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 

Abstract—Objective: This work evaluates current 3-D image 

registration tools on clinically acquired abdominal computed 

tomography (CT) scans. Methods: Thirteen abdominal organs 

were manually labeled on a set of 100 CT images, and the 100 

labeled images (i.e., atlases) were pairwise registered based on 

intensity information with six registration tools (FSL, ANTS-CC, 

ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS). The Dice 

similarity coefficient (DSC), mean surface distance, and 

Hausdorff distance were calculated on the registered organs 

individually. Permutation tests and indifference-zone ranking 

were performed to examine the statistical and practical 

significance, respectively. Results: The results suggest that 

DEEDS yielded the best registration performance. However, due 

to the overall low DSC values, and substantial portion of 

low-performing outliers, great care must be taken when image 

registration is used for local interpretation of abdominal CT. 

Conclusion: There is substantial room for improvement in image 

registration for abdominal CT. Significance: All data and source 

code are available so that innovations in registration can be 

directly compared with the current generation of tools without 

excessive duplication of effort. 

 
Index Terms—Image registration, Abdomen, Computed 

tomography  

 

I. INTRODUCTION 

he human abdomen is an essential, yet complex body 

space. Bounded by the diaphragm superiorly and pelvis 

inferiorly, supported by spinal vertebrae, and protected by the 

muscular abdominal wall, the abdomen contains organs 
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involved with blood reservation, detoxification, urination, 

endocrine function, and digestion, and includes many important 

arteries and veins. Computed tomography (CT) scans are 

routinely obtained for the diagnosis and prognosis of 

abdomen-related disease; yet no specific image registration 

tools for the abdomen have been developed.  

General-purpose registration tools (initially designed for 

volumetric brain registration) are being applied to abdominal 

CT scans [1, 2] On abdominal CT, inter-subject variability 

(e.g., age, gender, stature, normal anatomical variants, and 

disease status) can be observed in terms of the size, shape, and 

appearance of each organ. Soft anatomy deformation further 

complicates the registration by varying the inter-organ 

relationships, even within individuals (e.g., pose, respiratory 

cycle, edema, digestive status). Hence, characterization of tools 

specifically on abdominal structures is necessary, as opposed to 

relying on brain-centric reviews [3].  

This work follows the framework of Klein et al. [3], in which 

14 nonlinear registration tools and one linear registration 

algorithm were applied to 80 MRIs of the human brain. Manual 

segmentations of regions are used to assess volumetric overlap 

and surface-based criteria separately from the intensity-based 

metrics that drive registration. In related work, West et al. [4] 

established a platform for assessing landmark-based 

registrations on retrospective intermodality (MR, CT, and PET) 

brain images, where 12 methods were evaluated based on target 

registration error [5]. Murphy et al. [6] compared 20 

registration algorithms to 30 thoracic CT pairs in the 

EMPIRE10 challenge by metrics specified for pulmonary area 

alignment and correspondence. The VISCERAL challenge [7] 

provided a platform for evaluating abdominal organ 

segmentation on four image modalities. 

This work expands on [8] by including more datasets (100 vs. 

20), adjusting the label sets (the previous individual labels of 

the adrenal glands were separated into two labels: right and 

left), using a different registration framework (previously all 

non-rigid registrations were initialized by one affine 

registration tool), and presents more comprehensive statistical 

analyses (see the methods section) (Fig. 1). We selected 5 

registration tools that have been successful in volumetric brain 

registrations, including FSL (FMRIB Software Library) [9], 

IRTK (Image Registration Toolkit) [10], NiftyReg [11], ANTs 

(Advanced Normalization Tools) [12], and DEEDS (DEnsE 

Displacement Sampling) [13] due to their academic popularity 

and general availability. In total, six registration methods were 

evaluated with two different parameter settings for ANTs. For 
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each registration tool, we applied affine registration followed 

by non-rigid registration. Registration results from both stages 

were evaluated based on the Dice similarity coefficient (DSC 

[14]), mean surface distance (MSD), and Hausdorff distance 

(HD). We note that compared to the brain and thorax 

registrations, substantial registration errors can be observed in 

the abdomen due to the large variability and deformation; 

registration tools tailored for these intricacies can potentially 

improve the performance. We also note that the efficacy of 

non-rigid registrations are greatly impacted by the baseline 

affine registrations as a lesson learned from [8], thus we 

modified the registration framework to use affine and non-rigid 

registration from the same registration tool. The main focus of 

this paper is to provide a public abdomen dataset and to 

evaluate the common registration tools on the provided dataset.  

 

II. METHODS 

The registration evaluation process follows the flowchart in 

Fig. 2.  

A. Data Acquisition 

Under institutional review board supervision, 100 abdominal 

CT scans were collected anonymously from two clinical trials. 

From an ongoing colorectal cancer chemotherapy trial, the 

baseline sessions of the abdominal CT scans were randomly 

selected from 75 metastatic liver cancer patients; the remaining 

25 scans were acquired from a retrospective post-operative 

cohort with suspected ventral hernias. All 100 scans were 

captured during portal venous contrast phase with variable 

volume sizes (512 x 512 x 53 ~ 512 x 512 x 368) and field of 

views (approx. 280 x 280 x 225 mm3 ~ 500 x 500 x 760 mm3). 

The in-plane resolution varies from 0.54 x 0.54 mm2 to 0.98 x 

0.98 mm2, while the slice thickness ranged from 1.5 mm to 7.0 

mm. All image scans and their associated labels were converted 

to NIFTI format with the DCM2NII tool of the MRIcron 

package [15]. The image orientations in the NIFTI header 

describe the relative position of patients with respect to the 

scanner. Due to the inconsistencies of scanning protocols, the 

 
Fig. 1.  Illustration of 13 organs of interest on volumetric rendering and 2-D slices of axial, coronal and sagittal orientations.  
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images were re-oriented to standard orientation with the FSL 

package before any further processing [9]. 

Thirteen abdominal organs were considered regions of 

interest (ROI), including spleen, right kidney, left kidney, gall 

bladder, esophagus, liver, stomach, aorta, inferior vena cava, 

portal and splenic vein, pancreas, left adrenal gland, and right 

adrenal gland. The organ selection was essentially based on 

[16]. As suggested by a radiologist, we excluded the heart for 

lack of full appearance in the datasets, and included the adrenal 

glands for clinical interest. These ROIs were manually labeled 

by two experienced undergraduate students with 6 months of 

training on anatomy identification and labeling, and then 

verified by a radiologist on a volumetric basis using the 

MIPAV software [17]. A subset of 13 scans was randomly 

selected, and independently labeled by each of the two raters. 

Mean overall DSC overlap between the raters (i.e., inter-rater 

variability) was 0.87 ± 0.13 (0.95 ± 0.04 when considering only 

the spleen, kidneys, and liver).  

B. Registration Pipeline 

General-purpose registration software typically provides 

options and parameters for specific applications. Six 

registration methods from six registration tools were evaluated 

in this study, and indicated as FSL, ANTS-CC, 

ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS 

respectively. All registration commands evaluated in this study 

were verified by the developers of the corresponding 

registration software.  

All tested methods follow a standard registration pipeline: 

For each image pair, source (moving / floating) and target 

(fixed / reference) images, the registration was driven by the 

similarity metrics between their intensity images. The 

registration was divided into two stages - affine registration that 

aligned the two images with co-linearity persevering 

transformation (translation / rotation / scaling / shearing), 

followed by a non-rigid registration that refined the local 

correspondence with deformation models. Based upon the 

transformation / deformation generated from the 

intensity-driven registration, the labels associated with the 

source image were propagated to the target space with nearest 

neighbor interpolation as the estimate of the target structures.  

We note that before performing this large-scale study, we 

invited the authors of the evaluated algorithms to optimize their 

algorithms on a subset of our dataset (10 scans). The authors of 

NIFTYREG and DEEDS provided us their optimized 

parameters; the authors of IRTK approved our configuration 

with no further optimization; the authors of ANTs and FSL 

approved our configuration while considering their level of 

participation did not warrant authorship to this manuscript. The 

focus of parameter optimization for NIFTYREG and DEEDS 

lay on levels of a multi-resolution strategy, thresholds of 

intensity range, use of discrete optimization; default 

parameters, or those recommended in the example of the 

software documentation were used if no optimization was 

provided by the registration authors.  

We briefly describe the registration setups for each method 

without detailed parameters. The full registration commands 

can be found in the supplementary material.  

 

 FSL used the FLIRT and FNIRT for affine and 

non-registration, respectively. The affine registration 

with 9 degrees of freedom (DOF) was initialized by a 

rigid registration. Both rigid and affine registrations 

constrained the search of rotations with “-nosearch”. 

 ANTS-CC and ANTS-QUICK-MI used different 

parameter settings with the ANTs package. The 

parameters were derived from the example scripts 

(antsRegistrationSyN and antsRegistrationSyNQuick, 

respectively) in the ANTs package. ANTS-CC used 

cross-correlation as the image similarity metric, while 

 
Fig. 2.  Registration pipeline. Given a pair of target image and a source atlas (image and labels), an affine registration was applied followed by a non-rigid 
registration for each of the six evaluated registration methods. The registered labels were validated against the ground truth (manual labels) in terms of DSC, MSD, 

and HD. 
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ANTS-QUICK-MI used mutual information. 

ANTS-QUICK-MI was specified to converge with 

fewer iterations than ANTS-CC, and thus noted with 

“QUICK”. Both methods applied 5 levels of 

multi-resolution sampling, windowed the intensity 

range, started with the alignment of center of mass, 

initialized the affine registration with rigid registration, 

and used symmetric normalization (SyN) transform for 

the non-rigid registration. Multi-thread computing was 

enabled to use two CPU cores for one registration 

process. 

 IRTK sequentially used rigid, affine, and non-rigid 

registrations. For all three procedures, the target padding 

value was set to -900 to reduce the impact of the 

background in the CT scans (air with -1024 Hounsfield 

units), 3 levels of multi-resolution sampling were 

applied. Assuming relatively homogenous orientations 

of patient bodies in the CT scan, the options of 

“translation_only” and “translation_scale” were 

specified for the rigid and affine registration, 

respectively, so that only translation (and scaling for the 

affine registration) adjustments were allowed, and the 

search over rotations was prohibited. The B-spline 

control spacing free-form deformation for the non-rigid 

registration was set to be 20, 10 and 5mm for the 3 

resolution levels, respectively.  

 NIFTYREG used 5 levels of multi-resolution sampling 

for both affine and non-rigid registrations. For the 

non-rigid registration based on a block-matching 

approach and free-form deformation, an upper intensity 

threshold of 500 was set for both target and source 

image, and the maximum iteration for convergence was 

limited to 1000. Multi-thread computing was enabled to 

use two CPU cores for one registration process. 

 DEEDS used 5 scale levels with grid spacing ranging 

from 8 to 4 voxels, displacement search radii from 6 to 2 

steps with quantizations between 5 and 1 voxels. The 

regularization weighting was set to be 0.4. 

Self-similarity context descriptors [18] were derived, 

while their Hamming distance between images were 

used to guide the local displacement. All scans were 

resampled to an isotropic resolution of 2.2mm3, and 

cropped to have same dimensions. The non-rigid 

registration was initialized using an affine registration 

that was based on the same similarity metric, a similar 

block-matching search and trimmed least squares. 

C. Running Registrations 

All registrations were run on an Oracle Grid cluster of twelve 

64-bit Ubuntu 14.04LTS Linux servers. Each server had 12 

2.8GHz cores and 48 GB RAM. Each registration was specified 

with the approximated maximum memory usage based on their 

computational complexity; multiple registrations were 

allocated on the memory requirements on servers, and operated 

in parallel. The memory specified in GB for FSL, ANTS-CC, 

ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS were 20, 

20, 20, 10, 10, and 5. Given 100 scans, 9900 sets of output 

registration can be generated for each method with a 

leave-one-out scheme. Specifically, for each target image 

among the 100 scans; the remaining 99 scans were used as 

source images to the target image in a pair-wise manner. 

However, during initial running trials, we found that FSL and 

ANTS-CC took an unreasonable amount of time to complete (> 

6 h, see Table 1). Therefore, these two methods are only 

validated on a randomly selected subset of the datasets. 

Specifically, 20 target images and 20 source images were 

randomly selected without replacement from the 100 datasets, 

and 400 registrations were applied from all combinations of the 

source-target pairs. For the other four methods, i.e., 

ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS all 9900 

registrations were applied. In total, this study used 

approximately 103,800 hours of CPU time for registration.  

D. Evaluation Metrics 

DSC was used to evaluate the volumetric overlap between 

the estimated segmentation and the true segmentation. Briefly, 

consider A  as the segmentation volume, B  the ground truth 

volume, and |∙| the 𝐿1 norm operation,  

 

𝐷𝑆𝐶(𝐴, 𝐵) =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (1) 

 

Surface error criteria characterize how far the surfaces of the 

estimated segmentation and the true segmentation are from 

each other. Vertices were collected from the surfaces of both 

the segmentation and the ground truth, based on which 

distances between the sets of vertices are measured in terms of 

their spatial coordinates. Let the vertices on the segmentation 

and the ground truth surface be X and Y, respectively, and d(∙,∙) 

be an indicator of distance measure. Then typically, the MSD 

error and HD error from the segmentation to the ground truth 

can be measured as below. 

 

𝑀𝑆𝐷(𝑋, 𝑌) = 𝑎𝑣𝑔
𝑦∈𝑌

𝑖𝑛𝑓
𝑥∈𝑋

𝑑 (𝑋, 𝑌) (2) 

 

𝐻𝐷(𝑋, 𝑌) = 𝑠𝑢𝑝
𝑦∈𝑌

𝑖𝑛𝑓
𝑥∈𝑋

𝑑 (𝑋, 𝑌) (3) 

 

where sup represents the supremum, inf the infimum, avg the 

average. Symmetric surface differences were used in this study 

as they better capture errors between potentially rough surfaces, 

i.e., 

 

𝑀𝑆𝐷𝑠𝑦𝑚(𝑋, 𝑌) =  
𝑀𝑆𝐷(𝑋, 𝑌) + 𝑀𝑆𝐷(𝑌, 𝑋)

2
  (4) 

 

𝐻𝐷𝑠𝑦𝑚(𝑋, 𝑌) =  
𝐻𝐷(𝑋, 𝑌) + 𝐻𝐷(𝑌, 𝑋)

2
 (5) 

 

All metrics were evaluated in an organ-wise manner between 

the registered labels (estimated segmentation) and the manual 

labels (ground truth).  
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E. Statistical Analyses 

For each pair of methods, permutation tests were performed 

to examine the statistical significance for the overall DSC and 

MSD across all organs. Following [3, 19], each test provided an 

exact p-value calculated as the percentage of 𝑁 permutations 

that the absolute mean differences after permutation is larger 

than the original absolute mean differences between the metrics 

of two methods on a subset of independent registration pairs, 

where no overlap is allowed within the images (including both 

target and source images) associated with the selected 

registrations, and thus the correlation between registrations 

with shared scans was prevented. The tests were repeated M 

times with randomized selection of subsets, and an average p–

value was obtained to indicate the significant difference 

between tested methods. Tests involving FSL or ANTS-CC (or 

both) selected subsets among the 20 target images and 20 

source images (400 registrations) that these two methods had 

been applied, where 10 independent registration pairs could be 

obtained for each subset. Tests within the other four methods ( 

i.e., ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS) 

selected 50 independent registration pairs among 100 images 

(9900 registrations). In both cases, we let 𝑁 = 1000 for the 

number of permutations, and 𝑀 = 10000 for the number of 

random selections of subsets.  

Indifference-zone ranking considers two metrics as equal 

when they are within a delta of one another, where the delta 

characterizes the practical difference [20]. We performed two 

groups of indifference-zone ranking to examine the practice 

significances for DSC and MD in an organ-wise manner among 

the non-rigid registrations of the tested methods. The first 

group included all methods with 400 registrations, while the 

second group had ANTS-QUICK-MI, IRTK, NIFTYREG, and 

DEEDS evaluated with 9900 registrations. For each organ, let 𝑖 
and 𝑗 be the row and column index of an 𝐿 ×  𝐿 matrix (𝐿 is 6 

and 4 for the first and second group, respectively), 𝐿𝑖𝑗  was 

assigned with the values of -1, 0, or 1, for the cases when the 

evaluation measure for the 𝑖𝑡ℎ method was at least delta less 

than, within delta of, or at least delta greater than that of the 𝑗𝑡ℎ 

method. The outputs were then averaged across all 

registrations. The delta value was specified for each organ on 

each subject based on the surface area of organs. The surface 

area of an organ label was calculated by summing up the face 

areas in contact with the background across the foreground 

voxels; it was adjusted by a constant coefficient to yield a delta 

 
Fig. 3.  Boxplot of DSC values on 13 organs for the non-rigid outputs of six registration methods. 

 
Fig. 4.  Boxplot of MSD values on 13 organs for the non-rigid outputs of six registration methods. 
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value that represents the practical difference of the evaluation 

metric. For DSC, we used a mean delta value of 0.05 for DSC 

across all organs and 7 mm for MSD. A higher 

indifference-zone score represents a better DSC performance, 

while a lower score was favorable for the MSD performance.   

III. RESULTS 

Registrations were successful in terms of software error 

codes except for 6 out of 9900 ANTS-QUICK-MI failed 

without producing output. The evaluated metrics of the 

non-rigid outputs on each organ were illustrated in Fig.s 3, 4, 

and 5 in terms of DSC, MSD, and HD, respectively. Note that 

the affine outputs were presented in the supplementary 

material. 

Regarding the overall performance across all registration 

methods, over half of the registrations have the DSC values 

lower than 0.7 for the majority of the organs. The MSD and HD 

boxplots clearly illustrate the overbearing amount of outliers 

with up to 500 mm.  

When comparing registration methods with each other, 

DEEDS presented the best overall DSC of non-rigid 

registration across all organs (Fig. 3). For non-rigid 

registration, NIFTYREG presented slightly higher median 

DSC over ANTS-QUICK-MI and IRTK, while FSL and 

ANTS-CC demonstrated overall inferiority compared to the 

other three methods. On the MSD and HD boxplots, the 

dominance of any registration tool is not visually apparent 

given the substantial outliers for all methods. To evaluate the 

results that were not catastrophic failures (i.e., those that could 

meaningfully contribute to a multi-atlas approach [1, 2]), Fig. 6 

presents MSD results in the form of cumulative percentage, 

where a higher portion of samples below a certain MSD upper 

bound was more favorable, where DEEDS yields the highest 

percentage of registrations with lower MSD. Table I presents 

the overall performance of DSC, MSD, and HD averaged 

across all organs for all tested methods on the subset of 400 

registrations, while Table II shows the metrics for 

ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS on all 

9900 registrations; DEEDS demonstrates the best overall 

performance in both cases. The computation time was also 

collected in Table I, where ANTS-QUICK-MI and NIFTYREG 

could complete in approximately 1h and 2h, respectively using 

2 CPU cores, and DEEDS had the lowest computational time (< 

4 min). 

The permutation tests found that the superiority of DEEDS in 

non-rigid registration was significantly better (𝑝 < 0.05) than 

all other methods in DSC, and the majority of the others in 

MSD (Tables III and IV). The indifference-zone ranking also 

indicated that DEEDS yielded the best registration performance 

in an organ-wise manner. NIFTYREG presented the second 

best results, closely followed by ANTS-QUICK-MI and IRTK, 

while FSL and ANTS-CC were last (Fig. 7).  

 
Fig. 5.  Boxplot of HD values on 13 organs for the non-rigid outputs of six registration methods. 

 
Fig. 6.  Brightness-coded cumulative percentages based on MSD values on 13 organs for the non-rigid outputs of six registration methods. Six methods were 

represented in 6 difference colors. Each column indicates a cumulative curve for the associated organ with the underlying registration method; it demonstrated the 
percentage of included registration outputs along the increase of the MSD upper bound with its brightness transition from bottom to top. A column with quicker 

transition from dark to bright indicates more registration outputs with small MSD. 
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One registration sample with median overall DSC 

performance is shown in Fig. 8. The volumetric rendering of 

the registered labels from 6 methods was demonstrated and 

compared with the manual labels of the target scan to provide a 

qualitative sense of the registration quality. While large 

misalignment from all methods can be identified without much 

effort, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS 

have the majority of the registered organs located at the close 

positions, and scaled in similar sizes with respect to those in the 

target image. Visually, the organ shapes of the target are best 

captured by DEEDS.   

Three pairs of registrations were selected with the top 5% 

(good), ± 5% around median (moderate), and bottom 5 % (poor) 

overall DSC performance, respectively. Registration results on 

these cases are illustrated in Fig. 9, where a coronal slice for 

each case is selected for the target, source, and all registered 

images. Based on the overlaid organ labels and the underlying 

images, DEEDS presents the overall best registrations. 

Meanwhile, the registration performance is substantially 

affected by the similairities between the target and source 

images including the image FOVs, patient body sizes, organ 

shapes, and secondary organ complexities (intestines and 

vessels). On the other hand, we found there are still many 

catastrophic failures remaining after removing the subsets with 

large mismatches of those variables (results not shown here for 

brevity). Many other underlying features can have great impact 

on the registrations, and require further investigation.  

IV. DISCUSSION 

In this study, we analyzed 6 registration methods from 5 

different general-purpose image registration toolkits and 

applied them to abdominal CT scans. Evaluating the volumetric 

TABLE III 

AVERAGED P-VALUES OF PERMUTATION TESTS BETWEEN 6 METHODS PERFORMED ON 400 REGISTRATIONS 

Method FSL ANTS-CC ANTS-QUICK_MI IRTK NIFTYREG DEEDS 

FSL  0.340 0.026 0.057 0.014 0.002 
ANTS-CC 0.371  0.098 0.052 0.016 0.001 

ANTS-QUICK-MI 0.077 0.266  0.515 0.236 0.010 
IRTK 0.216 0.183 0.524  0.249 0.003 

NIFTYREG 0.144 0.169 0.517 0.465  0.019 
DEEDS 0.032 0.030 0.230 0.044 0.106  

Note the entries in the upper triangular part represent p-values tested on DSC, while those in the lower triangular part were tested on MSD. The shaded entry 
indicates significant difference (p < 0.05) between the correspondent methods of the row and column. 

 

TABLE IV 
AVERAGED P-VALUES OF PERMUTATION TESTS BETWEEN 4 METHODS PERFORMED ON 9900 REGISTRATIONS 

Method ANTS-QUICK-MI IRTK NIFTYREG DEEDS 

ANTS-QUICK-MI  0.174 0.000 0.000 
IRTK 0.501  0.002 0.000 

NIFTYREG 0.255 0.272  0.000 
DEEDS 0.024 0.019 0.071  

Note the entries in the upper triangular part represent p-values tested on DSC, while those in the lower triangular part were tested on MSD. The shaded entry 

indicates significant difference (p < 0.05) between the correspondent methods of the row and column. 

TABLE I 
METRICS ON 400 REGISTRATIONS FOR ALL TESTED METHODS (MEAN ± STD) 

Method DSC MSD (mm) HD (mm) Time (min) 

FSL 0.12 ± 0.19 37.92 ± 44.11 84.28 ± 59.96 951.73 ± 201.20 

ANTS-CC 0.18 ± 0.21 27.15 ± 32.65 62.92 ± 44.60 411.60 ± 74.20 

ANTS-QUICK-MI 0.27 ± 0.25 15.96 ± 19.22 49.66 ± 32.96 50.18 ± 21.93 

IRTK 0.28 ± 0.26 19.07 ± 26.50 55.58 ± 39.26 220.27 ± 91.79 

NIFTYREG 0.35 ± 0.29 15.72 ± 19.16 59.59 ± 42.60 116.91 ± 34.94 

DEEDS 0.49 ± 0.26 8.63 ± 16.16 40.15 ± 32.11 3.73 ± 0.77 
Note that ANTS-CC, ANTS-QUICK-MI, and NIFTYREG used two CPU cores for each registration process. The mean DSC across four large organs (liver, spleen, 

kidneys) is 0.19, 0.31, 0.43, 0.48, 0.55, and 0.70 for FSL, ANTS-CC, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS, respectively. 

 
TABLE II 

METRICS ON 9900 REGISTRATIONS FOR FOUR REGISTRATION METHODS (MEAN ± STD) 

Method DSC MSD (mm) HD (mm) 

ANTS-QUICK-MI 0.23 ± 0.23 20.68 ± 26.14 57.44 ± 39.85 

IRTK 0.26 ± 0.26 20.36 ± 24.01 58.71 ± 37.33 

NIFTYREG 0.35 ± 0.29 16.98 ± 21.58 62.52 ± 44.29 

DEEDS 0.47 ± 0.26 9.79 ± 17.44 43.18 ± 35.08 
Note that the mean DSC across 4 large organs (liver, spleen, kidneys) is 0.38, 0.46, 0.55, and 0.68 for ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS, 

respectively. 
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overlap and surface errors on the registered labels on 13 organs 

of interests showed that the current registration tools were 

generally far from ideal, where (1) median accuracy was below 

0.7 for the majority of organs, and (2) massive outliers 

indicating catastrophic registration failures were observed. 

Registration performance is found to be negatively affected by 

the dissimilarities between the target and source images 

including the image FOVs, patient body sizes, and organ shape, 

where fundamental body misalignments were observed (Fig. 

9). Additional challenges come from the implicit discontinuity 

within the abdomen given the secondary structures (e.g., fat, 

muscles, bones, intestines in this study). Their variations 

caused large deformations between different organs of interest 

so that an affine registration can hardly align all organs at the 

same time. In addition, their extensive presence and large 

coverage across the abdomen could mislead the registration 

algorithms and generate undesirable deformation; for the same 

reason, small organs could be registered to the secondary 

structures or other large organs.  

We note that the registration results in this study could be 

biased towards the tested datasets. First, all scans were contrast 

enhanced, where organs could be more distinguishable from 

muscle and fat tissue. Registrations between non-contrasted 

scans may demonstrate additional challenges not shown with 

our datasets. Second, the population of patients had a greater 

chance of sharing specific abnormalities, e.g., enlarged spleen 

and liver, defected abdominal wall. In fact, these patients could 

also have multiple other diseases, have been treated with 

different surgical procedures, and demonstrate various other 

abnormalities (atrophied kidney, missing gallbladder). We 

consider the registration evaluation on our datasets to be biased 

towards challenging cases. Datasets among healthy subjects 

may yield better registration outcomes. On the other hand, 

contrasted CT scans on patients with all sorts of abdominal 

diseases are the most common image format acquired in 

traditional clinical trials. We consider the registration 

evaluation performed in this study valuable for translational 

research.  

Among the tested registration methods in the presented 

parameter settings, DEEDS provided the best overall 

performance, with median DSC, MSD, and HD as 0.49, 4.93 

mm and 31.72 mm, respectively for all organs. The DSC metric 

is in favor of large structures; small disagreement in small 

structures can result in large decrease in DSC in the context of 

[1, 2, 21]. We can consider the reasonable DSC values for large 

(liver, spleen, kidneys), medium (pancreas, stomach, aorta, 

inferior vena cava), and small (gallbladder, esophagus, portal 

and splenic vein, adrenal glands) organs to be 0.95, 0.85, and 

0.6 respectively. Based on these criteria, even the best 

registration in this study did not provide sufficient accuracy to 

extract the organs of interest. The massive registration failures 

further discouraged the direct individual use of the registration 

tools in clinical applications. However, if combined with 

pre-processing and post-processing procedures, registrations 

with this level of overall accuracy are encouraging and could 

achieve robust results. Essentially, multi-atlas techniques [22] 

can be used to augment local interpretation of abdominal CT 

scans (e.g., segmentation) by using multiple atlas-to-target 

registrations. Great care must be taken to account for the 

registration outliers, where atlas selection [23-26] and 

statistical fusion [27-29] are the keys for robust multi-atlas 

segmentation (MAS). From the perspective of MAS, 

registration is the bottleneck, especially in the abdomen; a 

better registration tool can yield better segmentation 

performance.  

Based on the results shown in this study, many opportunities 

are open for future investigation and development for a 

registration tool tailored for abdomen. 

First, although the presented registration configurations were 

approved by all the developers of the tested registration 

methods, further optimization could be possible, e.g., in terms 

of levels of the multi-resolution strategy, thresholds of intensity 

range, use of block matching strategy in affine initialization, 

regularization on deformation, and etc. Across the tested 

registrations, a good combination of the similarity metrics 

(mutual information, cross-correlation, sum of squared 

distance, and Hamming distances of the self-similarity context) 

and transformation models (B-splines and diffeomorphism) has 

been covered for deformation, while registrations using other 

transformation models (e.g., demons [30], optical flow [31]) 

could be evaluated by experts with these approaches in 

continuing analysis via the newly released public dataset.  

Second, contributions in abdominal segmentation also 

provide some hints toward the potential development of 

abdominal registration algorithms. While using existing 

registration tools for segmentation, many efforts have been 

focused on standardizing the abdomen space. Wolz et al. [1] 

constrained a FOV with 25 cm along the cranial-caudal axis 

before registration. Linguraru et al. [21] initialized the 

registration by aligning a single landmark (xiphoid process). 

Okada et al. [32] and Zhou et al. [33] normalized the abdominal 

 
Fig. 8.  Volumetric rendering on a single subject with median overall DSC 

performance. The organ color scheme follows that in Fig. 1. 

 
Fig. 7.  Indifference-zone map for DSC and MSD. For both metrics, the 

indifference-zone ranking was applied on 400 registrations for all six methods, 
and 9900 registrations for ANTS-QUICK-MI, IRTK, NIFTYREG, and 

DEEDS. A higher value for the DSC indifference-zone map indicates better 

performance, while a lower value is more favorable for MSD. 
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space using pre-segmented diaphragm and rib cage. Recent 

efforts on organ localizing [34] and organ hierarchical 

modeling [35] provide the options to minimize the impact of 

the substantial registration errors. Piece-wise 

registrations/segmentations have been demonstrated with better 

performance than their body-wise counterparts [36, 37]. These 

pre-processing techniques provide extra features other than 

intensity-based similarity metrics, and can potentially benefit 

registrations for capturing the most desirable organ 

deformation.  

Third, we see a new direction in fundamental design for the 

registration method towards the challenging problems in the 

abdomen. DEEDS yields the best performance in this study, 

and it is different from other methods mainly by using discrete 

optimization. Instead of relying on differentiable similarity 

metric in traditional continuous optimization, DEEDS 

subdivides the image domain into non-overlapping cubic 

blocks, and calculates the displacement for each block followed 

by displacement regularization between blocks. This type of 

discrete design can capture a large range of potential 

deformations, and thus coped well with the discontinuous 

pattern between structures of interest in the abdomen. Further 

exploration in the discrete optimization can be expected to 

benefit the abdominal registrations.  

Last, we consider that a structured challenge regarding 

registration in the abdomen using the presented datasets will 

further boost the development of abdomen-specific and/or 

general registration algorithms. We have already set up the 

infrastructure on Sage Synapse as a publically available 

challenge for researchers to evaluate their registration and 

segmentation algorithms 

(https://www.synapse.org/#!Synapse:syn3193805/wiki/89480)

. Note the challenge page was originally established for a 

MICCAI 2015 challenge, while all functionalities remain 

active. More comprehensive benchmarks to evaluate the 

efficacy of capturing the abdominal organs will be required to 

solidify the impact of this potential challenge. 

V. CONCLUSION 

This manuscript presents the current state of the art for 

registration performance at 13 abdominal organs on CT scans 

by evaluating six academically popular registration methods 

without extensive optimizations. In this study, we (1) 

recommend a best registration method to the registration users 

for their abdomen-related applications, and (2) suggest future 

directions for registration developers towards more robust and 

accurate registration algorithms in the abdomen. Specifically, 

DEEDS is currently the best choice for registration users to 

perform abdominal organ segmentation. Registration 

developers can focus on the perspectives of discrete 

optimization, non-intensity-based feature derivation, and 

parameter configurations. 
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