotonically increasing function, such that extended courtship 



is an ESS outcome if and only if  B  f (Pf ) .  Further, f (Pf )  as Pf  1, and 

f (0)  ̂B , where 

̂ B  G  G (G  B ) . (21)

In particular, there can be no ESS with extended courtship when  B  ̂B . 

The various possible outcomes, for fixed values of G  and  B , are illustrated in Fig 5 

as regions in the (Pf , B ) -plane. There are four major regions. In Region A, extended 

courtship is the unique ESS; in Region B, the female cannot obtain a positive payoff, 

and therefore quits immediately, while in Region C there are sufficiently many good 

males in the population that she can obtain a maximum, positive payoff from mating 

immediately. In Region D, the female can obtain a positive payoff either from mating 

immediately, or from engaging in extended courtship.

However, in Region D, the female payoff from extended courtship is greater than that 

from mating immediately (section 3.4). In this case, if the population is in the 

extended courtship equilibrium, then a female’s best strategy is also to engage in 

extended courtship. For males this leads to the apparent paradox that, even though 

there may be an alternative equilibrium in which all males mate immediately and 

there are no costs of extended courtship, once the extended courtship equilibrium is 

established, any male who unilaterally decides not to engage in extended courtship 

will not get to mate.



At the other extreme, when Pf  0 , there are very few good males in the population. 

If the cost-benefit ratio B for a bad male is sufficiently small, the female will quit 

immediately and mating will not occur (Region B). However, if  B  is sufficiently 

large (i.e.  B  ̂B ; Region A) an equilibrium with courtship exists, and it is shown 

in Appendix B that q1
    as Pf  0 . Thus, bad males quit increasingly quickly at 

equilibrium as Pf  becomes progressively smaller. As Pf  0 , the equilibrium has the 

following characteristics:

 The proportion of courtship encounters in which the male is good tends 

towards zero, i.e. the probability that a random male is bad tends towards 1;

 The probability that an encounter between a female and bad male will lead to 

mating tends towards zero, and the overall probability that an encounter 

between a female and a random male will lead to mating also tends towards 

zero;

 The expected duration of courtship in an encounter between a female and a 

bad male, and the overall expected duration of courtship, both tend towards 

zero.

Note that as Pf  0 within region A, the bad male’s quitting rate q1
  is the only 

behavioural variable that changes at equilibrium. A female will continue to delay 

mating with a mean waiting time before mating of 1   1  B .  Thus, it becomes 

increasingly probable that a female will screen out (or  “outwait”) a bad male. In 

contrast, a good male will continue to wait indefinitely. It follows that an encounter 

between a female and a good male will continue to lead to mating, with a mean 

courtship time for such an encounter of 1/ B . However, encounters between a female 

and a good male will be increasingly rare as Pf  0 .



Of particular note is the fact that, for some values of  B , the range of Pf  values 

inside Region A in which extended courtship is an equilibrium outcome, is separated 

from the range of Pf values in region C in which immediate mating is the equilibrium 

outcome, by a range of Pf values in region B in which no mating occurs. Thus, as 

more good males are introduced into the population ( Pf is increased), the equilibrium 

outcome can first change from one in which extended courtship is possible to one in 

which no mating occurs, before reaching a state in which such a high proportion of 

males are good that immediate mating becomes optimal for the female.

To understand this counter-intuitive phenomenon, consider a courtship equilibrium 

(  B , qB = q1
 ). In the vicinity of the equilibrium, the female’s best response 

(qB )  is an increasing function of qB (Fig 3a).  As Pf  increases, the female’s best-

response curve, (qB ) , moves upwards – see (17). It follows that q1
  decreases. 

Hence, a bad male’s equilibrium expected waiting time before quitting, 1 q1
 , 

increases. The female’s equilibrium expected waiting time remains the same, 1  B . 

This means that a female will screen out (or “outwait”) a smaller proportion of bad 

males, so that she now has a greater risk that a courtship encounter with a bad male 

will lead to mating. Reducing  to increase her expected waiting time would increase 

her chance of screening out a bad male but would not benefit her overall because she 

would have to pay an increased expected cost of waiting time. The result is that when 

q1
  becomes too low the female cannot get a positive expected payoff from extended 



courtship, and since she cannot obtain a positive payoff from mating immediately 

(because Pf  Pf
 ), her best option is to quit immediately. 

A transition from region A to region B as Pf is increased can be understood from the 

perspective of selection pressure and evolutionary dynamics.  Suppose that Pf

increases, i.e. more good males are introduced to the population, with qB initially 

remaining at the same value as before. Then the best response value of  increases: 

there will be selection for females to reduce the delay before mating. This in turn

leads to a lower best response value of qB, i.e. there will be selection for a lower 

quitting rate for bad males. Eventually a new equilibrium will be established at which 

 has the same value of  =  B  as before, but the equilibrium bad male quitting rate 

q1
  is now lower. As Pf  is increased, there comes a point where q1

  is too low to give 

the female a positive payoff; at this point courtship collapses. From a female 

perspective, as Pf increases the benefit of a higher proportion of good males is 

outweighed by the lower equilibrium quitting rate of bad males.

FIG 5 HERE

3.8 Summary of results

We have found conditions for the existence of Nash equilibria in which there is 

extended courtship resulting in mating with positive probability. The characteristics of 

such equilibria are summarized as follows:



 The female obtains a positive expected payoff and never quits ( = 0; section 

3.2).

 A good male obtains a positive expected payoff and never quits ( qG  0 ; 

section 3.3).

 An equilibrium is therefore defined by (qB,), where  is the female’s mating 

rate and qB is a bad male’s quitting rate.

 At an equilibrium with extended courtship, the female’s mating strategy is 

  B  (section 3.3).

 There are 0, 1 or 2 possible male Nash equilibrium quitting strategies, qB  q0


or q1
 , with q1

  q0
   B (1 Pf )  (section 3.4 and Fig 2).

 There is a threshold value q̂B  such that qi
  defines a Nash equilibrium if and 

only if qi
  q̂B , this being the condition for the female to obtain a positive 

expected payoff (section 3.5 and Fig 2).

 If the Nash equilibrium (qB ,)  (q0
,B )  exists, then it is evolutionarily 

unstable (section 3.6).

 If the Nash equilibrium (qB ,)  (q1
,B )  exists, then it is evolutionarily stable

with respect to a class of best-response evolutionary dynamics (section 3.6) 

 There is a threshold value ̂ B , depending on only the female cost-benefit 

ratios G  and  B , such that there is a non-empty range of Pf  containing 

equilibria with extended courtship only for  B  ̂B  (section 3.7 and Fig 5).

 There is a threshold value Pf
 , depending only on G  and  B , such that the 

female obtains a positive payoff from mating immediately if and only if 

Pf  Pf
 .



 For  B  ̂B  the female’s optimal strategy is to quit immediately if Pf  Pf
 , 

and to mate immediately if Pf  Pf
  (section 3.7 and Fig 5).

We conclude that there is at most one equilibrium with extended courtship that is 

evolutionarily stable. For any value of Pf  in the range 0  Pf  1, an equilibrium is 

guaranteed if a bad male’s cost-benefit ratio  B  is sufficiently large. 

4. Discussion

In this study we have modelled courtship as a waiting game over continuous time. 

The game ends with one or other party quitting (to pursue outside options), or with

mating taking place. Strategies are defined by fixed probabilities per unit time, or 

rates, for each of the possible moves which end the game. In contrast to Sozou and 

Seymour (2005), who considered the type of gift appropriate in courtship, in the 

present study we make the assumption that extended courtship involves costs to both 

the male and the female, and we are concerned with understanding the role of the 

duration of courtship effort as a signal. During courtship, both the male and the 

female pay participation costs per unit time at fixed rates. A courtship process 

involving a sequence of small gifts fits the assumptions of this model as long as the 

gifts are “costly but worthless”, i.e. the time-cost to the female in receiving the gifts 

exceeds her intrinsic (i.e. non-informational) benefit from the gifts. But the model is 

more general than this in that it considers a courtship process which involves 

participation costs but need not involve gifts as such.



A key feature of the model is asymmetric information arising from a binary variable, 

not completely observable by the female. The female will get a positive payoff from 

mating only if the male is a “good” male, with respect to his genetic quality, or ability 

or intention to provide paternal care. If the female mates with a “bad” male, i.e. one 

who is low quality or will not provide paternal care, she will get a negative payoff 

from mating with him.

We have found evolutionarily stable behaviour in which mating occurs after extended 

courtship. This has the following characteristic: a “bad” male should quit the 

courtship process at a certain positive rate, whereas a “good” male should persist for 

longer (indefinitely for the specific assumptions in our model). To the male, the game 

has some similarity to a war of attrition, with the opportunity to mate with the female 

constituting the resource for which he is waiting. A “good” male has a higher ratio of 

fitness benefit from mating to fitness cost per unit time of courting than a “bad” male. 

From the female’s point of view, the strategic problem that she faces is one of 

decision-making under uncertainty (Dall et al., 2005). Whereas the model of Sozou 

and Seymour (2005) leads to an equilibrium outcome in which the female never mates 

with a “bad” male, in real mating systems females may sometimes mate with the 

wrong male. This could be because of random errors in a female’s assessment of male 

quality (Luttbeg, 1996) or limits on the processing capacity of her neural system 

(Krakauer and Johnstone, 1995).

The extended courtship equilibria in the present study also do not completely 

eliminate the risk of a female mating with a “bad” male. The female’s strategy is a 



compromise solution in the face of a trade-off between the costs of mating too quickly 

(an increased risk of mating with a “bad” male) and the time-cost of delay.  The 

female’s cost of delay can be interpreted as a cost of acquiring information.

Bad males quit at a finite rate; they do not quit immediately. This means that, whilst 

the courtship cost incurred by a bad male is on average less than that incurred by a 

good male, it is nevertheless positive. It is therefore necessary for bad males to 

sometimes succeed in mating in order for an extended courtship equilibrium to be 

sustained. Appendix C extends the analysis to an arbitrary number of discrete male 

types of increasing “goodness”.   The extended model behaves in all essential respects 

like the binary model: the worst type of male that courts the female constitutes the 

“bad” male type and has a finite quitting rate, whilst all better male types never quit 

and collectively constituting the equivalent of the “good” male type.

In both the binary and extended version of the model, equilibrium behaviour is 

qualitatively determined by the cost-benefit ratio  B  of a bad male, and the 

probability Pf  that a (random) courtship encounter will be with a good male.   A good 

male always has a lower cost-benefit ratio. If  B  is below a threshold (determined by 

the female cost-benefit ratios), then the female’s only possible equilibrium behaviour 

is either to mate immediately if Pf  is high enough for her expected payoff from 

immediate mating to be positive, or to quit immediately if Pf  is too low and her 

expected payoff is negative.  However, as  B  increases above this threshold, there is 

an increasing range of values of Pf  for which extended courtship is evolutionarily 

stable. For given  B , this range of Pf  extends from 0 to some threshold. For Pf



beyond this threshold (i.e. as the proportion of good males increases), extended 

courtship ceases to be a viable equilibrium, and female behaviour will revert to either 

quitting immediately or mating immediately (section 3.7 and Fig 5).  This leads to the 

counterintuitive possibility that, for some ranges of parameters, an evolutionarily 

stable extended courtship equilibrium with mating is possible for low Pf , and 

immediate mating will occur for high Pf , but for intermediate values of Pf  no mating 

will occur. In other words, as Pf  increases mating will break down when there are too 

many good males in the population to enable an extended courtship equilibrium, but 

not enough to make immediate mating profitable for the female. 

For the cost-benefit ratio  B , and the proportion of good males Pf  both sufficiently 

large, it is possible for a female to obtain a positive expected payoff from both 

extended-courtship and mating immediately. However, the payoff she obtains in a 

population in an extended courtship equilibrium is always strictly higher than that 

obtained from mating immediately. In such a population, even if a female can obtain a 

positive payoff from mating immediately, she should delay mating because her 

additional gain by reducing the chance of mating with a “bad” male exceeds her cost 

of delay. 

The simplest interpretation of the parameters of the model is that they have fixed 

values. However, the analysis is compatible with a more liberal interpretation in 

which they can vary with variables that are objectively known by the male and female 

(i.e. are common knowledge), providing that the male and female have a degree of 

behavioural flexibility that allows them to condition their behaviour on these 

variables. These variables could include time of season, environmental variables such 



as temperature, and any objective and directly observable characteristics of the male 

or female that influence payoffs or the probability Pf that a male will be good.

In this model “mating” represents an end-point of courtship in which fertilisation 

occurs with certainty or at least with a fixed probability. However, if the female can 

exercise significant post-copulatory choice, as may be the case in some arthropods 

(Carbone & Rivera 1998; Edvardsson & Arnqvist 2000), then copulation itself may be 

an important component of courtship effort. Duration of copulation may then act as a 

signal, with superior males (in the sense of preferable fertilisers, from a female’s 

perspective) being willing to copulate for longer; it is then in the female’s interest to 

select for fertilisation the sperm of males who will endure long copulations.

Although the female has the option of quitting without mating, and without incurring 

further costs, she makes use of this option only if she cannot obtain a positive payoff 

from participation. In an extended courtship equilibrium she does not make use of this 

option. As the model is currently formulated, removing the female’s option of quitting 

would not affect the equilibrium behaviour of females or of males. The model would 

then represent a system in which a female’s only possible response to a persistent 

male is the extent to which she delays mating, with delay involving energetic and 

other costs to her. This may approximate the situation in hermit crabs (Yamanoi et al. 

2006) in which a female may delay mating with a pre-copulatory guarding male, and 

the male may - under competition from other males - quit guarding without mating. 

The biologically relevant question in relation to the present study is how far a male’s 

ability to guard a female for a long time constitutes an indicator of his quality. If it 

does constitute such an indicator, then delaying mating with a guarding male is not 



simply a female’s attempt to choose a different male. It may, at least in part, be a way 

of testing the quality of the male who is guarding her.

Various generalisations and extensions of this modelling approach are possible. 

Although the model captures the idea that the duration of a male’s courtship effort is a 

useful signal to the female, in some biological species such as horned dung beetles 

(Kotiaho 2002) the intensity of the male’s effort is also important.  Representing this 

in a model would involve relaxation of the assumption of a fixed cost of courtship per 

unit time to the male; if applied to the present model this would greatly complicate the 

analysis. 

Another possible generalization would relax the assumption of a homogeneous female 

population. The current model assumes that females are homogeneous in their costs 

and payoffs, resulting in them all having the same unique best response mating rate 

to a given bad male quitting rate (Fig 3a). The bad male best response quitting rate 

against this is a step function (Fig 3b), and the existence of a point mass of 

homogeneous bad males then enables formation of an equilibrium with extended 

courtship in which the female mating rate is equal to the value B at which this step 

occurs. Relaxing the homogeneity assumption for the female population would result 

in females exhibiting instead a distribution of mating rates rather than a single mating 

rate. Male best response quitting rates to such a distribution then would vary 

continuously with male type, allowing extended courtship equilibria for a population 

in which male type varies continuously throughout its range. This development would 

require a significant extension of the analysis presented here. 



The model is a highly idealized representation of a single courtship encounter. It is

not intended to represent the detailed courtship behaviour of any particular species. 

Rather, it is a generic model designed to shed light on the costs and benefits of 

extended-time courtship behaviour. For humans in particular, cognitive capacity and 

behavioural flexibility is vastly greater than is assumed in this simple model. People 

can use a range of subtle and variable signals, and cumulatively assess complex 

features of potential mating partners over time (Miller, 2000; Buss, 2003; Saad and 

Gill, 2003; Brase, 2006; Griskevicius et al, 2007). In addition, human courtship takes 

place (and probably always has taken place) within a complex social environment. 

Potentially this allows individual participation costs in courtship to be diminished, 

with honesty of signals sustained by social enforcement mechanisms (Lachman et al, 

2001). Nevertheless, we believe that the simple model presented here captures a 

possible role for costs accumulated over time which may be important in extended 

courtship in several species, including humans. It may therefore help to explain long 

courtship in humans, and the folk wisdom that a woman is best advised not to sleep 

with a man on a first date.
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Appendix A: Evolutionary stability

Consider an equilibrium (q,B )  (section 3.8). The female’s best reply curve, defined 

for qB   B (1 Pf ) , is  (qB ) , given by (17). The male’s best reply curve is 

qB
 ()    for   B , and qB

 ()  0 for   B . Then we have (q) B

(section 3.3 and Fig 3).

Consider an evolutionary dynamics of the form:


  (qB )   BF (qB ,) , (A.1a)


qB   B   BM (qB ,) , (A.1b)

where the functions BF  and BM  are strictly positive in a neighbourhood of 

equilibrium, but are otherwise arbitrary. These dynamics have the property that they 

move qB  and   in the direction of best reply at rates determined both by the size of 

the perturbation away from equilibrium, and by the factors BF  and BM .

The Jacobian matrix of the dynamics (A.1a, b) at the equilibrium (q,B )  is:

J  BF
  (q)BF



BM
 0









 .



Thus, TrJ  BF
  0  and DetJ   (q)BF

 BM
 .  When q  q0

 , we have  (q0
 )  0

(Fig 3a), and hence DetJ  0 . This shows that (q0
,B )  is unstable under the 

dynamics (A.1a, b). On the other hand, when q  q1
 , we have  (q1

)  0  (Fig 3a), 

and hence DetJ  0 .  It follows that (q1
,B )  is locally asymptotically stable under 

the dynamics (A.1a, b). 

Appendix B: Equilibrium outcomes

In this Appendix we prove the claims made in section 3.7. In particular, we construct 

the function f (Pf ) , defined for 0  Pf  1, such that (qB ,)  (q1
,B )  is an extended 

courtship equilibrium for all parameter pairs (Pf , B )  with  B  f (Pf ) .

The bad male equilibrium quitting behaviour q1
  is the larger root of the equation 

(qB ) B . From (17), this equilibrium condition yields the quadratic equation, 

Q(qB )  0 , where

Q(qB )  Pf BqB
2 B 2Pf B B (1 Pf ) qB B

2 B .

The larger root of this quadratic, after some algebraic manipulation, can be written as

q1
 

 B

2Pf B

B  (2 B B )Pf  B
2  (2 B B )2 Pf (1 Pf ) . (B.1)



It follows from (19) that the condition q1
  q̂B  for the female to obtain a positive 

payoff from this equilibrium behaviour, holds if and only if  B  G  and

B  (2 B B )Pf  B
2  (2 B B )2 Pf (1 Pf )

 2(1 Pf )
G B  B 
B G   2Pf B .

After some rearrangement, this inequality can be written as:

 2  Pf

1 Pf


2G B  3GB B

2

(2 B B )(B  G )
, (B.2)

where   B (2 B  B ) . Note that, from (18), q1
  exists only if Pf 

2 , so the 

left-hand-side of (B.2) is well defined.  

Clearly, the right hand side of (B.2) becomes negative if  B  is sufficiently large, and 

in this case (B.2) is automatically satisfied. Indeed, as  B  ,   1 and so the left 

hand side  1, whereas the right hand side  1 . The right hand side of (B.2) is 

negative for  B B
0 , where  B

0  3
2G 1 1 8 B 9G , and for  B  in this 

range q1
  is an ESS strategy for any Pf  in the interval 0  Pf 

2  for which it is 

defined. Thus, the boundary curve to this region, Pf  
2 , is the curve B  f (Pf ) , 

where

f (Pf )  2 B

Pf

1 Pf

. (B.3)



This is a monotonically increasing function of Pf  defined for Pf  Pf
0 , where 

Pf
0   2 (B

0 ) .  Clearly f (Pf )  as Pf  1. 

For any  B , the maximum value of the left hand side of (B.2) is attained when 

Pf  0 . Thus, (B.2) cannot hold for values of  B  for which the right hand side is 

larger than  . This implies that (B.2) can hold only for values of  B  satisfying 

 B
2  2GB  G B  0 . That is, for values satisfying  B  ̂B , where 

̂ B  G  G (G  B ) , as given in (21). Furthermore, equality holds in (B.2) (i.e. 

q1
  q̂B ) when (Pf , B )  (0,̂B ) . 

Note that  B
0  ̂B , and so it remains to determine conditions under which (B.2) holds 

for  B  in the range ̂B B B
0 . Let   denote the right hand side of (B.2). Then 

0     for  B  in this range, and q1
  q̂B  holds if and only if 

 2  Pf   1 Pf ; i.e. Pf  g(B )  where 

g(B ) 
 2   2

1  2
 1

1 2

1  2
. 

As shown above, we have g(̂B )  0  and g(B
0 )  Pf

0 . A calculation from the 

definitions of   and   yields the explicit formula:



g(B )  1
 B

G  B







(B G )2

 B(B  2G )
. (B.4)

[Observe that ̂ B  2G  so that the denominator on the right is positive for 

 B  ̂B .] Using (B.4), the function Pf  g( B ) can be inverted to obtain 

B  f (Pf ) , defined for 0  Pf  Pf
0 , and given explicitly by:

f (Pf )  G 1
1 Pf

Pf
  Pf












, (B.5)

with Pf
  G (G  B ) , as in (20). This function is monotonically increasing in Pf , 

and satisfies f (0)  ̂B  and f (Pf
0 ) B

0 .

We have now defined a continuous, monotonically increasing function, B  f (Pf ) , 

given by (B.3) for Pf  Pf
0 , and by (B.5) for 0  Pf  Pf

0 .   Thus, f (Pf )  is defined for 

all Pf  in the range 0  Pf  1. It also satisfies f (0)  ̂B  and f (Pf )  as Pf  1. 

Furthermore, (qB ,)  (q1
,B )  is an ESS for  B  f (Pf ) . This establishes the claims 

of section 3.7.  

Appendix C: Extended male type spectrum

Throughout the main text of this paper, for ease of exposition we have assumed that 

males have one of two possible types, “good” (G) or “bad” (B). In this appendix we

consider the effect of an arbitrary number of discrete male types. 



Assume that a male’s type is described by a variable g taking discrete values. This 

variable represents male “goodness”: a higher value of g means that the male is in 

better condition or has a stronger intention/capacity to provide paternal care (cf. 

section 2.2). We assume that a male’s payoff from mating is always positive and is a 

monotonically increasing function of g. A female’s expected payoff from mating is

also monotonically increasing in g, but may be positive or negative depending on g.

Suppose that at equilibrium the males who participate in courtship are of types 0, 1, 

..., n, ..., in ascending order of goodness; i.e. gn1  gn . This leaves open the 

possibility that there are also male types in the population who do not attempt 

courtship but instead always quit immediately – for example, if they are not (yet) in 

sufficiently good condition, or have not acquired the necessary resources to carry the 

cost of courtship. In an extended courtship equilibrium the female’s payoff from 

mating must be negative if the courting male is of type 0, and must be positive if the 

male is sufficiently good. If the female received a negative payoff from mating with

all types of courting male, her best strategy against any male would be to quit 

immediately, and if she received a positive payoff from mating with all types of 

courting male, her best strategy would be to mate immediately; either way there 

would be no extended courtship.

A female’s strategy is given by a quitting rate θ and a mating rate . It is 

straightforward to show, using the argument of section 3.3, that if the female engages 

in courtship at all (i.e. if she does not quit immediately), then she should never quit. 



That is,   0 . Thus, if extended courtship occurs, a female’s strategy is specified 

only by a mating rate . 

Let n be the ratio, for a male of type n, of his cost per unit time of participation in 

courtship to his gain from mating (cf. (8) and Table 1). Since male payoffs from 

mating are positive and monotonically increasing and cost x per unit time is constant2, 

it follows that n is positive and monotonically decreasing with n, i.e. better male 

types have lower -values.  Suppose the female has a positive and finite mating rate 

. From the analysis of section 3.3, the best response of a male of type n is to quit 

immediately if n > , and never to quit if n <  (cf. Table 2). If n is exactly equal 

to  then all quitting rates are equal best responses to .

For a male of type 0 to participate in courtship implies 0  . It follows that all other 

male types n = 1, 2, 3… participating in courtship must satisfy n < , so types which 

are better than type 0 will court indefinitely without quitting. If it were also the case 

that 0 < , then a type 0 male would also never quit, giving a situation in which no 

courting male quits. The duration of courtship would then no longer act as a signal of 

a male’s type; a female’s best response would be to either mate immediately or quit 

immediately, and so there would be no extended courtship. If follows that an 

equilibrium with extended courtship must satisfy 0 = , so that for males of type 0 

all quitting rates are an equal best response to . This leads to an outcome in which 

males of type 0 have a finite quitting rate (cf. case 4 in table 2), and all other males 

                                                
2 As for the binary case it can alternatively be assumed that all males have the same payoff from mating 
but better males have a lower cost per unit time for courtship (see footnote 1). The results depend on 
the ratio  of the cost per unit time of courtship to the benefit from mating decreasing as goodness g
increases.



who participate in courtship will court indefinitely. Note, however, that the population 

could additionally contain males who are worse (i.e. lower g) than type 03: such males 

will not participate in courtship, but instead will quit immediately on encountering a 

female. 

The form of the equilibrium is essentially the same as for the binary case. Males of 

type 0 correspond to “bad” males: they give the female a negative payoff from mating 

and have a finite quitting rate. Other male types that participate in courtship can be 

regarded collectively as “good” males: these court indefinitely. This does not imply 

that a male type who does not quit necessarily gives the female a positive payoff from 

mating, but rather that the female can only condition (by delaying mating) on whether 

or not the male has a positive quitting rate, and that her expected payoff from mating 

with a male who does not quit is positive.

We can formally redefine the relevant parameters of the binary analysis for the case of 

multiple male types participating in courtship. Let the proportion of males who 

participate in courtship and are of type n be pn. Let Fn be a female’s payoff from 

mating with a male of type n, and Mn be the payoff to a male of type n from mating.

Then the relevant parameters become:

 


1n nf pP , with 1 – Pf  = p0, 

Af 
pnn1 Fn

Pf

,

                                                
3 We assume that a male with lower goodness than males of type 0 would obtain a payoff from mating 
which is positive but lower than the payoff for a male of type 0, and hence would have an –value 
greater than 0. 



C f  F0 ,

Dm  M 0 .

The analysis now proceeds exactly as for the binary case. Note that for the binary case 

there is a single payoff from mating for a good male, Am, whereas for multiple male 

types this varies with type. However, in the binary case Am drops out of the analysis as 

long as Am > Dm. In the case of multiple male types we have Mn > M0 for all n > 0, 

resulting in the same behaviour, i.e. good males do not quit.

In conclusion, the model with several discrete male types yields an outcome that in all 

essential respects is the same as that of the binary model. In particular, at an 

equilibrium with extended courtship, a female never quits, a male of type n > 0 never 

quits, and Nash equilibria are determined by the quitting strategy of bad males,

qB  q0 .



FIGURE LEGENDS 

Fig 1. A possible game tree showing the moves in a ‘round’ of length t . Each round 

is preceded by an assessment by the female of the male’s type. In fact, to first order in 

t , the order in which the moves are made is irrelevant. 

Fig 2. The female’s best reply mating frequency function (qB )  to a bad male’s 

quitting strategy qB , given by (17), showing the possible Nash equilibria qB  q0
  and 

qB  q1
 . This function is defined for qB   B (1 Pf ) . The grey-shaded region to the 

left in each panel is the region 0  qB   B (1 Pf ) , in which the female’s best reply 

is either to quit immediately (if Eprior
F  0 ) or to mate immediately (if Eprior

F  0 ). For 

qi
  to define a Nash equilibrium requires that qi

  q̂B , the threshold given by (19). A 

heavy black point indicates that this condition is satisfied; a grey filled circle indicates 

that it is not satisfied. The cases shown are: (a) q0
  and q1

  are both Nash equilibria. 

Here q̂B   B (1 Pf ) . Parameters are: Pf  0.375 , G  1,  B  2 ,  B  8 . (b) q0


and q1
  are both Nash equilibria, but with q̂B   B (1 Pf ) . Parameters are: 

Pf  0.286 , G  1,  B  2 ,  B  4.7 .  (c) q1
  is a Nash equilibrium, but q0

  is not. 

Parameters are: Pf  0.667 , G  5 ,  B  1,  B  13 . (d) Neither q0
  nor q1

  is a 

Nash equilibrium. Parameters are: Pf  0.667 , G  5 ,  B  1,  B  11 .

Fig 3. Best reply curves: a) for the female’s mating frequency best response 

  (qB )  to the male’s quitting strategy qB ; b) for the male’s quitting frequency 



best response qB  q()  to the female’s mating strategy  . The two possible Nash 

equilibria (qB ,)  (q0
,B )  and (qB ,)  (q1

,B )  are indicated in (a). 

Fig 4. Arrows indicate the direction of motion around the equilibrium 

(qB ,)  (q1
,B )  when evolutionary pressure moves points (qB ,)  in the direction of 

best replies. The heavy curve is the female best reply function   (qB ) . 

Fig 5.  Regions of the (Pf , B ) -plane showing various possible equilibrium outcomes. 

Region A (dark grey): The region in which (qB ,)  (q1
,B ) , the evolutionarily 

stable equilibria with extended courtship, exist. This is bounded by the solid curve 

B  f (Pf ) , as described in the text. Region B (light grey): The region in which the 

female quits immediately and no mating occurs. The dashed curve is determined by 

the threshold (18), Pf B
2 (2 B B )2 .  In the region to the left of this curve q1



exists, but the strategy pair (qB ,)  (q1
,B )  does not yield a positive payoff to the 

female ( q̂B  q1
 ). To the right of the dashed curve there are no solutions of 

(qB ) B . Region C (white): In the region Pf  Pf
  the female can obtain a 

positive payoff from mating immediately. This is the unique equilibrium outcome 

where it does not overlap with region A. Region D (very dark grey): The female 

payoff is positive from both mating immediately and from extended courtship. Her 

payoff from the latter is greater than from the former. Fixed parameters used are: 

G  5 ,  B  1.  
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