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Abstract. Non-interactive arguments enable a prover to convince a verifier that a state-
ment is true. Recently there has been a lot of progress both in theory and practice on
constructing highly efficient non-interactive arguments with small size and low verifi-
cation complexity, so-called succinct non-interactive arguments (SNARGs) and succinct
non-interactive arguments of knowledge (SNARKs).
Many constructions of SNARGs rely on pairing-based cryptography. In these constructions
a proof consists of a number of group elements and the verification consists of checking
a number of pairing product equations. The question we address in this article is how
efficient pairing-based SNARGs can be.
Our first contribution is a pairing-based (preprocessing) SNARK for arithmetic circuit
satisfiability, which is an NP-complete language. In our SNARK we work with asymmetric
pairings for higher efficiency, a proof is only 3 group elements, and verification consists
of checking a single pairing product equations using 3 pairings in total. Our SNARK is
zero-knowledge and does not reveal anything about the witness the prover uses to make
the proof.
As our second contribution we answer an open question of Bitansky, Chiesa, Ishai, Os-
trovsky and Paneth (TCC 2013) by showing that linear interactive proofs cannot have a
linear decision procedure. It follows from this that SNARGs where the prover and verifier
use generic asymmetric bilinear group operations cannot consist of a single group element.
This gives the first lower bound for pairing-based SNARGs. It remains an intriguing open
problem whether this lower bound can be extended to rule out 2 group element SNARGs,
which would prove optimality of our 3 element construction.

Keywords: SNARKs, non-interactive zero-knowledge arguments, linear interactive proofs,
quadratic arithmetic programs, bilinear groups.

1 Introduction

Goldwasser, Micali and Rackoff [GMR89] introduced zero-knowledge proofs that enable
a prover to convince a verifier that a statement is true without revealing anything else.
They have three core properties:

Completeness: Given a statement and a witness, the prover can convince the verifier.
Soundness: A malicious prover cannot convince the verifier of a false statement.
Zero-knowledge: The proof does not reveal anything but the truth of the statement,

in particular it does not reveal the prover’s witness.
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Blum, Feldman and Micali [BFM88] extended the notion to non-interactive zero-knowledge
(NIZK) proofs in the common reference string model. NIZK proofs are useful in the
construction of non-interactive cryptographic schemes, e.g., digital signatures and CCA-
secure public key encryption.

The amount of communication is an important performance parameter for zero-
knowledge proofs. Kilian [Kil92] gave the first sublinear communication zero-knowledge
argument that sends fewer bits than the size of the statement to be proved. Micali [Mic00]
proposed sublinear size arguments by letting the prover in a communication efficient
argument compute the verifier’s challenges using a cryptographic function, and as re-
marked in Kilian [Kil95] this leads to sublinear size NIZK proofs when the interactive
argument is public coin and zero-knowledge.

Groth, Ostrovsky and Sahai [GOS12,GOS06,Gro06,GS12] introduced pairing-based
NIZK proofs, yielding the first linear size proofs based on standard assumptions. Groth [Gro10]
combined these techniques with ideas from interactive zero-knowledge arguments [Gro09]
to give the first constant size NIZK arguments. Lipmaa [Lip12] used an alternative con-
struction based on progression-free sets to reduce the size of the common reference
string.

Groth’s constant size NIZK argument is based on constructing a set of polyno-
mial equations and using pairings to efficiently verify these equations. Gennaro, Gentry,
Parno and Raykova [GGPR13] found an insightful construction of polynomial equations
based on Lagrange interpolation polynomials yielding a pairing-based NIZK argument
with a common reference string size proportional to the size of the statement and wit-
ness. They gave two types of polynomial equations: quadratic span programs for proving
boolean circuit satisfiability and quadratic arithmetic programs for proving arithmetic
circuit satisfiability. Lipmaa [Lip13] suggested more efficient quadratic span programs
using error correcting codes, and Danezis, Fournet, Groth and Kohlweiss [DFGK14]
refined quadratic span programs to square span programs that give NIZK arguments
consisting of 4 group elements for boolean circuit satisfiability.

Following these theoretical advances there has been exciting work on building con-
crete implementations of SNARKs [PHGR13,BCG+13,BCTV14b,CTV15,CFH+15]. Most
efficient implementations refine the quadratic arithmetic program approach of Gennaro
et al. [GGPR13] and combine it with a compiler producing a suitable quadratic arith-
metic program that is equivalent to the statement to be proven; libsnark [BCTV14b,BSCG+14]
also includes a SNARK based on [DFGK14].

One powerful motivation for building efficient non-interactive arguments is verifiable
computation. A client can outsource a complicated computational task to a server in the
cloud and get back the results. To convince the client that the computation is correct the
server may include a non-interactive argument of correctness with the result. However,
since the verifier does not have many computational resources this only makes sense if
the argument is compact and computationally light to verify, i.e., it is a succinct non-
interactive argument (SNARG) or a succinct non-interactive argument of knowledge
(SNARK). While pairing-based SNARGs are efficient for the verifier, the computational
overhead for the prover is still orders of magnitude too high to warrant use in outsourced
computation [Wal15] and further efficiency improvements are needed. In their current
state, SNARKs that are zero-knowledge already have uses when proving statements



3

about private data though. Zero-knowledge SNARKs are for instance key ingredients in
the virtual currency proposals Pinocchio coin [DFKP13] and Zerocash [BCG+14].

In parallel with developments in pairing-based NIZK arguments there has been in-
teresting work on understanding SNARKs. Gentry and Wichs [GW11] showed that
SNARGs must necessarily rely on non-falsifiable assumptions, and Bitansky et al. [BCCT12]
proved designated verifier SNARKs exist if and only if extractable collision-resistant
hash functions exist. Of particular interest in terms of efficiency is a series of works
studying how SNARKs compose [Val08,BCCT13,BCTV14a]. They show among other
things that a preprocessing SNARK with a long common reference string can be used
to build a fully succinct SNARK with a short common reference string.

Bitansky et al. [BCI+13] give an abstract model of SNARKs that rely on linear
encodings of field elements. Their information theoretic framework called linear inter-
active proofs (LIPs) capture proof systems where the prover is restricted to using linear
operations in computing her messages. Given a LIP it can be converted to a publicly
verifiable SNARK using pairing-based techniques or to a designated verifier using addi-
tively homomorphic encryption techniques.

1.1 Our contribution

Succinct NIZK. We construct a NIZK argument for arithmetic circuit satisfiability
where a proof consists of only 3 group elements. In addition to being small, the proof
is also easy to verify. The verifier just needs to compute a number of exponentiations
proportional to the statement size and check a single pairing product equation, which
only has 3 pairings. Our construction can be instantiated with any type of pairings
including Type III pairings, which are the most efficient pairings.

The argument has perfect completeness and perfect zero-knowledge. For soundness
we take an aggressive stance and rely on a security proof in the generic bilinear group
model in order to get optimal performance. This stance is partly justified by Gentry
and Wichs [GW11] that rule out SNARGs based on standard falsifiable assumptions.
However, following Abe, Groth, Ohkubo and Tibouchi [AGOT14] we do provide a hedge
against cryptanalysis by proving our construction secure in the symmetric pairing set-
ting. For optimal efficiency it makes sense to use our NIZK argument in the asymmetric
setting, however, by providing a security proof in the symmetric setting we get additional
security: even if cryptanalytic advances yield a hitherto unknown efficiently computable
isomorphism between the source groups this does not necessarily lead to a break of
our scheme. We therefore have a unified NIZK argument that can be instantiated with
any type of pairing, yielding both optimal efficiency and optimal generic bilinear group
resilience.

We give a performance comparison for boolean circuit satisfiability in Table 1 and
for arithmetic circuit satisfiability in Table 2 of the size of the common reference string
(CRS), the size of the proof, the prover’s computation, the verifier’s computation, and
the number of pairing product equations used to verify a proof. We perform better than
the state of the art on all efficiency parameters.

In both comparisons the number of wires exceeds the number of gates, m ≥ n, since
each gate has an output wire. We expect for typical cases that the statement size ` will
be small compared to m and n. In both tables, we have excluded the size of representing
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CRS size Proof size Prover comp. Verifier comp. PPE

[DFGK14] 2m + n− 2` G1 , m + n− ` G2 3 G1 , 1 G2 m + n− ` E1 ` M1 , 6 P 3
This work 3m + n G1 , m G2 2 G1 , 1 G2 n E1 ` M1 , 3 P 1

Table 1. Comparison for boolean circuit satisfiability with `-bit statement, m wires and n fan-in 2 logic
gates. Notation: G means group elements, M means multiplications, E means exponentiations and P
means pairings with subscripts indicating the relevant group. It is possible to get a CRS size of m+ 2n
elements in G1 and n elements in G2 but we have chosen to include some precomputed values in the
CRS to reduce the prover’s computation, see Sect. 3.2.

CRS size Proof size Prover comp. Verifier comp. PPE

[PHGR13] 7m + n− 2` G 8 G 7m + n− 2` E ` E , 11 P 5
This work m + 2n G 3 G m + 3n− ` E ` E , 3 P 1

[BCTV14a] 6m + n + ` G1 , m G2 7 G1 , 1 G2 6m + n− ` E1 , m E2 ` E1 , 12 P 5
This work m + 2n G1 , n G2 2 G1 , 1 G2 m + 3n− ` E1 , n E2 ` E1 , 3 P 1

Table 2. Comparison for arithmetic circuit satisfiability with `-element statement, m wires, n multipli-
cation gates. Notation: G means group elements, E means exponentiations and P means pairings. We
compare symmetric pairings in the first two rows and asymmetric pairings in the last two rows.

the relation for which we give proofs. In the boolean circuit satisfiability case, we are
considering arbitrary fan-in 2 logic gates. In the arithmetic circuit satisfiability case we
work with fan-in 2 multiplication gates where each input factor can be a weigthed sum
of other wires. We assume each multiplication gate input depends on a constant number
of wires; otherwise the cost of evaluating the relation itself may exceed the cost of the
subsequent proof generation.

We note that [PHGR13] uses symmetric bilinear groups where G1 = G2 and we are
therefore comparing with a symmetric bilinear group instantiation of our scheme, which
saves n elements in the common reference string. However, in the implementation of
their system, called Pinocchio, asymmetric pairings are used for better efficiency. The
switch to asymmetric pairings only requires minor modifications, see e.g. [BCTV14a] for
a specification of such a SNARK, which has been implemented in the libsnark library.

Size matters. While the reduction in proof size to 3 group elements and the reduction
in verification time is nice in itself, we would like to highlight that it is particularly
important when composing SNARKs. [BCCT13,BCTV14a] show that preprocessing
SNARKs with a long CRS can be composed to yield fully succinct SNARKs with a
short CRS.1 The transformations split the statement into smaller pieces, prove each
piece is correct by itself, and recursively construct proofs of knowledge of other proofs
that jointly show the pieces are correct and fit together. In the recursive construction
of proofs, it is extra beneficial when the proofs are small and easy to verify since the
resulting statements “there exists a proof satisfying the verification equation...” become
small themselves. So we gain both from the prover’s lower computation and from the

1 We remark that soundness against generic adversaries is not preserved under composition (an issue
that also appears in [Val08]), since the composition needs a concrete instantiation of the bilinear
groups when writing out the statements corresponding to verification of another SNARK. What
we do claim is that if our SNARK is knowledge sound in the standard model, then we get secure
composition.
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fact that the statements in the recursive composition are smaller since we have a more
efficient verification procedure for our SNARK. Chiesa and Virza [CV16] report a factor
4-5 speedup from using our SNARKs in the implementation of [BCTV14a].

Technique. All pairing-based SNARKs in the literature follow a common paradigm
where the prover computes a number of group elements using generic group operations
and the verifier checks the proof using a number of pairing product equations. Bitansky
et al. [BCI+13] formalize this paradigm through the definition of linear interactive proofs
(LIPs). A linear interactive proof works over a finite field and the prover’s and verifier’s
messages consist of vectors of field elements. It furthermore requires that the prover
computes her messages using only linear operations. Once we have the LIP, it can then
be compiled into a SNARK by executing the equations “in the exponent” using pairing-
based cryptography. One source of our efficiency gain is that we design a LIP system
for arithmetic circuits where the prover only sends 3 field elements. In comparison, the
quadratic arithmetic programs by [GGPR13,PHGR13] correspond to LIPs where the
prover sends 4 field elements.

A second source of efficiency gain compared to previous work is a more aggres-
sive compilation of the LIP. Bitansky et al. [BCI+13] propose a transformation in
the symmetric bilinear group setting, where each field element gets compiled into two
group elements. They then use a knowledge of exponent assumption to argue that the
prover knows the relevant field elements. A less conservative choice would be to compile
each field element into a single group element. This improves efficiency but security
requires stronger assumptions since we the scheme may be secure in the generic group
model [Sho97,BBS04] but we can no longer use the knowledge of exponent assumption.
It is also possible to make a choice between these two extremes, Parno et al. [PHGR13]
for instance have a LIP with 4 field elements, which gets compiled into 7 group elements.
In this paper we have opted for maximal efficiency and compile each field element in
the LIP into a single group element and argue security in the generic group model.

We prefer to work with asymmetric bilinear groups for their higher efficiency than
symmetric bilinear groups. This means that there is more to the story than the number of
field elements the prover sends in the LIP and the choice of how aggressive a compilation
we use. When working with asymmetric bilinear groups, a field element can appear as
an exponent in the first source group, the second source group, or both. Our LIP is
carefully designed such that each field element gets compiled into a single source group
element in order to minimize the proof size to 3 group elements in total.

Lower bounds. Working towards ever more efficient non-interactive arguments, it is
natural to ask what the minimal proof size is. We will show that pairing-based SNARGs
with a single group element proof cannot exist. This result relates to an open question
raised by Bitansky et al. [BCI+13], whether there are LIPs with a linear decision pro-
cedure for the verifier. Such a linear decision procedure would be quite useful; it could
for instance enable the construction of SNARGs based on ElGamal encryption.

We answer this open problem negatively by proving that LIPs with a linear decision
procedure do not exist. A consequence of this is that any pairing-based SNARG must
pair group elements from the proof together to make the decision procedure quadratic
instead of linear. Working over asymmetric bilinear groups we must therefore have
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elements in both source groups in order to do such a pairing. This rules out the existence
of 1 group element SNARGs, regardless of whether it is zero-knowledge or not, and
shows our NIZK argument has close to optimal proof size. It remains an intriguing open
problem to completely close the gap by either constructing a SNARG with exactly one
element from each source group G1 and G2, or alternatively rule out the existence of
such a SNARG.

2 Preliminaries

Given two functions f, g : N→ [0, 1] we write f(λ) ≈ g(λ) when |f(λ)− g(λ)| = λ−ω(1).
We say that f is negligible when f(λ) ≈ 0 and that f is overwhelming when f(λ) ≈ 1.
We will use λ to denote a security parameter, with the intuition that as λ grows we
would like to have stronger security.

We write y = A(x; r) when algorithm A on input x and randomness r, outputs y.
We write y ← A(x) for the process of picking randomness r at random and setting
y = A(x; r). We also write y ← S for sampling y uniformly at random from the set S.
We will assume it is possible to sample uniformly at random from sets such as Zp.

Following Abe and Fehr [AF07] we write (y; z) ← (A ‖ XA)(x) when A on input x
outputs y and XA on the same input (including random coins) outputs z.

2.1 Bilinear groups

We work with bilinear groups (p,G1,G2,GT , e) with the following properties:

– G1,G2,GT are groups of prime order p
– e : G1 ×G2 → GT is a bilinear map, i.e., e(Ua, V b) = e(U, V )ab

– If G is a generator for G1 and H is a generator for G2 then e(G,H) is a generator
for GT

– There are efficient algorithms for computing group operations, evaluating the bilinear
map, deciding membership of the groups, deciding equality of group elements and
sampling generators of the groups. We refer to these as the generic bilinear group
operations.

There are many ways to set up bilinear groups both as symmetric bilinear groups
where G1 = G2 and as asymmetric bilinear groups where G1 6= G2. Galbraith, Paterson
and Smart [GPS08] classify bilinear groups as Type I where G1 = G2, Type II where
there is an efficiently computable non-trivial homomorphism Ψ : G2 → G1, and Type III
where no such efficiently computable homomorphism exists in either direction between
G1 and G2. Type III bilinear groups are the most efficient type of bilinear groups and
hence the most relevant for practical applications. We give the lower bound for Type III
bilinear groups and but our construction works without change for all 3 types of bilinear
groups.

2.2 Non-interactive zero-knowledge arguments of knowledge

Let R be a relation generator that given a security parameter λ in unary returns a
polynomial time decidable binary relation R. For pairs (φ,w) ∈ R we call φ the state-
ment and w the witness. We define Rλ to be the set of possible relation R may output
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given 1λ. The relation generator may also output some side information, an auxiliary
input z, which will be given to the adversary. An efficient prover publicly verifiable
non-interactive argument for R is a quadruple of probabilistic polynomial algorithms
(Setup,Prove,Vfy,Sim) such that

(σ, τ)← Setup(R): The setup takes as input a security parameter λ and a relation
R ∈ Rλ and returns a common reference string σ and a simulation trapdoor τ for
the relation R.

π ← Prove(R, σ, φ, w): The prover algorithm takes as input a common reference string
σ and (φ,w) ∈ R and returns an argument π.

0/1← Vfy(R, σ, φ, π): The verification algorithm takes as input a common reference
string σ, a statement φ and an argument π and returns 0 (reject) or 1 (accept).

π ← Sim(R, τ, φ): The simulator takes as input a simulation trapdoor and statement φ
and returns an argument π.

Definition 1. We say (Setup,Prove,Vfy) is a non-interactive argument for R if it has
perfect completeness and computational soundness as defined below.

Definition 2. We say (Setup,Prove,Vfy,Sim) is a perfect non-interactive zero-knowledge
argument of knowledge for R if it has perfect completeness, perfect zero-knowledge and
computational knowledge soundness as defined below.

Perfect completeness. Completeness says that, given any true statement, an honest
prover should be able to convince an honest verifier. For all λ ∈ N, R ∈ Rλ, (φ,w) ∈ R

Pr
[
(σ, τ)← Setup(R);π ← Prove(R, σ, φ, w) : Vfy(R, σ, φ, π) = 1

]
= 1.

Perfect zero-knowledge. An argument is zero-knowledge if it does not leak any
information besides the truth of the statement. We say (Setup,Prove,Vfy, Sim) is perfect
zero-knowledge if for all λ ∈ N, (R, z)← R(1λ), (φ,w) ∈ R and all adversaries A

Pr
[
(σ, τ)← Setup(R);π ← Prove(R, σ, φ, w) : A(R, z, σ, τ, π) = 1

]
= Pr

[
(σ, τ)← Setup(R);π ← Sim(R, τ, φ) : A(R, z, σ, τ, π) = 1

]
.

Computational soundness. We say (Setup,Prove,Vfy, Sim) is sound if it is not pos-
sible to prove a false statement, i.e., convince the verifier if no witness exists. Let LR
be the language consisting of statements for which there exist matching witnesses in R.
Formally, we require that for all non-uniform polynomial time adversaries A

Pr

[
(R, z)← R(1λ); (σ, τ)← Setup(R); (φ, π)← A(R, z, σ) :

φ /∈ LR and Vfy(R, σ, φ, π) = 1

]
≈ 0.

Computational knowledge soundness. Strengthening the notion of soundness, we
call (Setup,Prove,Vfy,Sim) an argument of knowledge if there is an extractor that can
compute a witness whenever the adversary produces a valid argument. The extractor
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gets full access to the adversary’s state, including any random coins. Formally, we re-
quire that for all non-uniform polynomial time adversaries A there exists a non-uniform
polynomial time extractor XA such that

Pr

[
(R, z)← R(1λ); (σ, τ)← Setup(R); ((φ, π);w)← (A ‖ XA)(R, z, σ) :

(φ,w) /∈ R and Vfy(R, σ, φ, π) = 1

]
≈ 0.

Public verifiability and designated verifier proofs. We can naturally gener-
alize the definition of a non-interactive argument by splitting σ into two parts σP and
σV used by the prover and verifier respectively. We say the non-interactive argument
is publicly verifiable when σV can be deduced from σP . Otherwise we refer to it as a
designated verifier argument. For designated verifier arguments it is possible to relax
soundness and knowledge soundness such that the adversary only sees σP but not σV .

SNARGs and SNARKs. A non-interactive argument where the verifier runs in poly-
nomial time in λ + |φ| and the proof size is polynomial in λ is called a preprocessing
succinct non-interactive argument (SNARG) if it sound, and a preprocessing succinct
argument of knowledge (SNARK) if it is knowledge sound. If we also restrict the com-
mon reference string to be polynomial in λ we say the non-interactive argument is a
fully succinct SNARG or SNARK. Bitansky et al. [BCCT13] show that preprocessing
SNARKs can be composed to yield fully succinct SNARKs. The focus of this paper is
on preprocessing SNARKs.

Benign relation generators. Bitansky et al. [BCPR14] show that indistinguisha-
bility obfuscation implies that for every candidate SNARK there are auxiliary output
distributions that enable the adversary to create a valid proof without it being possi-
ble to extract the witness. Assuming also public coin differing input obfuscation and
other cryptographic assumptions, Boyle and Pass [BP15] strengthen this impossibility
to show that there is an auxiliary output distribution that defeats witness extraction
for all candidate SNARKs. These counter examples, however, rely on specific auxiliary
input distributions. We will therefore in the following assume the relationship generator
is benign in the sense that the relation and the auxiliary input are distributed in such a
way that SNARKs can exist.

2.3 Quadratic arithmetic programs

Consider an arithmetic circuit consisting of addition and multiplication gates over a
finite field F. We may designate some of the input/output wires as specifying a statement
and use the rest of the wires in the circuit to define a witness. This gives us a binary
relation R consisting of statement wires and witness wires that satisfy the arithmetic
circuit, i.e., make it consistent with the designated input/output wires.

Generalizing arithmetic circuits, we may be interested in relations described by
equations over a set of variables. Some of the variables correspond to the statement; the
remaining variables correspond to the witness. The relation consists of statements and
witnesses that satisfy all the equations. The equations will be over a0 = 1 and variables
a1, . . . , am ∈ F and be of the form∑

aiui,q ·
∑

aivi,q =
∑

aiwi,q,
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where ui,q, vi,q, wi,q are constants in F specifying the qth equation.
We observe that addition and multiplication gates are special cases of such equations

so such systems of arithmetic constraints do indeed generalize arithmetic circuits. A
multiplication gate can for instance be described as ai · aj = ak (using ui = 1, vj = 1
and wk = 1 and setting the remaining constants for this gate to 0). Addition gates
are handled for free in the sums defining the equations, i.e., if ai + aj = ak and ak is
multiplied by a`, we may simply write (ai + aj) · a` and skip the calculation of ak.

Following Gennaro, Gentry, Parno and Raykova [GGPR13] we can reformulate the
set of arithmetic constraints as a quadratic arithmetic program assuming F is large
enough. Given n equations we pick arbitrary distinct r1, . . . , rn ∈ F and define t(x) =∏n
q=1(x−rq). Furthermore, let ui(x), vi(x), wi(x) be degree n−1 polynomials such that

ui(rq) = ui,q vi(rq) = vi,q wi(rq) = wi,q for i = 0, . . . ,m, q = 1, . . . , n.

We now have that a0 = 1 and the variables a1, . . . , am ∈ F satisfy the n equations if
and only if in each point r1, . . . , rq

m∑
i=0

aiui(rq) ·
m∑
i=0

aivi(rq) =
m∑
i=0

aiwi(rq).

Since t(X) is the lowest degree monomial with t(rq) = 0 in each point, we can reformu-
late this condition as

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) ≡
m∑
i=0

aiwi(X) mod t(X).

Formally, we will be working with quadratic arithmetic programs R that have the
following description

R = (F, aux, `, {ui(X), vi(X), wi(X)}mi=0, t(X)) ,

where F describes a finite field, aux is some auxiliary information, 1 ≤ ` ≤ m, ui(X), vi(X), wi(X), t(X) ∈
F[X] and ui(X), vi(X), wi(X) have strictly lower degree than n, the degree of t(X). A
quadratic arithmetic program with such a description defines the following binary rela-
tion, where we define a0 = 1,

R =

(φ,w)

∣∣∣∣∣∣∣∣
φ = (a1, . . . , a`) ∈ F`
w = (a`+1, . . . , am) ∈ Fm−`∑m

i=0 aiui(X) ·
∑m

i=0 aivi(X) ≡
∑m

i=0 aiwi(X) mod t(X)

 .

We say R is a quadratic arithmetic program generator if it generates relations of the
form given above with fields of size larger than 2λ−1.

Relations can arise in many different ways in practice. It may be that the relationship
generator is deterministic or it may be that it is randomized. It may be that first the
field F is generated and then the rest of the relation is built on top of the field. Or it
may be that the polynomials are specified first and then a random field is chosen. To
get maximal flexibility we have chosen our definitions to be agnostic with respect to
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the exact way the field and the relation is generated, the different options can all be
modelled by appropriate choices of relation generators.

Looking ahead, we will in our pairing-based NIZK arguments let the auxiliary infor-
mation aux specify a bilinear group. It may seem a bit surprising to make the choice of
bilinear group part of the relation generator but this provides a better model of settings
where the relation is built on top of an already existing bilinear group. Again, there is no
loss of generality in this choice, one can think of a traditional setting where the relation
is chosen first and then the bilinear group is chosen at random as the special case where
the relation generator works in two steps, first choosing the relation and then picking a
random bilinear group. Of course letting the relation generator pick the bilinear group
is another good reason that we need to assume it is benign; an appropriate choice of
bilinear group is essential for security.

2.4 Linear interactive proofs

Bitansky et al. [BCI+13] give a useful characterization of the information theoretic
underpinning of recent SNARK constructions. A two-move algebraic linear interactive
proof (LIP) of degree (dQ, dD) for a relation generator R, where we assume the relations
specify a finite field F, is a non-interactive argument system where the algorithms work
as follows:

(σ, τ )← Setup(R): The setup first runs a deterministic polynomial time algorithm to
create an arithmetic circuit that computes polynomials of total degree bounded by
dQ. The circuit then takes as input randomness r ∈ Fµ and returns vectors σ ∈ Fm
and τ ∈ Fn. We will for notational simplicity assume that σ always contains 1 as
an entry such that there is no distinction between affine and linear functions of σ.

π ← Prove(R,σ, φ, w): The prover operates in two stages:
– First it runs Π ← ProofMatrix(R,φ,w), where ProofMatrix is a probabilistic

polynomial time algorithm that generates a matrix Π ∈ Fk×m.
– Then it computes the proof as π = Πσ.

0/1← Vfy(R,σ, φ,π): The verifier runs in two stages:
– First it runs a deterministic polynomial time algorithm t← Test(R,φ) to get an

arithmetic circuit t : Fm+k → Fη corresponding to the evaluation of polynomials
of total degree dD.

– It then accepts the proof if and only if t(σ,π) = 0.

The degrees and dimensions dQ, dD, µ,m, n, k, η may be constants or polynomials in the
security parameter λ.

Definition 3 (Linear interactive proof). The tuple (Setup,Prove,Vfy) is a linear
interactive proof for R if it has perfect completeness and statistical knowledge soundness
against affine prover strategies as defined below.

Statistical knowledge soundness against affine prover strategies. An LIP
has knowledge soundness against affine prover strategies if a witness can be extracted
from a successful proof matrix Π. More precisely, there is a polynomial time extractor
X such that for all adversaries A

Pr

[
(R, z)← R(1λ); (σ, τ )← Setup(R); (φ,Π)← A(R, z);w ← X (R,φ,Π) :

Π ∈ Fm×k ∧ Vfy(R,σ, φ,Πσ) = 0 ∧ (φ,w) /∈ R

]
≈ 0.
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2.5 Non-interactive arguments from linear interactive proofs.

LIPs are useful concepts because they can be compiled into publicly verifiable non-
interactive arguments using pairings and designated verifier non-interactive arguments
using Paillier encryption [BCI+13]. If we work in the pairing setting, the intuition is
that an algebraic LIP of degree (poly(λ), 2) can be executed “in the exponents”: The
common reference string contains exponentiations of the field elements in σ. The prover
computes the proof as multi-exponentiations of group elements, corresponding to linear
operations on the field elements in σ. The verifier checks the argument by verifying
a number of pairing product equations (equations formed by multiplying together the
results of pairings), which corresponds to checking quadratic equations in the exponents.
We will now formalize this methodology.

When working with Type III pairings, executing the LIP in the exponents requires
that we specify for each element in which group the exponentiation should take place.
We will therefore for the sake of Type III pairings define a special case of LIPs, which
we will call a split LIP. A split LIP is a 2-message algebraic LIP, where the verifier’s
first message can be split into two parts σ = (σ1,σ2) and the prover’s proof can be split
into two parts π = (π1,π2). Each part of the proof is computed from the corresponding
part of the verifier’s message. Finally, when verifying the proof, we want the verifier’s
test to be a quadratic equation where each variable has degree 1. Writing it out, a split
LIP is a 2-message algebraic LIP of degree (dQ, 2), of the following form:

(σ, τ )← Setup(R): It creates an arithmetic circuit of multiplicative depth dQ that takes
as input randomness r ∈ Fµ and returns vectors σ = (σ1,σ2) ∈ Fm1 × Fm2 and
τ ∈ Fn. We will for notational simplicity assume that σ1 and σ2 both contain 1 as
an entry such that there is no distinction between affine and linear functions of σ.

π ← Prove(R,σ, φ, w): The prover operates in two stages:

– First it runs Π ← ProofMatrix(R,φ,w), where ProofMatrix is a probabilistic

polynomial time algorithm that generates a matrix Π =

(
Π1 0
0 Π2

)
, where Π1 ∈

Fk1×m1 and Π2 ∈ Fk2×m2 .

– Then it computes π1 = Π1σ1 and π2 = Π2σ2 and returns π = (π1,π2).

0/1← Vfy(R,σ, φ,π): The verifier runs in two stages:

– First it runs a deterministic polynomial time algorithm t← Test(R,φ) to get an
arithmetic circuit t : Fm1+k1+m2+k2 → Fη corresponding to matrices T1, . . . , Tη ∈
F(m1+k1)×(m2+k2).

– It then accepts the proof if and only if for all matrices T1, . . . , Tη

(σ>1 ,π
>
2 )Ti

(
σ2

π2

)
= 0.

Intuitively, we want to argue soundness by saying a prover that uses generic group
operations cannot deviate from the LIP. However, when the prover sees a real common
reference string, she may learn useful information from it and choose her matrix Π in a
way that depends on it. To counter this type of prover, we will define a disclosure-free
common reference string as one where the prover does not gain useful information that
can help her choose a special matrix Π.
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Definition 4 (Disclosure-free LIP). We say a LIP is disclosure-free if for all ad-
versaries A

Pr
[
(R, z)← R(1λ); t← A(R, z); (σ, τ ), (σ′, τ ′)← Setup(R) : t(σ) = 0 and t(σ′) 6= 0

]
≈ 0,

where t : Fm → F is a degree dt arithmetic circuit.

The way to interpret the definition is that the outcome of any degree dt test the prover
may run on σ can be predicted by running it on an independently generated σ′. This
means that degree dt tests do not disclose any non-trivial information to the prover
about the verifier’s first message. In the case of using executing an LIP in the exponent
of bilinear groups, we will need disclosure-freeness against tests t of degree dt ≤ 2.

We are now ready to define a compiler of a disclosure-free 2-message algebraic LIP
of degree (dQ, 2) for a relation R and returns a ...???

(σ, τ)← Setup(R): Run (σ1,σ2, τ )← Setup(R). Compute

Σ1 = Gσ1 Σ2 = Hσ2

and return common reference string σ = (Σ1,Σ2) and simulation trapdoor τ = τ .
π ← Prove(R, σ, φ, w): Generate (Π1, Π2)← ProofMatrix(R, x,w) and return π = (π1,π2)

computed as
π1 = ΣΠ1

1 π2 = ΣΠ2
2 .

0/1← Vfy(R, σ, φ, π): Generate (T1, . . . , Tη)← Test(R,φ). Parse π = (π1,π2) ∈ Gk1
1 ×

Gk2
2 . Accept the proof if and only if for all T1, . . . , Tη

e((Σ>1 )Ti , Σ2) = 1.

π ← Sim(R, τ, φ): Simulate (π1,π2)← Sim(R, τ , φ) and return π = (Gπ1 , Hπ2).

Theorem 1. The protocol given above is a non-interactive zero-knowledge argument
with perfect completeness and perfect zero-knowledge. It has statistical knowledge sound-
ness against adversaries that only use a polynomial number of generic bilinear group
operations.

Proof. Perfect completeness follows from the perfect completeness of the LIP and the
fact it is a split LIP, which allows the adversary to compute the two parts of the proof
π1,π2 using only generic group operations in the relevant groups G1 and G2.

Perfect zero-knowledge follows from the perfect zero-knowledge property of the LIP.
It remains to argue statistical soundness against and generic adversaries. A generic

adversary can use the generic group operations to multiply elements in G1, G2 and GT ,
test membership of the groups, and evaluate the pairing.

Given the common reference string σ = (Σ1,Σ2) the adversary may try to learn
something about the common reference string by multiplying together group elements in
Σ1 and Σ2, respectively, and then compute products of pairings of these elements. This
corresponds to conducting tests of the form e(ΣT

1 ,Σ2) = 1 for matrices T ∈ Zm1×m2
p .

Taking discrete logarithms, we see this corresponds to tests of the form σ>1 Tσ2 = 0.
By the disclosure-freeness, the adversary could conduct these tests on an independently
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chosen common reference string (σ1,σ2)← Setup(R) and with overwhelming probabil-
ity get the same answers. An adversary that only uses a polynomial number of generic
bilinear group operations therefore has negligible chance of learning any useful informa-
tion from the common reference string, and we can without loss of generality assume
the adversary does not test the common reference string.

The adversary that creates the proof using generic group operations, corresponds to
an adversary that picks matrices Π1, Π2 and computes the proof as π = (π1,π2) with
π1 = ΣΠ1

1 ,π2 = σΠ2
2 . When the adversary does not test the common reference string,

this adversary must compute Π1 and Π2 independently of σ1 and σ2, so they can only
depend on R and φ.

Taking discrete logarithms of the verification equation, we see that this corresponds
to finding φ and Π1, Π2 such that for the test matrices T1, . . . , Tη ← Test(R,φ)

(σ>1 , (Π1σ1)
>)Ti

(
σ2

Π2σ2

)
= 0.

By the statistical soundness of the split LIP this has negligible probability of happening.
ut

3 Constructions of non-interactive arguments

We will construct a pairing-based NIZK argument for quadratic arithmetic programs
where proofs consist of only 3 group elements. We give the construction in two steps, first
we construct a LIP, and then we convert the LIP into a pairing-based NIZK argument.

3.1 Linear interactive proofs for quadratic arithmetic programs

We will now construct a LIP for quadratic arithmetic program generators that outputs
relations of the form

R = (F, aux, `, {ui(X), vi(X), wi(X)}mi=0, t(X)) .

The relation defines a language of statements (a1, . . . , a`) ∈ F` and witnesses (a`+1, . . . , am) ∈
Fm−` such that with a0 = 1

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) =

m∑
i=0

aiwi(X) + h(X)t(X),

for some degree n− 2 quotient polynomial h(X), where n is the degree of t(X).

(σ, τ )← Setup(R): Pick α, β, γ, δ, x← F∗. Set τ = (α, β, γ, δ, x) and

σ =

(
α, β, γ, δ,

{
xi
}n−1
i=0

,
{
βui(x)+αvi(x)+wi(x)

γ

}`
i=0

,
{
βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

,
{
xit(x)
δ

}n−2
i=0

)
.

π ← Prove(R,σ, a1, . . . , am): Pick r, s← F and compute a 3× (m+ 2n+ 4) matrix Π
such that π = Πσ = (A,B,C) where

A = α+

m∑
i=0

aiui(x) + rδ B = β +
m∑
i=0

aivi(x) + sδ

C =

∑m
i=`+1 ai (βui(x) + αvi(x) + wi(x)) + h(x)t(x)

δ
+As+ rB − rsδ.
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0/1← Vfy(R,σ, a1, . . . , a`): Compute a quadratic multi-variate polynomial t such that
t(σ,π) = 0 corresponds to the test

A ·B = α · β +

∑`
i=0 ai (βui(x) + αvi(x) + wi(x))

γ
· γ + C · δ.

Accept the proof if the test passes.

π ← Sim(R, τ , a1, . . . , a`): PickA,B ← F and compute C =
AB−αβ−

∑`
i=0 ai(βui(x)+αvi(x)+wi(x))

δ .
Return π = (A,B,C).

Before formally proving this is a LIP, let us give a little intuition behind the different
components. The role of α and β is to ensure A,B and C are consistent with each other
in the choice of a0, . . . , am. The product α ·β in the verification equation guarantees that
A and B involve non-trivial α and β components. This means the product A ·B involves
a linear dependence on α and β, and we will later prove that this linear dependence
can only be balanced out by C with a consistent choice of a0, . . . , am in all three of
A,B and C. The role of γ and δ is to make the two latter products of the verification
equation independent from the first product, by dividing the left factors with γ and
δ respectively. This prevents mixing and matching of elements intended for different
products in the verification equation. Finally, we use r and s to randomize the proof to
get zero-knowledge.

Theorem 2. The construction above yields a LIP with perfect completeness, perfect
zero-knowledge and statistical knowledge soundness against affine prover strategies.

Proof. Perfect completeness is straightforward to verify. Perfect zero-knowledge follows
from both real proofs and simulated proofs having uniformly random field elements
A,B. These elements uniquely determine C through the verification equation, so real
proofs and simulated proofs have identical probability distributions.

What remains is to demonstrate that for any affine prover strategy with non-
negligible success probability we can extract a witness. When using an affine prover
strategy we have

A = Aαα+Aββ +Aγγ +Aδδ +A(x) +
∑̀
i=0

Ai
βui(x) + αvi(x) + wi(x)

γ

+
m∑

i=`+1

Ai
βui(x) + αvi(x) + wi(x)

δ
+Ah(x)

t(x)

δ
,

for known field elements Aα, Aβ, Aγ , Aδ, Ai and polynomials A(x), Ah(x) of degrees n−1
and n− 2, respectively that correspond to the first row of the matrix Π. We can write
out B and C in a similar fashion from the second and third rows of Π.

We now view the verification equation as an equality of multi-variate Laurent poly-
nomials. By the Schwartz-Zippel lemma the prover has negligible success probability
unless the verification equation holds when viewing A,B and C as formal polynomials
in indeterminates α, β, γ, δ, x.

The terms with indeterminate α2 are AαBαα
2 = 0, which means Aα = 0 or Bα = 0.

Since AB = BA we can without loss of generality assume Bα = 0. The terms with
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indeterminate αβ give us AαBβ +AβBα = AαBβ = 1. This means AB = (ABβ)(AαB)
so we can without loss of generality after rescaling assume Aα = Bβ = 1. The terms
with indeterminate β2 now give us AβBβ = Aβ = 0. We have now simplified A and B
constructed by the adversary to be of the form

A = α+Aγγ +Aδδ +A(x) + · · · B = β +Bγγ +Bδδ +B(x) + · · · .

Next, let us consider the terms involving 1
δ2

. We have(
m∑

i=`+1

Ai (βui(x) + αvi(x) + wi(x)) +Ah(x)t(x)

)

·

(
m∑

i=`+1

Bi (βui(x) + αvi(x) + wi(x)) +Bh(x)t(x)

)
= 0,

showing either the left factor is 0 or the right factor is 0. By symmetry, let us without loss
of generality assume

∑m
i=`+1Ai (βui(x) + αvi(x) + wi(x))+t(x)At(x) = 0. The terms in

α
∑m
i=`+1Bi(βui(x)+αvi(x)+wi(x))+Bh(x)t(x)

δ = 0 now show us that also
∑m

i=`+1Bi (βui(x) + αvi(x) + wi(x))+
Bh(x)t(x) = 0.

The terms involving 1
γ2

give us

∑̀
i=0

Ai (βui(x) + αvi(x) + wi(x)) ·
∑̀
i=0

Bi (βui(x) + αvi(x) + wi(x)) = 0,

showing either the left factor is 0 or the right factor is 0. By symmetry, let us with-
out loss of generality assume

∑`
i=0Ai (βui(x) + αvi(x) + wi(x)) = 0. The terms in

α
∑m
i=0Bi(βui(x)+αvi(x)+wi(x))

γ = 0 now show us
∑`

i=0Bi (βui(x) + αvi(x) + wi(x)) = 0
as well.

The terms Aγβγ = 0 and Bγαγ = 0 show us that Aγ = 0 and Bγ = 0. We now have

A = α+A(x) +Aδδ B = β +B(x) +Bδδ.

The remaining terms in the verification equation that involve α give us αB(x) =∑`
i=0 aiαvi(x)+

∑m
i=`+1Ciαvi(x). The terms involving β give us βA(x) =

∑`
i=0 aiβui(x)+∑m

i=`+1Ciβui(x). Defining ai = Ci for i = `+ 1, . . . ,m we now have

A(x) =

m∑
i=0

aiui(x) B(x) =

m∑
i=0

aivi(x).

Finally, we look at the terms involving powers of x to get

m∑
i=0

aiui(x) ·
m∑
i=0

aivi(x) =

m∑
i=0

aiwi(x) + Ch(x)t(x).

This shows that (a`+1, . . . , am) = (C`+1, . . . , Cm) is a witness for the statement (a1, . . . , a`).
ut
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2 field element LIPs. It is natural to ask whether the number of field elements the
prover sends in the LIP can be reduced further. The square span programs of Danezis
et al. [DFGK14] give rise to 2 field element LIPs for boolean circuit satisfiability. It
is also possible to get a 2-element LIP for arithmetic circuit satisfiability by rewriting
the circuit into one that only uses squaring gates, each multiplication gate a · b = c
can be rewritten as a (a + b)2 − (a − b)2 = 4c. When an arithmetic circuit only has
squaring gates we get ui(x) = vi(x) for all i. By choosing r = s in the LIP, we now have
that B = A+ β −α, so the prover only needs to send two elements A and C to make a
convincing proof. Rewriting the arithmetic circuit to only use squaring gates may double
the number of gates and also requires some additional wires for the subtraction of the
squares, so the reduction of the size of the LIP comes at a significant computational
cost though.

3.2 NIZK arguments for quadratic arithmetic programs

We will now give a pairing-based NIZK argument for quadratic arithmetic programs.
We consider relation generators R that return relations of the form

R = (p,G1,G2,GT , e, `, {ui(X), vi(X), wi(X)}mi=0, t(X)) ,

with |p| = λ. The relation defines a field Zp and a language of statements (a1, . . . , a`) ∈
Z`p and witnesses (a`+1, . . . , am) ∈ Zm−`p such that with a0 = 1

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) =

m∑
i=0

aiwi(X) + h(X)t(X),

for some degree n− 2 quotient polynomial h(X).
We will construct the pairing-based argument by using the LIP from the previous

section “in the exponents”. An important design feature of the LIP is that the elements
A,B and C are only used once in the verification equation and therefore it is easy
to assign them to different source groups such that the verification equation can be
carried out using a pairing product equation. Since pairing-friendly elliptic curves can
be constructed such that the group element representations are smaller in G1 than in
G2 [GPS08] we choose to assign A and C to the first source group and B to the second
source group for maximal efficiency. This gives us the following NIZK argument.

(σ, τ)← Setup(R): Pick arbitrary generatorsG andH for G1 and G2. Pick α, β, γ, δ, x←
Z∗p. Define τ = (α, β, γ, δ, x) and compute

σ =

 Gα, Gβ, Hβ, Hγ , Gδ, Hδ,
{
Gx

i
}n−1
i=0

,
{
Hxi

}n−1
i=0{

G
βui(x)+αvi(x)+wi(x)

γ

}`
i=0

,
{
G
βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

,

{
G
xit(x)
δ

}n−2
i=0

 .

π ← Prove(R, σ, a1, . . . , am): Pick r, s← Zp and compute π = (A,B,C), where

A = Gα+
∑m
i=0 aiui(x)+rδ B = Hβ+

∑m
i=0 aivi(x)+sδ

C = G

∑m
i=`+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)

δ
+s(α+

∑m
i=0 aiui(x))+r(β+

∑m
i=0 aivi(x))+rsδ.
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0/1← Vfy(R, σ, a1, . . . , a`, π): Parse π = (A,B,C) ∈ G1×G2×G1. Accept the proof if
and only if

e(A,B) = e(Gα, Hβ)e(G

∑`
i=0 ai(βui(x)+αvi(x)+wi(x))

γ , Hγ)e(C,Hδ).

π ← Sim(R, τ, a1, . . . , a`): Pick r, s← Zp and compute a simulated proof π = (A,B,C)
as

A = Gr B = Hs C = G
rs−αβ−

∑`
i=0 ai(βui(x)+αvi(x)+wi(x))

δ .

Theorem 3. The protocol given above is a non-interactive zero-knowledge argument
with perfect completeness and perfect zero-knowledge. It has statistical knowledge sound-
ness against adversaries that only use a polynomial number of generic bilinear group
operations.

Proof. Perfect completeness follows by direct verification. Perfect zero-knowledge follows
from the fact that both in real proofs and simulated proofs A,B are uniformly random
group elements and through the verification equation uniquely determine C.

To see that we have statistical knowledge soundness against generic adversaries [Sho97,BBS04]
first note that any test the adversary can do on the common reference string corresponds
to an equality test of Laurent polynomials. Either the polynomials match formally, or
by the Schwartz-Zippel lemma there is negligible probability of them matching up over
the random choices of α, β, γ, δ, x. The adversary therefore has negligible probability
of learning anything it did not already know about the common reference string using
only generic group operations. What remains is the possibility that the adversary com-
putes A,B and C as exponentiations of group elements to known field elements. This
corresponds exactly to an affine prover strategy on the LIP “in the exponents” and by
the knowledge soundness of the LIP we can extract a witness from these known field
elements. ut

Efficiency. The proof size is 2 elements in G1 and 1 element in G2. The common
reference string contains a description of the relation R, n elements in Zp, m + 2n + 3
elements in G1, and n+ 3 elements in G2.

The verifier does not need to know the entire common reference string, it suffices to
know

σV =

(
p,G1,G2,GT , e,H

γ , Hδ,

{
G
βui(x)+αvi(x)+wi(x)

γ

}`
i=0

, e(Gα, Hβ)

)
.

The verifier’s reference string only contains a description of the bilinear group, ` + 1
elements in G1, 2 elements in G2, and 1 element in GT .

The verification consists of checking that the proof consists of three appropriate
group elements and checking a single pairing product equation. The verifier computes `
exponentiations in G1, a small number of group multiplications, and 3 pairings (assum-
ing e(Gα, Hβ) is precomputed in the verifier’s reference string).
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The prover has to compute the polynomial h(X). The prover can compute the
polynomial evaluations

m∑
i=0

aiui(rq) =
m∑
i=0

aiui,q

m∑
i=0

aivi(rq) =
m∑
i=0

aivi,q

m∑
i=0

aiwi(rq) =
m∑
i=0

aiwi,q

for q = 1, . . . , n. It depends on the relation how long time this computation takes; if it
arises from an arithmetic circuit where each multiplication gate connects to a constant
number of wires, the relation will be sparse and the computation will be linear in n. Since
the polynomials have degree n− 1 they are completely determined by these evaluation
points. If r1, . . . , rn are roots of unity for a suitable prime p she can compute h(X)
using standard Fast Fourier Transform techniques in O(n log n) operations in Zp. The
prover can also compute the coefficients of

∑m
i=0 aiui(X) and

∑m
i=0 aivi(X) using FFT

techniques. Having all the coefficients, the prover does m+ 3n− `+ 3 exponentiations
in G1 and n+ 1 exponentiations in G2.

Asymptotically the exponentiations are the dominant cost as the security parameter
grows. However, in practice the multiplications that go into the FFT computations may
be more costly for moderate security parameters and large statements. In that case,
it may be worth to use a larger common reference string that contains precomputed
Gui(x), Gvi(x), Hvi(x) elements for i = 0, . . . ,m such that A and B can be constructed
directly instead of the prover having to compute the coefficients of

∑m
i=0 aiui(X) and∑m

i=0 aivi(X) and then do the exponentiations. In the case of boolean circuits we have
ai ∈ {0, 1} and the prover can with such precomputed elements just do m group multi-
plications for each when computing A and B. We have for this reason let the CRS be
longer in Table 1 to get a low computational cost for the prover.

4 Lower bounds for non-interactive arguments

It is an intriguing question how efficient non-interactive arguments can be. We will now
give a lower bound showing that pairing-based non-interactive arguments must have
proofs with at least 2 group elements if one-way functions exist. More precisely, we look
at pairing-based arguments where the common reference string contains a description
of a bilinear group and a number of group elements, the proof consists of a number of
group elements computed by the prover using generic group operations, and the verifier
checks the proof using generic bilinear group operations. We will show that for such
pairing-based argument systems, the proof needs to have elements from both G1 and
G2 if the language includes hard decisional problems as defined below.

Let us consider sampleable decisional problems for a relation R, where there are
two sampling algorithms Yes and No. Yes samples statements and witnesses in the
relation. No samples statements outside the language LR defined by the relation. We
are interested in relations where it is hard to tell whether a statement φ has been
sampled by Yes or No.

Definition 5. We say the relation generator R has hard decisional problems if there
are two efficient algorithms Yes and No such that for (R, z)← R(1λ) we have Yes(R)→
(φ,w) ∈ R and No(R)→ φ /∈ LR with overwhelming probability, and for all non-uniform
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polynomial time distinguishers A

Pr
[
(R, z)← R(1λ);φ0 ← No(R); (φ1, w1)← Yes(R); b← {0, 1} : A(R, z, φb) = b

]
≈ 1

2
.

If one-way functions exist, we can construct pseudorandom generators. A pseudorandom
generator can be used to generate a pseudorandom string, a Yes-instance, with the seed
being the witness. To get a No-instance we sample a uniform random string, which with
overwhelming probability is not pseudorandom. If the relation R is NP-complete, or just
expressive enough to capture pseudorandom generators, then it has a hard decisional
problem.

4.1 Linear interactive proofs cannot have linear decision procedures

We will now prove that LIPs cannot have a linear decision procedure. This answers an
open question raised by Bitansky et al. [BCI+13]. The result holds even if we consider
designated verifier LIPs and instead of knowledge soundness only consider the weaker
notion of soundness that we now define.

Definition 6 (Statistical soundness against affine prover strategies). We say
a LIP is (adaptively) sound against affine prover strategies if for all adversaries A

Pr

[
(R, z)← R(1λ); (σP ,σV , τ )← Setup(R); (φ,Π)← A(R, z)

π = ΠσP ; t← Test(R,φ) : φ /∈ LR ∧ t(σV ,π) = 0

]
≈ 0.

Theorem 4. There are no 2-move algebraic linear interactive proofs with a linear de-
cision procedure for relation generators with hard decisional problems.

Proof. When the decision procedure is linear, the test t(σV ,π) = 0 can be rewritten
as TΠσP = T ′σV , where the matrices T ∈ Fη×k and T ′ ∈ Fη×mV can be efficiently
computed from t.

Let us now construct an adversary A that given R and φ has a good chance of
determining whether φ is sampled as a Yes-instance or a No-instance. First, A repeatedly
runs (φi, wi) ← Yes(R) and computes the matching proof and test matrices Πi and
(Ti, T

′
i ). Let V be the vector space generated by the tuples (TiΠi, T

′
i ). The adversary

keeps sampling tuples until it hits a sequence of λ tuples in a row that already belong
to V . With overwhelming probability the vector space V is such that there more than
50% chance for a new Yes-instance yielding a tuple already in V . The adversary runs in
polynomial time since any new linearly independent tuple increases the dimension of V
and the maximal possible dimension is η(mP +mV ), in which case V would include all
tuples.

Now the adversary looks at the statement φ that it is trying to classify as a Yes-
instance or a No-instance. It computes the test matrices T and T ′ for φ and then tries
to solve (TΠ, T ′) =

∑
i ri(TiΠi, T

′
i ) for Π ∈ Fk×mP and ri ∈ F. This is a system of

linear equations and can therefore be solved efficiently. If a solution is found it guesses
φ ∈ LR and if no solution is found it guesses φ /∈ LR.

Let us first analyze the case where φ ∈ LR. Since this is a Yes-instance there is more
than 50% chance that there is a solution Π such that (TΠ, T ′) belongs to the vector
space V , so the adversary has at least 50% chance of guessing φ ∈ LR.
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Next, let us analyze the case where φ /∈ LR. If we run the setup algorithm (σP ,σV , τ )←
Setup(R) and φ /∈ LR we have negligible probability for TΠσP = T ′σV . However, by
completeness we have for all tuples in V that TiΠiσP = T ′iσV . If there were a ma-
trix Π such that (TΠ, T ′) =

∑
i ri(TiΠ,T

′
i ) we would have TΠσP =

∑
i riTiΠiσP =∑

i riT
′
iσV = T ′σV , so soundness implies this probability is negligible. The adversary

guesses φ /∈ LR with overwhelming probability. ut

4.2 Lower bound for the size of generic pairing-based non-interactive
arguments

We will now show that a generic pairing-based non-interactive argument over Type III
groups must have elements in both G1 and G2. The intuition behind this argument is
that if we have a unilateral argument with only elements in G1 or only elements in
G2, then the verification equations become linear and the impossibility result for LIPs
apply.

Before we get started with the proof, let us define some useful notation. Define for a
vector v = (v1, . . . , vn) that Gv = (Gv1 , . . . , Gvn). Define for a vector of group elements
Gv and a matrix A that (Gv)A = GvA. Also, define for two vectors of group elements
e(Gv, Hw) =

∏n
i=1 e(G

vi , Hwi).
We will consider pairing-based argument systems (Setup,Prove,Vfy) where the proofs

consist of group elements and where the algorithms only use generic group operations.
Let us be explicit about how such a system operates and the consequences of using
generic group operations.

(σ, τ)← Setup(R): The relation contains a description of a bilinear group (p,G1,G2,GT , e)
and the common reference string contains group elements in G1,G2,GT . Let us fix
generators G and H for G1 and G2 and write the vectors of group elements in G1,G2

and GT as Σ1 = Gσ1 , Σ2 = Hσ2 and ΣT = e(G,H)σT .
We want to avoid that the prover can learn non-trivial information about the discrete
logarithms σ1,σ2,σT using generic bilinear group operations. An example of such a
pathological case is a common reference string with group elements G,Gb, where b
is a bit. The prover can easily recover the bit b by guessing it and verifying the guess
with generic group operations. We say the common reference string is disclosure-free
if for any pairing product equation on the group elements in Σ1,Σ2 and ΣT it is
possible with overwhelming probability to predict whether the equation holds or
not, when we know the distribution of the common reference string but where we
do not know the actual group elements.

π ← Prove(R, σ, φ, w): A prover using generic group operations and working on a disclosure-
free common reference string has negligible chance of learning any non-trivial infor-
mation about the common reference string group elements. This means her only
viable mode of operation is to pick matrices Π1, Π2 and ΠT and compute the proof
by setting π = (ψ1,ψ2,ψT ), where

ψ1 = ΣΠ1
1 ψ2 = ΣΠ2

2 ψT = ΣΠT
T .

0/1← Vfy(R, σ, φ, π): A verifier using generic group operations can only verify a proof
by mapping φ to matrices and vectors {Aq, Bq, Cq, Dq, eq,f q}Qq=1 of elements in Zp
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and checking pairing product equations of the form

e(Σ
Aq
1 ,Σ2)e(ψ

Bq
1 ,Σ2)e(Σ

Cq
1 ,ψ2)e(ψ

Dq
1 ,ψ2) = Σ

eq
T ·ψT

fq .

We note that there is no loss of generality in excluding multi-exponentiation equations
in G1 or G2; such equations can be translated to pairing product equations by pairing
them with G or H.

We now get the following corollary to Theorem 4.

Corollary 1. A pairing-based non-interactive argument with a disclosure-free common
reference string and algorithms using generic group operations cannot exist for relation
generators with hard decisional problems unless the proofs have elements both in G1 and
G2.

Proof. When the common reference string is disclosure free and the algorithms use
generic operations they must work as outlined above. Taking discrete logarithms we get
verification equations of the form

σ1Aqσ2 + π1Bqσ2 + σ1Cqπ2 + π1Dqπ2 = σTeq + πTf q,

where ψ1 = Gπ1 and ψ2 = Hπ2 and ψT = e(G,H)πT . If either π1 or π2 are empty,
there are no π1Dqπ2 parts in the verification equations. Observe also that without loss
of generality we can assume all the entries in the outer product of σ1 and σ2 are given
in σT (this does not affect disclosure-freeness) so we can set Aq = 0 in every equation.
This means all the verification equations are linear. Since the verification equations
correspond to verifying a LIP “in the exponents” it follows from the impossibility of
having LIPs with a linear decision procedure that the proof must have that both π1

and π2 are non-trivial and therefore that the proof has elements both in G1 and G2. ut
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