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Abstract—In this paper, we investigate the spectral efficiency practical space-constrained massive MIMO systems, it iemo
(SE) of massive multiple-input multiple-output (MIMO) systems  |ikely that the antenna elements will be placed far less!iaét
with a large number of antennas at the base station (BS) 5 \yayelength apart. Under these conditions, the channel vec
accounting for physical space constraints. In contrast tohe vast . . .
body of related literature, which considers fixed inter-elenent tors for different UEs will ”9t be asym_ptotmally Orthog_d’”a
spacing, we elaborate on a practical topology in which an inease Therefore, a SpaCE'ConStralned massive MIMO architecture
in the number of antennas in a fixed total space induces an will suffer from increased spatial correlation, whose iipa
inversely proportional decrease in the inter-antenna disance. For needs to be rigorously quantified and analyzed.
this scenario, we derive exact and approximate expressionss Numerous works have investigated the effect of spatial
well as simplified upper/lower bounds, for the SE of maximum- . .
ratio combining (MRC), zero-forcing (ZF) and minimum mean- cqrrelatlon on the performance of conventional MIMO system
squared error receivers (MMSE) receiversl In particu'ar, our W|th a I’e|atlve|y Sma” number Of BS antennas. The authOI’S
analysis shows that the MRC receiver is non-optimal for spag- of [6] presented upper and lower bounds on the achievable
constrained massive MIMO topologies. On the other hand, ZF sum SE of MIMO systems with ZF receivers, especially
and MMSE receivers can still deliver an increasing SE as gyer correlated Rayleigh and Ricean fading channels_In [7]

the number of BS antennas grows large. Numerical results - . :
corroborate our analysis and show the effect of the number of expressions for the exact achievable sum SE of MIMO with

antennas, the number of users, and the total antenna array sgge MMSE receivers were derived for cqrrelated Rayleigh fading
on the sum SE performance. channels. In the context of massive MIMO systems, the

authors of [[8] approximated the performance of two distinct
linear precoding schemes considering the spatial coivalat
at the transmitter. Recently,|[9] demonstrated that, wheen t
As a disruptive technology for the fifth generation (SGphysical space is limited, the classical assumption offzivie
communication systems, massive MIMO has recently attdactropagation in massive MIMO systems is violated. However,
extensive research and academic interest [1]-[4]. In m@sspnly maximum ratio-transmission (MRT) precoding was con-
MIMO systems, several co-channel users (UEs) simultanggered in[[9]. A lower bound on the achievable SE of uplink
ously communicate with a BS equipped with a massive numkgita transmission with MRC receivers at the BS was derived in
of antennas (a few hundreds or even larger). Due to ). In addition to information-theoretical studies, thethors
deployment of a large antenna array, the channel vect@fs[11] investigated the impact of constrained space on the
between the different UEs and the BS become asymptoticgifyrformance of subspace-based channel estimation schemes
orthogonal [[4]. Under this condition, dubbed &sorable Tq the best of our knowledge, there are no theoretical ®sult
propagation, massive MIMO systems can achieve large arrgyy the SE of space-constrained massive MIMO with linear
and spatial multiplexing gains by using simple linear slgn@eceivers, namely MRC, ZF and MMSE.
processing methods at both the transmitter and receiver [5] Motivated by the aforementioned considerations, we ptesen
A critical issue pertaining to practical massive MIMO sysg generic analytical framework for statistically charaiziag
tems is the dense deployment of a massive number of antengisachievable SE of space-constrained massive MIMO with
in a limited physical space. In general, if the inter-elemennear receivers. Specifically, the paper makes the folgwi
spacing is more than half a wavelength, the communicatigpeciﬁc contributions:
channels can be considered as uncorrelated. However, fof \otivated by some recent advances in the area of Wishart
The work of J. Zhang and L. Dai was supported in part by the In- random matrix theory, we first present approximate ex-
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antennas for MRC receivers. A key property of massive MIMO systems is that simple
o For ZF receivers, new upper and lower bounds on thi@ear signal processing become near-optimal, while kegpi
achievable SE are derived, with the latter being particthe implementation complexity at very low levels [4]. Thue
larly tight. We show that for uniform linear arrays, thewill hereafter consider the performance of space-consrhi
achievable SE increases with the number of BS antenmaassive MIMO systems with linear receivers. We further
M. Moreover, a larger number of UES increases the assume perfect CSI is available at the BS [5]. The linear
sum SE of ZF receivers whel/ > K. receiver matrixT € CM*K is used to separate the received
« Finally, we derive an exact closed-form expression for thegnal into K streams by
achievable SE, for MMSE receivers at the BS. Similar
to ZF receivers, the sum SE of MMSE receivers also r=T" = yp,T"Gx + T"n. ()
increases by deploying more BS antennas in spacenen, thekth element of the received signal vector, which

constrained massive MIMO systems. corresponds to the detected signal foh UE, is given by
Notation: In the following, x is a vector, andX is a matrix. K
We use ttX), X*, andX* to represent the trace, transpose, e = \/Ftngk:vk + \/p—z tH g + thn (5)
= /Pu " .

and conjugate transpose Xf, respectively, whil&€{-} denotes

l#k
the expectation operator. The matrix determinant and maee ) . . . . .
given by |X| and t(X), while X; is X with the ith column Assuming that channel fading is ergodic, the achievablmkpl

removed. Finally,[X];; andx; denote the(i, j)th entry and SE: 1l of thekth UE is given by [[5]

the ith column ofX, respectively. paltPgi?
R =E{log, [ 1+ ek . (6)
[I. SYSTEM AND CHANNEL MODEL Pud iz, [tH g + [[te]|?

We consider the uplink of a single-cell massive MIMGrpe uplink sum SE can be then defined as
system, where the BS with/ antennas simultaneously serves

K single-antenna UEs. The received vegtoe CM*! at the B X N
BS is given by R= ; Ry, in bits/s/Hz @)
y = VPuGx +n, (1) In the following three sections, we analyze the achievainte s

where p, is the average power of each Uk, € CKx! SE of space-constrained massive MIMO systems with differen
u il . . .
denotes the zero-mean Gaussian transmit vector froniall linear receivers, namely MRC, ZF, and MMSE, respectively.

UEs with unit average power, and the elementaaépresent
the additive white Gaussian noise (AWGN) with zero-mean lll. MRC RECEIVERS

and unit variance. The channel matrix between the BS andFor the case of MRC receivers, we hdlle= G [13]. From
UEs can be written a& = AHDY2, whereH < CP*K (@), the uplink SE for theith UE boils down to

is the propagation response matrix standing for smallescal 4

fading, andD € C**X denotes a diagonal matrix whosth ~ RMRC — g {1og2 <1 + - Pullgh] ) } . (8)
diagonal element;, models the large-scale fading (including Pud iz 84 &% + g2
geometric attenuation and shadow fading) of ttle UE. We \ynere

assume that large-scale fading changes very slowly suth tha

all ¢, are constant. Moreove’A € CM*F s the transmit gr = /(L Ahy. 9
steering matrix, withP denoting a large but finite number of
incident directions in the propagation channél [8]. Forghke
of analytical simplicity, we assume that all UEs are seemfro
the same set of directions with cardinali® Considering the
widely used uniform linear antenna array, we can wAteas

We now present an approximation on the achievable sum SE
of MRC receivers in the following proposition.

Proposition 1: For space-constrained massive MIMO sys-
tems with MRC receivers, the approximated sum achievable

SE is gi b
[10], [12] is given by
P
A=[a(6),a().....a(60)] @ K p (3480
MRC =
wherea(d;), fori =1,2,..., P denotes a lengti4 normal- R - ;logQ 1+ K P , (10)
ized steering vector as =1 Du gﬁ:k Cli; B2 + M,
1 prd . 4T _ . _
a(f;) = — [1, e i sin; o—i2KE(M—1)sinb; | where; is theith eigenvalue of the matriA 7 A.
VP 3) Proof: See AppendiXA. ]

Next, we provide numerical results to verify the analytical
whered is the antenna spacing, denotes the carrier wave-approximation in [(II0). Let us assume that the users are
length, andd; represents the direction of arrival (DOA). Thedistributed uniformly at random in a hexagonal cell with a
normalized total antenna array spagg at the BS can be radius of 1000 meters, while the smallest distance between
expressed agly = %. In @), we use the factO% to the UE to the BS isrmn = 100 meters. Moreover, the
normalize the steering vectar(;). pathloss is modelled as,_“ with r, denoting the distance



between thecth UE to the BS and = 3.8 denoting the path A. Lower Bound

loss exponent, respectively. A log-normal random variable  proposition 2: For space-constrained massive MIMO sys-
with standard deviatio8 dB is used to model shadowing.tems with ZF receivers, the achievable sum SE is lower
Combining these factors, large-scale fading can be given By nded as in[{12) at the bottom of this page, whete

Gk = sk(ri/rmin)”". We further assumd; are uniformly s the digamma functiori [14, Eq. (8.36)], and, denotes a

distributed within the interval—m/2, 7/2]. P x P matrix whose entries are
The simulation results and their corresponding analytical a1 2
approximations of space-constrained massive MIMO systems [Yn]p .= { 5—171 q7Fn, B (13)
with MRC are plotted in Fig[Jl. It is easily seen that the ’ By Infp, q=n.
sum SE saturates with an increasing number of BS antennas Proof: See AppendixB. [ |

for different total antenna array spacés This observation
is consistent with[[9] and showcases that MRC suffers @ ypper Bound

substantial performance degradation when spatial cdioela We now move to the upper bound analvsis. and present the
is high (smalldy). Moreover, for the same number of BS PP ysiS, b

following proposition.

antennas, a monotonic increase in the sum SE is achieve . . .
roposition 3: For space-constrained massive MIMO sys-
asdy becomes larger. We also observe that the gap betweien

the curves decreases dg increases, which implies that the ems with ZF receivers, the achievable sum SE is upper
. bounded as

effect of constrained space becomes less pronounced.

|Az|
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where IT'(-) denotes the Gamma functioh [14, Eq. (8.31)],
A; = [E1®,] is a P x P matrix with entries

Sum Spectral Efficiency (bits/s/Hz)

[El]p,q:ﬁg_lv q:1727"'7P_K7
[®1],, =BT (q—P+K+1), ¢=P-K+1,...,P,

Monte-Carlo simulation

% Analytical approximation
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Fig. 1. Simulated and analytical approximation of the sumdbEnassive [‘—‘Q]p,q - Bp s ¢q=12,...,P-K+1,

AI;/I{II\iOﬁ;/'vith MRC receivers against the number of BS antennas<( 12 and [‘1)2]10 .= ﬁgr (—P+K), ¢g=P—-K+2,...,P.
Proof: See AppendiXC. [ |
IV. ZF RECEIVERS In Figs.[2 andB, the simulated achievable sum SE along

with the proposed lower bound {12) and upper bodindl (14) are
We now turn our attention to the case of ZF receivers, whigllotted against the number of BS antennas and total antenna
seek to eliminate inter-user interferences in massive MIM&ray space, respectively. Clearly, all lower bounds cadlipt
systems. Let us consider the concept of ZF receptiofin (1)tife exact sum SE for all the considered cases, which validate
obtain the ZF filter matrixI’' = G(G#G)~! in (@). their tightness. On the other hand, the upper bounds are
Then, the sum SE of ZF receivers can be expressed as relatively looser, due to the large variance of the involved
K random variables. Figuké 2 indicates that adding more aaten
RZF — ZE logy | 1+ Pu (11) significantly improves the sum SE of t_he massive MIMO I|n_k
P [(GHGrl} by suppressing thermal noise, even in the space constrained
kk scenario. Moreover, from Fi@] 3, we observe that the SE does
Next, we introduce a very tight lower bound on the achievabimprove with increased total physical space, particuléoly

sum SE of ZF linear receivers (11). the case of more UEs.
K K Yo P
R >REF =7 log, [ 1+puCeexp | Y Ca (w (K) + ‘—*) v+ ==——— || @2
I; nzgék HZJ (ﬂg - ﬂz) HZJ (/BJ - ﬂz)
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Fig. 2. Simulated and analytical approximation of the sumdbEnassive
MIMO with ZF receivers against the number of BS antennBs={ 12 and
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Fig. 3.
MIMO with ZF receivers against the total antenna array space=
(M =100 and P = 12).

Simulated and analytical approximation of the sumcﬁlﬁ]asds]&/e
By

V. MMSE RECEIVERS
For MMSE receivers, the receiver matfix is given by [5]

—1 1 —1
) G =gH (GGH + p—IM) .

The achievable sum SE can be written as

u

" — (GHG + iIK

RMMSE _ ZE log, ! — (15)
e,
= KE {log, (|Ix + p.G"G|)}
K
— Y "E{log, (|Tk-1 + puGf Gi|)}, (16)
k=1
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Fig. 4. Simulated and analytical expression of the sum SEazfsime MIMO
with MMSE receivers against the number of antennas at BS< 12 and
do = 4).

The following proposition presents an exact closed-form
expression for the achievable sum SE of MMSE receivers.

Proposition 4: For space-constrained massive MIMO sys-
tems with MMSE receivers, the exact sum SE is given by

_ Klogye Z Z

Hz<] (BJ l 1 n=P-K+1

1
X DinEn_pik (ﬁlp ) ;

whereD; ,, is the (I, n)th cofactor of aP x P matrix D with
the (p, g)th entry[D],, , = 82~', andE,.(y) is the exponential
integral function [[14].
Proof: See AppendixD. [ |

For MMSE receivers, Figgl 4 afdl 5 investigate the simulated
and analytical sum SE of space-constrained massive MIMO
systems against the number of BS antennas and the total
antenna array space. It is clear to see that the exact aradlyti
results are indistinguishable from the numerical simatlai
which validates the correctness of the derived expressions
Furthermore, Fig[]5 reveals that with a fixed total antenna
array space, the sum SE can be still increased by employing
more BS antennas. This is because the improved array gain
caused by the increasédd dominates the sum SE loss due to
the reducedi.

MMSE _ ﬁlnflel/ﬂzpu

(18)

VI. CONCLUSIONS

In this paper, we investigated the performance of massive
MIMO systems with a practical space-constrained topology,
where the antenna array at the BS has a limited total space.
This introduces an increasing spatial correlation with an
increased number of BS antennas. We first derived the ap-
proximated sum SE with MRC receivers. Through analytical

where [I6) can be derived froni_{15) with the aid of aAgnd numerical results, we confirmed that a saturation of the

important matrix property 6, Eq. (11)] as

@), - 18

GAG]| " a7)

achievable sum SE occurs with an increasing number of BS
antennas. For ZF receivers, we derived new lower and upper
bounds on the sum SE, which increases for a higher number
of UEs, as long as\/ > K. Moreover, the proposed lower



APPENDIXB
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M We start from [(TIL), and apply Jensen’s inequality on the

convex functionlog, (1 + aexp(z)) for a > 0 to get

R%F > RZF =
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Sum Spectral Efficiency (bits/s/Hz)
]
T

161 M =100 % k=1
M X H i
157 1 = Zlogz (1 +pue(E{1“(|G G|)}-e{n(|G{ Gk|)})), (29)
MMSE Exact Analysis
’ %  Monte-Carlo Simulation k=1
s . . . . . 5 o where from [(28) to [(29), we have useld(17). By utilizing
Total Antenna Array Space dy = f Lemma 4 of [17], the average log-determinant 6/ G can

be derived as
Fig. 5. Simulated and analytical expression of the sum SEazfsime MIMO p
with MMSE receivers against the total antenna array sgace % (K =14 Z |Y |
n

and P = 8). K

’ E(in (167G} = | v+
bound is tighter than the upper bound. For MMSE receivers, n=1 [Tic; (i = B:)

an exact expression for the sum SE is derived and validated

by simulation results, which shows that the sum SE increases K

with the number of BS antennas. This is due to the fact that X 1HZ Gn- (30)
the signal-to-interference-plus-noise ratios (SINRsYBfand n=1

MMSE receivers increase with the number of BS antenndspte thatGy, is an M x (K — 1) matrix, and we have

while MRC receivers can only work well at low SINRs. P
K-1 PZK 2IYnI
H n=P—K+
APPENDIX A E{ln (|G} Gu|)} = Z‘/’(”)JFHP 6 — B
PROOF OFPROPOSITION1 n=1 <A
By employingLemma 1 in [15], the approximatedz}R¢ K
can be expressed as x In Z Cn.- (32)
4 n=1,n#k
MRC p”E{”gk” } Substituti 1) intg (P9 lete th
RMRC ~log, |1+ — g - _ ubstitu mg[(ED) and(31) int (R9), we can complete thepro
Du Z#k E{|nggz| } 4 E {Ilgkll } of Proposition 2.
(24)
From Lemma 2 of [16], the numerator term of (24) can be APPENDIXC
calculated as PROOF OFPROPOSITION3
4 2 H 2, 2 H A2
E = [tr {AT A} +Girq (ATA
{Hng } Gler{ i‘ i {( ) } By applying [17) and Jensen’s inequality again, we derive
the upper bound?;; on the uplink sum S 1) as
=1

K
R <R =) log, (E{|G] G E{|GPG
Note thatZ € CP*F is a deterministic matrix. Considering Z 082 (B {| G Gu[} + puE {| })

k=

the definition of A andh; and usingLemma 2 of [16] again, Kl
the first term in the denominator df (24) can be derived as _ Z E {log, (‘GkHGkD} (32)

5 5 P k=1

H HAH
E{|gk gl } = CkClE{|hk A" Ah| } = GG Zﬂ?’ (26) In order to obtainkZF, we first need to derive {|GG|}.
=1 Note that the joint probability density function (PDF) ofeth

and the second term in the denominator[ofl (24) is given byunordered eigenvalues,, 72, - , 7 of GHG is given by

P [17, Eq. (86)]
E{llgil} = GZE {nff A7 A} = > Gi= M. (@)

AlTIE . TP — T;
f(Tla"' 7TK) | |Hz<](] )

Substituting [(2b),[(26), and (R7) intb (24), we can deriv@)(1 - K]‘[fil (K —i+1) Hij (B = Bi)
in Proposition 1. (33)



where A is the P x P matrix given by

1 ... ﬂf*Kfle*‘Fl/ﬁl ﬂf*Kfle*TK/ﬁl 1

A =
(2

1 ... Bngfle—Tl/BP Bngfle—TK/BP

(34) -
Substituting [3B) intE { |G G|}, we can obtain
K [4]
=l [5]
K K
|A -H1 i [Lic (75 — 7i) o
= = dry...drg,
b KIS, T (K — i+ DI (8 — B
(35 1

whereDoyq = {00 > 71 > - -+ > 7k } IS the integration region.
Applying the integral identity from[[18, Lemma 2] and [14, [8]
Eq. (3.351.3)],[(3b) can be evaluated in closed-form as

|A

E{|G"G|} = , (36) 9]
{ '} [ T (K —i+ DI, (8 - Bi)

while [10]
E{|GI Gy} = 14| (37)

I T (K =)L (8 = Bi) ”

Combining [(31),[(36), and (B7), we can derive the upper bound
in PropositiorB.

[12]

APPENDIXD [13]

PROOF OFPROPOSITION4
[14]
Considering the unified PDF expression of the unorder?1 !

eigenvaluer of an M x K complex semi-correlated central
Wishart matrix withK degrees of freedom from [17, Eq. (14)]

1 [16]
fr(z) =

KHZ] (/BJ - ﬂz)

P P xKJrn*P*le*I/ﬁzﬂP*K*l
DD

1
D
=1 n=P—K+1

[17]

['(K—P+n) o
(38)

Substituting[(3B) into[(16), and using the integral idenfi9],
we can derive the exact sum SE with MMSE receivers as [19]

P
Klogse Z T

Hij (Bj - ﬁi) =1
K+n—P 1
Z Eh (5!]%)

(18]

MMSE _

P
X Z ﬂ[nilDl,n

n=P-K+1 h=1

P K+n—P—1 1
- Y athe X6
n=P—K+2 h=1 Pu

(39)

After some tedious but straightforward manipulations, the
proof can be completed.
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