
This is the full version of the extended abstract which appears in Proceedings of the

International Conference on Applied Cryptography and Network Security 2016 (ACNS

2016).

Foundations of Fully Dynamic Group Signatures∗

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos†, Essam Ghadafi, and
Jens Groth

{jonathan.bootle.14, andrea.cerulli.13, pyrros.chaidos.10, e.ghadafi, j.groth}@ucl.ac.uk
University College London, London, UK

Abstract. Group signatures are a central cryptographic primitive that
has received a considerable amount of attention from the cryptographic
community. They allow members of a group to anonymously sign on behalf
of the group. Membership is overseen by a designated group manager.
There is also a tracing authority that can revoke anonymity by revealing
the identity of the signer if and when needed, to enforce accountability
and deter abuse. For the primitive to be applicable in practice, it needs
to support fully dynamic groups, i.e. users can join and leave at any time.
In this work we take a close look at existing security definitions for
fully dynamic group signatures. We identify a number of shortcomings
in existing security definitions and fill the gap by providing a formal
rigorous security model for the primitive. Our model is general and is not
tailored towards a specific design paradigm and can therefore, as we show,
be used to argue about the security of different existing constructions
following different design paradigms. Our definitions are stringent and
when possible incorporate protection against maliciously chosen keys. In
the process, we identify a subtle issue inherent to one design paradigm,
where new members might try to implicate older ones by means of back-
dated signatures. This is not captured by existing models. We propose
some inexpensive fixes for some existing constructions to avoid the issue.

Keywords. Group Signatures, Security Definitions.

1 Introduction

Group signatures, put forward by Chaum and van Heyst [?], are a funda-
mental cryptographic primitive allowing a member of a group (adminis-
tered by a designated manager) to anonymously sign messages on behalf
of the group. In the case of a dispute, a designated tracing manager can
revoke anonymity by revealing the signer. In many settings it is desirable

∗The research leading to these results has received funding from the European Re-
search Council under the European Union’s Seventh Framework Programme (FP/2007-
2013) / ERC Grant Agreement n. 307937 and EPSRC grant EP/J009520/1.

†Was supported by an EPSRC scholarship (EP/G037264/1 – Security Science
DTC).

1



2

to offer flexibility in joining and leaving the group. In static group signa-
tures [?], the group population is fixed once and for all at the setup phase.
Partially dynamic group signatures [?, ?] allow the enrolment of mem-
bers in the group at any time but members cannot leave once they have
joined. A challenging problem in group signatures is that of revocation,
i.e. allowing removal of members from the group.

Related Work. After their introduction, a long line of research on group
signatures has emerged. In the early years, security of group signatures
was not well understood and early constructions were proven secure via
informal arguments using various interpretations of their requirements.

Bellare et al. [?] formalized the security definitions for static groups.
In their model, the group manager (which also acts as the tracing au-
thority) needs to be fully trusted. Later on, Bellare et al. [?] and Kiayias
and Yung [?] provided formal security definitions for the more practical
partially dynamic case. Also, [?] separated the tracing role from the group
management. In both [?, ?] models, members cannot leave the group once
they have joined. More recently, Sakai et al. [?] strengthened the security
definitions for partially dynamic groups by defining opening soundness,
ensuring that a valid signature only traces to one user.

Group Signatures Without Revocation. Constructions of group sig-
natures in the random oracle model [?] include [?, ?, ?, ?, ?, ?, ?, ?, ?, ?,
?, ?]. Constructions not relying on random oracles include [?, ?, ?, ?, ?, ?].

Group Signatures With Revocation. Since revocation is an essential
feature of group signatures, many researchers investigated the different
approaches via which such a feature can be realized. One approach is for
the group manager to change the group public key when members are
removed and issue new group signing keys to all remaining legitimate
members or allow them to update their old signing keys accordingly. This
is the approach adopted by e.g. [?, ?].

Bresson and Stern [?] realize revocation by requiring that the signer
proves at the time of signing that her group membership certificate is
not among those contained in a public revocation list. Another approach,
which was adopted by e.g. [?, ?, ?, ?], uses accumulators, i.e. functions
that map a set of values into a fixed-length string and permit efficient
proofs of membership.

Boneh, Boyen and Shacham [?] showed that their static group signature
scheme supports revocation since it allows members to update their signing
keys according to the changes in the group without the involvement of the
manager. Camenisch and Groth [?] also gave a construction that supports



3

revocation. Song [?] gave a fully dynamic group signature with forward
security.

A different approach for revocation known as Verifier Local Revocation
(VLR), which needs relaxation of some of the security requirements,
considered by Brickell [?], was subsequently formalized by Boyen and
Shacham [?] and further used in e.g. [?, ?, ?]. In VLR, the revocation
information (i.e. revocation lists) is only sent to the verifiers (as opposed
to both verifiers and signers) who can check whether a particular signature
was generated by a revoked member. A similar approach is also used in
Direct Anonymous Attestation (DAA) protocols [?]. Traceable Signatures
[?] extend this idea, as the group manager can release a trapdoor for each
member, enabling their signatures to be traced back to the individual
user.

More recently, Libert, Peters and Yung [?, ?] gave a number of efficient
constructions of group signatures supporting revocation without requiring
random oracles by utilizing the subset cover framework [?] that was
originally used in the context of broadcast encryption.

Shortcomings in Existing Models & Motivation. While the security
of the static and partially dynamic group settings has been rigorously
formulated [?, ?, ?, ?] and is now well understood, unfortunately, the
security of their fully dynamic groups counterpart, which is more relevant
to practice, has received less attention and is still lacking. In particular,
the different design paradigms assume different (sometimes informal)
models which do not necessarily generalize to other design approaches.
This resulted in various models, the majority of which lack rigour. As
a consequence, it can be difficult to compare the merits of the different
constructions in terms of their security guarantees. Moreover, existing
models place a large amount of trust in the different authorities and
assume that their keys are generated honestly. This does not necessarily
reflect scenarios arising in real applications. Furthermore, some existing
models, as we show, fail to take into account some attacks which might
be problematic for some applications of the primitive.

“He Who Controls the Present Controls the Past”, (George Or-
well). Consider a scenario where the new leadership of an organisation or
country wants to justify an unpopular policy (e.g. layoffs or removal of
personal freedoms). A way to do that would be to back-date documents
justifying the policy: thus, any animosity for the policy would be towards
the old leadership. The new leadership is only maintaining the status quo.

Re-framing this in technical terms, we show that the notion of trace-
ability in existing models following the revocation list approach, where the



4

group manager periodically publishes information (i.e. revocation lists)
about members excluded from the group, is too weak. In those models,
the life of the scheme spans over different intervals (epochs) at the start
of which the manager updates the revocation lists. Signatures in those
models are bound to a specific epoch. It is vital for functionality that old
valid signatures (i.e. those produced at earlier epochs by then-legitimate
members) are accepted by the verification algorithm.

The issue we identify in those models is that they allow members who
joined at recent epochs to sign messages w.r.t earlier epochs during which
they were not members of the group. In a sense this may be considered as
an attack against traceability, as those members were not in the group at
that interval. Technically however, the scenario we describe is allowed by
the model: the underlying issue is a gap between one’s interpretation of
group signatures and what the definition implies. Our expectation is that
a signature bound to epoch τ was produced by a member of the group at
that time. Current definitions however, allows for all past, current, and
future members, as long as they were not revoked at time τ .

One may dismiss this attack as theoretical, since the old leadership
might appeal to the opener. However, this might not always be possible: the
opener may be controlled by the new leadership, or in a business setting an
outgoing CEO or board member might be disinterested or disincentivized
from pursuing the issue. Another possible criticism might be that the
weakness is trivial, and would be silently fixed in any construction using
the model.

We show that some state of the art constructions, as [?, ?, ?], are
susceptible to this attack. Specifically, their membership certificates are
not bound to the epochs of their issuance. As a result, a member can sign
w.r.t. earlier epochs. We stress that neither the authors of those schemes
claimed their schemes were immune against such an issue nor that their
models were supposed to capture such an attack. Thus, such an issue
might not be a problem for the applications they originally had in mind,
but only in a more general case.

In order to have strong security guarantees from the different construc-
tions, a rigorous and unified security model is necessary. This is the aim
of this work as we believe this is a challenging problem that needs to be
addressed, especially given the relevance of the primitive.

Our Contribution. We take a close look at the security definitions of
fully dynamic group signatures. We provide a rigorous security model that
generalizes to the different design paradigms. In particular, our model
covers both accumulator based and revocation list based approaches. Our



5

model offers stringent security definitions and takes into account some
attacks which were not considered by existing models. We give different
flavors of our security definitions which capture both cases when the
authorities’ keys are adversarially generated and when such keys are
honestly generated. We also show that our security definitions imply
existing definitions for static and partially dynamic group signatures.

In the process, we identify a subtle difference between accumulator
based and revocation list based approaches. Specifically, we identify a
simple attack against traceability inherent to constructions following the
latter approach and which is not captured by existing models. The attack
allows a group member of to sign w.r.t. intervals prior to her joining the
group. The security notion modelled by current definitions prevents users
from signing only if they are explicitly revoked.

To address this, our traceability definition models a stricter security
notion: users are not authorised to sign unless they are non-revoked and
are active (i.e. part of the group) at the time interval associated with
the signature. We note this is already implied in the accumulator based
approach: the signer proves membership in the current version of the
group at the time of signing. We also propose a number of possible fixes
to this issue in some existing schemes.

Finally, we show that a fully dynamic group signature scheme obtained
from the generic construction of accountable ring signatures given in [?]
is secure w.r.t. the stronger variant of our security definitions.

Paper Organization. We present our model for fully dynamic group
signatures in Section A.1 and show that it implies existing definitions for
static and partially dynamic group signatures. In Section 3 we analyse the
security of three existing fully dynamic group signature schemes in our
model.

Notation. A function ν(·) : N→ R+ is negligible in the security parameter
λ if for every polynomial p(·) and all sufficiently large values of λ, it holds
that ν(λ) < 1

p(λ) . Given a probability distribution Y , we denote by x← Y
the operation of selecting an element according to Y . If M is a probabilistic
machine, we denote by M(x1, . . . , xn) the output distribution of M on
inputs (x1, . . . , xn). By [n] we denote the set {1, . . . , n}. By PPT we
mean running in probabilistic polynomial time in the relevant security
parameter. For algorithms X and Y, (x, y) ← 〈X(a),Y(b)〉 denotes the
the joint execution of X (with input a) and Y (with input b) where at
the end X outputs x, whereas Y outputs y. By X〈·,Y(b)〉(a), we denote the
invocation of Y (with input b) by X (with input a). Note that X does not
get the private output of Y.



6

2 Syntax and Security of Fully Dynamic Group
Signatures

The parties involved in a Fully Dynamic Group Signature (FDGS) are:
a group manager GM who authorizes who can join the group; a tracing
manager TM who can revoke anonymity by opening signatures; a set
of users, each with a unique identity i ∈ N, who are potential group
members. Users can join/leave the group at any time at the discretion of
the group manager. We assume the group manager will regularly publish
some information infoτ , associated with a distinct index τ (hereafter
referred to as epoch). We assume that τ can be recovered given infoτ
and vice versa (i.e. there is bijection between the epochs and associated
information). The information depicts changes to the group, for instance,
it could include the current members of the group (as in accumulator-
based constructions) or those who have been excluded from the group
(as, e.g. required by constructions based on revocation lists ). As in
existing models, we assume that anyone can verify the well-formedness
and authenticity of the published group information. By combining the
group information for the current epoch with that of the preceding one,
any party can identify the list of members who have been revoked at the
current epoch. We assume that the epochs preserve the order in which
their corresponding information was published. More precisely, for all
τ1, τ2 ∈ T (T being the space of epochs) we require that τ1 < τ2 if infoτ1
preceded infoτ2 .

Unlike existing models, which assume honestly generated authorities’
keys, we separate the generation of the authorities’ keys from that of
the public parameters, which might need to be generated by a trusted
party. This allows us (where appropriate) to define stringent security that
protects against adversarial authorities who might generate their keys
maliciously. Our definitions can be adapted straight away to work for the
weaker setting where authorities’ keys are generated honestly as in existing
models. For the sake of generality, we define the group key generation as
a joint protocol between the group and tracing managers. Clearly, it is
desirable in some cases to avoid such interaction and allow authorities to
generate their own keys independently. This is a special case of our general
definition where the protocol is regarded as two one-sided protocols.

An FDGS scheme consists of the following polynomial-time algorithms:



7

• GSetup(1λ)→ param: is run by a trusted third party. On input a secu-
rity parameter λ, it outputs public parameters param. The algorithm
also initializes the registration table reg.

• 〈GKGenGM(param),GKGenTM(param)〉: is an interactive protocol be-
tween algorithms GKGenGM and GKGenTM run by GM and TM,
respectively, to generate their respective private keys as well as the
rest of the group public key gpk. The input to both algorithms is
the public parameters param. If completed successfully, the private
output of GKGenGM is a secret manager key msk, whereas its public
output is a public key mpk, and the initial group information info. The
private output of GKGenTM is the secret tracing key tsk, whereas its
public output is a public key tpk. The group public key is then set to
gpk := (param,mpk, tpk).

• UKGen(1λ)→ (usk[i],upk[i]): outputs a secret/public key pair (usk[i],
upk[i]) for user i. We assume the public key table upk to be publicly
available (possibly via PKI) so that anyone can get authentic copies
of it.

• 〈Join(infoτcurrent , gpk, i,usk[i]), Issue(infoτcurrent ,msk, i,upk[i])〉: is an in-
teractive protocol between a user i (who has already obtained a personal
key pair, i.e. ran the UKGen algorithm) and the group manager GM.
Upon successful completion, i becomes a member of the group. The
final state of the Issue algorithm is stored in the registration table at
index i (i.e. reg[i]), whereas that of the Join algorithm is stored in gsk[i].
The epoch τcurrent is part of the output of both parties.
We assume that the protocol takes place over a secure (i.e. private
and authentic) channel. The protocol is initiated by calling Join. The
manager may update the group information after running this protocol.
The registration table reg stores additional information used by the
group manager and the tracing manager for updating and tracing,
depending on the scheme specifics.

• UpdateGroup(gpk,msk, infoτcurrent ,S, reg) → infoτnew : is run by the
group manager to update the group information while also advancing
the epoch. It takes as input the group manager’s secret key msk, a
(possibly empty) set S of active members to be removed from the group
and the registration table reg, it outputs a new group information
infoτnew and might also update the registration table reg. If there has
been no changes to the group information, the algorithm returns ⊥
to indicate that no new information has been issued. The algorithm
aborts if any i ∈ S has not run the join protocol.

• Sign(gpk, gsk[i], infoτ ,m) → Σ: on input the group public key gpk, a
user’s group signing key gsk[i], the group information infoτ at epoch



8

τ , and a message m, outputs a group signature Σ on m by the group
member i. If the user owning gsk[i] is not an active member of the
group at epoch τ , the algorithm returns ⊥.

• Verify(gpk, infoτ ,m,Σ)→ 1/0: is a deterministic algorithm checking
whether Σ is a valid group signature on m at epoch τ and outputs a
bit accordingly.

• Trace(gpk, tsk, infoτ , reg,m,Σ) → (i, πTrace): is a deterministic algo-
rithm which is run by the tracing manager. It returns an identity i > 0
of the group member who produced Σ plus a proof πTrace attesting
to this fact. If the algorithm is unable to trace the signature to a
particular group member, it returns (0, πTrace) to indicate that it could
not attribute the signature.

• Judge(gpk, i, infoτ , πTrace,upk[i],m,Σ) → 1/0 : is a deterministic al-
gorithm which on input the group public key gpk, a user identity i,
the group information at epoch τ , a tracing proof πTrace, the user’s
public key upk[i] (which is ⊥ if it does not exist), a message m, and
a signature Σ, outputs 1 if πTrace is a valid proof that i produced Σ,
and outputs 0 otherwise.

Additional Algorithm. We will also use the following polynomial-time
algorithm which is only used in the security games to ease composition.

IsActive(infoτ , reg, i)→ 1/0 : returns 1 if the user i is an active member of
the group at epoch τ and 0 otherwise.

2.1 Security of Fully Dynamic Group Signatures

The security requirements of a fully dynamic group signature are: correct-
ness, anonymity, non-frameability, traceability and tracing soundness. To
define those requirements, we use a set of games in which the adversary has
access to a set of oracles. The following global lists are maintained: HUL is
a list of honest users; CUL is a list of corrupt users whose personal secret
keys have been chosen by the adversary; BUL is a list of bad users whose
personal and group signing keys have been revealed to the adversary; SL is
a list of signatures obtained from the Sign oracle; CL is a list of challenge
signatures obtained from the challenge oracle.

The details of the following oracles are given in Fig. 10.

UToM(i) adds an honest user i to the group at the current epoch.
CI(i, pk) creates a new corrupt user whose public key upk[i] is chosen by

the adversary. This is called in preparation for calling the SndToM
oracle.



9

UToM(i)

� If i ∈ HUL ∪ CUL Then Return ⊥.
� (usk[i],upk[i])← UKGen(1λ).

� HUL := HUL ∪ {i}, gsk[i] :=⊥, deciIssue := cont.
� stiJoin := (τcurrent, gpk, i,usk[i]).
� stiIssue := (τcurrent,msk, i,upk[i]).

� (stiJoin,MIssue, dec
i
Join)← Join(stiJoin,⊥).

� While (deciIssue = cont and deciJoin = cont) Do

◦ (stiIssue,MJoin, dec
i
Issue)← Issue(stiIssue,MIssue).

◦ (stiJoin,MIssue, dec
i
Join)← Join(stiJoin,MJoin).

� If deciIssue = accept Then reg[i] := stiIssue.

� If deciJoin = accept Then gsk[i] := stiJoin.
� Return upk[i].

SndToU(i,Min)

� If i ∈ CUL ∪ BUL Then Return ⊥.
� If i /∈ HUL Then
◦ HUL := HUL ∪ {i}.
◦ (usk[i],upk[i])← UKGen(1λ).
◦ gsk[i] :=⊥, Min :=⊥.

� If deciJoin 6= cont Then Return ⊥.
� If stiJoin is undefined
◦ stiJoin := (τcurrent, gpk, i,usk[i]).

� (stiJoin,Mout, dec
i
Join)← Join(stiJoin,Min)

� If deciJoin = accept Then gsk[i] := stiJoin.

� Return (Mout, dec
i
Join).

Trace(m,Σ, infoτ )

� Return (⊥,⊥) if Verify(gpk, infoτ ,m,Σ) = 0.
� Return (⊥,⊥) if (m,Σ, τ) ∈ CL.
� Return Trace(gpk, tsk, infoτ , reg,m,Σ).

ReadReg(i)

� Return reg[i].

RevealU(i)

� Return ⊥ if i /∈ HUL \ (CUL ∪ BUL).
� BUL := BUL ∪ {i}.
� Return (usk[i], gsk[i]).

CI(i, pk)

� Return ⊥ if i ∈ HUL ∪ CUL.
� CUL := CUL ∪ {i}.
� upk[i] := pk, deciIssue := cont.
� Return accept.

SndToM(i,Min)

� Return ⊥ if i 6∈ CUL.

� Return ⊥ if deciIssue 6= cont.
� stiIssue := (τcurrent,msk, i,upk[i]).

� (stiIssue,Mout, dec
i
Issue)← Issue(stiIssue,Min).

� If deciIssue = accept Then reg[i] := stiIssue.

� Return (Mout, dec
i
Issue).

Sign(i,m, τ)

� Return ⊥ if i /∈ HUL or gsk[i] =⊥ or infoτ =⊥.
� Return ⊥ if IsActive(infoτ , reg, i) = 0.
� Σ ← Sign(gpk, gsk[i], infoτ ,m).
� SL := SL ∪ {(i,m,Σ, τ)}.
� Return Σ.

Chalb(infoτ , i0, i1,m)

� Return ⊥ if i0 /∈ HUL or i1 /∈ HUL.
� Return ⊥ if ∃b ∈ {0, 1} s.t. gsk[ib] =⊥.
� Return ⊥ if ∃b ∈ {0, 1} s.t. IsActive(infoτ , reg, ib) = 0.
� Σ ← Sign(gpk, gsk[ib], infoτ ,m).
� CL := CL ∪ {(m,Σ, τ)}.
� Return Σ.

ModifyReg(i, val)

� reg[i] := val.

UpdateGroup(S)

� Return UpdateGroup(gpk,msk, infoτcurrent ,S, reg).

Fig. 1. Details of the oracles used in the security games

SndToM(i,Min) used to engage in the Join-Issue protocol with the honest,
Issue-executing group manager.

SndToU(i,Min) used to engage in the Join-Issue protocol with an honest,
Join-executing user i on behalf of the corrupt group manager.

ReadReg(i) returns the registration information reg[i] of user i.



10

ModifyReg(i, val) modifies the entry reg[i], setting reg[i] := val. For brevity
we will assume ModifyReg also provides the functionality of ReadReg.

RevealU(i) returns the personal secret key usk[i] and group signing key
gsk[i] of group member i.

Sign(i,m, τ) returns a signature on the message m by the group member
i for epoch τ assuming the corresponding group information infoτ is
defined.

Chalb(infoτ , i0, i1,m) is a left-right oracle for defining anonymity. The ad-
versary chooses an epoch τ , the group information infoτ , two identities
(i0, i1), and a message m and receives a group signature by member ib
for b← {0, 1} for the chosen epoch. It is required that both challenge
users are active members at epoch τ . The adversary can only call this
oracle once.

Trace(m,Σ, infoτ ) returns the identity of the signer of the signature Σ on
m w.r.t. infoτ if the signature was not obtained from the Chalb oracle.

UpdateGroup(S) allows the adversary to update the group. S here is the
set of the active members to be removed from the group.

The following security requirements are defined by the games in Fig. 11.

Correctness. This requirement guarantees that signatures produced by
honest, non-revoked users are accepted by the Verify algorithm and that
the honest tracing manager can identify the signer of such signatures. In
addition, the Judge algorithm accepts the tracing manager’s decision.

Formally, an FDGS scheme is (perfectly) correct if for all λ ∈ N, the
advantage

AdvCorr
FDGS,A(λ) := Pr[ExpCorr

FDGS,A(λ) = 1]

is negligible (in λ) for all adversaries A.

Note that the above definition of (perfect) correctness protects against
even unbounded adversaries. If computational correctness suffices, i.e. when
we consider correctness only against computationally-bounded adversaries,
we can drop the last three lines from the correctness game in Fig. 11.
Computational correctness of the Trace and Judge algorithms is implied
by the other requirements.

(Full) Anonymity. This requires that signatures do not reveal the iden-
tity of the group member who produced them. In the game, the adversary,
A, can corrupt any user and fully corrupt the group manager by choosing
her key. We require that both challenge users are active members of the
group at the chosen epoch. Also, note that a Trace query on the challenge
signature will fail.



11

Experiment: ExpCorr
FDGS,A(λ)

− param← GSetup(1λ); HUL := ∅.
−
(

(msk,mpk, info), (tsk, tpk)
)
← 〈GKGenGM(param),GKGenTM(param)〉.

− gpk := (param,mpk, tpk).

−
(
i,m, τ

)
← AUToM,ReadReg,UpdateGroup

(
gpk, info

)
.

− If i /∈ HUL or gsk[i] =⊥ or infoτ =⊥ or IsActive(infoτ , reg, i) = 0 Then Return 0.
− Σ ← Sign(gpk, gsk[i], infoτ ,m).
− If Verify(gpk, infoτ ,m,Σ) = 0 Then Return 1.
− (i∗, πTrace)← Trace(gpk, tsk, infoτ , reg,m,Σ).
− If i 6= i∗ Then Return 1.
− If Judge(gpk, i, infoτ , πTrace,upk[i],m,Σ) = 0 Then Return 1, Else Return 0.

Experiment: ExpAnon-b
FDGS,A(λ)

− param← GSetup(1λ);HUL,CUL,BUL,SL,CL := ∅.
−
(
stinit,msk,mpk, info

)
← A〈·,GKGenTM(param)〉(init : param).

− Return 0 if GKGenTM did not accept or A’s output is not well-formed.
− Parse the output of GKGenTM as (tsk, tpk) and set gpk := (param,mpk, tpk).

− b∗ ← AUToM,CI,SndToU,RevealU,Trace,ModifyReg,Chalb
(
play : stinit, gpk

)
.

− Return b∗.

Experiment: ExpNon-Frame
FDGS,A (λ)

− param← GSetup(1λ);HUL,CUL,BUL,SL := ∅.
− (stinit, info,msk,mpk, tsk, tpk)← A(init : param).
− Return 0 if A’s output is not well-formed otherwise set gpk := (param,mpk, tpk).

−
(
m,Σ, i, πTrace, infoτ

)
← ACI,SndToU,RevealU,Sign,ModifyReg

(
play : stinit, gpk

)
.

− If Verify(gpk, infoτ ,m,Σ) = 0 Then Return 0.
− If Judge(gpk, i, infoτ , πTrace,upk[i],m,Σ) = 0 Then Return 0.
− If i /∈ HUL \ BUL or (i,m,Σ, τ) ∈ SL Then Return 0 Else Return 1.

Experiment: ExpTrace
FDGS,A(λ)

− param← GSetup(1λ);HUL,CUL,BUL,SL := ∅.
−
(
stinit, tsk, tpk

)
← A〈GKGenGM(param),·〉(init : param).

− Return 0 if GKGenGM did not accept or A’s output is not well-formed.
− Parse the output of GKGenGM as (msk,mpk, info). Set gpk := (param,mpk, tpk).

−
(
m,Σ, τ

)
← AUToM,CI,SndToM,RevealU,Sign,ModifyReg,UpdateGroup

(
play : stinit, gpk, info

)
.

− If Verify(gpk, infoτ ,m,Σ) = 0 Then Return 0.
− (i, πTrace)← Trace(gpk, tsk, infoτ , reg,m,Σ).
− If IsActive(infoτ , reg, i) = 0 Then Return 1.
− If i = 0 or Judge(gpk, i, infoτ , πTrace,upk[i],m,Σ) = 0 Then Return 1 Else Return 0.

Experiment: ExpTrace-Sound
FDGS,A (λ)

− param← GSetup(1λ); CUL := ∅.
− (stinit, info,msk,mpk, tsk, tpk)← A(init : param).
− Return 0 if A’s output is not well-formed otherwise set gpk := (param,mpk, tpk).

−
(
m,Σ, {ii, πTracei}2i=1, infoτ

)
← ACI,ModifyReg

(
play : stinit, gpk

)
.

− If ∃i ∈ {1, 2} s.t. Verify(gpk, infoτ ,m,Σ) = 0 Then Return 0.
− If i1 = i2 or i1 =⊥ or i2 =⊥ Then Return 0.
− If ∃i ∈ {1, 2} s.t. Judge(gpk, ii, infoτ , πTracei ,upk[ii],m,Σ) = 0 Then Return 0.
− Return 1.

Fig. 2. Security games for fully dynamic group signatures



12

As A can learn the personal secret and group signing keys of any user,
including the challenge users, our definition captures full key exposure
attacks.

The adversary chooses an epoch, the group information for that epoch,
a message and two group members and gets a signature by either member
and wins if she correctly guesses the member. Without loss in generality,
we allow the adversary a single call to the challenge oracle. A hybrid
argument (similar to that used in [?]) can be used to prove that this is
sufficient.

Formally, an FDGS scheme is (fully) anonymous if for all λ ∈ N, the
advantage AdvAnon

FDGS,A(λ) is negligible (in λ) for all PPT adversaries A,
where

AdvAnon
FDGS,A(λ) :=

∣∣Pr[ExpAnon-0
FDGS,A(λ) = 1]− Pr[ExpAnon-1

FDGS,A(λ) = 1]
∣∣ .

Non-Frameability. This ensures that even if the rest of the group as

well as the tracing and group managers are fully corrupt, they cannot
produce a signature that can be attributed to an honest member who did
not produce it.

In the game, the adversary can fully corrupt both the group and
tracing managers. She even chooses the keys of both managers. Thus,
our definition is stronger than existing models. We just require that the
framed member is honest.

Formally, an FDGS scheme is non-frameable if for all λ ∈ N, the
advantage

AdvNon-Frame
FDGS,A (λ) := Pr[ExpNon-Frame

FDGS,A (λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 1. In the game variant we give in Fig. 11, we allow the adversary
to generate the tracing manager’s key herself. While, as we show later,
there are schemes which satisfy this strong variant of the definition, such
definition might be too strong to be satisfied by some existing schemes. A
weaker variant of the definition is where the tracing key is generated by
the challenger rather than the adversary. This requires replacing lines 2-4
in the game in Fig. 11 by the following:

Traceability. This ensures that the adversary cannot produce a signature
that cannot be traced to an active member of the group at the chosen epoch.
In the game, the adversary can corrupt any user and even chooses the
tracing key of the tracing manager. The adversary is not given the group



13

− (stinit, info,msk,mpk)← A〈·,GKGenTM(param)〉(init : param).
− Return 0 if A’s output is not well-formed or GKGenTM did not accept.
− Let (tsk, tpk) be the output of GKGenTM. Set gpk := (param,mpk, tpk).

−
(
m,Σ, i, πTrace, infoτ

)
← ACI,SndToU,RevealU,Sign,ModifyReg

(
play : stinit, gpk, tsk

)
.

manager’s secret key as this would allow her to create dummy users which
are thus untraceable. Note that unlike [?, ?, ?], our definition captures
that a member of the group should not be able to sign w.r.t. epochs prior
to her joining the group since we do not restrict the adversary’s forgery
to be w.r.t. to the current epoch (i.e. the current version of the group
information). The adversary wins if she produces a signature whose signer
cannot be identified or is an inactive member at the chosen epoch. The
adversary also wins if the Judge algorithm does not accept the tracing
decision on the forgery.

Formally, an FDGS scheme is traceable if for all λ ∈ N, the advantage

AdvTraceFDGS,A(λ) := Pr[ExpTrace
FDGS,A(λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 2. To get an honestly-generated tracing key variant of the game
in Fig. 11, we replace lines 2-5 in the game in Fig. 11 by the following
lines:

−
(

(msk,mpk, info), (tsk, tpk)
)
← 〈GKGenGM(param),GKGenTM(param)〉.

− Set gpk := (param,mpk, tpk).

−
(
m,Σ, τ

)
← AUToM,CI,SndToM,RevealU,Sign,ModifyReg,UpdateGroup

(
play : stinit, gpk, info, tsk

)
.

Tracing Soundness. As recently defined by [?] in the context of partially
dynamic group signatures, this requirement ensures that even if both
the group and the tracing managers as well as all members of the group
collude, they cannot produce a valid signature that traces to two different
members. Such a requirement is vital for many applications. For example,
applications where signers get rewarded or where we need to stop abusers
shifting blame to others.

In the definition, the adversary can fully corrupt all parties involved
and wins if she produces a valid signature and valid tracing proofs that the
signature traces to different (possibly corrupt) users. We may also consider
a stronger variant where the adversary wins by producing a signature that
traces to different epochs.



14

Formally, an FDGS scheme has tracing soundness if for all λ ∈ N,

AdvTrace-SoundFDGS,A (λ) := Pr[ExpTrace-Sound
FDGS,A (λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 3. To get an honestly-generated tracing key variant of the game
in Fig. 11, we replace lines 2-4 in the game in Fig. 11 by the following
lines:

−
(
stinit,msk,mpk, info

)
← A〈·,GKGenTM(param)〉(init : param).

− Return 0 if GKGenTM did not accept or A’s output is not well-formed.
− Parse the output of GKGenTM as (tsk, tpk) and set gpk := (param,mpk, tpk).

−
(
m,Σ, {ii, πTracei}2i=1, infoτ

)
← ACI,ModifyReg

(
play : stinit, gpk, tsk

)
.

2.2 Comparison with Existing Models

Models used by accumulator-based constructions, e.g. [?, ?, ?, ?, ?, ?], the
vast majority of which are stated informally, are specific to that particular
design paradigm and do not generalize to other construction approaches.
Moreover, most of the them do not take into account some of the attacks
that arise in a more formal setting. For instance, some models only protect
against partially but not fully corrupt tracing managers and do not capture
the tracing soundness requirement. On the other hand, models used by
other design approaches, e.g. [?, ?, ?] are also specific to those approaches
and have their own shortcomings. For instance, as discussed earlier, the
models used by the state-of-the-art constructions by Libert et al. [?, ?]
and Nakanishi et al. [?] do not prevent a group member from being able
to sign w.r.t. time intervals before she joined the group. This is an attack
that can be problematic in some applications of the primitive. In the
traceability game used in [?] as well as the misidentification game used in
[?, ?], the adversary is required to output a signature that is valid w.r.t.
the current interval (epoch) and therefore the definitions do not capture
the attack we highlight. We stress that the authors of the concerned
models never claimed that their models cover such an attack as it might
not be a problem for their intended applications.

The traceability issue we shed light on does not apply to accumulator
based models. In these settings, when the group changes, an update is
published containing a list of the currently active group members and
most constructions work by having the signer prove membership in such



15

a list. Therefore, even if a malicious member tries to sign w.r.t. an earlier
version of the group information, she still has to prove she is a member of
the group at the concerned interval.

In addition [?, ?, ?] only consider a partially but not fully corrupt
tracing manager in the non-frameability game. Moreover, they do not
capture the requirement that a signature should only trace to one member
(i.e. tracing soundness). The latter is vital for many applications of the
primitive.

Another distinction from existing models is that our model allows
maliciously generated authorities’ keys when applicable. Therefore, it
offers more stringent security than existing models which rely on such
keys being generated honestly.

2.3 Recovering Other Models

We give security reductions which relate our model to other well-known
models for group signatures. All these models assume honest key gener-
ation, for both group and tracing managers, which is a special case of
our model. We consider three models. First, the model for static group
signatures given in [?]. We then consider two models for partially dynamic
groups from [?] and [?].

Static Group Signatures [?]. We note that we can recover static group
signatures [?] from our group signatures. We fix the group manager as the
designated opener and include tsk in the group master secret key. In the
setup, group members generate their key pairs and interact with the group
manager to join the group. Their Open algorithm does not output proofs,
as their model does not use a Judge algorithm, so we define a variant of
our non-frameability game from Fig. 11 where we replace the last 4 lines
in the game in Fig. 11 by the ones in Fig. 3.

−
(
m,Σ, infoτ

)
← ACI,SndToU,RevealU,Sign,ModifyReg

(
play : stinit, gpk

)
.

− If Verify(gpk, infoτ ,m,Σ) = 0 Then Return 0.
− (i, πTrace)← Trace(gpk, tsk, infoτ , reg,m, σ)
− If i /∈ HUL \ BUL or (i,m,Σ, τ) ∈ SL Then Return 0 Else Return 1.

Fig. 3. Modified non-frameability game.

This gives a sensible and compatible definition which allows us to
recover the model from the fully dynamic scheme.

Static group signatures are just fully dynamic group signatures with
no joining, issuing, or group updates. Correctness follows trivially from the



16

correctness of the fully dynamic group signature scheme. [?]-full-anonymity
follows from (full) anonymity of the fully dynamic group signature scheme,
while [?]-full-traceability follows from our traceability and non-frameability
requirements. We now give an explicit construction and security reductions
which show how our model relates to [?].

GSGKg(1
λ, 1n)→ (GSgpk,GSgmsk,GSgsk)

� param← GSetup(1λ).

�
(

(msk,mpk, info), (tsk, tpk)
)
← 〈GKGenGM(param),GKGenTM(param)〉.

� Set gpk := (param,mpk, tpk).
� For each user:
◦ Run (usk[i],upk[i])← UKGen(1λ).
◦ Run 〈Join(info, gpk, i,usk[i]), Issue(info,msk, i,upk[i])〉.

� Set GSgmsk := (gpk, tsk, info, reg), GSgpk := (gpk, info)
� Set GSgsk[i] := (gpk, gsk[i], info).

GSGSig(GSgsk[i],m)→ σ

� Parse GSgpk as (gpk, info) and GSgsk[i] as (gpk, gsk[i], info).
� Return Sign(gpk, gsk[i], info,m).

GSGV f (GSgpk,m, σ)→ 0/1

� Parse GSgpk as (gpk, info).
� Return Verify(gpk, info,m, σ).

GSOpen(GSgmsk,m, σ)→ {i} ∪ {⊥}
� Parse GSgpk as (gpk, info) and GSgmsk as (gpk, tsk, info, reg).
� Run (i, πTrace)← Trace(gpk, tsk, infoτ , reg,m, σ).
� Return i.

Fig. 4. Static group signatures [?] from our group signatures.

Theorem 1. The construction of Fig. 4 is a secure static group signature
scheme in the sense of [?].

Proof. Correctness is straightforward to verify. Next we prove full-anonymity.
Suppose that there exists an efficient adversary B who successfully breaks
the [?]-full-anonymity of the static group signature scheme with proba-
bility that is not negligible, with respect to a particular group of users.
We construct an efficient adversary A for the (full) anonymity of the fully



17

dynamic group signature scheme. While initializing the fully dynamic
scheme, A behaves honestly, so that all parameters are honestly generated.
Next, A adds users to the scheme using the UToM oracle to create the
group of users for B, and learns their signing keys using the RevealU oracle.
Now, A is able to start B on input (GSgpk,GSgsk). A can answer B’s Open
queries using her Trace oracle. When B outputs his challenge (i0, i1,m),
A calls Chalb(info, i0, i1,m) and gets a challenge signature σ∗ which she
forwards to B as the challenge signature. Again, using the Trace oracle, A
can answer B’s Open queries as long as they do not involve the challenge
signature σ∗. Eventually, when B outputs his guess b∗, A returns b∗ in her
game. Clearly, if B wins his game, A also wins her game with the same
probability. Therefore, the (full) anonymity of the full dynamic scheme
implies full-anonymity of the static scheme.

Finally, we turn our attention to full-traceability. Suppose that there ex-
ists an efficient adversary B who successfully breaks the [?]-full-traceability
of the static group signature scheme w.r.t. a particular group of users with
non-negligible probability. Using B which produces with non-negligible
probability (m,σ) which cannot be opened in [?]-full-traceability game
we construct an efficient adversary A1 against the traceability of the fully
dynamic group signature scheme. Adversary A1 behaves honestly while
initializing the fully dynamic scheme, so that all parameters are honestly
generated. As part of the initialization, A1 generates the tracing key tsk
for the fully dynamic scheme, so she knows GSgmsk. Next, A1 adds users to
the scheme using the UToM oracle to create the group of users for B. Now,
A1 starts B on input (GSgmsk,GSgpk). Adversary A1 answers signature
queries from B using her own Sign oracle if the user requested by B has
not been already corrupted. If the secret key of the user in question has
already been revealed to B, A1 uses the user’s secret signing key to answer
signing queries w.r.t. that user. A1 is also able to answer B’s corrupt
queries using her RevealU oracle. When B outputs (m,σ), the probability
that σ cannot be opened is non-negligible, so A1 can use these to output
(m,σ, τ) to break the traceability of the fully dynamic scheme.

Therefore, if traceability holds, we conclude that when B produces
(m,σ) and successfully breaks full-traceability, we have with overwhelming
probability that Open(gmsk,m, σ) = i for some i. This will allow us to
construct an efficient adversary A2 against the non-frameability of the fully
dynamic group signature scheme. Similarly to A1, adversary A2 behaves
honestly while initializing the fully dynamic scheme, so that all parameters
are honestly generated. As part of the initialization, A2 gets the tracing
manager’s key tsk for the fully dynamic scheme, so she knows GSgmsk.



18

Note that unlike A1, A2 additionally has the full dynamic group signature
group manager’s secret key msk. A2 can add users to the group using her
SndToU oracle. Now, A2 starts B on input (GSgmsk,GSgpk). A2 answers
B’s sign queries using her own Sign oracle if the user in question is honest
or directly if she knows the secret key of the user. Also, she can reveal the
user’s secret key requested by B using her RevealU oracle. Now, when B
breaks full-traceability, he outputs (m,σ) such that Open(gmsk,m, σ) = i
for some i, with overwhelming probability. It follows that (m,σ) is a valid
signature, and that B did not request a signature for m from user i, nor did
B request the signing key of i. Therefore, A2 can use (m,σ) to break the
variant of non-frameability (Fig. 3) of the fully dynamic group signature
scheme, with probability negligibly different from the success probability
of B. This shows that full-traceability of the static scheme of [?] is implied
by the traceability and non-frameability of the fully dynamic scheme. ut

Partially Dynamic Group Signatures [?]. Fully dynamic group sig-
natures also imply the partially dynamic group signatures of [?] in the case
where nobody is removed from the group. Anonymity, non-frameability
and traceability all follow from our corresponding definitions. Correctness
follows trivially from the correctness of the fully dynamic group signature
scheme.

We now give an explicit construction (in Fig. 5) and security reductions
which show how our model relates to [?].

Theorem 2. The construction in Fig. 5 is a secure partially dynamic
group signature scheme in the sense of [?].

Proof. Correctness follows trivially from the correctness of the fully dy-
namic group signature scheme.

Next we prove anonymity. Suppose that there exists an efficient ad-
versary B who successfully breaks the [?]-anonymity of the partially
dynamic group signature scheme. We construct an efficient adversary A
for the anonymity of the fully dynamic group signature scheme. While
initializing the fully dynamic scheme, A behaves honestly, so that all
parameters are honestly generated, but A knows the group manager’s
secret key msk, and thus knows DGSik. Adversary A sets DGSgpk := gpk =
(param,mpk, tpk, info) and starts B on (DGSgpk,DGSik). Adversary B has
access to oracles Ch,Open,SndToU,WReg,USK,CrptU, which directly cor-
respond to the oracles that A has access to, namely Chalb,Trace, SndToU,
ModifyReg,RevealU,CrptU. Therefore, A can simulate all necessary oracles
for B. When B calls the challenge oracle Ch on (i0, i1,m), adversary A



19

DGSGKg(1
λ)→ (DGSgpk,DGSik,DGSok)

� param← GSetup(1λ).

�
(

(msk,mpk, info), (tsk, tpk)
)
← 〈GKGenGM(param),GKGenTM(param)〉.

� Set gpk := (param,mpk, tpk, info).
� Set DGSgpk := gpk, DGSik := (gpk,msk) and DGSok := (gpk, tsk).

DGSUKg(1
λ)→ (DGSupk[i],DGSusk[i])

� Return UKGen(1λ).

〈Join, Iss〉
� Run 〈Join(infoτcurrent , gpk, i,usk[i]), Issue(infoτcurrent ,msk, i,upk[i])〉,
with the issuer modifying reg[i] if accepting, and the Join algorithm
outputting DGSgsk[i] = (gpk, gsk[i], infoτ ).

DGSGSig(DGSgpk,DGSgsk[i],m)→ σ

� Parse DGSgpk as gpk and DGSgsk[i] as (gpk, gsk[i], infoτ ).
� Σ ← Sign(gpk, gsk[i], infoτcurrent ,m).
� Return σ = (Σ, τcurrent).

DGSGV f (DGSgpk,m, σ)→ 0/1

� Parse DGSgpk as gpk and σ as (Σ, τ).
� Return Verify(gpk, infoτ ,m,Σ).

DGSOpen(DGSgpk,DGSok,DGSreg,m, σ)→ (i, πTrace)

� Set DGSgpk as gpk, DGSok as (gpk, tsk) and σ as (Σ, τ).
� Return Trace(gpk, tsk, infoτ , reg,m,Σ).

DGSJudge(DGSgpk, j,DGSupk[j],m, σ, πTrace)→ 0/1

� Parse DGSgpk as gpk and σ as (Σ, τ).
� Return Judge(gpk, j, infoτ , πTrace,upk[j],m,Σ).

Fig. 5. Group signatures [?] from our group signatures.

calls her challenge oracle Chalb on (infoτcurrent , i0, i1,m) where τcurrent is the
current epoch. Once A gets back a signature Σ from her oracle, she passes
σ = (Σ, τcurrent) to B as the answer. Whenever B outputs his final bit guess
b∗, A returns b∗ as her answer. We have that A breaks anonymity of the
fully dynamic group signature whenever B successfully breaks anonymity



20

of the partially dynamic scheme. Thus, the former anonymity definition
implies the latter.

Next, we prove traceability. Assume there exists an efficient adversary
B who successfully breaks the [?]-traceability of the partially dynamic
scheme. We construct an efficient adversary A against the traceability
of the fully dynamic group signature scheme. While initializing the fully
dynamic scheme, A behaves honestly, so that all parameters are hon-
estly generated, but A knows the tracing manager’s secret key tsk, so she
knows DGSok. Adversary A sets DGSgpk := gpk = (param,mpk, tpk, info)
and starts B on (DGSgpk,DGSok). Adversary B has access to oracles
SndToI,AddU,RReg,USK,CrptU, which directly correspond to some of the
oracles A has access to, namely SndToM,AddU,ReadReg,RevealU,CrptU.
Therefore, A can simulate all necessary oracles for B. When B outputs
(m,σ) where σ = (Σ, τ), A returns (m,Σ, τ) in her game. Now, whenever
B breaks [?]-traceability, A breaks the traceability of the fully dynamic
scheme. This shows that traceability of fully dynamic schemes implies the
same for partially dynamic schemes, in the sense of [?].

Finally, we prove non-frameability. Suppose that there exists an ef-
ficient adversary B who successfully breaks the [?]-non-frameability of
the partially dynamic group signature scheme. We construct an efficient
adversary A against the non-frameability of the fully dynamic group
signature scheme. While initializing the fully dynamic scheme, A be-
haves honestly, so that all parameters are honestly generated, but A
knows the tracing manager’s secret key tsk and the issuer’s secret key
msk. Therefore, A knows DGSik,DGSok. Adversary A sets DGSgpk :=
gpk = (param,mpk, tpk, info) and starts B on (DGSgpk,DGSok,DGSik). Ad-
versary B has access to oracles SndToU,WReg,GSig,USK,CrptU, which
directly correspond to some of the oracles that A has access to, namely
SndToU,ModifyReg, Sign,RevealU,CrptU. Therefore, A can simulate all
necessary oracles for B. Whenever B outputs (m,σ, i, πTrace) where σ =
(Σ, τ), A returns (m,Σ, i, πTrace, infoτ ) in her game. Therefore, whenever
B breaks the non-frameability of the partially dynamic scheme, A suc-
ceeds in breaking the non-frameability of the fully dynamic scheme. This
shows that non-frameability of fully dynamic schemes implies the same
for partially dynamic schemes, in the sense of [?]. ut

Partially Dynamic Group Signatures [?]. Finally, we consider the
partially-dynamic model of [?]. We fix the group manager as the designated
opener and set (msk, tsk) to be the group master secret key. Our group
info and registration table generalize their public state string. Their Join



21

algorithm runs our user key-generation and Join/Issue algorithms. The
membership certificate is then the user’s public key along with the group
information, and the membership secret is the user’s private key. Again,
their Open algorithm does not output proofs, and the model does not
have a judge algorithm. Therefore, as in the case of [?] we modify our
non-frameability game from Fig. 11 where we replace the last 4 lines in
the game in Fig. 11 with those in Fig. 3.

Correctness follows trivially from the correctness of the fully dynamic
group signature scheme. Security against misidentification-attacks fol-
lows from traceability, security against framing-attacks follows from non-
frameability, and anonymity follows from the (full) anonymity of the fully
dynamic group signature.

We now give an explicit construction (in Fig. 6) and security reductions
which show how our model relates to [?].

Theorem 3. The construction in Fig. 6 is is a secure partially dynamic
group signature scheme in the sense of [?].

Proof. We begin by proving correctness. User tagging soundness and
join soundness are both trivial by construction of the Setup and Join

algorithms. Signing soundness and opening soundness both follow trivially
from the correctness of the fully dynamic group signature scheme.

Next we prove security against misidentification-attacks. Suppose that
B is an efficient adversary against the misidentification-attack game of [?].
As stated in [?], without loss of generality, we may consider an adversary
who controls all users in the system, and wins the misidentification-attack
game by providing a signature which fails to open to any user. We construct
an efficient adversary A against the traceability of the fully dynamic group
signature scheme. While initializing the fully dynamic scheme, A behaves
honestly, so that all parameters are honestly generated, but A knows
the tracing key tsk. In the misidentification-attack game, B has access to
oracles Qpub,Qread,Qopen and Qa−join. Adversary A can simulate all of
those oracles using the information available to her in her traceability game
as well as the oracles she has access to in her game. The oracle Qpub is easy
to simulate. The oracle Qread corresponds directly to ReadReg. The oracle
Qopen can be easily simulated by A, since A possesses the tracing key tsk.
Also, Qa−join can be simulated using CrptU and SndToM. Therefore, A
can run B, successfully simulating all oracles, and when B outputs (m,σ),
where σ = (Σ, τ), A outputs (m,Σ, τ) as her answer in her traceability
game. Whenever B succeeds in breaking security against misidentification



22

Setup(1λ)→ (Y,S)

� param← GSetup(1λ).

�
(

(msk,mpk, info), (tsk, tpk)
)
← 〈GKGenGM(param),GKGenTM(param)〉.

� Set gpk := (param,mpk, tpk).
� Set S := (msk, tsk), Y := (gpk, info).
� Set St := (Stusers,Sttrans) := (∅, reg).

Join

This is an interactive protocol between a user and the group manager.
� The user runs (usk[i],upk[i])← UKGen(1λ).
� Both parties run 〈Join(infoτcurrent , gpk, i,usk[i]), Issue(infoτcurrent ,msk, i,upk[i])〉.
� The user receives private output 〈i, certi, seci〉 := 〈i, (upk[i], infoτ ), gsk[i]〉
� Set transcripti := reg[i].
� After a successful execution, the state is updated, with Stusers := Stusers ∪ {i} and
Sttrans := Sttrans||〈i, transcripti〉.

Sign(Y, certi, seci,m)→ σ
� Parse Y as (gpk, info) and seci as gsk[i].
� Σ ← Sign(gpk, gsk[i], infoτcurrent ,m).
� Return σ = (Σ, τcurrent).

Verify(Y,m, σ)→ >/⊥
� Parse Y as (gpk, info) and σ as (Σ, τ).
� Let b = Verify(gpk, infoτ ,m,Σ).
� Return > if b = 1, or ⊥ if b = 0.

Open(m,σ,Y,S, St)→ i ∈ Stusers ∪ {⊥}
� Parse Y as (gpk, info), S as (msk, tsk), σ as (Σ, τ), and Sttrans as reg.
� Run (i, πTrace)← Trace(gpk, tsk, infoτ , reg,m,Σ).
� Return i if i ∈ Stusers, or ⊥ if i = 0.

Fig. 6. Group signatures [?] from our group signatures.

attacks, A breaks traceability. Therefore, traceability of the fully dynamic
group signature implies security against misidentification attacks.

Next, we prove security against framing-attacks. Suppose that B
is an efficient adversary against the framing-attack game of [?]. We
construct an efficient adversary A against the non-frameability of the



23

fully dynamic group signature scheme. While initializing the fully dy-
namic scheme, A behaves honestly, so that all parameters are honestly
generated, but A knows msk, tsk. In his game, B has access to oracles
Qpub,Qkey,Qb−join,Qread,Qwrite,Qsign. Using the information available
to her in her game as well as the oracles she has access to in her non-
frameability game, A can simulate all of B’s oracles. The oracle Qpub
is easy to simulate. The oracle Qkey is easy to simulate since A knows
msk and tsk. The oracle Qb−join directly corresponds to SndToU. Oracle
Qread,Qwrite are easily simulated by A since A possesses msk and has
access to the ModifyReg oracle. Also, A can simulate the Qsign oracle for
B using her own Sign oracle. This means that A can run B to obtain (m,σ)
where σ = (Σ, τ). Note in [?], users created by Qb−join are honest users
whose private keys have not been revealed to B. Therefore, a user i framed
by B will be in HUL \BUL, unless A explicitly calls her RevealU oracle on
i. Given the output (m,σ) produced by B, A outputs (m,Σ, infoτ ) as her
answer in her game. Adversary A successfully breaks the non-frameability
of the fully dynmic group signatures whenever B wins in his framing-attack
game. Therefore, non-frameability of our fully dynamic group signatures
implies security against framing attacks in the sense of [?].

Finally, we prove anonymity. Suppose B is an efficient adversary against
the anonymity game of [?]. We construct an efficient adversary A against
the anonymity of the fully-dynamic group signature scheme. While initial-
izing the fully dynamic scheme, A behaves honestly, so that all parameters
are honestly generated, but A knows msk. In the anonymity game of [?], B
has access to oracles Qpub,Qa−join,Qread,Qopen. The oracle Qpub is easy
to simulate. The oracle Qa−join can be easily simulated using CrptU and
knowledge of msk. Similarly, Qread can be simulated using msk. Lastly,
Qopen can be simulated by A by making use of her own Trace oracle. This
means that A can simulate the anonymity game for B, using Chalb on the
current epoch τ to provide B with a challenge signature σ = (Σ, τ). Now,
when B returns a bit b∗, A returns that as her answer in her game. It is
clear that whenever B succeeds in winning the [?] anonymity game, A
breaks (full) anonmity of the fully dynamic group signature. Therefore,
anonymity of fully dynamic group signatures implies that of partially
dynamic group signatures in the sense of [?]. ut

3 On the Security of Some Existing Schemes

Here we take a closer look at some of the existing fully dynamic schemes
and investigate whether or not they are secure using our proposed model.



24

We show that the state-of-the-art certificate-based schemes in [?, ?]
and [?] are all susceptible to an attack against traceability which allows
any user to sign w.r.t. an epoch predating her joining. In our model this
directly breaks traceability, as the signature is w.r.t. an epoch in which
the signer was not active. We note that our attack does not contradict
the original security proofs of the schemes, but instead highlights that our
definition is stronger. We also show that it is easy to repair the schemes
at a reasonable cost.

At first glance, our attack is the dual of a well known issue with many
revocation systems. If a user is revoked and anonymity is maintained, the
revoked user is able to produce back-dated signatures that still verify. The
difference here is that while the revoked user was authorized to be part of
the group for the epoch in question, in our attack the signing user was in
fact not authorized to sign for the group. If the adversary is able to block
the opening of this signature (e.g. via legal action), its existence would
implicitly frame the group’s past membershipas the signature would be
attributed to them.

3.1 Libert et al. Schemes [?, ?]

In [?], users are assigned leaves of a complete binary tree and given a
membership certificate containing a unique tag identifying the user, and a
commitment to the path from the root to the user’s leaf in the tree. Note
that the certificate is not bound to the epoch at which the user joined the
group. In fact, users joining does not change infoτ or the epoch τ itself.

Revocation is based on the subset difference method [?], using disjoint
sets Ski,ui for i = 1, . . . ,m which cover non-revoked users. Sets are repre-
sented by two nodes, a node ki and one of its descendants node ui, and
cover all leaves of the sub-tree rooted at node ki which are not leaves of
the sub-tree rooted at ui. Revocations trigger epoch changes with infoτ
updated with a new cover.

To sign, the group member anonymously proves that she holds a
membership certificate, and that the node indicated by the certificate
belongs to one of those sets. More precisely, the user proves that her leaf is
a descendant of node ki but not a descendant of node ui for some i ∈ [m].

Since user certificates are not bound to epochs and leaves are covered
until their corresponding users are revoked, it is simple to break traceability:
a user can join and then produce a signature for an epoch that predates
her joining. A similar argument also applies to the variant of the scheme
given in [?].



25

Theorem 4. The fully dynamic scheme of Libert et al. [?] does not satisfy
our traceability definition even w.r.t. honestly generated tracing manager’s
keys.

Proof. Consider the following strategy in the traceability experiment: the
adversary asks to join as a user i1 at epoch τ1. User i1 gets assigned the
leaf l1. Then at a later epoch, τ2, the adversary asks to join as a second
user i2. Finally, the adversary signs using the credentials of i2 but for
epoch τ1.

We can check by inspection that all subproofs in the back-dated
signature go through. The crucial observation is that at epoch τ1, the leaf
l2 is not revoked and thus must be covered by one of the Ski,ui sets. As the
proof verifies and i2 used a legitimate certificate, opening the signature
will be successful and indicate i2 as the signer. The adversary wins, as i2
was not active at epoch τ1. ut

A possible countermeasure against the above attack is to regard unas-
signed leaves as revoked until they are assigned. This is simple to do as
the scheme does not bound the number of revoked users. We do however
need to re-examine the number of subsets required to express this, as
the 2|R| − 1 bound for |R| revoked users may now seem impractical. If
we assume leaves are allocated sequentially to users, we can bound the
number of subsets by 2|R1|+ log(|N \ R2|) where R2 is the set of leaves
pending allocation and R1 is the set of leaves allocated to users who were
later revoked. Thus, our fix is only marginally more expensive than the
base system and much more efficient than a naive analysis would indicate.

If proving set membership/intervals can be done efficiently (and de-
pending on how the epoch counter is implemented), another possible fix is
to bind membership certificates to the join epoch and then get the signer
to prove that their join epoch is not later than the signing epoch.

3.2 Nakanishi et al. Scheme [?]

The scheme of Nakanishi et al. [?] is another certificate-based scheme in
the random oracle model. It achieves constant time for both signing and
signature verification, relative to the size of the group and the number of
revoked users.

A user’s group membership certificate consists of a signature on (x, ID)
produced by the group manager, where x is a secret owned by the user and
ID is a unique integer the manager assigned to her. The group manager
can revoke users by issuing revocation lists infoτ . Each list consists of a



26

sequence of open integer intervals (Ri, Ri+1) signed by the manager, whose
endpoints are all the revoked ID’s. At each epoch τ , a signer fetches the
current infoτ and proves, as part of the signature, that her ID is contained
in one interval of the revocation list. If the ID lies between two revoked
users’ identities, it means it is not an endpoint and so she has not been
revoked.

As in other certificate-based constructions, verifiers only know of
revoked members, not active ones and, similarly to [?], the time of joining
is not taken into account. This allows users to sign with respect to any
epoch prior to joining the group, which represents an attack against our
traceability definition.

Theorem 5. The Nakanishi et al. [?] fully dynamic group signature
scheme does not satisfy our traceability definition.

Proof. Let A be an adversary against the traceability game. The adversary
adds user i to the group at epoch τ . Since the user is not revoked, her ID
is not an endpoint in any interval of the revocation list infoτ , as for all
previous epochs. Therefore, A could easily produce valid signatures for i
to any epoch τ̄ < τ . Since these signatures trace back to a user which was
inactive at the interval with which the signature is associated, A succeeds
in the traceability game. ut

The scheme could be easily immunized against the above attack. A
first solution, as for [?], is to initialize the revocation list with all ID’s of
users that have not joined the group yet. When the manager assigns an
ID to a new user, he updates reg and the revocation list infoτ . This way,
the signature size is not affected. On the other hand, revocation lists are
now proportional to the size of the maximum number of users, instead of
the number of revoked users.

An alternative countermeasure requires the group manager to include
the joining epochs in the certificates by signing (x, ID, τjoin), where x is
a secret owned by user ID and τjoin is the joining epoch. A signer then
needs to include in the signature a proof that τjoin is not greater than
the signing epoch. To realize the latter, one can use membership proof
techniques from [?, ?] which are already used in the original scheme. This
would increase the cost of signing and verifying by only a constant factor.
The new membership proof would require the group manager to provide
signatures for every elapsed epoch, which could be appended, for instance,
to the revocation list. This makes revocation lists grow linearly with the
number of revoked users as well as the number of epochs.



27

3.3 Bootle et al. Scheme [?]

Recently, Bootle et al. [?] gave a generic construction of accountable ring
signatures, where every signature can be traced back to a user in the ring.
They also showed how one can obtain fully dynamic group signatures from
accountable ring signatures. In addition, they gave an efficient instantiation
in the random oracle model that is based on the DDH assumption. Their
instantiation yields signatures of logarithmic size (w.r.t. the size of the
ring), while signing is quasi-linear, and signature verification requires a
linear number of operations. Bootle et al. claimed that their instantiation
is more efficient than existing group signature schemes based on standard
assumptions.

Each user has a secret key and an associated verification key. To sign,
users first encrypt their verification key. Then, via a membership proof,
they provide a signature of knowledge showing that the verification key
belongs to the ring, and that they know the corresponding secret key.
We now reproduce their definitions and prove their construction is secure
w.r.t. the stronger variant of our model.

Accountable Ring Signatures. Bootle et al. [?] define an accountable
ring signature scheme over a PPT setup ARSSetup as a tuple of polyno-
mial time algorithms (ARSOKGen,ARSUKGen,ARSSign,ARSV fy,ARSOpen,
ARSJudge).

ARSSetup(1
λ): Given the security parameter, produces public parameters

pp used (sometimes implicitly) by the rest of the scheme. The public pa-
rameters define key spaces PK,DK, V K, SK with efficient algorithms
for sampling and deciding membership.

ARSOKGen(pp): Given the public parameters pp, produces a public key
pk ∈ PK and secret key dk ∈ DK for an opener. Without loss
of generality, we assume dk defines pk deterministically and write
pk = ARSOKGen(pp, dk) when computing pk from dk.

ARSUKGen(pp): Given the public parameters pp, produces a verifica-
tion key vk ∈ V K and a secret signing key sk ∈ SK for a user.
We can assume sk deterministically determines vk and write vk =
ARSUKGen(pp, sk) when computing vk from sk.

ARSSign(pk,m,R, sk): Given an opener’s public key, a message, a ring (i.e.
a set of verification keys) and a secret key, produces a ring signature σ.
The algorithm returns the error symbol ⊥ if the inputs are malformed,
i.e., if pk /∈ PK,R 6⊂ V K, sk /∈ SK or vk = ARSUKGen(pp, sk) /∈ R.



28

ARSV fy(pk,m,R, σ): Given an opener’s public key, a message, a ring and
a signature, returns 1 if accepting the signature and 0 otherwise. We
assume the algorithm always returns 0 if the inputs are malformed,
i.e., if pk /∈ PK or R 6⊂ V K.

ARSOpen(m,R, σ, dk): Given a message, a ring, a ring signature and an
opener’s secret key, returns a verification key vk and a proof ψ that the
owner of vk produced the signature. If any of the inputs are invalid, i.e.,
dk /∈ DK or σ is not a valid signature using pk = ARSOKGen(pp, dk),
the algorithm returns ⊥.

ARSJudge(pk,m,R, σ, vk, ψ): Given an opener’s public key, a message, a
ring, a signature, a verification key and a proof, returns 1 if accepting
the proof and 0 otherwise. We assume the algorithm returns 0 if σ is
invalid or vk /∈ R.

An accountable ring signature scheme [?] should be correct, fully
unforgeable, anonymous and traceable as defined below.

Definition 1 (Perfect correctness). An accountable ring signature
scheme is perfectly correct if for any PPT adversary A

Pr

 pp← ARSSetup(1
λ); (vk, sk)← ARSUKGen(pp);

(pk,m,R)← A(pp, sk);σ ← ARSSign(pk,m,R, sk) :
If pk ∈ PK,R ⊂ V K, vk ∈ R then ARSV fy(pk,m,R, σ) = 1

 = 1.

Full unforgeability ensures that an adversary, who may control the
opener, can neither falsely accuse an honest user of producing a ring
signature nor forge ring signatures on behalf of an honest ring. The former
should hold even when all other users in the ring are corrupt.

Definition 2 (Full Unforgeability). An accountable ring signature
scheme is fully unforgeable if for any PPT adversary A

Pr



pp← ARSSetup(1
λ); (pk, vk,m,R, σ, ψ)← AUKGen,Sign,RevealU(pp) :(

vk ∈ QUKGen \QRevealU ∧ (pk, vk,m,R, σ) /∈ QSign

∧ ARSJudge(pk,m,R, σ, vk, ψ) = 1
)

∨
(
R ⊂ QUKGen \QRevealU ∧ (pk, ·,m,R, σ) /∈ QSign

∧ ARSV fy(pk,m,R, σ) = 1
)


≈ 0.

• UKGen runs (vk, sk) ← ARSUKGen(pp) and returns vk. QUKGen is
the set of verification keys vk that have been generated by this oracle.



29

• Sign is an oracle that on query (pk, vk,m,R) checks if vk ∈ R∩QUKGen,
in which case returns σ ← ARSSign(pk,m,R, sk). QSign contains the
queries and responses (pk, vk,m,R, σ).

• RevealU is an oracle that when queried on vk ∈ QUKGen returns the
corresponding signing key sk. QRevealU is the list of verification keys
vk for which the corresponding signing key has been revealed.

Anonymity ensures that a signature does not reveal the identity of
the ring member who produced it without the opener explicitly wanting
to open the particular signature. The definition below implies anonymity
against full key exposure attacks [?] as in the game the adversary is allowed
to choose the secret signing keys of the users.

Definition 3 (Anonymity). An accountable ring signature scheme is
anonymous if for any PPT adversary A

Pr

[
pp← ARSSetup(1

λ); b← {0, 1}; (pk, dk)← ARSOKGen(pp) :
AChalb,Open(pp, pk) = b

]
≈ 1

2
.

• Chalb is an oracle that the adversary can only call once.
On query (m,R, sk0, sk1) it runs σ0 ← ARSSign(pk,m,R, sk0); σ1 ←
ARSSign(pk,m,R, sk1). If σ0 6= ⊥ and σ1 6= ⊥ it returns σb, otherwise
it returns ⊥.

• Open is an oracle that on a query (m,R, σ) returns ARSOpen(m,R, σ, dk).
If σ was obtained by calling Chalb on (m,R), the oracle returns ⊥.

Traceability ensures that the specified opener can always identify the
ring member who produced a signature and that she is able to produce a
valid proof for her decision.

Definition 4 (Traceability). An accountable ring signature scheme is
traceable if for any PPT adversary A

Pr

 pp← ARSSetup(1
λ); (dk,m,R, σ)← A(pp);

pk ← ARSOKGen(pp, dk); (vk, ψ)← ARSOpen(m,R, σ, dk) :
ARSV fy(pk,m,R, σ) = 1 ∧ ARSJudge(pk,m,R, σ, vk, ψ) = 0

 ≈ 0.

Tracing soundness ensures that a signature cannot trace to two different
users; only one person can be identified as the signer even when all users
as well as the opener are fully corrupt. Similarly to the setting of group
signatures [?], this requirement is vital for some applications, e.g., where
users might be rewarded for signatures they produced, or to avoid shifting
blame when signatures are used as evidence of abuse.



30

Definition 5 (Tracing Soundness). An accountable ring signature
scheme satisfies tracing soundness if for any PPT adversary A

Pr

[
pp← ARSSetup(1

λ); (m,σ,R, pk, vk1, vk2, ψ1, ψ2)← A(pp) :
∀i ∈ {1, 2}, ARSJudge(pk,m,R, σ, vki, ψi) = 1 ∧ vk1 6= vk2

]
≈ 0.

Security in our model. Here we will show that a fully dynamic group
signature scheme obtained from the generic accountable ring signature
construction of [?] is secure w.r.t. our security model.

In what follows, note that each epoch τ specifies an instance of the
accountable ring signature scheme with ring Rτ . Algorithms from the
accountable ring signature scheme are labelled with ARS. We assume
that the epoch can be appended to a message using the || operation, and
removed again without ambiguity.

An accountable ring signature scheme does not involve a group manager.
Hence, to construct a group signature, we assume the existence of a
functionality GMg, which allows a group manager’s key-pair to be derived
as (gmk,msk) ← GMg(1λ), and initialises a group information board
which is visible to all parties, but can only be modified by a party with
msk.

The construction of a fully dynamic group signature from an account-
able ring signature is presented in Fig. 7.

Theorem 6. The generic group signature scheme construction from ac-
countable ring signatures of [?] satisfies our definitions for a secure, fully-
dynamic group signature scheme.

Proof. We begin by proving correctness. For simplicity and without loss
in generality, we reduce the computational variant of the correctness re-
quirement, i.e. where the last three lines in the correctness game in Fig. 11
are dropped (see Section A.2), to the perfect correctness of the account-
able ring signature. Let A be an adversary against the (computational)
correctness of the fully dynamic group signature scheme. We construct
an adversary B against the (perfect) correctness of the accountable ring
signature scheme. On receiving (pp, sk) from his game, B sets param = pp
and chooses (tpk, tsk) and (mpk,msk) by himself. He also initializes reg
and info. Note that B can compute vk corresponding to sk by computing
vk = ARSUKGen(pp, sk). Now, B sets gpk := (param,mpk, tpk) and starts
A on (gpk, info). Since B knows msk, he can simulate all oracle queries forA.
Let q be a polynomial upper bound on the number of UToM queries A can
make in her game. Adversary B randomly chooses an index i← {1, . . . , q}



31

GSetup(1λ)→ param

� Compute param := pp← ARSSetup(1
λ).

� Initialize reg and a counter τ := 0.

〈GKGenGM(param),GKGenTM(param)〉
� The group and tracing managers participate in an interactive protocol
to generate (tpk, tsk)← ARSOKGen(pp) and (mpk,msk)← GMg(1λ).
� Set gpk := (param,mpk, tpk), and initialise info.

UKGen(1λ)→ (usk[i],upk[i])
� Return (usk[i],upk[i])← ARSUKGen(pp).

〈Join(τ, gpk, i,usk[i]), Issue(τ,msk, i,upk[i])〉
� The group manager and a new user i who already has a key-pair undergo
an interactive protocol to register i.
� Upon completion, the group manager uses msk to update reg with the
transcript.
� Set gsk[i] = usk[i].

UpdateGroup(gpk,msk, infocurrent,S, reg)→ infonew
� If Rnew is different from Rcurrent then increment the counter τ
� The new group information infonew contains the current group Rnew and
the public keys of the members as well as the counter τ .

Sign(gpk, gsk[i], infoτ ,m)→ Σ
� Denote the group for the current epoch by Rτ . This is part of infoτ .
� Return Σ ← ARSSign(tpk,m||τ,Rτ , gsk[i]).

Verify(gpk, infoτ ,m,Σ)→ 1/0
� Return ARSV fy(tpk,m||τ,Rτ , Σ).

Trace(gpk, tsk, infoτ , reg,m,Σ)→ (i, πTrace)
� Return ARSOpen(m||τ,Rτ , Σ, tsk).

Judge(gpk, i, infoτ , πTrace,upk[i],m,Σ)→ 1/0
� Return ARSJudge(tpk,m||τ,Rτ , Σ,upk[i], πTrace).

IsActive(infoτ , reg, i)
� Check infoτ to see if user i is in Rτ , and returns 0/1 accordingly.

Fig. 7. Construction of a fully dynamic group signature from an accountable ring
signature [?] .



32

and sets the challenge key pair (vk, sk) of his game as the keys of the
i-th user i∗ queried to the UToM oracle: (usk[i∗],upk[i∗]) := (sk, vk). By
construction, user keys do not depend on i, so the simulation is perfect.
Whenever A succeeds in breaking correctness by returning (i,m, τ), B suc-
ceeds when i = i∗ by returning (tpk,m||τ,Rτ ). Note that i is independent
of the success probability of A. Hence, the success probability of B is that
of A divided by a factor of q, and thus correctness of the fully dynamic
group signature scheme follows.

For anonymity, suppose that A is an adversary against the anonymity
of the group signature scheme. We construct an adversary B against the
anonymity of the accountable ring signature scheme. Adversary B gets
param := pp and pk from his anonymity game. He sets tpk := pk and
interacts with A on behalf of the tracing manager of the fully dynamic
group signature scheme to get (msk,mpk, info). Note that B does not
know dk corresponding to pk and hence does not know the secret tracing
key tsk of the tracing manager. B now sets gpk := (param,mpk, tpk) and
initializes reg. For all oracles except Trace and Chalb, B is able to simulate
all queries of A by himself and return the result, since B knows all necessary
keys. If A queries (m,Σ, infoτ ) to her Trace oracle, B can simulate the
oracle by querying (m||τ,Rτ , Σ) to his Open oracle and forwards the
answer to A. If A queries (infoτ , i0, i1,m) to her Chalb oracle, B simulates
the oracle by querying (m||τ,Rτ , gsk[i0], gsk[i1]) to his Chalb oracle and
returns the answer to A. Eventually, when A outputs her guess b∗, B
returns b∗ as his answer in his game. It is clear that both adversaries have
the same advantage. Therefore, by anonymity of the accountable ring
signature scheme, the fully dynamic group signature scheme satisfies our
full anonymity definition.

Next, we prove non-frameability. LetA be an adversary against the non-
frameability of the fully dynamic group signature scheme. We construct
an adversary B attacking the full-unforgeability of the accountable ring
signature scheme. Given pp, B starts A on param := pp and receives
(info,msk,mpk, tsk, tpk) using which B can compute gpk which he forwards
to A. Now, for all oracles except SndToU, RevealU and Sign, B is able
to simulate all queries of A by himself and return the result. For the
other three oracles, B can simulate those successfully by consulting his
own oracles UKGen,Sign and RevealU if necessary. Eventually, when A
outputs (m,Σ, i, πTrace, infoτ ), B returns (tpk,upk[i],m||τ,Rτ , Σ, πTrace)
in his game. Clearly, if A wins her game, B succeeds in breaking the full
unforgeability of the accountable ring signature since his output satisfies
the first clause of the winning condition.



33

Next, we prove traceability. Let A be an adversary against the trace-
ability of the fully dynamic group signature scheme. We construct an
adversary B against the traceability of the accountable ring signature
scheme. Given pp, B sets param := pp, generates (msk,mpk) and initial-
izes reg and info. He interacts with A on behalf the group manager in
order to obtain (tsk, tpk). He sets gpk := (param,mpk, tpk) and forwards
(gpk, info) to A. Now, B is able to simulate all of the oracle queries of
A. Eventually, when A outputs (m,Σ, τ) where Σ is a valid signature,
B returns (tsk,m||τ,Rτ , Σ) in his game. We have three cases to consider
depending on how A wins her game. If i is inactive group member at
epoch τ , then i /∈ Rτ . If i = 0 then again i /∈ Rτ . The final case is that the
group signature judge algorithm returns 0. The probability of success of
B is the same as that of A. Thus, by the traceability of the accountable
ring signature scheme, the fully dynamic group signature scheme satisfies
traceability.

Finally, we prove tracing-soundness. Let A be an adversary against
the tracing-soundness of the fully dynamic group signature scheme. We
construct an adversary B against the tracing-soundness of the accountable
ring signature scheme. Given pp, B initializes reg and sets param := pp.
He starts A on param to get (info,msk,mpk, tsk, tpk). He sets gpk :=
(param,mpk, tpk) which he then forwards to A. Note that all A’s oracle
calls can be simulated by B since he has the required keys. Eventually, A
halts by responding with a tuple

(
m,Σ, i1, πTrace1 , i2, πTrace2 , infoτ

)
. By

construction, Σ returned by A is a valid accountable ring signature on

m that traces to two different users. Adversary B returns
(
m||τ,Σ, tpk,

upk[i1],upk[i2], πTrace1 , πTrace2

)
as his output in his game. Clearly, if A

wins her game, B wins his game with the same advantage. Thus, if the
accountable ring signature scheme satisfies tracing soundness so does the
fully dynamic group signature scheme. ut



34

A New Definitions

A.1 Syntax and Security of Fully Dynamic Group Signatures

The parties involved in a Fully Dynamic Group Signature (FDGS) are:
a set of users, who are potential group members; a group manager GM
who in charge of issuing and revoking group membership of users; a
tracing manager TM who can revoke anonymity by identifying authors of
signatures. Users can join and leave the group at any time at the discretion
of the group manager. We allow the group manager to periodically publish
some information infoτ , associated with an index τ , hereafter referred to
as epoch. The epoch τ is simply a counter value which gets increased every
time the manager issues a new group information. The information depicts
changes to the group, for instance, it could include the current members
of the group (as in accumulator-based constructions) or those who have
been excluded from the group (as, e.g. required by constructions based
on revocation lists ). As in existing models, we assume that anyone can
verify the authenticity of the published group information. By combining
the group information for the current epoch with that of the preceding
one, any party can identify the list of members who have been revoked at
the current epoch.

Unlike existing models, which assume honestly generated authorities’
keys, we separate the generation of the authorities’ keys from that of
the public parameters, which might need to be generated by a trusted
party. This allows us (where appropriate) to define stringent security that
protects against adversarial authorities who might generate their keys
maliciously. Our definitions can be adapted straight away to work for the
weaker setting where authorities’ keys are generated honestly as in existing
models. For the sake of generality, we define the group key generation as
a joint protocol between the group and tracing managers. Clearly, it is
desirable in some cases to avoid such interaction and allow authorities to
generate their own keys independently. This is a special case of our general
definition where the protocol is regarded as two one-sided protocols.

An FDGS scheme consists of the following polynomial-time algorithms:

• GSetup(1λ) → param: is run by a trusted third party. On input a
security parameter λ, it outputs public parameters param.

• 〈GKGenGM(param),GKGenTM(param)〉 → ((mpk,msk, info0); (tpk, tsk)):
is an interactive protocol between GM and TM specified by algo-
rithms GKGenGM and GKGenTM. The input to both algorithms is the
public parameters param and the output consists of the respective



35

secret keys as well as the public key of the group. If completed suc-
cessfully, the output of GKGenGM is a pair of keys mpk,msk and the
initial group information info0 at the initial epoch 0. The output of
GKGenTM is a pair of keys tpk, tsk. The group public key is then set
to gpk := (param,mpk, tpk).

• 〈Joini(gpk), IssueReg,Info(gpk,msk, i)〉 → (gski; regi/⊥): is an interactive
protocol between a user and the GM, specified by stateful algorithms
Join and Issue. The GM uses a session identifier i to identify distinct
joining sessions. This can be simply regarded as a counter value which
gets increased at every join request.
We assume the protocol to be initiated by a call of Join. If the user
decides to stop the interaction with the manager, she sends a rejecting
message ⊥. The protocol is terminated by either an accepting message
> or a rejecting message ⊥ from the manager.
As a result of a successful execution, the user is able to compute a
group secret key gski and his public key is added to the registry by
the GM. We refer to the public key of user i as regi. Without loss
of generality we assume the public keys regi of group members to be
distinct and to uniquely identify user i. Finally, we require each entry
in the registry to be agreed by both user and GM during the execution
of the protocol.
Joining epochs are initialised to τJ,i =∞ for non-registered users. We
assume that the communication in this interactive protocol takes place
over a private and authenticated channel. The access of the group
manager to the registry reg and the information of the group info is
given by two oracles Reg, Info.
We use notation

(Mout;Min)← 〈Join(·), IssueReg,Info(·)〉

to denote a single round of the protocol where the user sends Mout to
the GM and gets Min in reply. We also use Joini(>), IssueReg,Info(>, i)
to denote computation of the local output for user and GM in case of
successful execution.

• UpdateGroupRReg,Info(gpk,msk,S) → infoτ+1: is run by the group
manager to update the group information while also advancing the
epoch. If the group has not change, it simply copies the previous group
information. It takes as input the group manager’s secret key msk, a
(possibly empty) set S of active members to be removed and it has
read access to the registration table via the RReg oracle. It also sets
the revocation epoch of revoked users to the next epoch. Revocation
epoch for non-revoked users is initialised as τR,i =∞.



36

• Sign(gpk, gsk, infoτ ,m) → Σ: on input the group public key gpk, a
user’s group signing key gsk, the group information infoτ at epoch τ ,
and a message m, outputs a group signature Σ. If the user owning
gsk is not an active member of the group at epoch τ , the algorithm
returns ⊥.

• Verify(gpk, infoτ ,m,Σ)→ 1/0: is a deterministic algorithm checking
whether Σ is a valid group signature on m at epoch τ and outputs a
bit accordingly.

• TraceRReg(gpk, infoτ , tsk,m,Σ)→ (regi, πTrace): is an algorithm run by
the tracing manager. It returns an identity regi of the group member
who produced Σ plus a proof πTrace of correctness of the tracing. If
the algorithm is unable to trace the signature to a particular group
member, it returns (⊥, πTrace) to indicate that it could not attribute
the signature.

• Judge(gpk, infoτ , regi,m,Σ, πTrace)→ 1/0 : is a deterministic algorithm
which on input the group public key gpk, a user identity i, the group
information at epoch τ , a tracing proof πTrace, the user’s public key
regi (which is ⊥ if it does not exist), a message m, and a signature Σ,
outputs 1 if πTrace is a valid proof that i produced Σ, and outputs 0
otherwise.

A.2 Security of Fully Dynamic Group Signatures

The security requirements of a fully dynamic group signature are: correct-
ness, anonymity, non-frameability, traceability and tracing soundness. To
define these requirements, we use a set of games in which the adversary
has access to a set of oracles. The following global lists are maintained:
HUL is a list of users that honestly followed and successfully terminated
the joining protocol in an interaction with the corrupted manager. SL is a
list of signatures obtained from the Sign oracle; CL is a list of challenge
signatures obtained from the challenge oracle; N is a counter for the
number of users that initiated the join/issue protocol with the manager; L
is a list of users which have been added to the group waiting for activation
by the group manager.

The details of the following oracles are given in Fig. 10.

UToM() This oracle allow the add an honest user to the group. Each call
of the oracle executes the next round of interaction in the join/issue
protocol between the honest user and the honest manager. It returns
the exchanged messages. It it successfully terminates it also return the
secret key of the user.



37

SndToM(i,Mout) It gives the adversary an interface to add a corrupt
user into the group. The oracle allow the adversary to deviate from
the join/issue protocol by sending arbitrary messages to the honest
manager. As the previous oracle, each call executes the next round
of interaction between user i and the honest manager. It returns the
honest manager’s response in the interaction.

SndToUb(i,Min) It gives the adversary an interface to interact with an
honest user as a corrupt group manager. As the previous oracles, each
call executes the next round of interaction between the manager and
honest user i. If the user terminates the protocol and accepts the
conversation with the manager, it includes him in HUL. It returns the
user’s message. If b = 1 the oracle returns also the secret key of the
user, in case he successfully terminated the protocol.

Sign(1,m, info) returns a signature on the message m by the group member
1 using some information of the group info.

Chalb(info, i0, i1,m) is a left-right oracle for defining anonymity. The ad-
versary chooses an epoch τ , two identities (i0, i1) and a message m and
receives a group signature by member ib for b← {0, 1} for the chosen
epoch. It is required that both challenge users are able to sign with
respect to info. The adversary can only call this oracle once.

Trace(m,Σ, info) Returns the identity of the signer of the signature Σ on
m with respect to info. It cannot be called on the signature obtained
from the Chalb oracle.

UpdateGroup(S) allows the adversary to update the information of the
group. S here is the set of the active members to be removed from the
group. It triggers a new epoch.

IsActive(i, τ) It allows to check if user i is an active member of the group
at the given epoch. Namely, it outputs 1 if τ is not earlier than the
joining epoch τJ,i and prior the revocation epoch τR,i.

The following security requirements are defined by the games in Fig. 11.

(Perfect) Correctness. This requirement guarantees that signatures
produced by an honest, non-revoked user are accepted by the Verify
algorithm. This should hold even in the case where dishonest users are
member of the group, the tracing manager being malicious and the secret
key msk of the group manager has been leaked.We restrict the adversary
to add a single honest user in the group, as this generalises to the case of
multiple honest users via a standard hybrid argument.

Formally, an FDGS scheme is (perfectly) correct if for all λ ∈ N and
any adversary A

Pr[ExpCorr
FDGS,A(λ) = 1] = 1



38

UToM()

� If h = 0:
◦ h := N
◦ N := N + 1

◦ (Mout,Min)← 〈Joinh(gpk), IssueReg,Info(gpk,msk, h)〉
� Else:

◦ (Mout,Min)← 〈Joinh, IssueReg,Info(h)〉
◦ If Min = >:
◦ gskh ← Joinh(>)
◦ τJ,h = τCurrent
◦ τJ,h = 0
◦ L = L ∪ {h}
◦ Return Mout,Min, gskh

� Return Mout,Min

SndToM(i,Mout)

� If i /∈ [1, N ] ∨ i = h: Return ⊥
� If i = N :
◦ N := N + 1

◦ Min ← IssueReg,Info(gpk,msk,Mout, i)

� Else: Min ← IssueReg,Info(Mout, i)
� If Min = >:

◦ regi ← IssueReg,Info(>, i)
◦ τJ,i = τCurrent
◦ τJ,i = 0
◦ L = L ∪ {i}

� Return Min

SndToUb(i,Min)

� If i /∈ [1, N ]: Return ⊥
� If i = N :
◦ N := N + 1
◦ Mout ← Joini(gpk)

� Else: Mout ← Joini(Min)
� If Min = > ∧Mout 6= ⊥:
◦ HUL := HUL ∪ {i}
◦ gski := Mout

◦ If b = 0: Return >
� Return Mout

Chalb(info, i0, i1,m)

� If {i0, i1} 6⊂ HUL Return ⊥.
� For a ∈ {0, 1}: Σa ← Sign(gpk, gskia , info,m)
� If ∃ a ∈ {0, 1} s.t. Verify(gpk, info,m,Σa) = 0: Return ⊥
� CL := CL ∪ {(m,Σb, info)}.
� Return Σb.

Trace(m,Σ, info)

� If (m,Σ, info) ∈ CL: Return ⊥
� If Verify(gpk, info,m,Σ) = 0: Return ⊥
� Return TraceRReg(gpk, tsk, info,m,Σ).

Sign(1,m, info)

� Σ ← Sign(gpk, gsk1, info,m).
� If Verify(gpk, info,m,Σ) = 0: Return ⊥.
� SL := SL ∪ {(m,Σ, info)}.
� Return Σ.

UpdateGroup(S)

� Set infoτCurrent ← UpdateGroupRReg,Info(gpk,msk,S)
� For i ∈ S: τR,i := τCurrent
� For j ∈ L: τJ,j := τCurrent
� L := ∅
� Return infoτCurrent

IsActive(i, τ)

� If τ ∈ [0, τCurrent] ∩ [τJ,i, τR,i): Return 1.
� Return 0

Fig. 8. Details of the oracles used in the security games. Red, green and blue lines
are mutually exclusive, depending on how users get activated.

(Full) Anonymity. This requires that signatures do not reveal the iden-
tity of the group member who produced them. In the game, the adversary,
A, can corrupt any user and fully corrupt the group manager during the
key generation protocol. We require that both challenge users are active
members of the group at the chosen epoch. Also, note that a Trace query
on the challenge signature will fail.

As A can learn the personal secret and group signing keys of any user,
including the challenge users, our definition captures full key exposure
attacks.



39

Experiment: ExpCorr
FDGS,A(λ)

− param← GSetup(1λ); h := 0; N := 1; τCurrent := 0;L := ∅.
−
(

(mpk,msk, info0); (tpk, tsk)
)
← 〈GKGenGM(param);A(param)〉.

− gpk := (param,mpk, tpk).

−
(
m, τ

)
← AUToM,SndToM,UpdateGroup

(
gpk,msk, info0

)
.

− If IsActive(h, τ) = 0: Return 1
− Σ ← Sign(gpk, gskh, infoτ ,m).
− Return Verify(gpk, infoτ ,m,Σ)

Experiment: ExpAnon-b
FDGS,A(λ)

− param← GSetup(1λ);N := 1;HUL := ∅;CL := ∅.
−
(

(mpk,msk, info0); (tpk, tsk)
)
← 〈A(param);GKGenTM(param)〉.

− gpk := (param,mpk, tpk).

− Return b∗ ← ASndToU1,Trace,Chalb
(
gpk, info0

)
.

Experiment: ExpNon-Frame
FDGS,A (λ)

− param← GSetup(1λ);N := 1;HUL := ∅;SL := ∅.
−
(

(mpk,msk, info0); (tpk, tsk)
)
← A(param).

− gpk := (param,mpk, tpk).

−
(
m,Σ, πTrace, info

)
← ASndToU0(1,·),Sign(1,·,·)

(
gpk, info0

)
.

− If Verify(gpk, info,m,Σ) = 0: Return 0.
− If (m,Σ, info) ∈ SL: Return 0.
− Return Judge(gpk, info, reg1,m,Σ, πTrace).

Experiment: ExpTrace
FDGS,A(λ)

− param← GSetup(1λ); h := 0;N := 1; τCurrent := 0;L := ∅.
−
(

(mpk,msk, info0); (tpk, tsk)
)
← 〈GKGenGM(param);GKGenTM(param)〉.

− gpk := (param,mpk, tpk).

−
(
m,Σ, τ

)
← ASndToM,UpdateGroup (gpk, tsk, info0) .

− If Verify(gpk, infoτ ,m,Σ) = 0: Return 0.

− (regi, πTrace)← TraceRReg(gpk, tsk, infoτ ,m,Σ).
− If τ > τCurrent: Return 1
− If τ /∈ [τJ,i, τR,i): Return 1.
− If Judge(gpk, infoτ , regi,m,Σ, πTrace) = 0: Return 1
− Return 0.

Experiment: ExpTrace-Sound
FDGS,A (λ)

− param← GSetup(1λ); N := 1; τCurrent := 0.

−
(

(mpk,msk, info0); (tpk, tsk)
)
← A(param).

− gpk := (param,mpk, tpk).

−
(
m,Σ, (regi, πTracei), (regj, πTracej), τ

)
← A

(
gpk, info0

)
.

− If Verify(gpk, infoτ ,m,Σ) = 0 ∨ regi = regj: Return 0.

− If ∃b ∈ {i, j} s.t. Judge(gpk, infoτ , regb,m,Σ, πTraceb) = 0: Return 0.
− Return 1.

Fig. 9. Security games for fully dynamic group signatures



40

The adversary chooses some information, a message and two group
members and gets a signature by either member and wins if she correctly
guesses the member. We only allow the adversary a single call to the
challenge oracle. A hybrid argument (similar to that used in [?]) can be
used to prove that this is equivalent to many calls to the challenge oracle.

Formally, an FDGS scheme is (fully) anonymous if for all λ ∈ N, the
advantage AdvAnon

FDGS,A(λ) is negligible (in λ) for all PPT adversaries A,
where

AdvAnon
FDGS,A(λ) :=

∣∣Pr[ExpAnon-0
FDGS,A(λ) = 1]− Pr[ExpAnon-1

FDGS,A(λ) = 1]
∣∣ .

Non-Frameability. This ensures that even if the rest of the group as

well as the tracing and group managers are fully corrupt, they cannot
produce a signature that can be attributed to an honest member who did
not produce it.

In the game, the adversary can fully corrupt both the group and tracing
managers during the key generation process. She even chooses the keys of
both managers. Thus, our definition is stronger than existing models. We
allow only one honest user in the group and ask the adversary to frame
him. It can be shown that this implies the more general case involving
several honest users in the group by a standard hybrid argument.

Formally, an FDGS scheme is non-frameable if for all λ ∈ N, the
advantage

AdvNon-Frame
FDGS,A (λ) := Pr[ExpNon-Frame

FDGS,A (λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Traceability. This ensures that the adversary cannot produce a signature
that cannot be traced to an active member of the group at the chosen
epoch. In the game, the key generation is performed honestly by the
challenger and the secret key of the GM leaked to the adversary. The
adversary is not given the group manager’s secret key as this would allow
her to create dummy users which are thus untraceable. Note that unlike
[?, ?, ?], our definition captures that a member of the group should not
be able to sign w.r.t. epochs prior to her joining the group since we
do not restrict the adversary’s forgery to be w.r.t. to the current epoch
(i.e. the current version of the group information). The adversary wins
if she produces a signature whose signer cannot be identified or is an
inactive member at the chosen epoch. The adversary also wins if the Judge
algorithm does not accept the tracing decision on the forgery.



41

Formally, an FDGS scheme is traceable if for all λ ∈ N, the advantage

AdvTraceFDGS,A(λ) := Pr[ExpTrace
FDGS,A(λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Tracing Soundness. As recently defined by [?] in the context of partially
dynamic group signatures, this requirement ensures that even if both
the group and the tracing managers as well as all members of the group
collude, they cannot produce a valid signature that traces to two different
members.

In the definition, the adversary can fully corrupt all parties involved
and wins if she produces a valid signature and valid tracing proofs that the
signature traces to different (possibly corrupt) users. We may also consider
a stronger variant where the adversary wins by producing a signature that
traces to different epochs.

Formally, an FDGS scheme has tracing soundness if for all λ ∈ N,

AdvTrace-SoundFDGS,A (λ) := Pr[ExpTrace-Sound
FDGS,A (λ) = 1]

is negligible (in λ) for all PPT adversaries A.


