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Abstract 
	

Portal hypertension is a grave step in the progression of cirrhosis, associated with 

complications and mortality. The pathobiology of portal hypertension involves fibrosis 

as well as increased intrahepatic vascular tone. Nitric oxide (NO), synthesized by 

endothelial nitric oxide synthase (eNOS), is a key regulator of intrahepatic vascular 

tone. Asymmetric dimethylarginine (ADMA) is a competitive inhibitor of eNOS, which 

has been implicated in the pathobiology of portal hypertension – ADMA levels are 

elevated in cirrhosis and correlate with portal pressure. The major pathway of 

elimination of ADMA is the enzyme dimethylarginine dimethylaminohydrolase-1 

(DDAH-1). The main aims of this thesis are: (i) delineate the expression and 

regulation of hepatic DDAH-1 in cirrhosis and portal hypertension, and (ii) determine 

a causal relationship between hepatic DDAH-1 and portal hypertension in cirrhosis.  

In initial experiments, hepatic DDAH-1 protein expression was significantly 

decreased in patients with cirrhosis and bile duct-ligated (BDL) rats.  

Immunohistochemistry demonstrated that DDAH-1 expression was restricted to the 

hepatocyte. In vitro work with endothelial cells demonstrated that exogenous ADMA 

is an inhibitor of NO generation at pathophysiological levels. 

Subsequent experiments demonstrated that DDAH-1 expression was decreased by 

exposure to hydrogen peroxide (H2O2), and this mechanism was related to the 

DDAH-1 3’UTR. Further studies demonstrated the presence of predicted microRNA 

(miR) binding sites in the DDAH-1 3’UTR, and miR-128 was found to be elevated in 

BDL rat liver compared with sham controls, as well as being a regulator of DDAH-1 

protein expression through gain-of-function and loss-of-function experiments.  

Finally, a novel truncated transcript of DDAH-1 was demonstrated in human 

placenta. This transcript was found to be protein-encoding, with bioinformatic 

evidence of a proximal promoter. Thus, a switch in transcript may play a role in 

placental vascular disorders such as pre-eclampsia. 

In summary, hepatic DDAH-1 is reduced in cirrhosis, and is causally related to the 

development of portal hypertension. DDAH-1 undergoes post-transcriptional 

regulation through microRNA regulation and alternative transcription.  



	 9	

Experimental Acknowledgements 
 

In Chapter 4; 

Dr Fatma Mohamed supervised and assisted with histological staining, including 

immunohistochemistry.  

Dr Takis Athanasopoulos supervised and assisted with the manufacture of adeno-

associated viral particles.  

Dr Nathan Davies carried out rodent surgery, including bile duct ligation, 

administration of viral vectors and plasmid DNA, and physiological measurements. 

 

In Chapter 5; 

Dr Helen Jones assisted with the Affymetrix in situ hybridization and staining. 

 

In Chapter 6; 

Dr Katie Poulton assisted with the collection and processing of human placental 

tissue. 

 

 

 

 

 

 

 

 

 

 



	 10	

Chapter 1 – General Introduction  
	

Portal hypertension is a milestone in the progression of cirrhosis and heralds the 

onset of the most fatal complications of liver disease. This vascular dysfunction 

within the hepatic circulation leads to several feared consequences of cirrhosis, 

including the development of varices, porto-systemic encephalopathy and ascites. 

Indeed, the measurement of portal pressure, through the technique of hepatic 

venous pressure gradient (HVPG) measurement, is the single best predictor of 

complications and death amongst patients with liver disease1. 

Portal hypertension in cirrhosis results from increased resistance to portal blood flow 

within the liver, as well as increased portal inflow to the liver from splanchnic 

dilatation. These vascular changes develop on the background of complex 

alterations to cardiac and systemic haemodynamics, as well as altered immune 

function and increased inflammatory stress.  

The major current pharmacological therapy for portal hypertension, non-selective ß-

adrenoceptor blockers, acts by reducing cardiac output and thereby decreasing 

splanchnic inflow into the liver. However, this therapy is inadequate in a significant 

number of patients, and moreover does not take into account recent insights into the 

inflammatory effects and molecular mechanisms of portal hypertension in cirrhosis. 

The following section of this thesis will outline current perspectives on the 

epidemiology, pathobiology and current treatment of portal hypertension in cirrhosis. 
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1.1 Natural history and clinical significance of portal hypertension in 
cirrhosis 
According to the Office for National Statistics, liver-related deaths are the 5th 

commonest cause of death in the United Kingdom2. Moreover, deaths from liver 

disease have continued to rise over the last three decades, unlike the other four 

leading causes of death in the United Kingdom. The natural history of cirrhosis has 

traditionally been viewed as a progressive process, characterised by the 

development of portal hypertension and the subsequent onset of the complications 

of cirrhosis. 

D’Amico and colleagues proposed a classification of the natural history of cirrhosis 

based on the presence or absence of portal hypertension, in four stages3. Stage 1 is 

defined by the absence of ascites or varices. Stage 2 is characterized by the 

absence of ascites and the presence of varices that have never bled. Stages 1 and 2 

represent compensated cirrhosis. Stage 3 is defined by the presence of ascites with 

or without varices that have never bled. Stage 4 is characterized by the presence of 

variceal bleeding in patients with or without the presence of ascites. Using this 

classification, in a systematic review of over a hundred studies, the median 1-year 

survival is 99 %, 97 %, 80 %, and 43 %, respectively3. The prognostic value of portal 

hypertension in determining the natural history of cirrhosis has been validated in 

large prospective cohorts, demonstrating that portal pressure, as measured by the 

hepatic venous pressure gradient, is the strongest predictor of complications and 

death in cirrhosis1, 4. 

More recently, the role of infection and renal failure in the natural history of cirrhosis 

has been highlighted. The presence of any infection on the background of cirrhosis 

leads to a four-fold increase in mortality (odds ratio 3.8, 95% confidence interval 2.1-
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4.2), as compared with uninfected patients. Renal dysfunction is in cirrhosis is 

associated with an almost eight-fold increase in risk of death (odds ratio 7.6, 95% 

confidence interval 5.4-10.8)5. These observations have led to the proposal of a fifth 

stage in the natural history of cirrhosis, which is characterized by either the presence 

of refractory symptoms (e.g. ascites) or the presence of infection or renal failure in 

patients with cirrhosis (figure 1.1). 

25

 Concluding Remarks

Compensated cirrhosis is characterized by a very low mortality, while transition to 
decompensation is the major outcome for this early disease stage. Once decompen-
sation occurs, the mortality rate is very high, with a median survival time of approx-
imately 2–4 years. Esophageal varices, ascites, bleeding, jaundice, and 
encephalopathy allow identification of five disease stages with significantly differ-
ent outcome: two stages in compensated and three in decompensated cirrhosis. In 
most patients the occurrence of sepsis or renal failure, with or without ACLF, will 
accelerate the final course towards death. A schematic representation of the clinical 
course of cirrhosis is reported in Fig. 2.3.

Overall, the most robust predictors of survival are the Child-Pugh [29] score or 
its components, age, portal hypertension, renal function, and MELD [21]. Predictors 
of survival are different in compensated and decompensated patients with portal 
hypertension assuming a greater importance in compensated patients, while in 
patients with decompensated cirrhosis it is the Child-Pugh score as well as renal 
dysfunction parameters that carry a greater weight. For present day clinical practice, 
Child-Pugh [29] and MELD [22] scores are appropriate survival predictors. In 
future studies, prognostic indicators should be assessed separately in patients with 
compensated and decompensated cirrhosis. In fact, in patients with compensated 
cirrhosis the transition to a decompensated stage may be a major endpoint for which 
prognostic indicators should be assessed.

Bleeding alone

Ascites
or  hcc, pse, jau

Bleeding + Ascites
and/or any other

Sepis
Renal F
ACLF

Death or 
LT

Stage 3

Stage 4

Stage 5

No varices
No ascites

Varices
No ascites

Decompensating
event

Compensated
cirrhosis

Decompensated
cirrhosis

Hepatocellular carcinoma

Stage 1

Stage 2

Fig. 2.3 Schematic representation of the clinical course of cirrhosis
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Figure 1.1: This figure represents the proposed step-wise progression of compensated cirrhosis to 

decompensation, which is manifest by ascites and hepatic encephalopathy, through to infection and 

renal failure. This progression is accompanied by a progressive rise in hepatic venous pressure 

gradient (HVPG). Additionally, multiorgan failure can ensue either from compensated cirrhosis or 

decompensated cirrhosis following a defined or undefined insult, a condition referred to as acute on 

chronic liver failure (ACLF – vide infra).  
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Therefore, the pivotal role of portal hypertension in the pathogenesis of these 

complications is illustrated by the progressive rise in portal pressure being the only 

pathophysiological event, independent of aetiology of liver disease, to predict 

complications and outcome.  

 

1.2 Pathobiology of portal hypertension in cirrhosis 
As mentioned above, the pathobiology of portal hypertension in cirrhosis is complex, 

and involves changes in the architecture of the liver, but also occurs as a 

consequence of endothelial dysfunction within the liver and in the systemic 

circulation. 

 

1.2.1 Intrahepatic resistance  

The hallmark of cirrhosis is the development of architectural distortion in the form of 

nodular fibrosis and scarring, which leads to portal hypertension through obstruction 

of sinusoidal blood flow. However, a recent body of work has demonstrated that 

upward of one-third of this intrahepatic vascular resistance is due to a reversible, 

modifiable component. Molecular mechanisms of this increase in vascular tone 

include an imbalance of vasodilator and vasoconstrictor compounds, dysfunction of 

sinusoidal endothelium, and activation of contractile elements in vascular smooth 

muscle and myofibroblastic-phenotype hepatic stellate cells (HSCs). 
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1.2.2 The role of nitric oxide 
Advances in vascular biology over the last two decades have highlighted the role of 

nitric oxide (NO) in endothelial function. Indeed, Furchgott, Ignarro and Murad 

received the Nobel Prize in Medicine in 1998 for the discovery of endothelium 

derived relaxing factor, and its subsequent characterisation as NO6-8. The realisation 

that endothelial dysfunction plays a key role in the pathobiology of portal 

hypertension in the context of cirrhosis was a further major advance. Groszmann 

and colleagues first demonstrated that NO is a key regulator of vascular tone in 

normal rodent liver, and went on to show that cirrhotic rodent liver demonstrated 

intrahepatic endothelial dysfunction characterised by impaired responsiveness to 

acetylcholine, and decreased production of NO9.  

The nature of this intrahepatic endothelial dysfunction was further characterised by 

Rockey and colleagues in their study of rodents with cirrhosis, induced by bile duct 

ligation (BDL) and by carbon tetrachloride (CCl4) treatment10. In both these models 

of chronic liver injury, hepatic nitric oxide synthase activity and production of cyclic 

guanosine monophosphate (cGMP), which is produced by guanylyl cyclase after 

stimulation by NO, were reduced. However endothelial nitric oxide synthase (eNOS) 

messenger RNA (mRNA) and protein levels were unchanged, suggesting that the 

defect in endothelial NO production is due to post-translational modification of the 

eNOS enzyme, or due to the presence of endogenous eNOS inhibitors. 
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1.3 Nitric oxide synthases 

1.3.1 Regulation of nitric oxide synthases 
The variety of roles of NO as a messenger molecule have only been described over 

the last decade. As well as acting as endothelium-derived relaxing factor, NO serves 

regulatory functions in neurotransmission, gene transcription, mRNA translation (eg. 

by binding to iron-responsive elements), and post-translational modification of 

proteins (eg. by ADP ribosylation)11-15. 

There are three isoforms of NO synthase in mammals: neuronal NOS (nNOS), 

inducible NOS (iNOS) and endothelial NOS (eNOS). All three isoforms utilise L-

arginine as substrate, and molecular oxygen and nicotinamide adenine dinucleotide 

phosphate (NADPH) as co-substrates. Flavin adenine dinucleotide (FAD), flavine 

mononucleotide (FMN) and tetrahydroptierin (BH4) are co-factors. All isoforms act as 

homodimers (figure 1.2). 

The enzymatic synthesis of NO occurs through electron transfer from NADPH, via 

the flavins FAD and FMN, in the C-terminal reductase domain of eNOS to the haem 

in the N-terminal oxygenase domain of eNOS16. The oxygenase domain also binds 

BH4, molecular oxygen and the substrate L -arginine. At the haem site, electrons are 

used to reduce and active O2 to oxidise L-arginine to L -citrulline and NO. Sequences 

near the cysteine ligand of haem are also involved in L -arginine and BH4 binding. 

Thus, enzymatic synthesis of NO is a two-stage process; the first step is the 

hydroxylation of L-arginine to N-hydroxy-L-arginine, and the subsequent step is 

oxidation of N-hydroxy-L-arginine to citrulline and NO. 
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The differences between the NOS isoforms resides in their binding to the calcium 

binding protein, calmodulin. In nNOS and eNOS, calmodulin binding occurs as a 

result of an increase in intracellular calcium. The binding of calmodulin facilitates the 

flow of electrons from NADPH to haem. However, iNOS readily binds calmodulin 

when concentrations of intracellular calcium are low, due to differences in the 

calmodulin binding site, hence iNOS is considered calcium-independent.   

 

 

Figure 1.2a – adapted from Forstermann and Sessa16. Left panel (A), NOS functions as a homodimer. 

As a monomer, NOS is capable of transferring electrons from reduced NADPH to FAD and FMN, and 

can bind calmodulin (CaM), but NOS monomers are unable to bind the cofactor BH4 or the 

substrate L-arginine and cannot catalyze NO production. Right panel (B) in the presence of haem, 

NOS can form a functional dimer. This allows electron transfer from the flavins to the haem of the 

opposite monomer. Elevated Ca2+ is also required for calmodulin binding in nNOS and eNOS 

isoforms. When sufficient substrate L-arginine and cofactor BH4 are present, intact NOS dimers 

couple their haem and O2 reduction to the synthesis of NO through two separate oxidation steps, one 

to form N-hydroxy-L-arginine and a second to convert this intermediate to NO. 
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1.3.2 Functions of nNOS, iNOS and eNOS 
nNOS 

Neuronal NOS, or nNOS, is important in synaptic signalling during processes such 

as learning, memory and neurogenesis. In the central nervous system, nNOS 

mediates long-term potentiation, and blood pressure regulation11, 17. In the peripheral 

nervous system, nNOS containing nitrergic nerves are responsible for penile 

erection. The NO released induces smooth muscle relaxation mediated by cGMP, 

which is in turn degraded by phosphodiesterases18.  This is the basis for the action of 

phosphodiesterase inhibitors (eg Sildenafil) in the treatment of erectile dysfunction. 

 

iNOS 

Inducible NOS is not constitutively expressed in cells, but its expression is induced 

by bacterial lipopolysaccharides, cytokines and other agents19. Although primarily 

identified in macrophages, iNOS can be detected in several types if the appropriate 

inducing agent is present19.  When induced, iNOS produces large amounts of NO in 

a calcium-independent fashion. This high concentration of NO is cytotoxic locally, 

due to the production of reactive oxygen species and reactive nitrogen species 

forming adducts to protein-bound iron, inhibiting key enzymes that contain iron in 

their catalytic centres20. Moreover, NO also forms adducts with genomic DNA 

causing strand breaks and fragmentation21.  
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eNOS 

Endothelial NOS is generally expressed in endothelial cells, although the enzyme 

has been detected in cardiac myocytes, platelets, neurons, placenta and kidney 

tubular epithelium. In the liver, McNaughton et al have demonstrated eNOS 

expression in healthy hepatocytes and endothelial cells, although in cirrhotic liver 

hepatocyte eNOS expression is increased whilst endothelial eNOS expression 

remains unchanged16, 22. 

In a similar manner to nNOS, eNOS binds calmodulin in a calcium-dependent 

manner. Several other proteins also interact with eNOS and regulate its activity as 

part of a multiprotein complex. For example, heat shock protein 90 (Hsp90), 

caveolin-1, activating kinase Akt1, and the trafficking proteins eNOS traffic inducer 

(NOSTRIN) and eNOS-interacting protein (NOSIP) all interact with eNOS16.  

Additionally, the enzyme is also regulated by post-translational modifications, such 

as mristoylation, palmitoylation and phosphorylation, which regulate membrane 

binding and activity23. The myristoyl group is covalently attached to the N-terminus of 

the protein, and localises eNOS to the cell membrane. Mutation studies of the 

mristoyl group have shown that it is necessary for membrane localisation and 

maximal enzyme activity – loss of N-myristoylation confers cytosolic localisation and 

reduced activity, but in isolated activity assays the enzyme is fully functional24. 

Similarly, palmitoylation in the oxygenase domain of the enzyme occurs following 

mristoylation, and is thought to stabilise eNOS to the membrane23. Again, palmitoyl-

deficient eNOS has an altered subcellular distribution in that it is virtually absent from 

the plasma membrane, although the palmitoyl-deficient enzyme is not catalytically 

inferior to the wild-type enzyme25.   
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These modifications regulating subcellular location of eNOS represent one level of 

post-translational regulation - eNOS has been demonstrated to localize to the 

plasma membrane and the golgi apparatus in most cell types. The predominant 

location of eNOS in the cell membrane is within flask-shaped invaginations of the 

plasma membrane, termed caveolae16. These areas are enriched in cholesterol and 

sphingolipids, creating a distinct area that facilitates protein-protein interactions.  

 

	

Figure 1.2b – adapted from Forstermann and Sessa16. An increase in intracellular Ca2+ leads to 

enhanced binding of calmodulin (CaM) to the enzyme, which in turn facilitates the flow of electrons 

from NADPH in the reductase domain to the haem in the oxygenase domain. In resting endothelial 

cells, Ser1177 is usually not phosphorylated. Phosphorylation is induced in response to shear stress, 

as well as other stimuli such as exposed to oestrogens, vascular endothelial growth factor (VEGF), 

insulin, bradykinin or fluid shear stress. The kinases responsible for phosphorylation (green 

hexagons) depend on the primary stimulus. Oestrogen and vascular endothelial growth factor elicit 

phosphorylation of Ser1177 by activating serine/threonine kinase Akt. Phosphorylation of the Ser1177 

residue increases the flux of electrons through the reductase domain and thus enzyme activity. The 

Thr495 residue of human endothelial NOS tends to be constitutively phosphorylated in endothelial 

cells. Thr495 is a negative regulatory site, and its phosphorylation is associated with a decreased 

electron flux and enzyme activity. 
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Caveolin-1 is a protein which resides in caveolae, and acts as a tonic inhibitor of 

eNOS26. The localization of eNOS within the caveolae renders the enzyme inactive 

due to the interaction of eNOS with caveolin-1. This interaction requires that eNOS 

be both myristoylated and palmitoylated. 

Thus, at a cellular level, the recruitment of calmodulin (in response to increased 

intracellular calcium) and hsp90 to eNOS displaces caveolin-1 from the enzyme, 

leading to eNOS activation16. Caveolin-free eNOS is then translocated from the 

caveolae to the cytoplasm. Its enzymatic function there is greatly upregulated, 

including also Ca2+-independent steps. As a result, the electron flow from the 

reductase to the oxygenase domain is initiated, and NO is produced. In addition, in 

the caveolae the substrate l-arginine is recycled from l-citrulline, ensuring a sufficient 

pool for eNOS. 

In addition, eNOS activity is influenced by posttranslational phosphorylation.  The 

eNOS protein can be phosphorylated on several serine (Ser), threonine (Thr), and 

tyrosine (Tyr) residues. Phosphorylation of Ser1177 occurs in response to shear 

stress, by the kinase Akt1, and occurs independent of changes in intracellular 

calcium27. Akt1 also mediates eNOS phosphorylation as a result of oestrogen, 

vascular endothelial growth factor (VEGF) and insulin signaling, thus Akt1 is 

important for both agonist and shear-stress activation of eNOS28. Indeed, endothelial 

cells from Akt1 deficient mice have defects in eNOS phosphorylation, NO production 

and angiogenesis, which are reversed by Akt1 gene transfer29. 

The Thr495 residue of eNOS is constitutively phosphorylated in endothelial cells, 

and is thus a negative regulatory site. Phosphorylation of Thr495 is associated with 

decreased electron flux and enzyme activity. The constitutively active kinase that 
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phosphorylates eNOS Thr495 is suggested to be protein kinase C, and de-

phosphorylation of Thr495 occurs through the action of protein phosphatase1.  

 

1.4 Vascular alterations in cirrhosis 

1.4.1 The sinusoidal circulation 
The sinusoidal circulation represents the capillary bed of the liver, and is highly 

specialised to facilitate metabolic exchange30. The sinusoidal endothelial cells 

(SECs) are uniquely separated by small fenestrae, which are arranged in clusters of 

pores. Moreover these membrane-bound pores lack a specialised basement 

membrane, thus contrasting with the fenestrated endothelium found in the kidney, 

pancreas and brain. These fenestrae are dynamic structures that contract and dilate 

in response to alterations in sinusoidal blood flow and pressure31. Furthermore, the 

fenestrae control exchange of metabolic products between the circulation and 

hepatocytes, and also perform scavenger functions through endocytic capacity. 

Additionally, the SECs appear to have immune regulatory functions and antigen 

presenting capability32.    

Several morphological abnormalities affect the sinusoidal circulation in cirrhosis. 

Anatomical changes such as fibrotic scar and regenerative nodule formation, which 

result in mechanical compression of the hepatic vasculature, have been traditionally 

implicated as the major cause for increased intrahepatic resistance. However, early 

changes in the sinusoidal vasculature include the loss of fenestrae and deposition of 

matrix within the space of Disse – processes that result in sinusoidal capillarisation 

and impede the exchange of solutes between the sinusoidal circulation and the liver 

parenchyma33.  
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Shah and colleagues demonstrated in the isolated, perfused rat liver that eNOS is 

present in SECs, and that the production of NO is a regulator of hepatic vascular 

tone34.  

In cirrhosis, several investigators have demonstrated that intrahepatic NO is 

deficient. In both cholestatic and CCl4 models of cirrhosis, Rockey et al 

demonstrated lower cGMP levels and lower eNOS activity10. In humans with 

cirrhosis, Mookerjee and colleagues have demonstrated increased eNOS protein 

expression, but lower eNOS activity in patients with alcoholic liver disease35. Goh et 

al also found increased eNOS protein expression in patients with biliary cirrhosis 

although did not assay NOS activity36. Sarela et al. also demonstrated decreased 

constitutive NOS activity in group of patients with primarily alcohol-related cirrhosis37. 

Following its generation in SECs, NO modulates vascular tone through a vasodilator 

effect on adjacent vascular smooth muscle. However, intrahepatic vascular tone is 

also regulated by HSCs, which adopt a myofibroblastic phenotype when activated38. 

These activated HSCs have extensive coverage of the sinusoidal network through 

cellular extensions and can modulate intrahepatic resistance through contractility. In 

studies from humans and rodents, activated HSCs show increased responsiveness 

to endogenous vasoconstrictors (eg. endothelins, norepinephrine, angiotensin II, 

leukotrienes, thromboxane A2) leading to increased contractility and intrahepatic 

resistance39-42. The intrahepatic vasculature displays increased sensitivity to these 

vascoconstrictors in cirrhosis. Additionally, the activated HSCs play a key role in 

angiogenesis, leading to intrahepatic shunting and vascular collateral formation43, 44. 

On the other hand, iNOS is virtually absent in the normal liver, but highly upregulated 

in response to a variety of inflammatory or oxidative stresses. However, the role of 
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NO produced by iNOS in the regulation of the sinusoidal circulation has been an 

issue of debate. The treatment of rats with nonspecific NOS or primarily eNOS 

inhibitors results in a rapid exacerbation of liver injury following stresses such as 

endotoxin injection45, 46. At the same time, in spite of marked upregulation of iNOS 

under these conditions, specific iNOS antagonists have little effect on liver 

perfusion47, 48. These results suggest that NO is necessary to maintain the sinusoidal 

perfusion, but that eNOS is the key regulator of intrahepatic vasoactive NO. The 

specific localization of eNOS in endothelial cells is also significant, in that NO 

generated by endothelial cells is capable of diffusing to local sights of action to 

control sinusoidal resistance. In diseased liver, the translocation of eNOS away from 

the cell membrane may render it inactive22. Moreover, the expression of eNOS or 

iNOS in parenchymal cells or kupffer cells may have roles other than regulating 

sinusoidal blood flow.  

Therefore, although other vascular mediators, e.g. thromboxane A2, endothelins, 

hydrogen sulphide, carbon monoxide, are altered in cirrhosis, increasing constitutive 

NOS activity in the sinusoidal circulation is a rational goal for therapy of portal 

hypertension30. Indeed, adenoviral mediated gene transfer of eNOS and nNOS to 

the liver results in lowered portal pressure in rodent models of cirrhosis49, 50. Statins 

also augment eNOS activity and NO production, through increasing the 

phosphorylation of eNOS by Akt, and statins have been found to moderately 

decrease portal pressure in rodents and humans with chronic liver disease51, 52. 
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1.4.2 The systemic and splanchnic circulations 
The decreased bioavailability of intrahepatic NO in cirrhosis contrasts with the 

observed increase in whole body NO and splanchnic vasodilation. Several 

investigators have demonstrated increased NO breakdown products in the peripheral 

circulation in patients with cirrhosis. Vallance and Moncada initially suggested that 

splanchnic vasodilatation in cirrhosis may be due to low-level endotoxinaemia and 

iNOS induction53. Indeed, Jalan and colleagues recently demonstrated increased 

systemic NO production associated with endotoxinemia in critically ill patients with 

advanced cirrhosis and placement of transjugular intrahepatic porto-systemic 

shunt54. Plasma from these patients, when incubated with HUVEC cells, decreased 

eNOS activity but increased iNOS activity, leading to the hypothesis that increased 

systemic NO production in advanced cirrhosis is due to iNOS induction. 

Data from rodent studies seem to vary depending on whether a pre-sinusoidal model 

of portal hypertension has been used, such as partial portal vein ligation (PPVL), or a 

model of cirrhosis. In the PPVL model, which is a model of portal hypertension but 

not of cirrhosis, it is clear from studies using knockout mice that eNOS is responsible 

for the major part of the observed vasodilatation rather than iNOS55, 56. However, 

these animals are less representative of the pathophysiology of advanced cirrhosis, 

with less systemic inflammation and immune dysfunction. In rodents with biliary 

cirrhosis and portal hypertension, aortic iNOS expression is induced by the 

administration of bacterial LPS57. Moreover, the role of iNOS expression in 

perivascular cells in cirrhosis has recently been investigated. Kajita et al. 

demonstrated that the adventitial layer of mesenteric vessels contain resident 

macrophages under control conditions, and in rats with biliary cirrhosis these cells 

increased in number and adopted an activated phenotype expressing iNOS58. The 
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authors further showed cultured vessels from these animals that cirrhotic mesenteric 

vessels show increased NO generation in response to LPS, and reduced contractility 

to alpha-adrenoceptor agonists. Therefore, there is emerging evidence that 

paracrine effects of iNOS activation in inflammatory cells may increase mesenteric 

flow in advanced cirrhosis, and thereby augment portal hypertension. This is in direct 

contrast to the situation in the intrahepatic circulation (vide supra), where despite 

upregulation of hepatic iNOS expression following LPS administration, specific iNOS 

antagonists have little effect on liver blood flow. 

 

1.5 Inflammation and portal hypertension 

1.5.1 The role of inflammation in modifying portal pressure 
These concepts of vascular dysfunction in cirrhosis are complimented by the recent 

description of the syndrome of acute-on-chronic liver failure (ACLF), an increasingly 

recognised entity describing an acute deterioration of liver function, regardless of 

underlying stage of cirrhosis, either secondary to superimposed liver injury or due to 

precipitating factors such as infection59. In the recent prospective CANONIC study, 

patients with ACLF could be distinguished from those with acute decompensation of 

cirrhosis on the basis of hepatic and/or extrahepatic organ failure, the presence of a 

marked systemic inflammatory response, and high short-term mortality60. 

Conceptually, the development of ACLF marks a departure from the traditional 

stepwise view of progression of cirrhosis and portal hypertension (figure 1.1). In the 

CANONIC study, patients with previously well-compensated cirrhosis had a 

significantly higher mortality following the development of ACLF than those with 

decompensated cirrhosis, marking a sharp contrast to the dogma of progressive liver 

disease.  From a pathophysiological perspective it is likely that inappropriate pro-
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inflammatory responses and systemic inflammation are key processes in the 

development of ACLF. Indeed, in CANONIC, mortality progressively increased with 

increasing severity of inflammation, as measured by leukocyte count and C-reactive 

protein.  

Several investigators have found associations between systemic inflammation and 

severe portal hypertension. Rincon and colleagues demonstrated markedly elevated 

portal pressures in patients with alcoholic hepatitis and cirrhosis61. Similarly, 

Mookerjee et al demonstrated severe portal hypertension amongst patients with 

acute decompensation of alcoholic-related cirrhosis and histological evidence of 

steatohepatitis62.  

 

1.5.2 Mechanisms of intrahepatic resistance in hepatic inflammation 
It has been suggested that hepatic innate immune signalling contributes to portal 

hypertension through effects on fibrosis and intrahepatic vascular tone. The role of 

pathogen-associated molecular patterns (PAMPs) in the progression of fibrosis, in 

particular through TLR4 signalling, has been extensively studied. TLR4 is expressed 

on both parenchymal and non-parenchymal cell types in the liver, and its signaling is 

involved in the progression injury induced by viral hepatitis, alcoholic and non-

alcoholic steatohepatitis, and cholestatic and drug-induced liver diseases63. Several 

rodent studies support the importance of TLR4 in liver fibrosis. In response to liver 

injury induced by BDL or CCl4 exposure, knockout mice that are deficient in TLR4, 

or in other signaling molecules of the TLR4 pathway such as CD14, LBP, MyD88, 

and TRIF, develop less fibrosis than wild type64-66. Selective decontamination of gut 

flora also suppresses the increase in plasma LPS and attenuates liver fibrosis in 
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these rodent models65.  

Although the TLR4 signaling pathway is involved in fibrosis, the elegant experiments 

by Seki et al demonstrate that this is a Kupffer cell (KC)-independent process65. By 

contrast, in more advanced cirrhosis, KCs play a more prominent role in the 

development of hepatic inflammation and oxidative stress, leading to increased 

intrahepatic resistance. In alcoholic-related cirrhosis, TLR signaling on KCs leads to 

the production of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-8, initiating 

both hepatic and systemic inflammation67. A further downstream effect of TLR 

activation on KCs is the production of reactive oxygen species (ROS)68. KCs also 

produce vasoactive mediators, predominantly from the cyclooxygenase-

thromboxane A2 pathway, in response to PAMPs. LPS administration to cirrhotic rats 

leads to production of thromboxane A2 and cysteinyl leukotrienes, and augmented 

portal hypertension. Moreover, both KC depletion and treatment with the leukotriene 

antagonist Montelukast abrogate portal hypertension in this model69, 70. There is also 

evidence of KC activation in humans - in cirrhotic patients a serum marker of KC 

activation, sCD163, has been shown to closely correlate with HVPG, severity of liver 

disease and risk of variceal haemorrhage71. 

Thus, as discussed above, molecular mechanisms of increased intrahepatic 

resistance in cirrhosis include an imbalance of vasodilator and vasoconstrictor 

compounds, dysfunction of sinusoidal endothelium, and activation of contractile 

elements in vascular smooth muscle, portal myofibroblasts and HSCs. A further 

downstream effect of innate immune signaling and local oxidative stress is on SEC 

function. As noted above, local intrahepatic NO production is decreased in cirrhosis, 

although expression of the enzyme eNOS in SECs remains normal or increased, 

suggesting that NO production reduced due to either post-translational modification 
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of eNOS enzyme, such as decreased eNOS phosphorylation, or altered levels of 

endogenous eNOS cofactors/inhibitors. Several of these have been described in 

cirrhosis, including elevated levels of eNOS inhibitors asymmetric dimethylarginine 

(ADMA) and caveolin-1, and decreased levels of the eNOS co-factor 

tetrahydrobiopterin72-74 

ROS generation in cirrhosis is due to both increased production from KCs, as well as 

decreased activity of elimination systems such as superoxide dismutase75. Indeed, 

gene transfer of superoxide dismutase has been shown to lower portal pressure in 

rodent models of cirrhosis76. Oxidative stress leads to decreased NO bioavailability 

through a number of mechanisms – ROS directly interact with NO leading to the 

formation of peroxynitrite and other reactive nitrogen species77. Additionally ROS 

lead directly to eNOS dysfunction through eNOS ‘uncoupling’ and decreased eNOS 

phosphorylation, as well as increasing the formation of eNOS inhibitors77. In this 

context, the role of the NOS inhibitor asymmetric dimethylarginine (ADMA) in 

regulating intrahepatic eNOS activity is of significant interest (figure 1.3). 
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Figure 1.3 – adapted from Mehta et al78. Nitric oxide (NO) regulates intrahepatic vascular tone, 

through maintaining HSCs in a quiescent phenotype and promoting vasodilatation through cGMP 

signaling. Asymmetric dimethylarginine (ADMA) is a paracrine, competitive inhibitor of NO synthesis 

by endothelial nitric oxide synthase (eNOS), and is metabolized in the hepatocyte by dimethylarginine 

dimethylaminohydrolase-1 (DDAH-1). Inflammation leads to ROS generation by KCs, which inhibits 

DDAH-1 activity thereby leading to eNOS inhibition and decreased local NO production. ROS also 

interact with free NO generating further reactive nitrogen species (RNS) contributing to local tissue 

damage and propagating innate immune signaling through DAMPs. The activated SEC also produces 

further vasoactive mediators such as endothelin-1 and thromboxanes/leukotrienes which increase 

HSC contractility thereby increasing intrahepatic resistance. Noradrenaline, which is elevated in 

ACLF, also increases HSC contractility and augments local innate immune signaling. 
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1.6 The role of the DDAH-ADMA system  
Asymmetric dimethylarginine (ADMA) is a product of the post-translational 

methylation of arginine residues within proteins, and the subsequent proteolysis of 

these arginine methylated proteins. These methylated arginine residues are 

competitive inhibitors of all nitric oxide synthases, competing with L-arginine to bind 

the active site of NOS. To date, they are the only known by-products of post-

translational protein modification to have biological effects. 

Protein arginine methylation is a common post-translational modification, and has 

been shown to coordinate cellular functions such as signal transduction, 

transcriptional regulation and protein-protein interactions79.  ADMA is synthesized 

following the methylation of arginine residues in proteins by a group of 

methyltransferases that are termed protein arginine methyl‐transferases (PRMTs)80. 

To date, 11 mammalian PRMTs have been identified.  The three methylated arginine 

products are N-monomethyl-L-arginine (L-NMMA), NN-symmetric dimethylarginine 

(SDMA) and ADMA. Only L-NMMA and ADMA are inhibitors of NOS and circulating 

levels of ADMA are considerably higher than L-NMMA, hence ADMA is considered 

the principal methylarginine inhibitor of NOS activity.  

Methylarginines only appear in the cytosol as a result of protein degradation, and no 

direct synthetic route for the production of ADMA, SDMA and L‐NMMA from free 

arginine has yet been identified. Furthermore, the synthesis and degradation of 

methylated argenines are closely coupled with the synthesis and degradation of 

methylated proteins81. Thus, intracellular ADMA levels are governed by PRMT 

activity, protein turnover and clearance.  



	 31	

Intracellular levels of ADMA are in the low micromolar range, whereas intracellular 

arginine levels are 10-100 fold greater. However, despite this vast excess of 

arginine, supplementation of arginine can enhance endothelial function through 

increased NO generation82. This has been termed the ‘arginine paradox’. However, 

recent work in human endothelial cells has demonstrated that not all intracellular 

arginine is available for metabolism by membrane bound eNOS83. Moreover, 

enzyme kinetic studies have demonstrated that even with physiological 

concentrations of L-arginine, dose-dependent inhibition of NO formation in 

endothelial cells was observed with extracellular ADMA concentrations as low 

5uM84.Therefore, ADMA is likely to be a critical regulator of endothelial function at 

pathophysiological levels. 

ADMA is removed from the body through predominantly by metabolism by the 

dimethylarginine dimethylaminohydrolase (DDAH) enzymes, although renal 

excretion and metabolism by the alternative AGX-2 pathway also occurs (figure 

1.4)85, 86. There are 2 DDAH enzymes, DDAH-1 and DDAH-2, although DDAH-1 has 

far greater hydrolase activity than DDAH-2 and hence is the principal pathway of 

ADMA elimination87. Heterozygous deletion of DDAH-1 results in a 40-45% decrease 

in total DDAH activity in vivo, and also causes a phenotype of systemic hypertension 

and endothelial dysfunction88. 

It follows, therefore, that pharmacological modulation of methylarginine levels is an 

attractive therapeutic strategy in conditions characterised by decreased NO 

bioavailability and endothelial dysfunction, and further that this could be achieved 

through targeting methylarginine synthesis by PRMTs or by targeting degradation 

through DDAHs. However, PRMTs may not be suitable targets for pharmacological 

manipulation since they are essential for many fundamental biological processes. 
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For example PRMT1 plays an important role in the regulation of histone function, 

and deletion of PRMT1 is lethal in utero89. Additionally, targeting PRMT activity is 

complicated by the presence of numerous PRMT isoforms that share substantial 

sequence homology90. 

By contrast, hepatic DDAH-1 is an attractive target for therapy in cirrhosis and portal 

hypertension. The liver is a major site of DDAH-1 expression and DDAH activity91. 

Plasma levels of ADMA are elevated in cirrhosis, and are elevated further in ACLF 

precipitated by alcoholic hepatitis 72. Hepatic levels of ADMA correlate with HVPG in 

patients with ACLF, associated with decreased hepatic expression of DDAH-1. 

Moreover, DDAH-1 is sensitive to oxidative stress92, hence ROS production by 

activated KCs is hypothesized to decrease DDAH-1 expression and activity, and 

thereby increase levels of the eNOS inhibitor ADMA, thus decreasing local NO 

generation (figure 1.3).  

A further evolving area of interest is ADMA-independent actions of DDAH-1, possibly 

mediated through direct protein-protein interaction. DDAH-1 has been shown to 

directly interact and regulate the phosphorylation of neurofibromin93. Additionally, 

DDAH-1 is thought to phosphorylate Akt independent of ADMA metabolizing 

activity94, as well as play a role in cell cycle regulation95. These observations, which 

require further study, have important implications for any off-target effects of 

therapeutic strategies to augment DDAH-1. 

Unlike DDAH-1, DDAH-2 is expressed in immune cells and has been suggested to 

play a role in the regulation of iNOS-mediated NO generation in conditions of 

inflammation and infection96. The genetic location of DDAH-2 in the major 

histocompatibility complex III region of chromosome 6 lends support to this 
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hypothesis96, as does data demonstrating an association between human DDAH-2 

promoter polymorphisms and outcome in sepsis97. Recently, Lambden et al 

characterized the phenotype of Ddah2-/- mice, which display unchanged basal blood 

pressure, unlike the Ddah1+/- mouse which displays systemic hypertension98. 

Moreover, the Ddah2-/- mouse displays increased sensitivity and mortality to 

polymicrobial sepsis compared to wild type, consistent with a role in immune 

regulation and function.      

DDAH 

L-Cit 

DMA 

AGXT-2 

DGV 

Urine 

 

Figure 1.4: The DDAH-ADMA pathway - adapted from Leiper and Caplin99. L-arginine (L-Arg) is 

present in the circulation at >100 times the concentrations of the free endogenous methylarginines: 

ADMA and symmetric dimethylarginine (SDMA). ADMA but not SDMA inhibits all 3 isoforms of nitric 

oxide synthase (NOS), decreasing the production of nitric oxide. L-arginine and the free 

methylarginines are thought to enter the cell (shown on the left) through the y+ transporter. ADMA 

and SDMA are generated intracellularly following the methylation, by protein-arginine 

methyltransferases (PRMT), and subsequent proteolysis, of constituent protein arginine residues. 

ADMA but not SDMA is hydrolyzed by DDAH to form dimethylamine (DMA) and L-citrulline (L-Cit), 

which can be reincorporated into proteins. The major pathway of ADMA elimination is metabolism by 

DDAH-1 with the product DMA excreted in the urine. Both SDMA and ADMA are also substrates for 

alanine-glyoxylate aminotransferase-2 (AGXT2), leading to the formation of symmetrical and 

asymmetrical α-keto-δ-dimethylguanidino valeric acid (DGV) that is also excreted in the urine. 
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1.7 Aims 
 

The aims of this thesis are: (i) to delineate the expression and regulation of hepatic 

DDAH-1 in cirrhosis and portal hypertension, in both rodent models and humans, 

and (ii) to determine if there is a causal relationship between hepatic DDAH-1 and 

portal hypertension in cirrhosis. 

 

Therefore, the specific questions addressed by this study are: 

 

• What is the cellular location of DDAH-1 within the liver in humans and 

rodents? 

• Is hepatic DDAH-1 expression altered in cirrhosis and portal hypertension, in 

humans and rodents? 

• Does gene therapy to reconstitute hepatic DDAH-1 lower portal pressure in a 

rodent model of portal hypertension? 

• What is the mechanism of altered hepatic DDAH-1 expression in cirrhosis and 

portal hypertension, in humans and rodents? 

• Are alternative transcripts of DDAH-1 of biological or pathobiological 

significance? 

 

These aims are important, since extending current understanding of the regulation of 

DDAH-1 in conditions of oxidative stress has implications for portal hypertension as 

well as other conditions characterized by endothelial dysfunction, and will also allow 
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potential translation of mechanisms to augment hepatic DDAH-1 as a therapeutic 

strategy in in portal hypertension.  
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Chapter 2 – Generic Materials and Methods 
 

2.1 General Materials 

2.1.1 Plasmids and reagents for molecular biology 
All general chemicals and reagents were of analytical grade and purchased from Sigma-

Aldrich (Gillingham, UK). All solutions used for RNA extraction were prepared using sterile 

DEPC treated water purchased from Life Technologies Ltd (Paisley,UK). The pGEM-T Easy 

vector, and Dual Luciferase Reporter (DLR) Assay System were purchased from Promega 

UK (Southampton, UK). ABI real time PCR reagents were purchased from Life Technologies 

Ltd (Paisley,UK), including TaqMan gene expression master mix, and TaqMan gene 

expression probes.  General real-time components (optical seals, 96 well plates) were also 

purchased from Life Technologies Ltd (Paisley,UK).  

 

FuGene 6 transfection reagent was obtained from Roche Products Ltd (Welwyn Garden 

City, UK). The QIAquick gel extraction kit and plasmid Mini/Midi Prep kits were purchased 

from Qiagen Ltd (Manchester, UK). The Superscript II RT-PCR kit, T4 DNA ligase, RNase-

free DNase, synthesised olignucleotides and deoxynucleotide (dNTPs) were purchased from 

Life Technologies Ltd (Paisley,UK). Restriction enzymes and buffers were obtained from 

New England Biolabs (UK) Ltd (Hitchin, UK). Other reagents not outlined here were from 

suppliers indicated throughout this chapter. 

 

2.1.2 Reagents for Cell Culture 
HEK293T embryonic kidney cells and HepG2 hepatocytes were purchased from European 

Collection of Cell Cultures (Public Health England, Salisbury, UK). Cell culture media, L-

glutamine, penicillin/streptomycin, fetal bovine serum and fetal horse serum were all 

purchased from Life Technologies Ltd (Paisley,UK). Bovine aortic endothelial cells (BAECs), 
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and BAEC cell culture media, were purchased from Cell Applications Inc (UK distributor: 

ECACC, Public Health England, Salisbury, UK)  

 

Cells were grown in sterile six-well plates, 6mm and 10mm petri dishes, 25cm3 and 75cm3 

flasks (Nunc, Fisher Scientific UK Ltd, Loughborough, UK). 

 

2.2 DNA Manipulation 

2.2.1 Standard Polymerase Chain Reaction (PCR) 
Standard PCR was used to amplify DNA fragments for cloning, diagnostic or semi-

quantitative analysis (for example, diagnostic PCR of recombinant plasmids during cloning 

process) PCR reactions were set up using 100-500ng DNA sample, 1X Abgene buffer, 

1.5mM MgCl2, 0.2mM dNTP, 500nM forward primer, 500nM reverse primer and 1.25 Units 

of GoTaq (Promega UK) Taq polymerase, in a final volume of 50µl. Typical thermocycling 

parameters were 1 cycle for 94°C; 25-30 cycles 94° C for 45 seconds, 59°C for 45 seconds; 

72°C for 45 seconds; and a final extension step of 72°C for 5 minutes. 

 

2.2.2 Agarose gel electrophoresis 
1X loading buffer [40% (v/v) glycerol, 60% (v/v) TE Buffer (Tris Ethylene diamine tetra-acetic 

acid (EDTA), 10 mM Tris-HCL, 1mM EDTA, pH 8.0] and 1X bromophenol blue were added 

to the DNA samples of interest. Samples were then pulse-spun in a centrifuge (Eppendorf 

Minifuge, 20 seconds, 12,000 rpm) and loaded onto the appropriate percentage agarose gel 

in 1X Tris-Acetate EDTA (TAE) buffer (400mM Tris-HCL, 20mM glacial acetic acid, 0.1mM 

EDTA, pH8.0) and run alongside an appropriate sized marker (Promega UK, 100bp and 

1kbp). The gel contained ethidium bromide added at a concentration of 0.035µg/ml. The gel 

was typically electrophoresed in 1X TAE buffer for 1 hour at 80 V. The gel and associated 



	 38	

migrated bands were then visualised on ultraviolet light using a gel documentation and 

imaging system (Bio-Rad Laboratories Ltd, Hemel Hempstead, UK). 

 

2.2.3 DNA extraction and purification from agarose gel 
The required electrophoresed DNA fragments were extracted with a scalpel from the 

agarose gel and purified using the QIAquick gel extraction kit (Qiagen Ltd), as described in 

the suppliers handbook. Purified DNA was typically quantified and stored at -20°C. 

 

2.2.4 DNA determination 
DNA concentration was determined using the NanaDropTM (ND-1000, Fisher Scientific UK 

Ltd, Loughborough, UK) spectrophotometer, with absorbance measured at wavelengths of 

260nm and 280nm. The DNA purity was determined by the ratio of the absorbance at 

260nm/ 280nm. 

 

2.2.5 Ligation of isolated DNA into vector 
The appropriate amount of insert DNA was placed into the ligation reaction with 100ng of the 

vector (pGEM-T Easy, Promega UK). Typically the appropriate amount of insert is calculated 

so that there was a 3x insert:1x vector ration; (vector, ng × insert sixe, kb)÷(size of vector, kb 

× insert:vector ration)= ng of insert. The reaction also contained 3U of T4 DNA Ligase (Life 

Technologies Ltd), 1X TD DNA ligase buffer and H20, to make final volume 10µl. A control 

reaction is also established where the insert DNA fragment is omitted, thereby allowing one 

to determine the presence of re-circularised vector plasmid. Both reactions were incubated 

overnight at 4°C. 
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2.2.6 Transformation of bacteria with plasmid DNA 
Typically 5µl of the ligation reaction was added to 100µl DH5α chemically competent cells 

(Life Technologies Ltd), mixed gently and incubated on ice (or at 4°C) for 30 minutes. Heat 

shock treatment at 37°C for 45 seconds was executed using a pre-calibrated water bath. 

The reaction was then allowed to recover on ice for 2 minutes prior to the addition of 400µl 

pre-warmed SOC, a high nutrient broth media. The reaction was then incubated for exactly 1 

hour at 37°C in a rotating incubator at 225 rpm. Following this 1-hour incubation step, half of 

the reaction volume was extracted and spread onto a Luria broth (LB) agar plates containing 

the appropriate selection antibiotic for transformed cell selection (eg. Ampicillin 100µg/ml). 

Where blue/white selection of transformants was necessary, 40µl X-Gal (20mg/ml) was 

added to the LB agar plates. Plates were inverted and incubated for 16 hours at 37°C. 

 

Subsequently, single isolated transformant colonies were picked and grown in 10ml of LB 

(containing the appropriate selection antibiotic) for 16 hours in a rotating incubator at 37°C, 

at 225 rpm. Using the QIAprep Spin Miniprep kit (Qiagen Ltd) according to the 

manufacturers instructions, plasmid DNA for diagnostic digest was extracted from 6ml of the 

16 hour growth culture. For positive clones, their remaining 4ml of culture was used to make 

a 20%(v/v) glycerol stock for long-term storage at -80° C, and the remaining 10-15ml was 

used to establish a secondary culture to extract plasmid DNA for the purpose of further 

cloning, sequencing or transfection. The plasmid DNA was extracted using the Qiagen 

Plasmid Mini Kit, following the manufacturer’s instructions. 

 

2.2.7 Restriction enzyme digest 
Plasmid DNA was digested using 10U of the required restriction endonuclease (New 

England Biolabs (UK) Ltd) in a final volume of 20µl, which also contained 1X appropriate 

restriction endonuclease buffer (Life Technologies Ltd). The digests were incubated for 2 
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hours at 37°C therefore ensuring complete digestion. Double digests were set up in 

compatible buffers where appropriate. 

 

2.2.8 Plasmid modification by annealed oligonucleotide cloning 
Mutations were introduced into plasmid sequences (for example, to determine functionality 

of predicted regulatory DNA sequences) through cloning of complementary annealed 

oligonucelotides. Oligonucleotide sequences were designed using Primer3 primer design 

software (http://primer3.ut.ee/), to predict the formation of hairpins and loops that would 

prevent successful annealing. Complementary oligonucleotides, with overhangs to allow 

subsequent directional cloning, were purchased from Life Technologies Ltd. 

 

Oligonucleotides (1ug of each, in equimolar concentrations) were then resuspended in 50uL 

annealing buffer (10mM Tris, pH7.5-8.0, 50mM NaCL, 1mM EDTA). After heating to 90-95°C 

for 3-5 minutes, the samples were allowed to slowly cool to room temperature (~45 minutes). 

Annealing was confirmed by agarose gel electrophoresis as in section 2.2.2, although the 

gel was visualised using methylene blue staining rather than UV irradiation to eliminate the 

possibility of DNA damage for subsequent experiments. Methylene blue staining was 

performed in 0.002% methylene blue (w/v, Sigma-Aldrich M-4159) solution in 0.1X TAE 

(0.004M Tris 0.0001 M EDTA) for 1 hour at room temp. DNA extraction and ligation was 

subsequently performed as in 2.2.3-2.2.5. 

 

2.3 Cell Culture 

2.3.1 Maintenance of cell lines and primary cells 
Both cell lines (HEK293T and HepG2) were routinely cultured as monolayers in Dulbecco’s 

modified Eagles medium (DMEM) containing glutamax-1, which was supplemented with 100 
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units/ml streptomycin, 100 units/ml penicillin and 10% (v/v) foetal bovine serum, in a 

humidified atmosphere at 37°C composed of 5% CO2. HEK293T and HepG2 cells were 

typically passaged upon reaching 70-80% confluence thereby ensuring the preservation of 

myoblast cellular phenotype. To passage, cells were washed once with pre-warmed 

phosphate-buffered saline (PBS) and incubated with a trypsin-EDTA solution (0.2% trypsin, 

1mM EDTA) for 2-4 minutes. The flasks were then gently agitated to disrupt cell adhesion, 

before re-suspending at a 1:4 dilution in fresh pre-warmed media. 

 

Primary BAECs were purchased from Cell Applications Inc. at passage 3, and were cultured 

as monolayers in Bovine Endothelial Cell Growth Medium (Cell Applications Inc.), in similar 

conditions as above. All experiments were carried out in BAECS between passages 4 and 8. 

Cells were passaged with trypsin-EDTA as above. 

 

2.3.2 Storage of cells 
In the short-term cells were stored at -80°C, whereas for long-term storage cells were frozen 

in liquid nitrogen. For long-term freezing, cells were washed once with pre-warmed PBS and 

incubated with a trypsin-EDTA solution (0.2% trypsin, 1mM EDTA) for 2-4 minutes. The 

flasks were then gently agitated to disrupt cell adhesion. Before re-suspending in 1 ml cell 

culture media, an equal amount of cell culture media for storage was prepared and mixed 

with 20%(v/v) DMSO. Cells re-suspended in this DMSO containing culture media were then 

aliquoted and frozen slowly at -80°C by placing in an isopropanol containing insulated box. 

After 24 hours, these cell aliquots were transferred to a liquid nitrogen cell bank for long-term 

storage. 
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2.4 RNA manipulation 

2.4.1 RNA isolation from cells and tissues 
Total RNA was extracted from rat tissues using the RNeasy Maxi kit (Qiagen Ltd) or the 

miRNeasy Maxi kit (Qiagen Ltd) following the manufacturer’s protocol. Total RNA was 

isolated from cell lines using the RNeasy Mini kit (Qiagen Ltd) or the miRNeasy Mini kit 

(Qiagen Ltd) according to the manufacturer’s protocol. Briefly, media was removed and cells 

were washed twice in pre-warmed PBS. 350µl of RNeasy RLT lysis buffer is then added to 

the cells. Lysate was collected and RNA extraction was executed as described in the 

RNeasy or miRNeasy kit handbook (Qiagen Ltd). 

 

2.4.2 RNA determination 
RNA concentration was determined using the NanaDropTM (ND-1000, Fisher Scientific UK 

Ltd) spectrophotometer, with absorbance measured at wavelengths of 260nm and 280nm. 

The RNA purity was determined by the ratio of the absorbance at 260nm/ 280nm. 

 

2.4.3 Deoxyribonuclease (DNaseI) treatment of RNA 
1µg of total RNA was incubated with DNaseI (Sigma-Aldrich) according the manufacturer’s 

instructions (on column digestion). The DNaseI treated RNA was then reverse transcribed as 

described in section 2.4.3. 

 

2.4.4 cDNA synthesis 
1 µg of DNaseI treated total RNA was incubated with 0.5µg oligo dT, and 0.5mM dNTP mix 

for 10 minutes at 70°C in a Perkin Elmer Cetus DNA thermal cycler. The reaction was then 

placed on ice for 2 minutes and briefly centrifuged to remove condensation. This reaction 

was then supplemented with 1X First strand buffer (Invitrogen), 10mM DTT and 200 U 

Superscript II reverse transcriptase (RT) enzyme (Invitrogen) giving a total reaction volume 
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of 20µl. Control reactions (minus RT) were also established that contained equal volume of 

H20 instead of Superscript II RT enzyme. The reactions were then incubated in the thermal 

cycler at 42°C for 55 minutes; 70°C for 10 minutes and then finally back on ice for recovery. 

The subsequent cDNA was typically diluted 1:5 with DEPC treated H20, with 1µl used for 

down-stream PCR amplification. 

 

2.4.5 Quantitative real-time PCR 
Multiple reactions were set up as a master mix and a typical 20µl reaction would contain: 1µl 

template cDNA (1:5 dilution from RT reaction), 1µl 20X pre-formulated assay mix (Applied 

Biosystems – containing 0.9mM forward and reverse primers coupled to 250nM FAMTM-dye 

labelled TaqMan MGB probe), 10µl 2X TaqMan Universal PCR master mix (Applied 

Biosystems), ddH20 to a final volume of 20µl. 

Typically a “no template” control was also included using ddH20 instead of cDNA template. 

For TaqMan gene expression analysis, Cyclophilin A (PPIA) was used as a reference gene 

to normalise mRNA abundance between different samples. The amplification reaction was 

executed in a ABI Prism® 7900HT sequence detection system (Life Technologies Ltd). The 

cycling conditions were 50°C for 2 minutes (holding step), 95°C for 10 minutes (holding step) 

and then 40 cycles of 95°C (denaturation) and 60° C for 1 minute (annealing and extension 

step). The data were automatically sorted and analysed using the comparative ΔΔCT 

method100. This method allows the quantitative determination of fold induction of gene of 

interest between different samples using the following formula: 

 

Fold induction = 2-ΔΔCT 

 ΔCT = mean CT(gene of interest) - mean CT(reference gene)  

 ΔΔCT = ΔCT(calibrator) - ΔCT(unknown) 
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The calibrator sample, which is typically represented by the non-treated or basal control 

sample, allows for corrections to be made for inter-assay variation. It is important to note that 

the above formula is based on the assumption that the efficiency of the PCR reaction for 

both the reference internal control gene, and the gene of interest is identical with a doubling 

of product being achieved with every cycle. 

 

2.5 Transient transfection analyses 

2.5.1 Transient transfection of cell lines 
Approximately 40,000 HEK293T or Hep2G2 cells/well were seeded and incubated for 24 

hours prior to transfection. Transfections were carried out using the non-liposomal 

transfection reagent Fugene6 (Roche Products Ltd), according to the manufacturer’s 

instructions. In some experiments, cells were co-transfected with 0.5µg of pMirReport Firefly 

luciferase construct and 0.1µg of pTK-Renilla luciferase expressing plasmid to act as a 

control of transfection efficiency.   

 

Firefly and Renilla luciferase activities were measured 48 hours post- transfection using the 

Dual-Glo luciferase assay system (Promega UK) as described in section 2.5.2. 

 

All transfections within each experiment were performed in triplicate, with each experiment 

typically performed on a minimum of at least three separate occasions. Data from 

transfections are expressed as mean ± 1 standard error of mean (SEM) relative to promoter 

construct specified, and differences between samples were detected using a one-way 

ANOVA, with p<0.05 considered to be statistically significant.  
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For non-luciferase reporter transfections, six-well plates were seeded as before and 

transfected with a maximum of 1.5µg over-expression plasmid. 48 hours post transfection 

total RNA was isolated from cell as described in section 2.4.1. 

 

2.5.2 Luciferase reporter gene assay 
Firefly and Renilla luciferase activities were measured 48 hours post transfection using the 

Dual-GloTM luciferase assay system (Promega UK) and a Luminat LB9507 luminometer 

(Berthold Technologies). The assay was undertaken as described in the users’ handbook 

(Dual-luciferase assay handbook, Promega UK). Briefly, cells in the six well plates were 

lysed using the luciferase cell lysis buffer (CLB, Promega UK). The first luminescence from 

the firefly luciferase, representing promoter reporter activity, was measured by adding 100µl 

of LARII substrate into 40µl of cell lysate in a fresh luminometer tube. The second 

luminescence for Renilla luciferase (representing the internal control activity) was quantified 

by the addition of 50µl of Stop and Glo substrate to quench the first reaction and 

simultaneously initiate Renilla luciferase reaction. Data were then extrapolated as relative 

luciferase activity, the ratio of the first Firefly luminescence over the second Renilla 

luminescence. 

 

2.6 Polyacrylamide gel electrophoresis (PAGE) 

2.6.1 Resolving gel  
Proteins were separated according to molecular weight devised by Laemmli101, with minor 

modifications, using mini-protean or protean XL vertical slab gel apparatus (Bio-Rad 

Laboratories Ltd).  Prior to casting resolving gels, all solutions were de-gassed.  N, N, N’, N’-

tetramethylethylenediamine (TEMED) and ammonium persulphate (APS) were added to the 

polyacrylamide solution with stirring immediately prior to casting of the gels (Table 2.1).  

Gels were over-layered with water saturated butan-2-ol, covered with aluminium foil and 
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allowed to polymerise for 2 hours. 

 

Table 2.1: Constituents of resolving gels for SDS-PAGE 

  

 Volumes (ml) 

8% Gel 10% Gel 12% Gel Stacking Gel (5%) 

30% (w/v) Acrylamide mix 2.7 3.3 4.0 1.7 

1.5M Tris-HCl (pH 8.8) 2.5 2.5 2.5  

1M Tris HCl (pH 6.8)    1.25 

10% (w/v) SDS 0.1 0.1 0.1 0.1 

10% (w/v) APS 0.1 0.1 0.1 0.1 

TEMED 0.004 0.004 0.004 0.01 

dH2O 4.6 4.0 3.3 6.8 

 

 

2.6.2 Stacking gel 
A stacking gel (5%, table 2.2) was used to concentrate the proteins into tight bands prior to 

entering the resolving gel.  Prior to casting the stacking gel, the butan-2-ol over-layer was 

removed from the surface of the resolving gel and the gel surface washed with water to 

remove all traces of butan-2-ol.  After pouring the stacking gel on top of the resolving gel, a 

15 well comb was placed into the stacking gel and it was allowed to polymerise for 1 hour. 
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2.6.3 Protein extraction 
Cells were lysed in RIPA buffer (750 mM NaCl, 5% (v/v) NP40, 2.5% (w/v) DOC, 0.5% (w/v) 

SDS, 250 mM Tris-HCl pH 8.0) centrifuged at 13 000 x g for two minutes and the 

supernatant transferred to a clean eppendorf tube. Subsequently the protein concentration 

was determined using the BCA method (vide infra).  

 

Rat liver tissue samples were processed in 100mg blocks. Tissue was ground to a fine 

powder using a pestle and mortar and lysed in 1ml of RIPA buffer (RIPA, 0.75 M NaCl, 5% 

(v/v) NP40, 2.5% (w/v) deoxycholate, 0.5% (w/v) SDS, 0.25 M Tris-HCl pH 8.0, 10 mM Dithio-

L-threitol (DTT) containing protease inhibitors) and incubated on ice for 15 minutes.  The 

lysate was centrifuged at 13 000 x g for 5 minutes at 4°C and the clarified supernatant 

transferred to a clean siliconised eppendorf and the protein concentration determined using 

the BCA method. 

 

2.6.4 Protein concentration measurement 
Protein concentration for SDS-PAGE was determined using the Pierce bicinchonoic acid 

(BCA) protein assay kit (Life Technologies Ltd).  BCA solution was made by combining 50 

parts of reagent A with 1 part reagent B.  200 µl of BCA mix was added to 2 µl of protein 

sample and incubated at 37°C for 30 minutes and the absorbance measured using a Genios 

microplate reader (Tecan UK Ltd, Reading, UK) at λ = 560 nm.  Protein concentration was 

determined by comparing the O.D. of the sample solution to a BSA standard curve. 

 

2.6.5 Western blotting 
Typically 40 µg of protein sample was used for both cell culture lysate and tissue lysate 
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samples. The protein samples were mixed with PBS, NuPAGE LDS sample buffer (4×) and 

β-mercaptoethanol (50x) to a total volume of 20µl, and were boiled for three minutes prior to 

loading.   

 

Samples were loaded onto 1D-PAGE gels and electrophoresed at 200 volts for one hour in 

protein running buffer (191.8 mM Glycine, 25 mM Tris, 1% (w/v) SDS).  The sacking gel was 

removed and the resolving gel placed onto a sponge and two pieces of filter paper pre-

soaked in transfer buffer (protein running buffer containing 25 % (v/v) methanol).  A piece of 

Hybond-C membrane (GE Healthcare Life Sciences, Little Chalfont, UK) was cut to the 

same size as the gel and pre-soaked in transfer buffer.  The membrane was placed on the 

surface of the gel and two-pieces of pre-soaked filter paper placed on top of the membrane 

followed by a second sponge.  Proteins were transferred to the membrane at 100 volts for 1 

hour.  The membrane was then incubated in 4% (w/v) non-fat milk for 1 hour at room 

temperature to block non-specific proteins. 

 

Antibodies were dissolved in 4% (w/v) non-fat milk, the membrane added and probed over 

night at 4°C.  Membranes were washed in Tris-buffered saline containing 0.05% (v/v) Tween 

20 (Sigma-Aldrich, UK) three times for 5 minutes each.  The membranes were then added to 

4% (w/v) non-fat milk containing horseradish peroxidase (HRP) conjugated secondary 

antibody (1:1000 dilution, Dako UK Ltd, Ely, UK), incubated for 1 hour at room temperature 

and washed three times for 5 minutes each. 

 

Proteins were visualized using enhanced chemiluminescence (ECL, GE Healthcare Life 

Sciences).  Excess TBS-T was removed by placing the membrane on to absorbent paper, 

the ECL reagent pipetted on to the membrane and incubated at room temperature for 1 
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minute.  Excess ECL reagent was removed and the membranes exposed to photosensitive 

film to visualize the proteins. 

 

Densitometry of protein bands was automatically measured using Image Lab software on the 

gel documentation and imaging system (Bio-Rad Laboratories Ltd). Data were calculated as 

the ratio of target protein band to loading control protein band density, and were expressed 

as mean ± 1 SEM. Differences between samples were detected using a one-way ANOVA, 

with p<0.05 considered to be statistically significant.  

 

2.7 Histology and immunohistochemistry  
Tissues were fixed in 10% formalin, embedded in paraffin and 4um sections were cut on a 

rotary microtome. Paraffin embedded sections were dewaxed and rehydrated using serial 

alcohol and water immersion according to standard techniques. For some sections, antigen 

retrieval was carried out by microwaving the section in 10mM sodium citrate buffer, pH 6.0, 

for five minutes.  Sections were incubated in 1% hydrogen peroxide to quench endogenous 

peroxidase activity and then incubated in 5% normal goat serum.  Subsequently, individual 

sections were incubated overnight with antibodies specific for DDAH-1 (Abcam, Cambridge, 

UK).  After washing, sections were incubated in biotin-conjugated secondary antibody 

(Vector Laboratories Ltd, Peterborough, UK) followed by streptavidin-biotin peroxidase 

complex solution (Dako UK Ltd).  Colour reactions were developed by incubating sections in 

3’3-diaminobenzidine (Sigma-Aldrich, UK) for 5 minutes and rehydrated through ethanol 

series into xylene.  Rehydrated sections were mounted using DPX mounting media and 

images captured on a Zeiss Axioscope 2 plus microscope (Carl Zeiss Ltd, Cambridge, UK). 
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2.8 In vivo studies 
All animal experiments were conducted according to the Home Office guidelines under the 

UK Animals in Scientific Procedures Act 1986. All experiments in this thesis were performed 

in male Sprague- Dawley (SD) rats, weighing 220–250g. All rats were housed in the 

Comparative Biology Unit, UCL, and given free access (ad libitum) to standard rodent chow 

and water until the night before their sacrifice, with a light/dark cycle of 12 hours (the dark 

phase extended from 1900–0700 hours), at a temperature of 22–23°C and humidity of 

approximately 50%. 

 

2.8.1 Bile duct ligation surgery 
Surgery was performed after induction anaesthesia with (1L/min oxygen with 5% isoflurane) 

and maintenance with 2% w isoflurane. All rats were given subcutaneous injection of 

Bupivacaine 5 mg/kg body weight perioperatively as analgesic as specified in the project 

licence. All rats underwent bile duct legation to induce biliary cirrhosis or a sham operation. 

A midline abdominal incision was made. The common bile duct was isolated and three 

ligatures were tied with the highest one as proximal as to the porta hepatis and sectioned 

between the two distal sutures. Sham operated rats underwent laparatomy and isolation of 

the common bile duct without any ligature or section. 
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Figure 2.1: Common bile duct ligation in male Sprague-Dawley rats. (A) Under isofluorane 

anaesthesia the abdominal wall was shaved and a small incision with a scalpel was made. 

(B) The abdominal cavity was opened, and stretched and fixated with two sterile high-grade 

steel tweezers. (C) Liver lobules were turned down and intestines were carefully pulled out. 
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(D) The common bile duct was fixed with forceps and obstructed with a piece of string. (E) A 

second ligature was set in a distance of approximately 1 cm, and the common bile duct was 

severed between these ligatures. (F) Intestines were replaced in the abdominal cavity and 

the incision was closured in layers. (G) The livers of sham-operated animals show no sign of 

nodularity at day 28 after surgery. (H) By contrast, livers of animals following bile duct 

ligation demonstrate nodularity at 28 days.  

 

2.8.2 Haemodynamic measurements 
All haemodynamic measurements were performed on the day of sacrifice under 

anaesthesia, with temperature maintained at 36-37 ° C, with a rectal temperature probe and 

a temperature controlled mat. After induction of anaesthesia, a midline incision was made at 

the neck, and the left carotid artery was isolated. The cranial end was tied off with a ligature. 

The caudal end was clamped with a vessel clamp and an incision was made onto the vessel 

to insert a Polythethylene tube (Portex, Kent, UK) to monitor Mean Arterial Pressure 

continuously. Portal pressure was measured by direct cannulation of the portal vein under 

vision. Both mean arterial pressure and portal pressure were transduced independently to a 

Powerlab transducer linked to a computer running LabChart v5.0.1 software (AD Instruments 

Ltd, Oxford, UK). A measurement of MAP and portal pressure was taken after three minutes 

of stabilization, or after a stable trace was obtained on the monitor. The mean of three 

readings taken one minute apart was taken as the correct value for that measurement. 

Following this 3-minute recording period, the animal was sacrificed by vena caval puncture 

and exanguination. Tissues were immediately dissected and snap frozen in liquid nitrogen. If 

at laparotomy it was apparent that BDL surgery had failed, if there was no biliary dilatation or 

alteration of liver parenchyma, then this animal was excluded from further analysis. 

 

Haemodynamic data is expressed as mean ± 1 SEM, and differences between groups were 

detected using a one-way ANOVA, with p<0.05 considered to be statistically significant. 
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Chapter 3 – Characterisation of Hepatic DDAH-1 in Cirrhosis: Rats 
and Humans   
 

3.1 Introduction 
This chapter addresses the characterization of hepatic DDAH-1 expression in health 

and in disease. Some background data exists with regard to DDAH-1 expression in 

liver, although progress in this field has been limited by the poor specificity of 

commercially available antibodies to DDAH-1. Leiper et al initially used Northern 

blotting to demonstrate that DDAH-1 is expressed in healthy rodent liver87. Nijveldt et 

al went on to show that the liver is an important site of plasma ADMA metabolism in 

healthy rats, and thus by inference an important site of DDAH activity91. Subsequent 

observations in humans demonstrated that plasma ADMA levels were elevated in 

cirrhosis102, following hepatic resection103, and in acute liver failure104. Moreover, 

high plasma levels of ADMA were cleared following orthotopic liver transplantation 

for acute liver failure104. Additionally, organ flux studies in humans confirmed that the 

liver is a major site of ADMA clearance105. 

 

Hepatic tissue ADMA levels are also elevated in cirrhosis and, importantly, elevated 

further in alcoholic hepatitis and correlate with portal pressure72. Hepatic DDAH 

levels were also decreased in cirrhotic patients in this study, although the exact 

isoform of DDAH that was characterized by Western blotting in this study remains a 

matter of debate. In fact, antibody specificity for isoforms of DDAH remains a 

hindrance to study of the DDAH-ADMA pathway. Indeed, at the time of writing, no 

immunohistochemistry studies for hepatic DDAH-1, in any species, have been 

published in a peer-reviewed manuscript as a consequence of limited antibody 

specificity. 
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Hu et al used a LoxP/Cre approach to produce an endothelium-specific DDAH1 exon 

4 deletion, leading to the absence of endothelial DDAH-1 enzyme expression106. 

These authors then demonstrated markedly reduced protein expression of DDAH-1 

by Western blot in several organs, including kidney, lung and liver, with an 

associated rise in tissue ADMA level. The authors proceeded to conclude that 

expression of DDAH-1 is predominantly endothelial in these tissues. However, this is 

at odds with the demonstration of tissue parenchymal expression of DDAH-1 in 

kidney and lung107, 108 hence further study is required to resolve this apparent 

contradiction. 

 

In the experiments described in this chapter, human specimens were initially used to 

delineate the expression and cellular location in healthy liver and in cirrhosis.  These 

results were then validated in the bile duct-ligated rat model of cirrhosis. 

Subsequently, a gene therapy approach was used to over-express hepatic DDAH-1 

in BDL rats with portal hypertension, to assert a causal link between changes in 

hepatic DDAH-1 expression and portal haemodynamics in cirrhosis. This approach 

was chosen over the use of DDAH-1 over-expressing transgenic, and DDAH-1 

heterozygote knockout, mice88, 109, since they are not suitable for hepatic 

haemodynamic studies due to their small size. Additionally, bile duct-ligation in mice 

leads to a more heterogenous phenotype in mice than in rats (vide infra), because 

mice have a gallbladder which rats do not have, hence the degree of cholestatic liver 

injury following biliary obstruction is more variable.  

 

3.1.1 The bile duct-ligated rat model of cirrhosis 
Several animal models of cirrhosis exist, although each has flaws whereby they fail 
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to completely represent the human condition. The two most commonly used rodent 

models of cirrhosis are the carbon tetrachloride (CCl4) treated rat, and the bile duct-

ligated (BDL) rat.  

 

Acute administration of CCl4 to rats induces acute hepatitis, primarily in a perivenular 

distribution. Continuous administration induces chronic liver injury and fibrosis, 

leading to cirrhosis. Therefore, the CCl4 model is an excellent model for evaluating 

the pathobiology of progressive liver fibrosis. However, the main drawbacks of the 

CCl4 model relate to cost and duration of the model, variability in the degree of liver 

injury, and failure to adequately replicate the syndrome of ACLF.  Several routes of 

administration of CCl4 have been described, including oral 110, intraperitoneal 111
 and 

inhaled 112, and the route favoured varies between laboratories.  At least 12 weeks of 

CCl4 administration is required to develop micronodular cirrhosis with portal 

hypertension, and up to 20 weeks for ascites to develop113. A further complexity is 

that rats vary in sensitivity to CCl4, even within genetically homogenous litters, hence 

predicting the degree of injury is difficult. Moreover, as noted in chapter 1, portal 

hypertension in advanced cirrhosis may be a consequence of factors other than 

progressive fibrosis, hence the CCl4 model may not fully represent the pathobiology 

in this context. 

 

The BDL model induces secondary biliary cirrhosis. It has been mainly developed in 

rats114, which are especially appropriate due to the lack of a gallbladder. This model 

develops biliary fibrosis/cirrhosis in 4-6 weeks (figure 2.1). However, the histological 

appearance is not typical of human disease, as it is characterised by marked 

cholangiocyte proliferation and expanded portal tracts, and the architectural 
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disturbances typical of cirrhosis are seldom found115. At 2 weeks rats develop mild 

portal hypertension116 and at 4 weeks severe portal hypertension, a hyperdynamic 

circulation, and a degree of portal-systemic shunting and ascites 114, 117, 118. Although 

the BDL model has disadvantages with regard to the pattern of hepatic fibrosis that 

develops following injury, the model replicates additional features of advanced 

cirrhosis and the ACLF syndrome, and is therefore considered appropriate for the 

study of portal hypertension in this setting. In particular, the BDL animal develops 

brain swelling representative of hepatic encephalopathy in ACLF, and features of the 

hepatopulmonary syndrome119, 120. Furthermore, in response to bacterial 

lipopolysaccharide, the BDL rat develops features of oxidant injury and elevated TNF 

levels as well as exacerbated portal hypertension69. Therefore, the BDL rat model 

was used in the majority of in vivo experiments in this thesis. 

 

3.1.2 Gene therapy 
Virus-mediated gene delivery in rodent models of cirrhosis and portal hypertension 

has been demonstrated previously. Yu et al used an adenovirus to deliver neuronal 

NOS (nNOS) to hepatocytes, sinusoidal endothelial cells (SECs) and stellate cells in 

BDL and CCl4-treated cirrhotic rats50. This group demonstrated transduction of all 

these cell types in rodent models of cirrhosis although at decreased efficiency 

compared with non-cirrhotic animals. Moreover, this group found that transduction 

with nNOS led to increased intrahepatic NO generation and decreased intrahepatic 

resistance. Similarly, van de Casteele et al used adenovirus to deliver eNOS to CCl4-

treated rodents with cirrhosis, with a similar reduction in portal pressure, although the 

hepatic expression of the transgene was not fully described49.  However, from a 

broader therapeutic perspective, it has been demonstrated that hepatic NOS over-
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expression has limited efficacy in portal pressure reduction due to ‘spill-over’ 

systemic deleterious effects of increased NO generation, and the presence of 

endogenous inhibitors of NOS121. From the point of view of virus-mediated gene 

transduction in cirrhosis, Lavina et al also demonstrated efficient transduction of 

CCl4-treated rodents with cirrhosis with an adenovirus expressing superoxide 

dismutase (SOD)76. However, recombinant adenoviral vectors have been associated 

with immunogenicity, with activation of both innate and adaptive immune 

responses122. Moreover, these responses have been associated with significant liver 

injury with leucocyte infiltration and elevation of liver enzymes. Therefore, alternative 

viral vectors for liver-specific delivery of DDAH-1 were sought, to avoid confounding 

effects of liver inflammation on DDAH dysfunction and portal pressure. 

 

Adeno-associated virus (AAV) vectors are human parvoviruses that were first 

discovered as contaminants in adenovirus culture. These single-stranded DNA 

vectors have the best safety record amongst viral vectors, since no human disease 

has ever been associated with human infection. Unlike wildtype AAV (wtAAV), 

recombinant AAV particles rarely integrate into host genomes, but form 

extrachromosmal concatemers in the target cell, leading to long-term episomal 

persistence123. 

 

The wtAAV genome is 4.7kb, and is composed of two genes rep and cap, which 

encode four replication proteins and three capsid proteins respectively (figure 3.1). 

The AAV genome is flanked by two inverted terminal repeats (ITRs) which have a T-

shaped hairpin structure containing a terminal resolution site and a rep-binding 

element (RBE) that play essential roles in replication and encapsidation. The ITR is 
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the only required cis-acting viral component necessary for genome replication, 

integration and packing. The rep and cap genes can therefore be provided in trans 

from a different plasmid, along with a helper construct providing the adenovirus-

derived Ad early region genes, E1A, E1B, E4, and E2A, as well as Ad virus 

associated RNAs. These components are essential for transcription and protein 

synthesis124. 
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Figure 3.1. Top panel: The wild type AAV genome, with rep and cap genes flanked by ITRs. 

The genome encodes 4 replication proteins (Rep78, Rep68, Rep52, Rep40) and 3 capsid 

proteins (VP1, VP2, VP3).  The large Rep proteins (Rep78 and Rep68) are produced from 

transcripts using p5 promoter, while small Rep (Rep52 and Rep40) are produced from p19 

promoter. Bottom panel: The rep and cap genes can be provided in trans from a different 

plasmid, hence the vector can be replaced with a transgene expression cassette. 

Recombinant viral particle manufacture requires the rep and cap genes provided in trans 

along with a helper plasmid providing Adenovirus-derived Ad early region genes, E1A, E1B, 

E4, and E2A. This process is characterized by genome replication, assembly of the capsid 

proteins (VP1, VP2, and VP3), and packaging leading to virion production along with 

exosome release. 
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Unlike adenoviruses, little or no innate immune response occurs following AAV 

infection in vivo. An adaptive immune response does occur, which can eliminate the 

vector and transfected cells leading to loss of sustained transgene expression. 

However, this would not be expected to potentiate hepatic innate immune responses 

and thereby DDAH dysfunction in the same way as adenovirus-mediated innate 

immune activation. In this study, a hepatocyte-specific promoter ‘LP1’ was used for 

AAV mediated transgene delivery. The reasons for hepatocyte-restricted 

transduction of DDAH-1 were to mimic the physiological expression of DDAH-1 

established in immunohistochemistry and cell separation studies (vide infra), and to 

minimize the immunogenicity of DDAH-1 expression hence prolonging the durability 

of transgene expression. The role of tissue-specific promoters in reducing or 

abrogating immune responses to the transgene product has been demonstrated in 

the setting of animal models of muscular dystrophy. The use of tissue-specific micro 

RNA elements to detarget transgene expression in dendritic cells, prevented cellular 

immune responses to a human sarcoglycan transgene following intramuscular 

injection in mice125. The LP1 promoter was constructed by Nathwani and colleagues, 

using amplification of consecutive segments of the human apolipoprotein hepatic 

control region (HCR) and the human alpha-1-antitrypsin (hAAT) gene promoter 

including the 5’untranslated region126. 

 

Additionally, a further technical modification used in this study is a self-

complementary (scAAV) AAV construct. A major limiting factor in the efficiency of 

single-stranded (ssAAV) vectors is their requirement for either host-cell mediated 

synthesis of the complementary-strand or annealing of the plus and minus strands 

from two separate viral particles co-infected into the same cell. McCarty et al. 
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developed a way to circumvent this problem by packaging both strands as a single 

DNA molecule. By utilising the knowledge that rAAV DNA of half or less than the 

wtAAV genome length can be packaged as a dimer 127 they have developed a self-

complementary vector128. In this construct the terminal resolution site (trs), from 

which replication initiates, is deleted from one of the ITR regions and the effect is 

that replication initiates from the wild-type ITR, proceeds through the mutant end 

without terminal resolution and continues back across the genome, using the 

opposite strand as a template to create the dimer. The result is a linear self-

complementary genome with two wild-type ITRs at either end and a mutated ITR in 

the middle (Figure 3.2). After uncoating in the cell nucleus, the vector rapidly 

undergoes base pairing to form a double-stranded molecule without the help of the 

host, thus, bypassing the rate-limiting step. By contrast, following uncoating of the 

ssAAV vector genome, rearrangement into either circular or linear concatemers is an 

essential event for stable persistence of the transgene in vivo. If this rearrangement, 

through a double-stranded structural intermediate, does not occur then a rapid 

disintegration of linear single-stranded vector genome follows129, 130.  Recently, 

Nathwani et al. reported a 20-fold improvement in human FIX expression in mice, 

following transduction of the liver with an AAV8 pseudotyped scAAV vector126. 
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Figure 3.2: This diagram illustrates how single-stranded AAV (ssAAV) and self-

complementary AAV (scAAV) vectors differ in the size of their transgene cassette, their 

replication and generation into viral particles. Both vectors are flanked by ITRs, however, the 

right-hand ITR of scAAV vectors is mutated by deleting the terminal resolution site (TRS). 

The effect is that replication initiates from the wild-type ITR, proceeds through the mutant 

end without terminal resolution and continues back across the genome, using the opposite 

strand as a template to create the dimer. The result is a linear self-complementary genome 

with two wild-type ITRs at either end and a mutated ITR in the middle. The scAAV transgene 

cassette, however, must be half the size of the conventional ssAAV vector, which is 

achieved by using truncated promoters and/or removing non-coding sequences. After 

uncoating in the cell nucleus, the vector genomes are converted into double-stranded 

transcriptionally active DNA. For ssAAV-mediated transduction, annealing of plus and minus 

genomes, and perhaps second-strand synthesis is required, both of which are considered 

rate limiting steps. For scAAV vectors, the complementary sequences rapidly hybridise to 

form stable DNA duplexes. 
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3.2 Results 

3.2.1 Optimization of immunohistochemical staining of DDAH-1 
Immunohistochemistry for DDAH-1 was performed on formalin-fixed paraffin-

embedded human liver samples, according to the methods described previously. 

Samples were from a resection specimen from an individual with no history of heavy 

alcohol intake or of liver dysfunction, and from two patients with alcohol-related 

cirrhosis. Since no protocol for immunostaining for DDAH-1 in human liver has been 

published, optimization steps were performed using three different primary 

antibodies, varying antigen retrieval techniques, and staining conditions, on formalin-

fixed paraffin-embedded sections of healthy human liver. The following strategy was 

adopted: three primary antibodies were used (Abcam Ab 2231 - Goat anti-DDAH1, 

Abcam Ab 82908 - Rabbit anti-DDAH1, Abcam Ab 180599 Rabbit anti-DDAH1), and 

systematically tested at three different concentrations (primary ab 1:50, 1:100 and 

1:1000). Additionally, each of these primary antibody conditions was tried with and 

without prior microwave antigen retrieval techniques.  

Following these optimization steps, the goat anti DDAH-1 antibody Ab 2231 with a 

microwave antigen retrieval technique demonstrated optimal staining for HRP-

conjugated antibody with minimal background staining.  

 

 

3.2.2 Localization of hepatic DDAH-1 expression in healthy human liver and in 
cirrhotic liver 
Figure 3.2 demonstrates DDAH-1 protein expression in normal human liver tissue 

(left panel). DDAH-1 staining is evident primarily in parenchymal cells, predominantly 

in zone 3 hepatocytes. Tissue sections from patients with alcohol-related cirrhosis 
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(right panel) display typical architectural changes of cirrhosis, with nodule formation 

and the presence of fibrous bands. In these sections, DDAH-1 expression is still 

localized to hepatocytes, but from a non-quantitative perspective expression levels 

appear reduced. 

 

 

 

Figure 3.2: Representative sections of human liver (5µm thickness; x10 magnification, x40 

magnification inset) from a control non-cirrhotic subject (left side image), and a patient with 

cirrhosis and portal hypertension (right side image). Hepatic DDAH-1 (horseradish 

peroxidase-conjugated dark brown staining) is located within the cytoplasm of hepatocytes 

of human liver. DDAH-1 levels appear decreased in cirrhotic liver (right side image) 

compared to healthy liver (left side image). 
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3.2.3 Localisation of hepatic DDAH-1 in healthy rodent liver 
To confirm these findings in a rat model, samples were obtained from control 

Sprague-Dawley rats that had undergone hepatic cell separation by collagenase 

perfusion at the Yale Cell Isolation Core Facility (New Haven, Connecticut, USA – 

provided by Dr Yasuko Iwakiri) as previously described131.  Cells were immediately 

stored in a lysis buffer until used for western blot, as previously described132. 

Subsequently, protein expression of DDAH-1 was assessed by western blot. In 

agreement with the human immunohistochemistry data, figure 3.3a demonstrates 

that DDAH-1 expression is predominantly restricted to the parenchymal cell fraction. 

 

 

3.2.4 Histological characterization of the bile duct-ligation rat model of 
cirrhosis 
Bile duct-ligated (BDL) rats were used for the majority of in vivo experiments 

presented in this thesis. As noted in section 3.1.1, the BDL model induces secondary 

biliary cirrhosis, although the histological appearance is not typical of human 

disease. Representative sections of sham-operated and BDL rat liver from the cohort 

of animals used in subsequent experiments are presented in figure 3.3. The sham 

liver demonstrates normal hepatic architecture, whereas the BDL liver has evidence 

of cross-linking of fibrous septa, representing bridging fibrosis.  
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Figure 3.3: Representative sections of rat liver (5µm thickness; x40 magnification) from a 

sham-operated rat (left panel, haematoxylin and eosin stain), BDL rat (centre panel – 

haematoxylin and eosin stain, right panel – reticulin stain). Sham liver demonstrates normal 

liver architecture, whereas BDL liver shows cross-linking of fibrous septa, representative of 

bridging fibrosis.		

	

	

	

3.2.5 Quantification of DDAH-1 expression in healthy and cirrhotic rodent liver 
As noted above, DDAH-1 levels appeared decreased in human cirrhosis, using a 

non-quantitiative approach in immunostained human liver samples. These findings 

were confirmed in two rodent models of cirrhosis using western blot. Figure 3.4b 

demonstrates significantly decreased hepatic DDAH-1 protein expression in cirrhotic 

BDL rats compared with control sham-operated rats (p<0.01). These results were 

confirmed in liver tissue from cirrhotic CCl4 rats, which had significantly lower hepatic 

DDAH-1 expression than control rats (figure 3.3c, p<0.01).  
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Figure 3.4a (left panel): Representative western blot on cell separation preparations from 

healthy rat liver (n=3). DDAH-1 protein is predominantly expressed in the hepatocyte fraction 

rather than the non-parenchymal cell (NPC) fraction. Figure 3.4b (centre panel): 

Representative western blot from rat liver demonstrates that hepatic DDAH-1 expression is 

significantly reduced in BDL rats compared to sham (n=6/group, Student’s t-test p<0.01). 

Figure 3.4c (right panel): Representative western blot demonstrating that hepatic DDAH-1 is 

also significantly reduced in CCl4-treated rats compared to control (n=6/group, Student’s t-

test p<0.01).  

 

3.2.6 Effect of ADMA on endothelial NO production 
Since hepatic DDAH-1 expression is decreased in models of cirrhosis compared to 

control animals, it is hypothesized that hepatic ADMA metabolism is impaired leading 

to increased local ADMA levels and impaired eNOS function. Endogenous levels of 

NO for regulation of sinusoidal vasculature are low, and hence measurement of 

hepatic NO and determining fine changes in hepatic NO in vivo is problematic. 

Therefore, an in vitro model of eNOS-mediated NO production was used to 

demonstrate effects of exogenous ADMA on endothelial NO production.  

Bovine aortic endothelial cells (BAECs) can be stimulated to produce NO by use of 
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the calcium ionophone Ionomycin, which results in rapid de-phosphorylation of 

eNOS at Threonine 497 (Thr497) and consequent functional activation133. As such, 

this model of endothelial NO generation was used to study the effects of 

physiologically relevant concentrations of ADMA on eNOS-mediated NO release. 

After overnight culture, BAECs were pre-treated for 30 minutes with either 5uM 

ADMA or phosphate-buffered saline (PBS) control. Following this, BAECs were 

stimulated with 5uM Ionomycin or PBS control. At 30 minutes following stimulation, 

cell media was removed for NO measurement by chemiluminescense and cells were 

lysed for protein quantification and western blot. 

 

As demonstrated in figure 3.4, Ionomycin stimulation leads to a marked increase in 

BAEC NO production, in association with increased eNOS phosphorylation at 

Ser1177, although total eNOS protein levels remain unchanged. Exogenous ADMA 

leads to an inhibition of BAEC NO production, reaching significance at 5uM ADMA 

with no further increase in inhibition of NO production at 10uM ADMA. This inhibition 

of NO production was not associated with any change in total eNOS or Ser1177 

phospho-eNOS (figure 3.4).  
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Figure 3.5. Top panel: Nitric oxide (NO) measurement from BAEC supernatant, normalized 

per mg total protein. Ionomycin treatment leads to NO generation from cultured BAECs, 

which is inhibited by exogenous ADMA (n=8/group, p<0.01 one way ANOVA).  

Bottom panel: Representative western blot of Ser1177 phospho-eNOS and total eNOS from 

cultured BAECs treated with exogenous Ionomycin and ADMA (n=6/group). Ionomycin 

treatment leads to enhanced phosphorylation of eNOS (Student’s t-test p<0.01), which 

remains unchanged following addition of exogenous ADMA.  
 

 

3.3 Effect of DDAH augmentation on portal pressure – gene therapy 
approaches 
Having established that hepatic DDAH-1 protein expression is decreased in human 



	 70	

and rodent models of cirrhosis, and that local ADMA leads to a dose-dependent 

reduction in endothelial NO generation, it was hypothesized that reconstitution of 

hepatic DDAH-1 would lead to a reduction in portal pressure in the BDL rodent 

model of cirrhosis. 

 

Despite over a decade of research into the DDAH-ADMA-NOS axis, and high-

throughput screening of drug libraries, no specific agonist or activator for DDAH-1 

has been developed.  A non-specific activator of DDAH-1 has been demonstrated – 

the Farnesoid X receptor (FXR) agonist obeticholic acid (OCA). This bile salt 

analogue has been shown to increase DDAH-1 transcription and protein synthesis 

by binding to a FXR response element in exon 1 of the DDAH-1 gene, hence acting 

as a transcription enhancer134. Previously, it has been demonstrated that this agonist 

leads to increased hepatic DDAH-1 expression and decreased portal pressure 

following 5 days of administration in BDL cirrhotic rats 135. However, OCA also has 

pluripotent effects on other pathways that could potentially alter portal pressure, such 

as SOCS3 signaling136, stellate cell activation137, and endothelin signaling138. 

Therefore, the aim of this series of experiments was to demonstrate a causal 

relationship between increased hepatic DDAH-1 expression and decreased portal 

pressure in BDL cirrhotic rats. 

 

 

3.3.1 Adeno-associated virus (AAV) cloning  
Supplemental methods for AAV cloning and manufacture are provided in section 8.0.  

 

A multiple cloning site cis plasmid with an AAV2 backbone was used to generate the 
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AAV_DDAH1 plasmid that was subsequently used for AAV_DDAH1 particle 

manufacture. An AAV2 plasmid with the LP1 hepatocyte-restricted promoter was 

chosen for AAV_DDAH1 cloning, to minimize off-target effects of AAV_DDAH1 

transduction in vivo. 

 

To construct AAV_DDAH1, the cassette expressing DDAH-1 cDNA was excised 

from pCMV_DDAH1 with an EcoR1/Not1 digest, and ligated into pAAV2_LP1 with 

standard techniques (figure 3.5a). Following ligation, transformation and selection on 

an ampicillin plate, colonies were picked and grown overnight. Recombinants were 

checked by diagnostic restriction digest, and cloning was confirmed by sequencing. 

 

Following construction of this pAAV2_LP1_DDAH1 plasmid, it is necessary to check 

that the ITRs are intact and balanced. Homologous recombination can occur 

between the ITRs in E.coli during the construction of the rAAV plasmids. As a result 

of this recombination, ITR sequences are often rearranged or partially deleted during 

subcloning. It was essential, therefore, to check the intactness of the 5’ and 3’ ITR 

sequences in all constructs. They were screened by 3 restriction enzymes including 

BssHII, MscI and SmaI. 

 

Since the LP1 promoter has already been shown to express in rat hepatocytes, the 

expression of this construct in a human hepatocyte and non-hepatocyte cell line was 

checked to demonstrate liver specificity. The human hepatocyte cell line HepG2, and 

the human non-hepatocyte cell line HEK293T were used to demonstrate liver 

specificity of the pAAV2_LP1_DDAH1 construct. Transient transfection of the 

pAAV2_LP1_DDAH1 construct in HepG2 cells was performed (n=6/group), and at 24 



	 72	

hours cells were lysed and protein extracted for qPCR and western blot. Significantly 

increased DDAH-1 gene and protein expression was seen following transfection into 

HepG2 cells (figure 3.5). No significant increase in DDAH-1 gene or protein 

expression was seen following transfection into HEK293T cells (data not shown).  
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Figure 3.6: Left panel: Transfection of pSCAAV_DDAH1 or control salmon sperm DNA 

(ssDNA) into HepG2 cells (n=6/group) leads a significant 6-fold upregulation of DDAH-1 

mRNA (Student’s t-test, p<0.01). Right panel: Transfection of pSCAAV_DDAH1 into HepG2 

cells (n=6/group) also leads to increased DDAH-1 protein expression compared to control 

ssDNA (Student’s t-test, p<0.01) – representative western blot.   

 

 

      

   

3.3.2 Adeno-associated virus particle manufacture  
Following cloning and testing of the pAAV2_LP1_DDAH1 construct, this plasmid was 

then used for AAV particle manufacture, with a view to a pilot in vivo experiment.   
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The size of the pAAV2_LP1_DDAH1 is 5.2kb (figure 3.6), which is at the upper limit 

of the optimal size for efficient functional packaging of scAAV particles139.  A triple-

transfection method was used to produce the virus particles (see section 3.6.1 for full 

details), followed by purification by iodixanol step-gradient ultracentrifugation (section 

3.6.2). The virus particle titer was determined by DNA dot-blot hybridisation analysis 

(section 3.6.3). 

 

Primers used for dot-blot hybridization were optimized to produce a 225bp PCR 

product from human DDAH-1 cDNA, which was subsequently used as a 

hybridization probe. The primers used were F:GGCGCCGAGCCGGAGAAGG and 

R: GCCACTGGCACTGTGGAGACTGC using the conditions described in section 

2.2.1, with an optimized Tm of 58.4°C and MgCl2 concentration of 2.5uM. 

  

Following virus preparation, viral DNA was prepared for dot-blot quantification as 

described in section 3.6.3. A serial dilution of the pAAV2_LP1_DDAH1 vector was 

used as a series of standards, alongside the prepared viral DNA. These were then 

hybridized to the 225bp labeled DNA probe. Following development of these blots 

using chemiluminescence as outlined in section 3.6.3, AAV particle number in each 

viral preparation was calculated from densitometry of probe intensity. These 

preparations yielded a total yield of 4.3E11 VP.       
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SV40 643..708

HCR 184..375
ITR 22..183

DDAH1 733..2356

POLY A 2377..2517
ITR 2523..2684

AMP 3261..4118

scAAV2_DDAH1

5311 bp

AAT 450..631

 

 

Figure 3.7. Plasmid map of the scAAV2_LP1_DDAH1 construct. ITR=inverted terminal 

repeat, HCR=hepatocyte control region of the human apolipoprotein promoter, AAT=human 

alpha-1-antitrypsin promoter, SV40= Simian vacuolating virus 40 promoter. 

 

 

3.3.3 Adeno-associated virus delivery of DDAH-1 to cirrhotic rodents 
Following the manufacture of AAV particles expressing human DDAH-1 

(scAAV2_LP1_DDAH1), these particles were used in vivo in a pilot experiment to 

determine efficacy of gene transduction in the BDL model of cirrhosis. Four Sprague-

dawley rats underwent BDL surgery as described in section 2.8.1, and were injected 

at day 25 following BDL surgery. Injections were performed under isofluorane 

anaesthesia as described in section 2.8.1, with viral particles diluted in 4mls of 

DMEM culture media and delivered into the jugular vein. Two animals were injected 

with a dose of 1E10 AAV particles, and two were injected with a dose of 1E11 AAV 

particles. 
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Two animals died within 12 hours post-injection, for reasons that were not clear. 

Post-mortem examination was not performed, and tissues from these animals were 

not retrieved. 

 

The remaining two animals (one from the 1E10 dose and one from the 1E11 dose) 

were sacrificed at 5 days post-injection. Both animals displayed portal hypertension 

(portal pressure 15.6mmHg and 13.9mmHg respectively). However, on quantitative 

PCR, no discernible hepatic expression of human DDAH-1 was apparent. No other 

organs were analysed from these animals, and no further AAV in vivo 

experimentation was performed. 

 

 3.3.4 Hydrodynamic gene delivery of DDAH-1 in a rat model of cirrhosis  
The hydrodynamic approach to gene delivery was used in these experiments, since 

viral mediated gene therapy was shown to be inefficient in cirrhotic rats. 

Hydrodynamic gene delivery using naked plasmid DNA leads temporary expression 

of transgene, predominantly in liver. 

 

The pCMVSport6_DDAH1 plasmid was used for gene delivery. This was initially 

tested in vitro for DDAH-1 expression in hepatocytes. At 24 hours following 

transfection by standard techniques in HepG2 cells, cells were lysed and protein 

extracted for western blotting. Western blot demonstrated significantly increased 

DDAH-1 protein expression following transfection in HepG2 cells compared to 

controls transfected with salmon sperm DNA (data not shown). 
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Subsequently the pCMVSport6_DDAH1 plasmid was amplified using an endotoxin-

free Gigaprep kit (Qiagen Ltd), and sequence verified. Hydrodynamic injection was 

performed at day 25 following BDL surgery, according to the technique described in 

chapter 2, in three groups of animals: a) sham+control saline injection, (b) 

BDL+control saline injection, (c) BDL+DDAH-1 expressing plasmid. Experiments 

were terminated at day 30 following BDL surgery (5 days after hydrodynamic 

injection) and haemodynamic measurements were performed, along with retrieval of 

blood for biochemistry and haematology, and liver tissue for RNA and protein 

extraction. 

 

As shown in figure 3.7, BDL+saline group had significantly elevated portal pressure 

(p<0.01) compared to the sham+saline group. Hydrodynamic injection with DDAH-1 

led to a significant increase in hepatic human DDAH-1 mRNA in BDL+DDAH-1 rats, 

compared to saline-treated BDL+control and sham+control rats which had 

background levels of mRNA, similar to that noted in the no-sample qPCR control 

(data not shown). Hydrodynamic injection with DDAH-1 also led to a protein 

expression of DDAH-1 (figure 3.7), and also significantly decreased portal pressure 

(P<0.01, figure 3.7) in BDL+DDAH-1 rats compared to BDL+control saline injection.  

There is a marked rise in plasma ALT and AST at 5 days following hydrodynamic 

injection, however there is no difference in magnitude of ALT/AST rise between 

BDL+saline and BDL+DDAH-1 groups (table 3.2). Moreover, there is no significant 

change in mean arterial pressure with DDAH-1 gene therapy compared to saline 

control. 
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Figure 3: Hydrodynamic gene delivery of DDAH-1 expressing plasmid into BDL rats leads to increased DDAH-1 
mRNA (3a: left panel), and protein (3b: centre panel), and decreased portal pressure (3c: right panel) relative to 
control plasmid.
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Figure 3.8:  Hydrodynamic gene delivery of saline control or plasmid expressing human 

DDAH-1 in sham and BDL rats (n=8/group, all variables analysed by Student’s t-test). Left 

panel: Human DDAH-1 mRNA expression in sham, BDL rats treated with control saline 

injection and BDL rats treated with human DDAH-1 plasmid injection. Human DDAH-1 

plasmid injection led to a significant increase in human DDAH-1 mRNA expression in BDL 

rat liver over background level (p<0.01, negligible background detection – normalised to 1 in 

this graph by the ΔΔCT method). Centre panel: Hydrodynamic injection of human DDAH-1 

plasmid also leads to a significant increase in total liver DDAH-1 protein expression 

compared with control saline injection (p<0.01) – representative Western blot and 

densitometry presented (Western blot with anti-DDAH-1 Abcam 2231 antibody, recognises 

both human and rat DDAH-1). Right panel: Hydrodynamic gene delivery of DDAH-1 in BDL 

rats leads to a significant reduction in portal pressure at 5 days following hydrodynamic 

injection, compared with BDL rats treated with control saline injection (p<0.01). 
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 Sham + Saline  

(n=8) 

BDL + Saline  

(n=8) 

BDL + DDAH1 

(n=8) 

Albumin (g/L) 29.3 (2.3) 25.2 (2.3) 28.0 (1.0) 

AST (IU/L) 65.6 (3.7) 383.6 (35.3)* 383.1 (143.9)* 

ALT (IU/L) 43.7 (3.6) 82.9 (8.5)* 74.5 (6.4)* 

Bilirubin (μM/L) 1.25 (0.3) 128.2 (6.5)* 121.1 (7.3)* 

MAP (mmHg) 111.3 (6.8) 91.6 (3.8)* 90.3 (3.3)* 

 

 

Table 3.2 – Biochemical parameters and mean arterial pressure of sham and bile duct 

ligated rats treated with saline or DDAH-1 plasmid hydrodynamic injection; mean (SEM). * 

p<0.01 vs sham group. 
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3.4 Discussion  
The experiments leading up to this thesis suggested that the DDAH-ADMA axis was 

associated with disease severity in cirrhosis and portal hypertension, but a causal 

relationship signifying pathophysiological relevance had not been confirmed. A major 

limiting factor to the study of hepatic DDAH-1 was the lack of antibodies with 

sufficient specificity for high quality immunohistochemical studies, particularly in rats, 

to determine the cell type expressing hepatic DDAH-1 and to give insights into 

pathobiology. This initial hurdle was overcome through two strategies. Initially, in situ 

hybridization for DDAH-1 mRNA on rodent and human liver sections was attempted, 

to overcome the problems of DDAH-1 antibody specificity – this work is detailed in 

chapter 4. Subsequently, we obtained human liver tissue sections from patients with 

cirrhosis and a healthy control, and performed a series of steps to optimize 

immunohistochemistry conditions with different antibodies and different approaches 

to antigen retrieval. Previous studies have demonstrated decreased hepatic DDAH in 

patients with cirrhosis and superimposed hepatic inflammation, with associated 

exaggerated portal hypertension72, although considerable debate exists regarding 

specificity for DDAH enzyme subtype of the antibodies used in this study. The 

antibodies used at that time were non-commercial from a collaborating laboratory (Dr 

J Leiper, UCL); over recent years the gradual emergence of commercially available 

and validated antibodies has improved the specificity of these antibodies for DDAH 

subtype. Following microwave-based antigen retrieval techniques, we were able to 

demonstrate sensitive DDAH-1 antigen staining, demonstrating clear hepatocyte-

restricted expression of DDAH-1. Moreover, these studies suggested decreased 

hepatic DDAH-1 expression with advanced liver disease. To confirm the hepatocyte-

specific expression of hepatic DDAH-1, we performed cell separation in healthy 
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rodent liver, and subsequently evaluated DDAH-1 expression by western blot. These 

studies confirmed that hepatic DDAH-1 expression is predominantly hepatocyte 

restricted in rodents. Subsequently, we sought to confirm previous findings of 

decreased hepatic DDAH-1 immunostaining in patients with cirrhosis, and 

demonstrated significantly decreased hepatic DDAH-1 protein expression in both 

BDL and CCl4 cirrhotic rats with elevated portal pressure, compared to non-cirrhotic 

controls rats.  

 

Measurement of ADMA for these experiments was not possible, due to temporary 

unavailability of mass-spectrometry at the Royal Free Campus due to laboratory 

restructuring. The majority of liver homogenate and plasma/serum samples were 

used for other assays, although aliquots were saved for future ADMA measurement. 

However, regrettably, due to a subsequent freezer failure these retained aliquots are 

no longer suitable for analysis. However, DDAH-1 has been shown to efficiently 

metabolize ADMA, with a Km value of 68.7uM and Vmax value of 356 nmol/mg/min 

in vitro140, so one would expect DDAH-1 expression to linearly correlate with DDAH 

activity and inversely correlate with local ADMA concentration at 

physiological/pathophysiological concentrations of ADMA (5-10uM), and with no 

known endogenous inhibitors of DDAH activity. 

 

Measurements of NO in vivo are also subject to technical factors. Since NO is a 

diatomic free radical with an extremely short half life, in many cases measurement of 

peripheral blood NO does not accurately reflect the corresponding NO status in 

tissues of interest. Moreover, NO and NO-derived metabolites rapidly interact with 

protein thiols, secondary amines, and metals to form S-nitrosothiols (RSNOs), N-
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nitrosamines (RNNOs), and nitrosyl-heme respectively. Additionally, NO may also 

rapidly interact with the free radical superoxide (O2−) to yield the potent oxidants 

peroxynitrite (ONOO−) and its conjugate acid peroxynitrous acid (ONOOH). Thus, 

free NO and NO-metabolite levels are rapidly altered in vivo. The major pathway for 

NO metabolism is the stepwise oxidation to nitrite and nitrate. In plasma or other 

physiological fluids or buffers NO is oxidized almost completely to nitrite (NO2-), 

where it remains stable for several hours. However, in blood, the half life of NO2− is 

about 110 seconds, due to rapid conversion to nitrate (NO3–). This is thought to be a 

consequence of oxidation by certain oxyhemoproteins such as oxyhemoglobin or 

oxymyoglobin. Typical methods for estimation NOS activity in vivo therefore rely on 

quantification of nitrate and nitritite in peripheral blood.  However, there is a 

significant contribution of both nitrite and nitrate from dietary sources, including 

experimental animal chow. Sample preparation can also introduce artifactually 

create NO products or metabolites – ideally blood/tissues should be perfused with an 

isotonic solution containing N-ethylmaleimide (NEM) and EDTA to block SH-groups 

and inhibit artificial nitrosation, as well as thiolate- and ascorbate- mediated 

degradation of endogenous RSNOs and nitrite. For these reasons, in vivo 

measurements of NO were not performed, but in vitro endothelial studies were 

performed to demonstrated effects of exogenous ADMA on endothelial NO 

generation. 

 

Previous in vitro studies in BAECs demonstrate that NO production is increased by 

DDAH-1 overexpression and decreased by DDAH-1 silencing. Moreover, DDAH-1 

silencing is associated with a reduction in L-arginine/ADMA ratio and partially 

restored by L-arginine supplementation, suggesting that DDAH-1 is responsible for 
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modulating ADMA-dependent inhibition of NO generation84. Following on from this 

work, it was sought to confirm that ADMA is an inhibitor of endothelial NO 

generation, and a similar in vitro model of BAEC-mediated NO generation was 

utilized. Following stimulation of BAECs with the calcium ionophore Ionomycin, a 

significant induction of NO production into cell media was demonstrated by the 

chemiluminescence method. This induction of NO production was robust, and was 

inhibited by ADMA at physiologically relevant concentrations. Typically, intracellular 

levels of ADMA are in the low micromolar range and, in a similar manner to the 

experiments described here, Pope and colleagues found dose-dependent inhibition 

of NO formation with extracellular ADMA concentrations of 5uM84.  

  

Torondel et al have also demonstrated that overexpression of DDAH-1 in endothelial 

cells in vitro leads to a reduction in ADMA concentration, and improvement in NO 

production141. However, our data from human and rodent hepatic tissue suggests 

that hepatic DDAH-1 is located in the parenchymal hepatocyte, rather than 

sinusoidal endothelial cells which are responsible for eNOS-mediated NO 

production. This suggests that within the liver, the mechanisms of action of DDAH-1 

may be in acting to reduce local ADMA levels in a paracrine fashion. There is 

evidence to support this; Fickling et al showed that ADMA made in one cell is 

capable of diffusing and inhibiting NOS in an adjacent cell142. Moreover, Luo et al 

noted that DDAH-1 expression in the kidney is seen in pre-glomerular vascular 

smooth muscle cells, without any NOS expression in these cells, suggesting that this 

DDAH-1 may act to alter local ADMA levels and eNOS activity in adjacent 

endothelium143. Therefore, on the basis that exogenous ADMA leads to inhibition of 

endothelial NO generation, and DDAH-1 has previously been shown to be a key 
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regulator of local ADMA levels, we proceeded to reconstitute hepatic DDAH-1 in vivo 

in a rodent model of cirrhosis. This route of experimentation was chosen rather than 

further in vitro studies of DDAH-1 over-expression, which would require a complex 

co-culture system to recapitulate the physiological environment of paracrine 

metabolism of local ADMA, hepatocyte DDAH-1 and endothelial eNOS.  

 

To assert a causal association between hepatic DDAH-1 expression and portal 

hypertension, we initiated a gene therapy experiment to reconstitute hepatic DDAH-1 

in the BDL rodent model of cirrhosis. Despite a precedent for viral-mediated gene 

delivery in rodent models of cirrhosis 50, 76, significant transgene expression could not 

be demonstrated in the livers of BDL rats treated with intravenous administration of 

two doses (1E10vp and 1E11vp) of scAAV2_LP1-DDAH1. 

 

The reasons for inefficient hepatic transduction of transgene, or for early death in two 

animals, are unclear. In terms of transduction, the dose of AAV used was 

comparable to that used by intravenous injection in mice to transduce healthy liver144, 

145. Moreover, the route and dose of administration was similar to that used in rats 

with non-cirrhotic liver disease and in cirrhotic rats146, 147. High-level liver-mediated 

transgene expression has been reported at 1 day and 4 days post AAV injection in 

healthy mice, with a dose of 1e11 viral genomes per animal144. However, the earliest 

reported expression from a reporter AAV (eg luciferase) in studies with cirrhotic rats 

is 7 days147. Hence, it is unclear if 5 days is sufficient time for high-level expression 

of transgene in a cirrhotic liver. The rationale for a 5-day duration for transgene 

expression in these experiments was to balance the time required for transgene 

expression, with the risk that earlier administration of AAV into the BDL animals (ie 
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prior to 21 days) may alter the evolution and phenotype of the model. Moreover, as 

outlined in the introduction to this chapter, the BDL animals demonstrate organ 

failure with a considerable mortality following 28 days, hence a prolonged period for 

transgene expression may lead to excess mortality in the AAV treated animals. 

 

Regarding the mortality seen in the AAV-treated animals in this pilot experiment, 

there was no apparent immediate post-operative reason for early death in 2 animals. 

As mentioned above, there is excess mortality after 28 days following BDL surgery, 

and in the absence of a control non-AAV treated group it is impossible to determine if 

this mortality is a consequence of liver failure or of the AAV infection. Nevertheless, it 

is apparent from human trials that high doses of scAAV particles can induce a mild 

elevation in liver enzymes in hemophilia patients without cirrhosis, the reasons for 

which remained unclear. Therefore, it can be conjectured that in the context of liver 

disease, superimposed hepatic inflammation, albeit mild, may induce worsening liver 

disease akin to acute-on-chronic liver failure. 

 

There are no prior studies of AAV use in BDL cirrhotic rats. Using adenoviral vectors, 

Smith et al demonstrated that luciferase expression was 10,000 fold lower compared 

to healthy rats148. Regarding AAVs, Sobrevals et al found efficient transduction of 

CCl4 cirrhotic rat liver when the vector was administered through the hepatic artery 

or portal vein147. A peripheral venous route was not studied in this paper. Therefore, 

the possible reasons for inadequate transduction of BDL rats seen in this study 

include inadequate duration for transgene expression, suboptimal route of 

administration, inadequate dose for BDL cirrhosis. Since it was clear that extensive 

optimization would be required for adequate AAV mediate transgene delivery in BDL 
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rats, this method of gene therapy was abandoned in favour of non-viral methods. 

 

Hydrodynamic injection of plasmid DNA via tail vein has been demonstrated to lead 

to efficient, temporary hepatic transgene expression in rodents149. Rapid, high 

volume, high pressure injection is thought to lead to transgene expression by 

causing retrograde flow in the inferior vena cava and hepatic vein, leading to 

transient permeation of cell membranes of hepatic parenchymal and non-

parenchymal cells, and subsequent uptake and expression of plasmid DNA. Viral 

vectors are thought to have decreased efficiency in cirrhosis due to a decreased 

ability to accessing the space of Disse due to collagen deposition and loss of 

endothelial fenestrae. However, in the BDL model fibrosis typically progresses from 

the peri-portal region, due to portal myofibroblast activation. Hence, retrograde 

injection of plasmid may in theory lead to permeation of peri-venous hepatocytes 

where fibrosis is typically less advanced, leading to passive uptake of plasmid DNA, 

which is also much smaller than the diameter of an AAV particle.  

 

Typically, following hydrodynamic injection of plasmid, liver enzymes are transiently 

elevated and liver histology shows minimal damage that resolves within a week150, 

151. In these experiments, a degree of elevation of serum AST and ALT was noted in 

BDL animals following hydrodynamic injection, but the degree of elevation was 

similar in both the plasmid-injected and saline control groups, suggesting that the 

inflammation was a consequence of high-pressure injection rather than the presence 

of plasmid DNA. Indeed, the absence of a marked rise in plasma AST and ALT in the 

sham group that also underwent hydrodynamic injection also suggests that the 
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pressure of the injection is the likely cause, since these animals would have far 

greater liver compliance to withstand high-pressure injection. 

These experiments demonstrated hepatic transduction with hydrodynamic injection 

in BDL rats, as shown by a significant increase in hepatic human DDAH-1 mRNA in 

treated BDL rats compared to untreated BDL and sham rats which had background 

levels, and a significant increase in DDAH-1 protein. Unfortunately, neither 

immunohistochemistry nor in situ hybridization could be applied to these treated 

tissues to demonstrate location of transgene expression. This is because 

immunohistochemistry techniques for rat antigen retrieval for DDAH-1 have not been 

optimized, and there remain no published data demonstrating successful 

immunostaining of rodent liver for DDAH-1. Similarly, as described in chapter 4, 

initial attempts at in situ hybridization for human mRNA in rat liver was unsuccessful. 

Nevertheless, these experiments demonstrate a significant reduction in portal 

pressure associated with the increased hepatic DDAH-1 gene and protein 

expression, supporting the assertion that DDAH-1 is key in the local regulation of 

hepatic ADMA and eNOS activity in cirrhosis, and that maintaining hepatic DDAH-1 

through liver specific targeting provides a novel approach to therapy in portal 

hypertension.  
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Chapter 4 – Hepatic DDAH-1 Expression is Post-Transcriptionally 
Regulated by MicroRNAs in Cirrhosis  
 

4.1 Introduction 
In this chapter the mechanism of decreased hepatocyte DDAH-1 expression in 

cirrhosis is explored. Since DDAH-1 is expressed in a cell- and tissue-restricted 

fashion, it was anticipated that the transcriptional regulation of DDAH-1 gene 

expression would be complex. Moreover, it can be hypothesized that a protein 

involved in ADMA metabolism, and hence partially responsible for control of tissue 

blood flow and vascular tone, may be regulated in a post-transcriptional or post-

translational manner for rapid response to changing physiology. Therefore, following 

initial experiments characterizing hepatic DDAH-1 mRNA expression in cirrhosis, the 

post-transcriptional regulation of DDAH-1 mRNA, and effects of oxidative stress and 

microRNA-mediated mechanisms in particular, were explored in detail.   

 

4.1.1 MicroRNAs and post-transcriptional regulation  
MicroRNAs (miRNAs) are a large class of short (≈22nt) noncoding RNAs (ncRNAs), 

which function as important regulators of a wide range of cellular processes by 

modulating gene expression. The role of ncRNAs in mammals was unclear until the 

1990s. Up to this point, ncRNAs were thought to have a relevant function in plant 

species only. Ambros and colleagues changed this dogma with the seminal 

observation that the lin-4 and lin-14 genes play a key role in the temporal control of 

development of Caenorhabditis elegans (C. Elegans)152, 153.  They noted that the lin-

4 gene product was not protein encoding, but was a ncRNA, and levels were 

inversely proportional to levels of lin-14 mRNA. Sequence analysis revealed that the 

lin-4 RNA has sequence complementarity to the 3’ untranslated region (UTR) of the 
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lin-14 gene, leading to the hypothesis that lin-4 regulated LIN-14 protein expression, 

in part through Watson–Crick base pairing. Over the following decade other 

examples of regulatory ncRNAs in C. Elegans were described, and the basic 

concepts of miRNA biosynthesis and function were delineated154-156. 

 

The generation of miRNAs is a multistage process (Figure 4.1)157. Briefly, the 

primary miRNA (pri-miRNA) transcript, produced by RNA polymerase II or III, is 

transcribed as a hairpin double-stranded RNA structure in the nucleus. This structure 

contains the mature 22 nt miRNA sequence, and hence the miRNA must be excised 

during its biogenesis to elicit gene silencing. Two endoribonucleolytic enzymes are 

responsible for this excision - the nuclear endoribonuclease Drosha, in complex with 

the dsRNA-binding protein DiGeorge critical region 8 (DGCR8) is responsible for the 

first endonucleolytic reaction. DGCR8, also known as Pasha, functions as a 

molecular ruler that positions the Drosha cut site 11 bp from the base of the hairpin 

stem. This releases a ≈70nt stem-loop precursor miRNA (pre-miRNA) that 

possesses a 3’ overhang. The pre-miRNA is exported to the cytoplasm via Exportin-

5 in complex with Ran-GTP. Once exported, the pre-miRNA is processed by a 

second endoribonucleolytic reaction, catalyzed by Dicer, yielding a ≈22nt RNA 

duplex with protruding 3’ overhangs at both ends (Figure 4.1). The duplex is loaded 

onto an Argonaute protein where one strand is selected, the “guide strand” - 

complementary to the target mRNA, and subsequently forms the miRNA effector as 

part of a miRNA-induced silencing complex (miRISC), while the remaining strand, 

the ‘‘passenger strand’’, is released and degraded.  
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by electron microscopy single-particle reconstruction desig-
nates the major unannotated region as a ‘‘ruler domain’’ be-
tween the ‘‘platform’’/PAZ tandem and catalytic core (dsRBD
and RNasIIIa/b tandem) thus providing an internal 22 nt gauge
(Lau et al., 2012). Moreover, the positioning of helicase domains
adjacent to the catalytic core is in accordance with data
showing that the helicase of Drosophila Dicer-1 (Dcr-1) recog-
nizes the single-stranded terminal loop at a proper distance
from the 50/30 end, while mutants lacking the helicase domain
could not distinguish between long-stem and small-loop pre-
miRNA structural variants (Tsutsumi et al., 2011). High-
throughput sequencing of Dicer-processed short-hairpin RNAs
demonstrated recognition of a single-stranded RNA segment,
either the terminal loop or internal bulge (where the loop forms
a substructure, such as in pre-let-7 [see Nam et al., 2011]), 2
nt away from the cleavage site (Gu et al., 2012). However, earlier
structural and biochemical analyses of human Dicer revealed a
basic 50 phosphate-binding pocket within the platform and the
PAZ domain, conserved in higher eukaryotes, that is key to
dicing precision (Park et al., 2011). Overall, Dicer measures
!22 nt products by anchoring the open terminus (50/30 end) at
the platform and the PAZ domain, with the recognition of the
terminal loop/bulge by the helicase domain playing a minor
role in cleavage site selection. Thus, the complete domain
organization of Dicer is crucial for recognition of cognate pre-
miRNAs, allowing accurate positioning of the catalytic core
and allosteric regulation of Dicer by its substrates and/or bind-
ing partners.

Tuning Dicer to Alternatively Dice
Dicer does not function alone but in association with additional
proteins (Figure 1C). Mammals produce two related Dicer
partners, TRBP (transactivating response RNA-binding protein),
and PACT (protein activator of PKR), which contain three
dsRNA-binding domains (dsRBD). Biochemical mapping of the
interaction between Dicer and TRBP or PACT revealed that
both proteins associate via their C-terminal dsRBD with the heli-
case domains of Dicer (Lee et al., 2006) and close to its catalytic
core, suggesting that they may affect its activity. Indeed, two
recent papers (Lee and Doudna, 2012; Fukunaga et al., 2012)
have revealed that TRBP binding to Dicer alters dicing kinetics
and cleavage site selection—the biological significance of which
is increased substrate affinity and enzymatic turnover and
the generation of miRNA isoforms (isomiRs) (Figure 1D). The
association of TRBP, but not PACT, induces and/or enhances
the generation of isomiRs that are 1 nt longer in the cases of
pre-miR-200a, pre-miR-29, pre-miR-34c, and pre-miR-132 (Lee
and Doudna, 2012; Fukunaga et al., 2012). In vitro studies of the
TRBP homolog, Loquacious-PB (Loqs-PB), in D. melanogaster
have also demonstrated that binding of Loqs-PB, but not the iso-
form Loqs-PA, to Dcr-1 shifts the pre-miR-307a and pre-miR-87
cleavage site, generating longer (1–2 nt) miRNAs but, in contrast,
a 1 nt shorter isomiR from pre-miR-316 (Fukunaga et al., 2012).
Whereas TRBP/Loqs-PB binding to Dicer may cause conforma-
tional changes to the RNaseIII core domains, both TRBP and
Loqs-PB have been shown to alter dicing efficiency in a sub-
strate-specific manner (Lee and Doudna, 2012; Fukunaga et al.,

Figure 1. The Regulation of miRNA Function by Means of RNA Length
(A) Canonical maturation pathway of miRNA (see text for details).
(B) Modification of the 30 end of pre-miRNA by the untemplated addition of uridines catalyzed by cytoplasmic TUTs. Mono-uridylylation facilitates Dicer
processing, whereas Lin28 binding and oligo-uridylylation are inhibitory.
(C) Tuning of Dicer cut-site selection (shifted by 1–2 nt) by its binding partners allows the generation of specific isomiRs with altered target specificities.
(D) Exonucleolytic 30 trimming of the Ago-loaded mature miRNA alters the length and thus target specificity.

Cell 153, April 25, 2013 ª2013 Elsevier Inc. 517

 

Figure 4.1 (adapted from Yates et al157). The canonical pathway of miRNA maturation 

includes the production of the primary miRNA transcript (pri-miRNA) by RNA polymerase II or 

III and cleavage of the pri-miRNA by the microprocessor complex Drosha–DGCR8 (Pasha) in 

the nucleus. The resulting precursor hairpin, the pre-miRNA, is exported from the nucleus by 

Exportin-5–Ran-GTP. In the cytoplasm, the RNase Dicer, in complex with the double-stranded 

RNA-binding protein TRBP, cleaves the pre-miRNA hairpin to its mature length. The 

functional strand of the mature miRNA is loaded together with Argonaute (Ago2) proteins into 

the miRNA-induced silencing complex (miRISC), which targets mRNAs through mRNA 

cleavage, translational repression or deadenylation, whereas the passenger strand is 

degraded.  

 

Typically, miRNA-binding sites of animal mRNAs reside in the 3’ untranslated 

regions (UTRs) where recognition occurs through base pairing of the seed sequence 

(nucleotide positions 2 to 8) of a miRNA. Subsequently, the mRNA-miRNA 



	 90	

interaction guides the RISC to these transcripts, leading to silencing of transcription. 

However, the mechanism of transcriptional silencing remains unresolved, with 

mechanism such as translational inhibition158, mRNA deadenylation159, and decay 

160being proposed.  

 

In terms of degree of complementarity, one would expect that it is relatively 

straightforward to identify miRNA target sites if the sequence of all the miRNAs and 

mRNAs are known. However, in animals and humans it is very rare that an mRNA 

contains a perfect complementary target site for any miRNA. The only known 

exception is the HOXB8 mRNA, which is recognized with complete complementarity 

by miR-196161. All other human miRNAs silence mRNAs with target sites that are not 

perfectly complementary – indeed the overall degree of miRNA:mRNA 

complementarity is considered a determinant of mechanism of mRNA regulation.  

 

Thus, identifying these target sites by a similarity search is difficult, because by 

allowing mismatches between miRNAs and mRNAs in a database search, hundreds 

or thousands of potential target sites will be identified due to the small size of the 

miRNAs. Furthermore, the positions of the mismatches are important although, 

typically, nucleotides in the seed sequence (positions 2–8) of the miRNA are 

perfectly complementary to the target mRNA (see figure 4.2)162, 163.  

Therefore, a three-step approach needs to be adopted when searching for 

evolutionarily conserved miRNA target sites; (i) identify 7nt matches to the miRNA 

seed sequence of interest, (ii) use available whole-genome alignments to compile 

orthologous 3′ UTRs, (iii) search within the orthologous UTRs for conserved 

occurrence of a 7nt match164. However, as noted above, there is considerable 
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heterogeneity with the degree of mismatch observed, with some experimentally 

verified miRNAs that would not necessarily be predicted by searching for perfect 

seed-sequence matching.  Most current miRNA prediction software operates on the 

basis of perfect seed sequence complementarity. When evaluated on the basis of 

proteomic changes after miRNA addition or deletion, tools that require stringent 

Watson–Crick seed pairing perform better than those that do not160, 165.  

Prediction tools vary in their algorithms to account for the following: (i) 5’ seed 

pairing, (ii) 3’ compensatory pairing, (iii) evolutionary conservation, (iv) free energy of 

the miRNA-mRNA duplex, and local factors of the mRNA UTR such as (v) 

positioning of the target site within the UTR, (vi) degree of AU composition near the 

predicted site, and (vii) proximity to sites for coexpressed miRNAs. Since each 

prediction tool uses a slightly different algorithm, the predicted target lists often show 

little overlap with each other; e.g. TargetScan focuses on finding predicted sites with 

perfect 5′ seed matching, whereas MiRanda preferentially predicts sites with 3′-

compensatory matching. Prediction tools thereby order the predicted sites by rank, 

with varied weighting to the listed factors above. There is some evidence to suggest 

that TargetScan trends towards better performance with this ranking compared to 

other prediction tools, when verified experimentally by proteomics165. 

The aim of this series of experiments was to determine if DDAH-1 undergoes 

miRNA-mediated post-transcriptional regulation in cirrhosis. 
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Figure 4.2 (adapted from Maziere and Enright166): Approximate secondary structures of the 

three main types of target site duplex. (A) Canonical sites have perfect base paring in seed 

region, a bulge in the middle and extensive base pairing in the 3' end of the miRNA. (B) 

Dominant seed sites form perfect complementarity in the seed, but poor complementarity in 

the 3' end of the miRNA. (C) Compensatory sites have a mismatch or G:U wobble in the 

seed region, but have extensive base pairing to the 3' end of the miRNA. 
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4.2 Results 

4.2.1 mRNA expression in rats and humans with cirrhosis 
As noted in the previous chapter, DDAH-1 protein expression is significantly 

decreased in rodent models of cirrhosis, and also decreased on semi-quantitative 

analysis of immunohistochemical staining of human cirrhotic tissue. 

 

Initially liver tissue from BDL rats from the experiment in section 3.4 was used for 

analysis of expression of native (rat) DDAH-1 mRNA using qPCR. Figure 4.3 

demonstrates no significant change on DDAH-1 mRNA between BDL and sham rats 

at 4 weeks following BDL surgery.  
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Figure 4.3: Rat hepatic DDAH-1 mRNA expression is unchanged at 4 weeks following BDL 

surgery compared with sham-operated animals (n=8/group, Student’s t-test). 

 

Subsequently, RNA extracted from human liver tissue from patients with end-stage 

cirrhosis at the time of liver transplantation, and from paired non-cirrhotic donor 

livers, was obtained for gene expression analysis. Briefly, biopsies of liver tissue 

were taken peri-operatively, from the recipient cirrhotic liver prior to explantation, and 
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from the donor non-cirrhotic liver after complete implantation in the recipient, and 

immediately snap frozen in liquid nitrogen and processed as in chapter 2. Details for 

these patients are provided in table 4.1.   

 

		 Recipient	Details	 Donor	Details	
Study	no.	 Age	 Gender	 Liver	disease	 Age	 Gender	

1	 55	 M	 ALD	 27	 M	
2	 42	 F	 ALD	 46	 M	
3	 67	 M	 NASH	 54	 F	
4	 53	 M	 Hepatitis	C	 23	 M	
5	 65	 F	 NASH	 49	 F	
6	 51	 M	 Hepatitis	C	 25	 M	
7	 28	 M	 AIH	 27	 F	
8	 57	 M	 ALD	 55	 F	

 

Table 4.1: Patient characteristics from 8 cirrhotic liver transplant recipients, and their 

respective liver donors, from whom peri-operative liver biopsies were taken for RNA 

analysis. ALD= alcoholic liver disease; NASH= non-alcoholic liver disease.  
 

As shown in figure 4.4, although a trend to a lower DDAH1 mRNA in cirrhotic 

recipient liver is seen, there was no significant difference between these groups to 

explain the previously described lower hepatic DDAH1 protein expression in rodent 

and human cirrhosis.  
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Figure 4.4: Human hepatic DDAH-1 mRNA expression is similar between non-cirrhotic 

human liver transplant donors and cirrhotic liver transplant recipients (n=8/group, Mann-

Whitney U test).  

 

 

4.2.2 miRNA expression in BDL cirrhotic rats 
The data demonstrated thus far in this chapter demonstrate that hepatic DDAH-1 

mRNA expression is unchanged in human cirrhosis and the BDL rat model of 

cirrhosis, yet as we demonstrated in chapter 3 hepatic DDAH-1 protein expression is 

significantly decreased in cirrhosis. As such, miRNA expression analysis was 

performed in BDL rats to explore candidate miRNA targets that may account for the 

observed discordance between hepatic DDAH-1 mRNA and protein expression in 

cirrhosis. 

 

The GeneChip miRNA 2.0 array was used to demonstrate changes in miRNAs and 

non-coding RNAs between sham and BDL cirrhotic liver (n=4/group). One RNA 

sample from BDL liver failed to hybridize during the running of the chip, hence 
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results are only available for 7 animals (4 sham, 3 BDL). Figure 4.5 demonstrates 

miRNAs that are significantly altered from sham to BDL liver. 

 

 

 



	 97	

rno-miR-193*
rno-miR-192
rno-miR-122
rno-miR-194
rno-miR-22*
rno-miR-378
rno-miR-378*
rno-miR-494
rno-miR-365

rno-miR-139-3p
rno-miR-543
rno-miR-448

rno-miR-125b-5p
rno-miR-324-5p
rno-miR-140*
rno-miR-107
rno-miR-27b
rno-miR-30a
rno-miR-128
rno-miR-126
rno-miR-223
rno-miR-151
rno-miR-23b
rno-miR-146a
rno-miR-16
rno-miR-500
rno-miR-98
rno-miR-15b
rno-miR-425
rno-let-7c

rno-miR-328
rno-miR-320
rno-miR-143
rno-miR-103
rno-miR-132
rno-miR-100
rno-let-7b

rno-miR-150
rno-miR-25
rno-miR-145
rno-miR-20a

rno-miR-10a-5p
rno-miR-195
rno-miR-652
rno-miR-466b
rno-miR-497
rno-miR-19b
rno-miR-24
rno-miR-221
rno-miR-23a
rno-let-7i

rno-miR-93
rno-miR-342-3p
rno-miR-27a
rno-miR-99b
rno-miR-21

rno-miR-17-5p
rno-miR-29b
rno-miR-185
rno-let-7e

rno-miR-106b
rno-miR-130a
rno-miR-331
rno-miR-34a
rno-miR-181a
rno-miR-205
rno-miR-200a
rno-miR-96

rno-miR-181b
rno-miR-125a-5p

rno-miR-152
rno-miR-214
rno-miR-429
rno-miR-181c

rno-miR-199a-3p
rno-miR-181d
rno-miR-200b

rno-miR-199a-5p
rno-miR-200c

-5 0 5 10

log2(D/N)log2(fold change BDL/Sham)

 



	 98	

Figure 4.5: All significantly altered (adjusted p<0.05) hepatic miRNAs from Genechip 2.0 

miRNA microarray in BDL (n=3) vs sham (n=4) rats. Data presented as log2 transformed 

ratio of fold change BDL/Sham. Adjusted p-value calculated by Westfall–Young 

correction167.   

 

 

Quantitiative PCR was used to confirm the changes in expression of a subset of 

miRs from sham and BDL rat liver, as shown in figure 4.6. 

 

 

Figure 4.6. Left panel: Hepatic expression of rat DDAH-1 mRNA is unchanged between 

sham-operated and BDL rats (n=6/group, p=ns Student’s t-test). Right panel: Hepatic 

expression of mir-128 is significantly elevated in BDL rats compared with sham-operated 

rats (n=6/group, p<0.01 Student’s t-test).  
 

 

4.2.3 Bioinformatic analysis of DDAH-1 3’UTR 
As noted above, computational methods of determining potential binding sites for 

miRNA seed sequences exist, yet they are limited since perfect mRNA-miRNA 

complementarity is not absolutely required, and an extremely large number of 

potential target sites exists for any given miRNA. A computational approach to 
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prediction of miRNA targets facilitates the process of narrowing down potential target 

sites for experimental validation. These computational predictions utilise several 

aspects for algorithms of site prediction: (i) complementarity to the miRNA seed 

region; (ii) evolutionary conservation of the miRNA recognition element; (iii) free 

energy of the miRNA-mRNA duplex; and (iv) mRNA sequence features outside the 

target site as listed above164.  

 

The TargetScan algorithm focuses on the seed region in miRNA targeting, requiring 

an exact match to ≥7 bases of the seed sequence. Targetscan also includes a 

special class of seed matches with a hexamer match in positions 2–7, plus an 

adenosine at position 1. Additionally, TargetScan improves predictions by taking into 

account evolutionary conservation, and also adds a ‘context score’, which considers 

features in the surrounding mRNA UTR mentioned above, including local A-U 

content and location (near either end of the 3’UTR is preferred). When evaluated 

independently, each of the parameters used to rank TargetScan predictions— site 

conservation, site number, site type (with 8mer > 7mer-m8 > 7mer-A1), and site 

context - correlate with targeting efficacy 160, 165, 168-170. 

 

TargetScan version 5.2 was used to interrogate the human DDAH-1 3’UTR for 

predicted miRNA recognition elements. The sequence used was that listed on the 

NCBI Genbank database – transcript NM_012137.3.  

 

TargetScan provided a series of predicted miRNA recognition elements, and 

additionally a table of likelihood of biological relevance of miRNAs based on the 

probability of conserved targeting score (Pct) described by Friedman et al 170. This 



	 100	

score ranks the likely biological relevance of a predicted miRNA recognition 

elements as a function of orthologous conservation, miRNA complementarity and 

mRNA sequence features. This analysis demonstrated two putative regulatory areas 

in the DDAH-1 3’UTR – one at the 5’ end of the 3’UTR containing predicted sites for 

miRs 219, 128, and 30, and a further cluster at the 3’ end of the 3’UTR containing 

predicted sites for miRs 96, 148, 182, 101 (figure 4.7). These were also the most 

likely miRNA recognition elements in the TargetScan ranking on the basis of Pct 

score. 

 

 

Figure 4.7: TargetScan (v5.2) analysis of the human DDAH-1 3’UTR (length 2.97kb). this 

figure demonstrates predicted miRNA binding sites for miR families 219, 128, 30, 23, 143, 

96, 148, 182, 101. 

 

          

The miRanda site was also used as a computational tool to predict DDAH-1 miRNA 

recognition elements. This tool uses similar parameters for analysis, although with 

slightly different weighting. Initially, Watson-Crick base pair matching of the seed 

sequence is searched for, and subsequently the free energy of each miRNA:mRNA 

target pair is calculated, and each target that has a predicted free energy below a 

threshold is passed to the last step. Matches are allowed to contain limited G-U 

wobble pairs with insertions or deletions. Free energy is calculated by predicting the 

folding of the miRNA:mRNA hybrid using the Vienna package calculation 171. 
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Orthologous conservation is used as a final filter, although unlike TargetScan, 

miRanda considers conservation of both binding site and position of binding site 

within the UTR.  

 

Using miRanda (August 2010 release) to interrogate the DDAH-1 3’UTR, a number 

of predicted miRNA recognition elements were demonstrated and ranked according 

to the SVR score which takes into account the above aspects along with mRNA 

features such as site accessibility, AU flanking content, position of the target site 

within the 3’ UTR, and UTR length. When ranked by SVR score, the miRNA 

recognition elements predicted by miRanda followed a similar pattern to those 

predicted by TargetScan. As demonstrated in figure 4.8, the above-mentioned 

clusters at the 5’ and 3’ ends of the 3’UTR contain predicted sites, although other 

sites in the centre of the DDAH-1 mRNA are also predicted. 
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Figure 4.8: miRanda (August 2010) analysis of the human DDAH-1 3’UTR. This figure 

demonstrates multiple predicted miRNA binding sites for miR families (in blue text above 

coding sequence in black text), including the segment containing sites for miRs 219, 128, 30.  
 

 

On the basis of these findings, and the findings of differential hepatic DDAH-1 mRNA 

and protein expression, functional genomic studies were undertaken to test the 

hypothesis that the miRNA seed sequences identified by Targetscan and miRanda 

are regulatory within the human DDAH-1 3’UTR. 

 

4.2.4 Luciferase reporter assays of the DDAH-1 3’UTR 
In order to confirm the above in silico findings, an in vitro approach was adopted to 

test the regulatory function of the DDAH-1 3’UTR. The reporter vector pMirReport 

was used for this series of experiments. Briefly, the human DDAH-1 3’UTR was 

amplified from human cDNA using the PCR primers F: 

CGTGAGCATGTCTGAACTGG and R: CATGATTGGTTTTGGCACAC, and 

subcloned into the pMirReport luciferase reporter vector (Life Technologies, USA). 

Either this construct, or the control pMirReport vector, was co-transfected with a 

pRL-CMV Renilla expressing vector (Promega, USA) into HepG2 cells or HEK293T 

cells by standard techniques. At 24 hours following transfection, cells were lysed and 

Firefly and Renilla luciferase expression measured using the Dual-Luciferase 

Reporter assay (Promega, USA). Data is expressed as Firefly/Renilla luciferase 

expression, and all measurements were performed in triplicate 

 



	 104	

As seen in figure 4.9 the pMirReport_DDAH1 construct lead to a significant 

repression of luciferase expression compared to the empty control pMirReport 

vector, suggesting that this 3’UTR has regulatory functionality.  

 

Further experiments were undertaken to characterise the predicted sites identified by 

bioinformatics studies above. Specifically, the predicted cluster of three miRNAs 

(219, 128, 30) at the 5’ end of the 3’UTR were chosen for site-directed mutagenesis 

experiments, since they ranked highly on both Targetscan and miRanda prediction 

tools, and since they are within 100bp of the STOP codon, hence favourably located 

within the 3’UTR.  

 

Briefly, synthetic oligonucleotides containing the wild-type 50bp region highlighted in 

figure 4.9, or containing site-specific mutations in the predicted miRNA binding sites, 

were designed and purchased. Subsequently, these oligonucleotides were annealed, 

and with ‘sticky’ ends were subcloned into pMirReport in a similar fashion to 

previously. As above, co-transfection of either the construct or the empty control 

pMirReport vector was performed with a pRL-CMV Renilla expressing vector into 

HepG2 cells. As above, cells were lysed at 24 hours, and Firefly and Renilla 

luciferase expression measured using the Dual-Luciferase Reporter assay.  
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Wild type sequence CTAGTCCTTGACAATCTACTGTGCCACTGTGCTACTAACTCTTGTTTACA 

Mutated miR-219 site CTAGTCCTTGAGAATTCACTGTGCCACTGTGCTACTAACTCTTGTTTACA 

Mutated miR-128 site CTAGTCCTTGACAATCTACTGTGCGACGTTGCTACTAACTCTTGTTTACA 

Mutated miR-30 site CTAGTCCTTGACAATCTACTGTGCCACTGTGCTACTAACTCTTGTTGACA 

 

Table 4.2: 50bp oligonucleotides of a section of the wild type DDAH-1 UTR (from nucleotides 

71-120 of the UTR sequence) and similar oligonucleotides with mutations in miR bindings 

sites for miR-219 (yellow), miR-128 (green) and miR-30 (blue).  

 

These data, presented in figure 4.9, demonstrates that the 50bp region has a 

repressive effect on luciferase expression of similar magnitude to that exerted by the 

full-length DDAH-1 UTR. 

 

Point mutations were introduced into the predicted miR 219, 128 and 30 binding 

sites, through design of similar length 50bp oligonucelotides, and annealing and 

subcloning into the pMirReport vector as described above, and summarised in table 

4.2. As shown in figure 4.9, despite mutation of the predicted miR 219 and 30 sites, 

significant repression of luciferase expression is still seen. However, with mutation of 

the miR-128 site a complete loss of repression is seen, with luciferase expression 

returned to baseline. 
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Figure 4.9a (top panel). Pictorial representation of the 3’UTR of DDAH-1, with a 55bp region 

of interest highlighted containing predicted binding sites for miRs 219, 128 and 30. This area 

was subcloned into the pMirReport luciferase vector (see figure 4.9b).  

 

Figure 4.9b (bottom panel). Six constructs of the pMirReport luciferase reporter vector were 

transfected into HepG2 cells according to the schematic diagrams on the right of the figure, 

and cells were lysed at 24 hours. Firefly luciferase reporter expression, normalized for renilla 

luciferase expression as a transfection control, is depicted in the graph (n=8/group; all 

measurements performed in triplicate). The graph demonstrates that construct 2 containing 

the full-length DDAH-1 3‘UTR significantly decreases luciferase expression, as does 

construct 3 containing the 55bp sequence highlighted in figure 4.9a with predicted binding 

sites for miRs 219, 128 and 30 (p<0.01 one way ANOVA).  Mutation of the mir-128 binding 

site (construct 6) causes a significant de-repression of luciferase expression to baseline 

levels, which is not seen with mutation of miR-219 and miR-30 sites (constructs 4 and 5) 

(p<0.01 one way ANOVA).  
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4.2.5  Effect of hydrogen peroxide on hepatocyte DDAH-1 expression 
Oxidative stress is a feature of chronic liver disease, and ACLF in particular. 

Increased markers of lipid peroxidation and markers of hepatic mitochondrial 

respiratory dysfunction have also been found in the livers of BDL cirrhotic rats. 

Therefore, a model of oxidative stress applied to HepG2 cells was used to evaluate 

effects on DDAH-1 protein expression and on DDAH-1 3’UTR function. 

HepG2 cells were exposed to increasing concentrations of H2O2 as in figure 4.10. 

Protein expression of DDAH-1 was significantly reduced with H2O2 in a dose-

dependent fashion at 24 hours following exposure, however there was no change in 

DDAH-1 mRNA with increasing H2O2 levels in HepG2 cells. To determine if this 

reduction in DDAH-1 protein expression was partially due to a post-transcriptional 

regulatory mechanism, pMirReport_DDAH1 luciferase reporter vector was 

transfected into HepG2 cells and exposed to similar increasing concentrations of 

H2O2. A significant decrease in luciferase expression was seen following exposure to 

10uM H2O2 at 24 hours (figure 4.10), although no further reduction in luciferase 

expression was seen at a concentration of 100uM H2O2. 
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Figure 1. Left panel - HepG2 cells demonstrate a 
concentration-dependent decrease in DDAH-1 protein 
expression after 24 hours of exposure to H2O2. Right panel - 
a DDAH-1 3’UTR luciferase reporter vector demonstrates a 
significant reduction in luciferase activity in HepG2 cells 
following 24 hours of exposure to 10uM H2O2. No further 
decrease in luciferase is seen at 100uM H2O2.

Figure 4

 

Figure 4.10a (left panel) – Representative western blot of HepG2 cells (n=6/group) exposed 

to control, 10uM or 100uM of H2O2 for 24 hours. HepG2 cells demonstrate a concentration-

dependent decrease in DDAH-1 protein expression after 24 hours of exposure to H2O2.  

 

Figure 4.10b (right panel) – HepG2 cells were transfected with the pMirReport_DDAH1 

3’UTR reporter vector or control vector, and after 16 hours cells were exposed to H2O2 at the 

concentrations stated for 24 hours. Cells were then lysed and luciferase expression 

measured (n=6/group; all measurements performed in triplicate). Exposure of cells to 10uM 

H2O2 leads to a significant reduction in luciferase activity compared to control (p<0.01, one 

way ANOVA). No further decrease in luciferase activity is seen with exposure to 100uM 

H2O2. 

 

4.2.6 Transfection of miRNA mimics and effects on DDAH-1 expression 
To further demonstrate an effect of the predicted miRNAs on human DDAH-1 

expression, transfection studies were undertaken to over-express mature miRNAs in 

a human cell line to ascertain effects on DDAH-1 expression compared to tranfection 

of control, scrambled RNA controls. 

 

To optimise transfection conditions, a selection of transfection conditions were tried 

in both HepG2 and HEK293T cells using the Qiagen Allstars cell death control RNA 

oligonucleotides. These siRNA oligonucleotides inhibit key genes required for cell 
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survival, and cell death observed microscopically is a sign of successful transfection, 

hence these conditions can be extrapolated for use in subsequent experiments. 

 

Following optimisation of transfection conditions, miRNA mimics for human miRs 

219, 128 or 30 were transfected into HEK293T cells, alongside a control group 

transfected with a scrambled miRNA mimic. At 24 hours, cells were lysed and 

DDAH-1 protein expression was determined by western blot. As shown in figure 

4.11, transfection of each of these three human miRNAs (miR-219, miR-128, miR-

30) led to a significant reduction in DDAH-1 protein expression in HEK293T cells.  

 

 

miR-128 Control Control Control miR-30a miR-219 

Figure 5 - Western blot for DDAH-1 in HEK293T cells 72 hours post-transfection with synthetic 
miRNAs. Synthetic miRNA mimics for miR-128 (left panel), miR-30a (centre panel) and miR-219 
(right panel) all significantly reduce DDAH-1 protein expression.  

 

 

Figure 4.11: Representative western blots for DDAH-1 expression in HEK293T cells, 72 

hours following transfection with synthetic miRNAs (n=6/group). Synthetic miRNA mimics for 

miR-128 (left panel), miR-30a (centre panel) and miR-219 (right panel) all significantly 

reduce DDAH-1 protein expression (p<0.05, each test by Student’s t-test).    

 

 

 

 

4.2.7 In situ hybridisation for DDAH-1 and miR-128 in liver tissue 
Initially, in situ hybridisation was chosen as a technique to map hepatic DDAH-1 

expression, due to poor specificity of commercially available antibodies for 
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immunohistochemistry for DDAH-1 as described in chapter 3. The same primers as 

used in section 3.3.2 were used to amplify a 225bp PCR product from human DDAH-

1 cDNA, which was subsequently used as a DIG-labelled hybridization probe (see 

supplemental methods for further detail). The primers used were 

F:GGCGCCGAGCCGGAGAAGG and R: GCCACTGGCACTGTGGAGACTGC.  

 

DIG labelling of riboprobes was carried out according to the protocol in supplemental 

methods S4.1, and in situ hybridization was performed on frozen sections cut from 

frozen human liver tissue from the samples used in section 4.2.1. These samples 

were from subjects with end-stage cirrhosis at the time of liver transplantation, and 

from the healthy donor livers – the details for these patients is provided in appendix 

1. 

 

In situ hybridisation of anti-DDAH-1 DIG-labelled riboprobes, and of a DIG-labelled 

poly (dT) oligonucleotide positive control (recognising mRNA poly A tails), was 

performed on cirrhotic and control liver sections (n=3/group). Despite systematically 

altering conditions of temperature for hybridisation and stringency of washing, as 

listed in supplemental methods section S4.2, no staining was visible for either 

DDAH-1 or the positive control probe in these sections. 

Subsequently, formalin fixed and paraffin embedded (FFPE) sections from naive and 

BDL cirrhotic rats were used for in situ hybridisation characterisation. The Affymetrix 

Quantigene in situ hybridisation kit was used for detection of rat DDAH-1 and miR-

128 as described in suppmental methods S4.2. 

As shown in figure 4.12 these images validate the findings described in chapter 3, 

and earlier in this chapter. These images demonstrate that DDAH-1 is expressed in 
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a hepatocyte-restricted fashion in rat liver, predominantly in a peri-venular 

distribution mirroring the expression of DDAH-1 protein in rat liver identified by 

immunostaining in chapter 3. Additionally, these images confirm no demonstrable 

change in DDAH-1 mRNA expression, despite a previously noted decrease in 

DDAH-1 protein expression in cirrhotic rodents characterised in chapter 3. Finally, 

these images demonstrate a marked upregulation of miR-128 expression in cirrhotic 

rat liver, as noted in studies with microarray and qPCR earlier in this chapter. 

Moreover, the distribution of miR-128 expression in cirrhotic liver also appears to be 

in a peri-venular fashion. 
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Figure 4.12: In situ hybridisation images (x40) of DDAH-1 mRNA and miR-128 expression 

from naïve (top panel) and BDL (bottom panel) rat liver.  
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4.3 Discussion 
In this chapter we demonstrate through several lines of evidence that hepatic DDAH-

1 is post-transcriptionally regulated in cirrhosis by an altered miRNA profile. The 

initial data leading to the hypothesis that DDAH-1 is post-transcriptionally regulated 

took the form of a discrepancy between DDAH-1 gene and protein expression in rat 

and human cirrhotic liver. This finding was confirmed by in situ hybridisation 

experiments in rat liver, demonstrating unchanged hepatocyte DDAH-1 mRNA in 

cirrhosis.  

Subsequent bioinformatic analyses demonstrated several highly-conserved miRNA 

binding sites within the DDAH-1 3’UTR. Moreover, these sites are located in regions 

optimal for miRNA-mediated regulation, specifically near the 5’ end of the UTR within 

100bp of the STOP codon, since this facilitates access of the miRNA to the mRNA 

3’UTR with less likelihood of hindrance due to tertiary RNA structures164. It was also 

postulated that since ADMA has a role in the minute-to-minute regulation of organ 

blood flow, as the main regulator of tissue ADMA levels DDAH-1 may be regulated in 

a post-transcriptional manner to facilitate rapid responsiveness to changing 

physiological conditions. 

The first experiment to determine the ability of the DDAH-1 3’UTR to confer 

regulation was through in vitro luciferase reporter assays. For these experiments, the 

DDAH-1 UTR expressing luciferase construct was transfected into a hepatocyte cell 

line (HepG2), since miRNA-mediated gene regulation is likely to be tissue-specific, 

and a hepatocyte cell line is therefore most likely to recapitulate the cellular 

microenvironment within human hepatocytes. These experiments demonstrated a 

robust and reproducible suppression of luciferase expression compared to the empty 

vector control. Subsequently, on the basis of the results of two miRNA prediction 
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tools, a short (50bp) segment was also subcloned into the luciferase reporter vector. 

These experiments demonstrated that this shorter section of the 3’UTR has a similar 

regulatory effect to the full-length 3’UTR in HepG2 cells.  

The initial experiments were performed with a virtually full-length (>2.8kb) UTR aside 

from the last 114bp at the 3’ end (due to the lack of suitable primers to amplify this 

section for subsequent sub-cloning). As noted by Bartel, the complete UTR 

sequence should be tested to ensure that endogenous sequences that enhance or 

inhibit miRNA binding and gene regulation located distal to the predicted miRNA-

binding site are also present in the reporter construct164. Therefore it is possible, 

although unlikely, that inclusion of the terminal 114bp could change the dynamics of 

the DDAH-1 mRNA to alter responsiveness to endogenous miRNAs.  

As discussed above, the context of the miRNA binding site within the UTR has 

relevance for determining the miRNA-mRNA interaction. Genome-wide analyses of 

site conservation, site efficacy, and site depletion, all indicate that 7–8 nt seed 

sequences within the 3′ UTR tend to be most effective if they do not fall in the middle 

of long UTRs168. One explanation for these results is that sites in the middle of long 

UTRs may be less accessible to the RISC silencing complex due to the possibility of 

occlusive RNA-RNA interactions with segments from either side, whereas sites near 

the UTR ends would not. Similarly, local nucleotide composition in the immediate 

vicinity of the site, has been shown to be important, with those sites within high local 

AU content performing best168. Several methods have been proposed for predicting 

accessible UTR secondary structure favourable for miRNA targeting172-176. Although 

some of these methods have predictive value, when experimentally evaluated they 

are less successful in predicting responsive targets than scoring local AU content 

alone165, 168. The reasons for this are unclear, but when orthologous 3′ UTRs are 
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analyzed, conserved 7-mers are preferentially found in local AU-rich contexts, in 

predicted accessible secondary structure, away from the first 15 nt of the 3′ UTR, 

and away from the centre of long UTRs168, 177, 178. Thus, these results support the 

accessibility of the chosen 46pb region of the DDAH-1 UTR, since it occurs in an A-

U rich area, is away from the centre of the UTR and towards the STOP codon (but 

not within 15nt of the STOP codon) and contains highly orthologously conserved 

miRNA sties. 

Subsequent experiments were performed to mutate the predicted miRNA binding 

sites within the 46bp sequence cloned into the luciferase reporter. These 

experiments firstly confirmed that the short 46bp sequence is sufficient to induce 

repression of translation of luciferase in HepG2 cells. Morover, these experiments 

suggested that the predicted miR-128 site was necessary for this translational 

repression, since mutation of this site caused a loss of repression back to baseline 

levels, unlike mutation of the other predicted miR-219 and miR-30 sites. 

However, these results are not completely consistent with subsequent experiments 

where miRs 128, 219 and 30 were overexpressed in HEK293T cells, and all three 

miRs were found to significantly repress DDAH-1 protein expression. Thus, it is 

unclear why overexpression of miRs 219 and 30 led to significant repression of 

DDAH-1 expression in HEK293T cells, whereas mutation of predicted miR-219 and 

miR-30 binding sites did not lead to a de-repression of luciferase expression in 

HepG2 cells.  

One possibility is that HepG2 cells do not express enough endogenous miR-219 or 

miR-30 to contribute to repression of a luciferase reporter, but may exhibit repression 

in the context of over-expression.  Other authors have demonstrated that mir-219-5p 
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is expressed in HepG2 cells, albeit at lower levels than in other hepatocyte cell 

lines179. Similarly, previous studies have demonstrated that HepG2 cells also 

express miR-30a, but at lower levels than the breast cancer line MSF7180. Thus it is 

likely that the HepG2 cells used in these experiments express miRs 219 and 30a, 

although this was not tested in the experiments described above.  

A further possibility is that the sites were not adequately mutated to reduce miR 

function.  Taking miR219-5p, only 2 nucleotides were changed from the wild type 

seed sequence. (GACAATC ! GAGAATT). Since it is possible that miR-219-5p acts 

through having compensatory 3’ matching (see above), this would explain the lack of 

de-repression on mutating only 2 sites in the seed sequence. A recent study 

(published subsequent to the experiments described in this thesis) demonstrated 

that mutation of 6 nucleotides in the miR219-5p seed sequence leads to a significant 

de-repression of target gene lending credence to this hypothesis181. Similarly, only 

one nucleotide was altered in the mutant miR-30 construct (TGTTTAC!TGTTGAC). 

For similar reasons, this may not have been sufficient to alter miR-30 function, 

particularly if significant compensatory 3’ binding is present.  

Finally, it is possible that cell-specific cofactors are required, that are permissive for 

subsequent miR-219 or miR-30 binding, possibly by involving other mRNA binding 

proteins. An example is the Pumilio proteins, which have been shown to induce a 

permissive change in p27 mRNA to allow access of the miR221/222 –RISC complex 

to its target site to enable translational repression and play a role in cell cycle 

regulation182. Thus, it is possible that cell-specific cofactors are responsible for the 

differential effect of miR-219 and miR-30 seen between HEK293T and HepG2 cells. 
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In this chapter, we also show for the first time that hepatocyte DDAH-1 is sensitive to 

oxidative stress, with a concentration-dependent decrease in DDAH-1 protein 

expression. Previous investigators have shown that DDAH-1is sensitive to TNFα-

mediated inflammation and oxidative stress – Ito et al demonstrated decreased 

DDAH activity in endothelial cells exposed to TNFα or oxidized LDL183. More 

recently, Luo et al showed that renal preglomerular vascular smooth muscle cells 

(VSMCs) exposed to oxidative stress with H2O2 showed a marked decrease in 

DDAH-1 protein expression, but increased DDAH-1 mRNA expression143, thus 

echoing our findings of discordant DDAH-1 mRNA and protein expression following 

H2O2 exposure in hepatocytes. Interestingly, these authors found that proteosomal 

inhibition led to partial but not complete reversal of this effect, suggesting that the 

decrease in DDAH-1 protein expression is partially due to protein degradation but 

the remainder of this effect remained unexplained. In the experiments outlined 

above, we found that the 3’UTR mediated some of the effects of H2O2 on DDAH-1 

protein expression, since 10uM concentrations of H2O2 lead to a repression of 

luciferase expression that was not enhanced at the higher 100uM concentration. 

Thus, it is likely that post-transcriptional regulation of DDAH-1 mRNA is partially 

responsible for the decrease in DDAH-1 protein expression seen in hepatocytes at 

lower levels of oxidative stress, and at higher levels protein degradation may be the 

predominant mechanism. 

From the experiments presented here, it is unclear if H2O2 mediated oxidative stress 

leads to decreased DDAH-1 expression through increasing miRNA regulation or 

through a parallel signalling mechanism.  Clearly, measurement of miR-128 (or 

indeed other candidate miRs such as miR-219 or miR-30) in HepG2 cells exposed to 

H2O2 would have lent support to the hypothesis that oxidative stress modulates 
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hepatocyte DDAH-1 expression through altered miR regulation. However, this 

experiment was not performed, primarily due to the chronological order in which the 

experiments in this thesis took place. Prior investigators have shown that miR-128 is 

induced by H2O2 in a dose-dependent fashion in cardiac myocytes 184, however as 

yet this experiment has not been performed in hepatocytes. 

Other possibilities are that H2O2 acts in parallel with miRNAs to decrease hepatocyte 

DDAH-1 expression. Indeed, post-transcriptional protein-mRNA interactions in the 

3’UTR have been shown to account for decreased protein expression in response to 

H2O2-mediated oxidative stress in other cell types185. Thus, aside from miRNA 

regulation, possible mechanisms of redox signalling on the DDAH-1 3’UTR include: 

(i) by direct oxidation of a mRNA-binding stabilising protein, (ii) by activation of a 

mRNA-inhibiting target protein upon dissociation of an oxidized inhibitor, (iii) 

activation of target proteins through an intermediate signalling pathway, such as the 

peroxiredoxin-thioredoxin axis186 (Day et al Mol Cell 2012).  

Thus, taking the data presented above together, miR-128 appears to be an attractive 

target for therapeutic intervention in portal hypertension, since it is elevated in BDL 

cirrhotic liver, is located in hepatocytes and co-localises with DDAH-1 mRNA, and 

has regulatory function on DDAH-1 through loss-of-function and gain-of-function 

experiments. Mechanisms of oxidative stress acting through post-transcriptional 

mechanisms on DDAH-1 expression also merit further investigation. 
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Chapter 5 – DDAH-1 is Differentially Expressed as an Alternative 
Truncated mRNA Transcript in Human Placenta  
 

5.1 Introduction 
In addition to miRNA-mediated regulation of gene expression, a further recognized 

aspect of genomic complexity is the generation of alternative gene products from a 

single gene locus, which can occur through transcriptional or post-transcriptional 

(splicing) mechanisms187, 188. The use of alternative transcriptional initiation and/or 

termination (transcriptional events) can give rise to different pre-mRNAs, which can 

further undergo alternative splicing (splicing events), leading to multiple 

mRNA/transcript variants from the same gene. Therefore, a gene can potentially 

yield an extensive array of gene products - alternative transcript (transcriptome) and 

alternative protein (proteome) isoforms - thereby expanding the repertoire of the 

gene products in the mammalian genome. Although the functional consequence of 

differential expression of alternative isoforms is known for some genes, the 

magnitude of alternative isoform expression at the genome scale remains unknown, 

although recent evidence suggests that almost all multi-exon human genes generate 

multiple RNA variants that differ either in protein-coding regions and/or regulatory 

untranslated regions (UTR)189-192. 

 

The role of alternative promoters is particularly critical in transcriptional regulation, 

since alternative sites of transcription initiation allows tissue-specific or context-

specific expression of different transcript variants. An example of this is the gene 

LEF1, which encodes lymphoid enhancer factor proteins that mediate the 

transcriptional regulation of Wnt/β-catenin target genes. LEF1 is transcribed by two 

alternative promoters (P1 and P2). The most 5’ promoter P1 produces full-length 
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LEF1 protein (LEF1), which recruits β-catenin to Wnt target genes. However, an 

intronic promoter P2 derives transcription of the shorter LEF1 protein (ΔNLEF1), 

which cannot interact with β -catenin and instead suppresses Wnt regulation of 

target genes193. Thus, the two proteins from the LEF1 gene have opposing biological 

activities, adding a further layer of complexity to gene regulatory networks. 

Moreover, this switch in LEF1 promoter and transcript has functional consequences - 

LEF1 is not normally expressed in the human colon or in embryonic mouse intestine. 

However, in colon cancer tissue and cell lines, the promoter that produces full-length 

LEF1 is aberrantly activated, and the second promoter that drives the shorter protein 

is silent producing different biological outcomes194.  

 

Since in chapter 3 it was demonstrated that hepatocyte DDAH-1 is reduced in 

cirrhosis, and there is a discrepancy between hepatocyte DDAH-1 mRNA and 

protein expression in cirrhosis, a further possibility exists that transcription of an 

alternative non-protein coding DDAH-1 transcript is responsible for these findings. 

This hypothesis was explored further in this chapter. 
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5.2 Results 

5.2.1 Bioinformatic analysis of an alternative DDAH-1 transcript 
As a first step in characterizing alternative DDAH-1 transcripts in the homo sapiens 

transcriptome, the NCBI Nucelotide database was interrogated for alternative DDAH-

1 transcripts. This revealed a curated DDAH-1 transcript 2 (NM_001134445.1)(figure 

5.1). This transcript was submitted directly to NCBI for curation by the DNA 

sequencing consortium of the German Genome Project in 2005, from an endometrial 

cancer cell line. However, no further characterization of this transcript had been 

performed, and, at the time of the experiments presented in this thesis, had not been 

studied in any peer-reviewed publications. 

 

This transcript, although a longer mRNA with 2 non-coding exons and a longer 

5’UTR, lacks the coding exon 1 of the protein coding DDAH-1 transcript 1. 

 

Subsequently, a process of comparative regulatory genomics was performed, 

whereby this genome sequence was interrogated by comparison with orthologous 

genomic loci from a number of other species in multiple mammalian and non-

mammalian lineages, looking for evolutionarily conserved sequences. Comparative 

regulatory genomics describes the comparison of orthologous genomic sequences 

from multiple species in order to identify putative promoters or other functional cis 

regulatory modules (CRMs). This comparative process, also commonly referred to 

as “phylogenetic footprinting”, is based on the premise that some function of 

regulatory elements will be conserved between species, and this functional 

conservation will be reflected in similar nucleotide sequences195. 
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The assumption is made that the sequences being aligned are derived from a 

common ancestor, and that the time since their divergence has enabled a significant 

accumulation of mutations within both genomes and that selection has occurred195, 

196. It is crucial however that the genomes compared still maintain sufficient 

sequence similarity so that the homologous regions can be easily identified. 

Comparing closely related species, for example mouse and rat which diverged 41 

million years ago (mya), will highlight genomic sequences where divergence is most 

readily tolerated, by highlighting differences rather than similarities between the two 

species. Conversely when one compares distantly related species, for example rat 

and chicken (species diverged 310 mya), sequences under positive selection 

(genomic sequences constrained during evolutionary selection) are more easily 

identified (Ureta-Vidal et al, 2003). Sequence comparisons between human and 

opossom, which diverged ~180mya, have been empirically shown to be suitable for 

identification of functional CRMs in many cases197. 
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Figure 5.1: NCBI entry for DDAH-1 transcript 2 (NM_001134445.1) – accessed 4th June 

2012. 
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The human sequence comprising ≈100kb area upstream of the DDAH-1 transcript 1 

(termed T1) encompassing the 2 non-coding exons of DDAH-1 transcript 2 (termed 

T2) as well as further ≈50kb upstream of the T2 transcript, was compared with 

orthologous loci from multiple species, including both mammalian and non-

mammalian lineages. As described in the methods, the ECR browser was used for 

these comparisons. ECR utilises a widely employed technique to graphically display 

sequence conservation profiles in reference to the base DNA sequence (Homo 

sapiens 1p22 150kb DDAH-1 genomic interval) that is linear along the horizontal axis 

(Figure 5.2) while the vertical axis displays percent identity with respect to the 

chosen secondary sequence (Figure 5.2 multiple-species). Regions of significant 

non-coding conservation are graphically displayed as red peaks, with exonic and 

untranslated coding sequences depicted by blue and yellow peaks respectively. 

 

A pre-defined cut-off for significant conservation of non-coding elements was 

employed – >350bp long with >77% sequence homology. These filters have been 

shown to identify 90% of non-coding conserved elements between human and Fugu 

genomes, and subsequently used a filter to identify functional human/mouse 

regulatory elements198. Using this threshold, our analysis demonstrates only a single 

evolutionarily conserved non-coding region, just upstream of the transcription start 

site (TSS) of the DDAH-1 T2 transcript. This ≈700bp area is conserved across 

mammalian species to opossum, but is lost when chicken or fugu genomes are 

included. The level of conservation, maintained in the 180 million years since human 

and opossom diverged, suggests that this area is likely to be of functional 

importance. Moreover, the spatial conservation of this area just upstream of the 

DDAH-1 T2 TSS, suggests this area may represent a putative core promoter. 
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Figure 5.2: Conservation of homo sapiens chromosome 1 DDAH-1 5’ flanking region across 

mammalian species. Screenshot of ECR browser – accessed 21st May 2011. Regions of 

significant non-coding conservation are graphically displayed as red peaks. DDAH-1 is 

expressed on the negative strand of chromosome 1, hence transcription proceeds from right 

to left (‘5 to 3’) across this figure, and the area in red is immediately 5’ to the coding 

sequence. The area in red has significant conservation (>77% sequence homology) across 

the species depicted in the right panel compared to the human sequence (in ascending 

order: rhesus macaque, canine, mouse, rat, opossum). Conservation of this area is lost for 

the non-mammalian species depicted in the upper part of the right panel (chicken and fugu). 

 

 

5.2.2 Determination of human tissue expression of alternate DDAH-1 transcript  
Quantitative PCR was used to determine the expression of both the full-length T1 

transcript and the alternate T2 transcript in a human tissue cDNA panel (Clontech 

Laboratories, USA). This cDNA panel from a variety of human tissues is normalized 

to several different house-keeping genes to ensure accurate relative assessment of 
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target mRNA abundance.  

 

Taqman qPCR probes (Life Tech Inc, USA) were used to distinguish the two 

transcripts – an initial probe detecting a 77bp amplicon across the exon 2-3 

boundary was used to detect both the T1 and T2 transcripts, and a second probe 

detecting a 71bp amplicon across the exon 1-2 boundary of the T2 transcript was 

also used – this was selective for the T2 transcript (Figure 5.3). 

 

As shown in figure 5.4 although a broad distribution of expression for the full length 

T1 DDAH-1 transcript was seen, no expression of the T2 transcript was seen in the 

tissues represented in the cDNA panel. Additionally, no expression of the T2 

transcript was seen in human liver samples from patients with cirrhosis (the same 

samples as examined in chapter 4 section – data not shown). 

 

 

 

Figure 5.3: Schematic diagram of promoters and exons of DDAH-1 T1 and T2 transcripts. 

The T1 transcript is a shorter mRNA, but with 6 coding exons encoding a longer protein. The 

T2 transcript is a longer mRNA but has only 5 coding exons, with 2 non-coding exons, and is 

therefore predicted to encode a shorter protein. 

 

Since, endometrial tissue was not represented in this cDNA panel, and the original 

curated NCBI entry for this transcript was from an endometrial cancer cell line, RNA 

from the Ishikawa endometrial cell line was also analysed by qPCR for the T2 
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transcript. As seen in figure 5.4 low level expression of the T2 transcript is evident. 

Although a direct comparison with the mRNA expression of the T1 transcript is not 

possible since the ΔΔCT method was used for RNA quantification, rather than 

standard curve method, it is clearly lower than the full-length T1 transcript. No 

expression of T2 was seen in the negative controls for this experiment. 

 

 

Figure 5.4: Left panel: DDAH-1 T1 transcript mRNA expression in human tissue cDNA panel 

(pooled cDNA from n=6 tissues/group) . No DDAH-1 T2 transcript expression was 

detectable in this tissue panel. Right panel: Expression of both DDAH-1 T1 and T2 transcript 

mRNA is detectable in the Ishikawa cell line (pooled RNA from n=4 experiments).  

 

 

To confirm these findings, healthy human placental tissue (n=4) was obtained from 

healthy mothers at the time of caesarean section. Non-targeted samples were taken, 

snap frozen in liquid nitrogen, and RNA extracted for qPCR as in section 2.4.1. As 

shown in figure 5.5 there is similarly low-level expression of the T2 mRNA transcript 

seen in healthy placenta, although again direct comparison with the expression level 

of the T1 transcript is not possible with the ΔΔCT method of quantification. Again, no 

expression of T2 was seen in the negative controls for this experiment. 
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Figure 5.5: DDAH-1 T1 and T2 transcript mRNA expression in healthy human placenta 

(n=4). 

 

The core promoter is required for the transcription of eukaryotic RNA polymerase II 

(RNA pol II) transcribed genes. The promoter is typically defined as the area of 

genomic DNA approximately 35-40 bp upstream and downstream of the TSS. The 

core promoter is also defined in functional terms, since this region is usually 

sufficient to mediate gene expression in a reporter gene assay. The core promoter 

contains sequence elements, referred to as “core promoter motifs,” which interact 

with the basal transcription machinery, including RNA polymerase II and the TFIID 

complex199, 200. Although a number of prevalent core promoter motifs have been 

defined, there is no universal motif common to all promoters. However, the traditional 

model of a eukaryotic promoter driven by RNA pol II is an AT-rich DNA sequence 

(the TATA box) approximately 30 bp upstream of an initiator (Inr) sequence that 

contains the TSS. Assembly of a pre-initiation complex (PIC), which includes the 

transcription factor TFIIA-H along with RNA pol II, is initiated by TFIID binding to the 

TATA box, Inr sequences and/or other sites, and bending the DNA through a 90° 

angle. The next step involves recruitment other general transcription factors, after 
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which transcription is initiated 30 bp downstream.  

 

Transcription is further regulated by interactions of the PIC with three additional 

components: the TATA-associated factors, the so-called mediator complex(es), and 

positive and negative cofactors. Coordination of chromatin modification, mainly 

through the control of post-translational modification of histones, also has an 

important role in transcription initiation. The recruitment of all of these co-activators 

and co-repressors of transcription initiation is controlled by transcription factor 

binding to cis-acting DNA sequences that can lie within the core promoter or in more 

remote locations (enhancers and repressors). 

 

Using the Genomatix Gene2Promoter and Matinspector software, a number of 

transcription factor binding sites were mapped to this putative promoter using default 

parameters for core and matrix similarity thresholds (matrix similarity values of 0.75 

and core similarity values of 0.7)201, 202. 

 

The graphical output identifies 251 significantly conserved TFBS according the 

above parameters, within the conserved ≈700bp area upstream of the T2 transcript 

TSS. Specifically, binding sites for important initiators of transcription such as the 

TATA box (O$VTBP) and TFIID (O$TF2D) are present in this conserved area 

(Figure 5.6). 
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Figure 5.6 Identification of putative promoter elements within conserved non-coding element 

using Genomatix Gene2Promoter. TATA= O$VTBP, TFIID =O$TF2D. 

 

 

As mentioned above, the TATA box is not a ubiquitous feature of core promoters, but 

tends to be prevalent in ‘sharp’ or ‘narrow’ promoters. Large-scale mapping studies 

have revealed that the TSS is usually not a single distinct genomic position; instead, 

a typical core promoter may consist of an array of closely located TSSs spread over 

50–100 bp. Thus, ‘sharp’ or ‘narrow’ peak promoters are distinguished by a tight 

cluster of TSSs spanning only one or several bps, whereas ‘broad’, or ‘wide’ peak 

promoters the TSSs are distributed over a wide range, up to 100 bp203. Sharp 

promoters are typically involved in tissue-specific regulation of expression rather 

than ‘broad’ promoters which are common in constitutively expressed genes. 

Therefore, this TATA box located 34bp upstream of the TSS for the T2 DDAH-1 

transcript, in a highly evolutionarily conserved non-coding region, supports the 

hypothesis that this region represents a promoter involved in the tissue-specific 

regulation of this transcript.  

 

 

LOCUS       GXP_1817791(dimethylarginine dimethylaminohydrolase 1/human)    818 bp    

DNA DEFINITION  loc=GXL_77723|sym=dimethylarginine dimethylaminohydrolase 1|             

geneid=23576|acc=GXP_1817791|taxid=9606|spec=Homo sapiens|             

chr=1|ctg=NC_000001|str=(-)|start=86043733|end=86044550|             
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len=818|descr=DDAH1|comm=CompGen promoter ACCESSION   GXP_1817791 BASE COUNT    207 

a  173 c  220 g  218 t ORIGIN         

  1 GACGGGGGGC GGGAGGGGGG AGGAGGGGTG CAGGGACAGT ACTGGTTGAA CTAGAGAGAG        

61 AATGGAGAGG AGGGTTCCTG GCTTCTGTTG TGGCGTCTTT TCTATTTGAC TTCATGGTTG      

121 TAAGTATTTC CAGATGGTGA ATCAGACACC AGACGTAACA ATATTTCCAT ATTTGGGTAT       

181 AGCAGTAGCC TGCGTTTTTA ACATTTTTCT GCCTCTGTTA TCCAACCACA AAGCATTCTT       

241 GACAGCTTCA AATGTTGTTA AATATAGATT TAACTTCTCT TCCCAGAGCA GGAAATTCTT       

301 TGGAATTCCT TGTTTTTCAC GCAATCTGTC CATCATGATT TAAAATAAAA GCACAGTGGA       

361 TCATCCAACT GGCCGTATAT ACCTTAATTG GAGGTTGGGG ATGGGGGACG GCAGAGATCC       

421 AGTCTGCCGC ACTGCGTTCA AACACACGCC ATTCCAGAGA TTCCTTTAAA ATCACATTAA       

481 AGTTTTTTTA ACAAGGGTGT GTGGGTTTGT TTCTGGACTT CAACTGGGGA ATCTTGAGGA       

541 TGAGTTTGCC CCAGAAGAGA AATTTAGAGA ACCTTACCGT CAGCTGCCCA TTTAAAGCAG       

601 GGGGTGTGTT GTGGGATGGG GGTGGGAAGC TGGAGCAACA GGGCCAGGAG GTGTGGGAGC       

661 GGGAGACACT AGAGTAACCT ATGTGCACAG CCTCTCCATA TACCATGTGC TGTTGCGCCT       

721 GCTAGTAATC GACGACATTA GGCAAGAGAA ACAGCGGCTC CTCAAGTCCT GCCCAAAGAC       

781 CGTCCAGAAA CCCCAGCCTC CCGTCGCCTT CTCGCCGC 

 

Figure 5.7: Sequence of putative promoter of DDAH-1 T2 transcript. Purple=TATA box. 

Green= coding sequence. 

 

 

To further explore the hypothesis of endometrial/placental restricted expression of 

this T2 transcript, the putative promoter was interrogated for transcription factor 

binding sites that are upregulated in placental tissue in pre-eclampsia. Since pre-

eclampsia is a condition characterized by placental vascular dysfunction, elevated 

placental ADMA and decreased placental DDAH activity, it was hypothesized that 

pre-eclampsia may be associated with a switch in transcription of full-length DDAH-1 

to truncated, non-functional T2 DDAH-1 through the putative alternative promoter of 

T2.   
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The transcription factor profile of pre-eclampsia has been previously defined - 

Vaiman et al recently analysed data from publicly available microarray analyses of 

pre-eclamptic and normal placentae, to obtain a consensus list of modified genes204. 

Subsequently, they demonstrated 67 up-regulated and 31 down-regulated genes, 

and went on to find over-represented transcription factor binding sites in the 

promoters of these genes. This group found that the promoters of up-regulated 

genes are enriched in putative binding sites for NFkB, cAMP responsive element 

binding protein 1 (CREB), RAS-responsive element binding protein 1 (RREB1), and 

activator protein-2 (AP-2).  

When these specific transcription factor sites were searched for in the putative 

DDAH-1 T2 promoter, several predicted binding sites for CREB and RREB1 are 

found within the region +/100bp of the TSS, in the vicinity of the proposed TFIID 

binding site (figure 5.8). 

 

 

Figure 5.8 Identification of putative transcription factor binding sites within the conserved 

predicted promoter site of the DDAH-1 T2 transcript using Genomatix Gene2Promoter 

(accessed May 2016). TFIID=O$TF2D, TATA=$VTBP, CREB=V$CREB, RREB1=V$RREB. 
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Figure 5.9 Identification of putative transcription factor binding sites within the promoter site 

of the DDAH-1 T1 transcript using Genomatix Gene2Promoter (accessed May 2016). 

CREB=V$CREB, AP-2=V$AP2F. 

 

By contrast, in the DDAH-1 T1 transcript promoter, from the above list of 

transcription factor binding sites, there are no predicted binding sites for RREB and 

fewer predicted CREB binding sites (figure 5.9). 

 

5.2.3 In vitro translation of the predicted protein of the alternate DDAH-1 
transcript 
To determine if the alternate, truncated DDAH-1 T2 transcript is protein-coding, a 

cell-free in vitro translation system was utilized to identify a protein product from the 

cDNA for this transcript. As such, both the T1 and T2 DDAH-1 RNA transcripts were 

generated from linearized vectors, using the protocol for in vitro transcription outlined 

in section S4.1. The DNA template was then removed by DNase digrestion, and the 

RNA products from this reaction were run on an RNA gel, and subsequently used for 

in vitro translation.  

 

The rabbit reticulocyte lysate cell-free expression system was used for in vitro 

translation. This system is prepared as a crude extract containing all the 

macromolecular components (70S or 80S ribosomes, tRNAs, aminoacyl-tRNA 
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synthetases, initiation, elongation and termination factors, etc.) required for 

translation of exogenous RNA. The initial in vitro translation reaction was performed 

with labeled [35S]methionine in the translation mix for subsequent protein product 

identification. Following the in vitro translation reaction, RNase digestion was 

performed and the reaction product was analysed by SDS-PAGE and 

autoradiography. 

 

As seen in figure 5.9, the T1 transcript was, as expected, translated with high 

efficiency into a 33kDa protein product. Additionally, a further band of lesser intensity 

is seen at 27kDa as a product of the T2 transcript. This band is not seen in the 

minus-RNA control reaction. 

 

 

Figure 5.9: In vitro translation and autoradiography of full-length DDAH-1 protein (right lane 

33kDa) and truncated DDAH-1 (centre lane 27kDa). No band is visible in the RNA-negative 

control lane (left lane). 
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5.3 Discussion 
The results in this chapter demonstrate for the first time that a novel truncated 

DDAH-1 RNA transcript exists in human placental tissue from healthy mothers. 

Subsequent in vitro experiments demonstrate that this novel transcript is protein 

coding, and therefore may potentially be translated in human placenta. Moreover, 

bioinformatics analysis strongly suggests that this transcript has a TATA-containing 

promoter, with predicted binding sites for transcription factors that are upregulated in 

placenta from patients with pre-eclampsia (PE).  

 

The predicted lack of exon 1 in transcript T2 is important, since the presence of exon 

1 has been shown to be essential for hydrolase activity. The Ddah1+/- heterozygote 

knockout mouse described by Leiper et al has a global reduction of DDAH activity by 

approximately half, although Ddah1-/- homozygotes are not viable88. Thus, although 

not tested here, it is likely that a truncated DDAH-1 protein lacking exon 1 would not 

have DDAH activity, yet may still have (patho)physiological relevance through 

protein-protein interactions as suggested in chapter 1.  

 

Subsequent to the experiments presented in this thesis, the group of Sun et al have 

similarly demonstrated the presence of the T2 truncated DDAH-1 transcript in 

HUVEC cells, as well as peripheral blood mononuclear cells from healthy human 

subjects and patients with acute ischaemic stroke205. Although no experiments are 

performed in this paper to characterize the promoter of this transcript, or the protein-

coding nature of this transcript, they do note that unlike the full-length (T1) transcript 

there is no correlation between T2 expression levels and DDAH activity in HUVEC 

cells, further suggesting that the T2 transcript has no DDAH activity. 
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As noted above, the initial hypothesis preceding the early experiments outlined in 

this chapter was that a switch to an alternative non-functional/no-coding transcript of 

DDAH-1 may be responsible for the discrepancy noted earlier in this thesis between 

DDAH-1 mRNA and protein expression. However, no hepatic expression of the T2 

DDAH-1 transcript was noted in healthy or cirrhotic human liver tissue, or indeed in 

any healthy tissues from a broad panel of human cDNAs. Subsequently, an 

endometrial adenocarcinoma cell line, Ishikawa, was used to replicate the original 

curated observation of the T2 transcript submitted by the German Genome Project. 

This experiment replicated this original observation, and the T2 transcript was 

detected in Ishikawa cells at low levels, albeit that direct comparison of mRNA 

expression levels with other transcripts is not possible since the ΔΔCT method of 

mRNA quantification was used, and factors such as PCR efficiency may affect the 

relative cycle threshold with different taqman probes. To validate this observation, 

human placental tissue – which develops from the endometrial decidual layer – was 

obtained from healthy mothers with no evidence of PE. Similar levels of the DDAH-1 

T2 transcript were found by qPCR in this tissue across all samples.  

 

Although protein characterisation was not performed in these placental tissues, in 

vitro studies demonstrated that the T2 transcript is protein coding in a cell-free 

translation system. Although the level of expression determined by autoradiography 

following cell-free translation was low for this transcript, this does not necessarily 

reflect the translation efficiency of this transcript in vivo. Firstly, since radiolabelled 

methionine was used to detect the protein product, the shorter transcript would be 

expected to have lower intensity since it contains fewer methionine residues. 
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Secondly, mRNA generated by in vitro transcription from linearized plasmid DNA 

may lack necessary post-transcriptional modifications for efficient translation, such 

as a 5'-7 methyl-GTP cap and a 3' poly(A) tail. Both these modifications contribute to 

the stability of the mRNA by preventing degradation. Additionally, the 5' cap structure 

enhances the translation of mRNA by helping to bind the eukaryotic ribosome and 

assuring recognition of the proper AUG initiator codon. Further, the consensus 

sequence 5'-GCCACCAUGG-3', also known as the "Kozak" sequence, is considered 

to be the strongest ribosomal binding signal in eukaryotic mRNA. An mRNA that 

lacks the Kozak consensus sequence may not be translated efficiently in cell-free 

systems, particularly if secondary structures form in the 5'-UTR. Thus, any signal 

from the in vitro translation of the T2 transcript can be regarded as evidence that this 

transcript is protein coding, the relative expression of which is likely to depend on 

tissue and pathological state.   

 

Thus, although the T2 transcript was translated into protein in vitro, there is as yet no 

evidence that this occurs in vivo. Nevertheless, it is not absolutely necessary for an 

alternate transcript to be protein-coding to have a regulatory role, as has been 

recently described for a non-coding transcript of the murine proteinase 3 gene. 

However, it is tempting to hypothesize that under certain conditions transcription of a 

truncated DDAH-1 protein lacking exon 1 occurs, with no hydrolase activity, but 

alternative functions through direct protein-protein interactions as mentioned above. 

This hypothesis deserves further attention, although protein characterization with 

antibodies able to distinguish T1 and T2 transcript proteins will be required. 

 

The relevance of the T2 transcript in the pathogenesis of PE is suggested by 
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literature demonstrating altered placental DDAH activity amongst patients with PE. 

The process of placental vascular development is a key process during fetal 

development, and placental vascular dysfunction is implicated in several pathologies 

such as pregnancy induced hypertension (PIH) and PE. In a similar fashion to the 

intrahepatic circulation, NO is a key regulator of placental vascular tone, and is 

essential for the processes of implantation and trophoblast invasion.  

 

Elevated systemic ADMA levels have been described in patients with PE, and two 

SNPs in the DDAH1 gene have been associated with elevated risk of PE. More 

recently, Anderssohn et al have described markedly decreased DDAH activity in 

placental tissue from patients with PE compared to healthy controls206. Importantly, 

these authors found no change in DDAH-1 mRNA, eNOS mRNA or PRMT1 mRNA. 

Although protein levels of DDAH-1 and DDAH-2 were not measured, the authors 

attributed the marked decrease in DDAH activity to a marginally significant decrease 

in DDAH-2 gene expression. However, since DDAH-2 has limited hydrolase activity, 

a far more likely explanation is a change in DDAH-1 activity. Since the authors used 

qPCR primers that would be unable to distinguish the T1 and T2 DDAH-1 transcripts, 

it is possible that the observed marked decrease in DDAH activity can be explained 

by a switch in transcription to the truncated T2 transcript.  

 

This hypothesis is further supported by the bioinformatic analysis of the putative T2 

promoter that demonstrates predicted binding sites for a series transcription factors 

that are overexpressed in placentae from patients with PE. Of course these 

predictions need experimental verification, ideally through luciferase reporter studies 

demonstrating promoter activity for this putative promoter sequence in Ishikawa 
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cells, and subsequent mutation of predicted transcription factor binding sites as ‘loss-

of-function’ experiments. However, these experiments were unable to be performed 

during the course of this thesis, since a nationwide shortage of Ishikawa cells was 

declared by the major cell line suppliers which remains ongoing. 

 

A further possibility is that DDAH-1 undergoes post-transcriptional regulation by 

miRNAs in PE. Other groups have demonstrated decreased DDAH-1 protein 

expression in PE, but DDAH-1 mRNA is unchanged in disease, suggesting post-

transcriptional regulation of DDAH-1 in PE in a similar manner to cirrhosis. Although 

several placental miRNAs have been shown to be differentially expressed in PE 

compared to healthy controls, miR-128 has not been shown to be elevated in PE 

placenta.  

Thus, the work presented in this chapter demonstrates for the first time a novel, 

truncated, protein-coding transcript of DDAH-1 in human placenta. This is likely to be 

non-functional, but may represent a tier of transcriptional regulation of DDAH-1 

through an alternative promoter, which may be of pathophysiological relevance in 

pre-eclampsia or other conditions with elevated placental ADMA. This hypothesis 

deserves further attention, through quantification of this alternative transcript in 

tissues from patients with pre-eclampsia and healthy controls, and functional 

characterisation of the putative alternative promoter outlined above.  
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Chapter 6 – Discussion and Future Work 
 

It is well recognized that portal hypertension is a grave step in the progression of 

cirrhosis, associated with the development of complications and a close predictor of 

mortality. Although the pathobiology of portal hypertension involves fibrosis as well 

as increased intrahepatic vascular tone, recent work has focussed on the role of 

infection and inflammation in portal hypertension and complications in cirrhosis78. 

 

Pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 are 

elevated in cirrhosis, and are further elevated in cirrhotic patients with infection207. 

This dysregulated inflammatory response is associated with severity of portal 

hypertension and complications – serum bacterial DNA level, as a surrogate marker 

of bacterial translocation in cirrhosis, is correlated with systemic inflammation and 

portal hypertension208. Indeed, recently a panel of biomarkers for of pro-inflammatory 

cytokines was found to be highly predictive for the presence of portal hypertension 

and oesophageal varices in a prospective cohort209. A causal relationship between 

systemic inflammation and portal hypertension in ACLF is also inferred by studies in 

alcoholic hepatitis, demonstrating a rapid and sustained reduction in portal pressure 

with anti-TNFα therapy210. 

 

As outlined in chapter 1, initial clinical observations implicated the DDAH-ADMA 

pathway in the pathobiology of portal hypertension, particularly in states of systemic 

inflammation. Plasma ADMA levels were found to be elevated in cirrhosis with 

superimposed inflammation, and hepatic ADMA correlated with portal pressure72. 



	 141	

Experiments from our group leading up to this thesis had demonstrated that anti-

TNFα therapy also produces a clinically significant reduction in portal pressure in 

cirrhotic rodents, associated with reduced NFkB-mediated inflammation and 

increased hepatic DDAH-1 expression. Additionally, the DDAH-ADMA pathway has 

recently been implicated as the pathway for the therapeutic reduction in portal 

pressure seen with Farnesoid X receptor (FXR) agonists in cirrhotic rodents and 

humans211.  

 

It is on this background that the aim of this thesis was to further characterise the role 

of DDAH-1 in a rodent model of portal hypertension, establishing a relationship 

between hepatic DDAH-1 protein expression and portal pressure. Although both anti-

TNFα therapy and FXR agonists lead to an increase in hepatic DDAH-1 expression 

in cirrhosis, they are both associated with myriad ‘off-target’ effects, hence a 

selective DDAH-1 ‘gain-of-function’ experiment was performed to assert a causal 

relationship between DDAH-1 expression and hepatic haemodynamic phenotype. 

 

Thus in chapter 3, we validate the previous finding that hepatic DDAH-1 expression 

is decreased in cirrhosis, and proceed to demonstrate that hydrodynamic gene 

delivery of DDAH-1 in cirrhotic rodents leads to a significant increase in hepatic 

DDAH-1 expression and a clinically significant reduction in portal pressure with no 

adverse effect on systemic haemodynamics. A major limitation of the in vivo work 

presented in this thesis is the lack of in vivo ADMA measurements. This was due to 

technical problems with mass spectrometry in our laboratory during the course of the 

experiments presented in this thesis. Since ADMA is not a protein, but is a 
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methylated arginine residue, initial methods for the quantification of ADMA relied 

upon HPLC or MS to allow differentiation between the structurally similar isomers 

ADMA and SDMA. More recently, ELISA based methods for the measurement of 

ADMA have been developed, but have not been validated, and indeed antibody-

based methods for the detection and discrimination of methylated arginine residues 

may be envisaged to be problematic. Thus, for these reasons ADMA measurements 

were not performed in the experiments presented here. However, in vitro work was 

carried out on primary endothelial cells to demonstrate that ADMA is an inhibitor of 

NO generation at pathophysiological levels, and several investigators have 

previously demonstrated that DDAH-1 is a major pathway of ADMA elimination in 

vivo. 

 

In chapter 3 we also demonstrate for the first time that DDAH-1 is primarily located in 

hepatocyte cytoplasm within the liver. If the major effect of DDAH-1 on the hepatic 

vasculature is through metabolism of local ADMA, this implies a paracrine 

mechanism of action, since ADMA acts to competitively inhibit the action of eNOS 

located in the SEC.  In chapter 4 we proceeded to show for the first time that 

hepatocyte DDAH-1 is sensitive to oxidative stress, with a H2O2 concentration-

dependent decrease in DDAH-1 protein expression. Furthermore, the mechanism for 

this decrease in protein expression was found to be partially related to the DDAH-1 

3’UTR.  

 

Further studies in chapter 4 demonstrated the presence of predicted miRNA binding 

sites in the DDAH-1 3’UTR, and indeed miR-128 was found to be elevated in 
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cirrhotic rat liver compared with sham controls, as well as being found to be an active 

regulator of DDAH-1 protein expression through both gain-of-function and loss-of-

function experiments.  

 

As discussed in chapter 4, it is unclear whether the H2O2 mediated changes in 

DDAH-1 expression are due to alterations in miRNA expression, or through alternate 

mechanisms relating to the DDAH-1 3’UTR. Nevertheless, the finding of post-

transcriptional regulation of hepatic DDAH-1 through miRNAs raises the possibility of 

therapeutic targeting of miRNAs for portal hypertension in ACLF.  

 

As noted in chapter 2, currently there is no licensed therapy for portal hypertension. 

Non-licensed therapy includes non-selective beta-blockers used in stable portal 

hypertension, and the vasopressin analogue terlipressin for acute variceal bleeding. 

However, both these agents compromise liver blood flow and an ‘ideal’ agent for 

treatment of portal hypertension would aim to lower intra-hepatic resistance without 

compromising liver blood flow. From the results presented in chapter 3, an agent to 

selectively increase hepatic DDAH-1 in ACLF would be predicted to decrease 

intrahepatic ADMA, thus decreasing intrahepatic resistance and lowering portal 

pressure without any deleterious effect on liver blood flow or systemic 

haemodynamics. Since no specific agonist for DDAH-1 currently exists, modulation 

of hepatic DDAH-1 expression in ACLF through miRNA targeting is a possible 

avenue for translation. FXR agonists have been shown to upregulate hepatic DDAH-

1 expression, through an FXR responsive element in DDAH-1 exon 1,134 and also 

been shown to reduce portal pressure in cirrhotic rodents211, 212. However, FXR 
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signalling has pleotropic effects, and translation of these agents may be limited by 

concerns surrounding pruritus, dyslipidemia and cholangiocyte proliferation. 

Therefore, selective targetting of DDAH-1 remains an attractive therapeutic route. 

 

Antisense oligonucleotides, such as locked nucleic acids (LNAs), have been shown 

to successfully target miRNAs in the context of liver disease, and have been shown 

to be safe and well tolerated in man213. As shown in chapter 3, viral-mediated gene 

therapy is challenging in cirrhosis, but oligonucleotide based therapies are likely to 

be more successful at delivery, since they are much smaller than viral particles 

hence able to access hepatocytes in cirrhotic liver. Moreover, modified 

oligonucleotides such as LNAs are resistant to nuclease digestion, and have been 

shown to be safe and efficacious in the knockdown of hepatic miRNAs in humans 

with intermittent parenteral administration.  The next steps to build on the work 

discussed in this thesis would be to use LNAs to target miR-128 in a rodent model of 

cirrhosis, to demonstrate changes in hepatic DDAH-1 expression and portal 

haemodynamics, as well gene expression arrays to screen for off-target effects that 

may limit broader translational use. 

 

The final observation noted in the experiments detailed in this thesis was the first 

characterisation of a novel, truncated transcript of DDAH-1 in human placenta. As 

discussed in chapter 5, transcription of alternate transcripts through alternative 

promoters is a recognized aspect of genomic complexity and regulation. Although 

this alternate transcript was not found in healthy or diseased human liver, it was 

found in human placenta, and can be hypothesized to play a role in the pathobiology 
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of pre-eclampsia. Further study is required to experimentally characterise the 

putative promoter for this transcript found through in silico analysis – these 

experiments were not carried out during the course of this thesis due to a limitation 

on the availability of Ishikawa cells which were used for the early experiments 

detecting this novel transcript. Nevertheless, a switch to transcription of this 

truncated, protein-coding transcript under certain pathological conditions may play a 

role in the development pre-eclampsia, and studies of placental specimens from 

well-characterised patients and healthy controls should be undertaken to explore this 

hypothesis. 

 

During the course of the experiments presented in this thesis, the result so of a large 

international collaborative effort to determine the functional importance of non-coding 

DNA was published (the ENCyclopedia Of DNA Elements – ENCODE). This 

landmark project aimed to annotate the entire genomic sequence for functional non-

coding elements. The background to this project was the disappointingly low ‘hit rate’ 

from genome-wide association studies (GWAS) for biological targets in disease 

cohorts. The human genome project had ushered in the concept of ‘personalized 

medicine’ whereby genomic sequence would highlight propensity to disease as well 

as candidate proteins as therapeutic targets. However, from the over 1500 GWAS 

studies in the NIH GWAS catalogue, it is apparent that the vast majority (88%) of 

disease associated SNPs are not related to coding regions – 45% are intronic and 

43% are intergenic214. The implication is that variance in the regulatory elements of 

the genome carry a large burden of the risk of complex diseases. The ENCODE 

project aimed to characterise these regulatory elements, and in the flagship paper in 

September 2012, as well as 30 other simultaneously published research papers, 
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ENCODE demonstrated with a variety of methodologies that 80% of non-coding 

‘junk’ DNA contains elements with biochemical function215. In particular, these areas 

of non-coding DNA contain gene enhancers, alternative promoters and regions that 

encode non-coding RNA transcripts.  

 

Included in the wealth of data from ENCODE is the recognition of biochemical 

signatures characterising promoters as well as alternate RNA transcripts. Examples 

include promoter regions that are rich in predictable biding sites for DNA binding 

proteins, which can be experimentally verified by site-specific occupancy assays 

such as ChIP216, 217.  Promoter regions also have alterations in chromatin structure 

giving rise to nuclease hypersensitivity of the underlying DNA218. Other 

characteristics of functional elements are histone modifications suggesting 

transcription factor occupancy of adjacent DNA, and DNA methylation as an 

epigenetic modulator of gene expression216, 219. All of these biochemical signatures 

were experimentally assayed in the ENCODE project. Overall, 636,336 binding 

regions covering 231 megabases (8.1% of the genome) were enriched for regions 

bound by DNA-binding proteins across all cell types. Additionally, ENCODE 

demonstrated with ultra-deep RNA sequencing that about 75% of the genome is 

transcribed to RNA at some point in certain cell types220. Therefore, the majority of 

RNA in a cell is never translated to protein, but may play important regulatory 

functions. Moreover, the expression of RNA transcripts from genes is not uniform – 

most genes express more than one isoform of a transcript, with an average of 10-12 

expressed isoforms per gene per cell line. Thus, in concert with the results of this 

thesis delineated above, these findings highlight that transcription is a lot wider-

spread than previously thought, with large numbers of non-coding RNA molecules 
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with potential regulatory roles.  

 

The immediate implications are that genome-wide approaches to determining 

disease risk and finding targets for therapy require re-evaluation in this light. 

ENCODE demonstrates that non-coding regions must be considered when 

interpreting GWAS findings, and provides a strong basis for reinterpreting previous 

GWAS results. Furthermore, as mentioned above, the results of ENCODE suggest 

that exome-sequencing studies focusing on protein-coding sequences risk missing 

crucial parts of the genome and the ability to identify true causal variants. 

 

The implication for liver diseases is the prospect of transcriptional modulation as a 

therapeutic strategy. Knowledge of regulatory elements will point us toward new 

therapeutic approaches and expand the ‘druggable genome’. Although the prospect 

of characterization and validation of this new tier of genomic control is daunting, 

novel technologies of gene editing such as zinc-finger and TAL effector-like 

nucleases are now scalable, and thus functional elements can be validated on a 

large scale. The manipulation of DDAH-1 through anti-miRNA strategies or targeting 

of an alternate placental RNA transcript are just examples of this application of 

molecular therapeutics. Thus, the paradigm shift in genomic data provided by 

ENCODE, along with improved chemistry for the delivery of nucleic acid based 

therapies to the liver, has provided the opportunity for novel genome and epigenome 

targeted therapies. As William Ford Gibson famously said, “the future already exists, 

it’s just not very evenly distributed”. 
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8.0 Supplemental methods 
 

Chapter 3: Recombinant AAV vector production 

 

S3.1 Triple transfection of rAAV plasmid, helper Ad plasmid and packaging 
plasmid into HEK293T cells 

 

In this study, the three-plasmid system was used which involved the triple 
transfection of 293-T cells with a helper Ad plasmid (HGTI) a pAAV-based plasmid (a 
vector flanked by the AAV-serotype 2 ITRs and harbouring the cDNA of interest), 
and a packaging plasmid containing the AAV Rep and Cap genes, at a molar ratio of 
3:1:1 respectively (Figure S3.1). Since the generation of pseudotyped AAV vectors 
was required, the packaging construct contained AAV serotype 2 Rep proteins, but 
Cap proteins from serotype 9.  

 

The day before transfection, 293-T cells were seeded into 40 (15cm diameter) 
dishes at a cell density of between 8-9.5× 10^6 cells/dish, so that the cultures were 
about 70% confluent the following day. On the day of transfection, a transfection 
mixture was prepared for 10 dishes in a 50 ml Falcon tube, containing 300µg HGTI, 
100µg pAAV_DDAH1, 100µg pAAV_9, 0.25M CaCl2 and ddH2O made up to 12.5ml 
volume. 

 

While aspirating the above mix with a 1ml pipette to create bubbles, 12.5ml 2× 
HEPES- buffered saline (HBS; 280mM NaCl, 10mM KCl, 1.5mM Na2HPO4, 12mM 
dextrose and 50mM HEPES; pH 7.05) was added at a steady slow rate. The 
transfection mix was incubated at room temperature for 2min and then the entire 
25ml was transferred to 200ml of pre-warmed growth medium and mixed gently by 
inversion. The culture medium was removed from the 10 (15cm diameter) dishes 
containing the 293-T cells and 22ml of the transfection mix was carefully added 
without disruption of the cell monolayer. After an incubation period of 2 to 3 days, the 
culture medium was removed from the transfected cells leaving 2-3ml in each dish 
into which the cells were scraped. The scraped cells from each dish were then 
pooled and pelleted by centrifugation at 1000g for 10min and the cell pellet was re-
suspended in 15ml cell lysis buffer (150mM NaCl, 50mM Tris-HCL; pH 8.5). The 
cells were then lysed by four cycles of freeze/thaw by alternately placing in 
ethanol/dry ice and then a 37C water bath. Lysis of the cells results in the release of 
the AAV particles into the supernatant. The lysate was then treated with 3µl (100 
Units) of benzonase, which is an enzyme used to dissociate aggregated rAAV 
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particles by digesting any extraneous nucleic acid, before purification. An aggregate 
of virus particles would behave as a single transducing unit, therefore, it is important 
that these are separated to maximise the infectious virus titer. The benzonase-
treated lysate was vortexed, followed by incubation at 37C for 1h and then 
centrifugation at 6,500 rpm for 20min to clarify the cell lysate. 

 

S3.2 Purification of the clarified lysate by iodixanol step gradient 
ultracentrifugation 

 

To isolate the rAAV particles from the clarified lysate, the latter was loaded onto a 
step- gradient of iodixanol. Upon ultracentrifugation the virus particles sediment into 
the 40% iodixanol gradient fraction. The most concentrated iodixanol fraction (60%) 
is the lower layer and functions as a cushion to prevent the particles pelleting at the 
bottom of the tube. The iodixanol fractions were prepared as shown in Table S3.1. 

 

 

 

% Iodixanol 

 

Iodixanol 
(ml) 

 

5M NaCl 
(ml) 

 

*5× PBS-
MK (ml) 

 

ddH2O (ml) Phenol 
Red (µl) 

 

15% 

 

12.5 

 

10 

 

10 

 

17.5 

 

- 

25% 

 

20.8 

 

- 10 

 

19.2 

 

100 

 

40% 

 

33.3 

 

- 10 

 

6.7 

 

- 

60% 

 

50 

 

- - - 100 

 

 

Table S3.1: Preparation of iodixanol fractions 

*5x PBS-MK (5x PBS, 5mM MgCl2, 12.5mM KCL) 
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The clarified lysate was transferred to a Quick-Seal Ultra-Clear Ultracentrifuge tube 
using a Pasteur pipette and then carefully underlayed with the iodixanol fractions in 
the following order: 5ml 60% iodixanol, 5ml 40% iodixanol, 6ml 25% iodixanol, 9ml 
15% iodixanol.  

 

The remaining space in the tube was filled with cell lysis buffer before heat-sealing 
the ultracentrifuge tube. Ultracentrifugation of the iodixanol step-gradient was 
performed in a Beckman Ultracentrifuge using a Type 60Ti rotor at 60,000 xg for 
90min. The 40% fraction is easily distinguished owing to the presence of phenol red 
in the 25% and 60% iodixanol fractions. Using a 19-gauge needle and 10ml syringe, 
the 40% fraction was removed by carefully puncturing the tube at the 60%/40% 
interface and withdrawing no more than 4.5ml of the fraction. The purified virus was 
then loaded onto a single Biomax 100 ultrafiltration device and the volume brought 
up to 15ml with 1× PBS-MK. The filter device was centrifuged at 2000g at room 
temperature until approximately 1ml remained. The virus stock was re-diluted and re-
concentrated a second time, ending with a final volume of 500µl, which could then be 
stored at -80°C. 
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Figure 2-3.  Production and purification of rAAV vector particles  
The three-plamid system was used for the production of rAAV vector particles, which 
involved the triple transfection of 293-T cells with a helper Ad plasmid (HGTI) a pAAV-
based plasmid (a vector flanked by the AAV-serotype 2 ITRs and harbouring the cDNA 
of interest), and a packaging plasmid containing the AAV Rep and Cap genes, at a 
molar ratio of 3:1:1 respectively.  Cell lysates were prepared two days after 
transfection and rAAV particles purified by iodixanol gradient ultracentrifugation. 

 

Figure S3.1 – Purification of rAAV using an iodixanol gradient 
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3.6.3 Determination of virus particle titer by DNA dot-blot hybridisation 
analysis 

 

To estimate the virus particle titer, rAAV vector genomes were isolated from 1µl and 
5µl portions of the virus stock and transferred to a nitrocellulose membrane, together 
with a serial dilution of known quantities of the corresponding pAAV vector. To 
extract vector genomes, the virus was treated with DNase I (1U/µl) to digest any 
extraneous DNA. To the 1µl and 5µl virus portions, 5µl of DNase I and 20µl of 10× 
DNase I reaction buffer was added and brought to 200µl with serum-free DMEM. 
Following incubation at 37oC for 1h, the virus was treated with 200µl of 2× 
proteinase K buffer (20mM Tris-HCl, 20mM EDTA and 1% (w/v) SDS) containing 
100µg of proteinase K and incubated a second time at 37oC for 1.5h. The proteinase 
K digests the virus capsid proteins releasing the vector genome. The vector DNA 
was then isolated by the addition of 400µl of phenol:chloroform:isoamyl alcohol 
(25:24:1) and vortexed to form an emulsion, which was centrifuged at 10,000 g for 
10min. The upper aqueous phase was transferred to a 1.5ml microfuge tube and 
40µl 3M sodium acetate (pH 5.2) and 2µl of glycogen (20µg/µl) was added. This was 
vortexed and then 1ml ethanol (2.5 vol) was added, mixed and incubated at -80°C 
for 30min to precipitate vector genome DNA. The preparations were centrifuged at 
10,000 g for 20min at room temperature to pellet the DNA, which was clearly visible 
due to the presence of glycogen. The supernatant was removed and the pellets 
washed with 800µl 70% ethanol and centrifuged at 10,000 g for 5min at 4°C. Once 
the supernatant had been removed, the DNA pellets were air-dried and dissolved in 
400µl of 0.4M NaOH/10mM EDTA (pH 8). 

 

For dot blot analysis, a two-fold serial dilution of the corresponding pAAV vector was 
prepared, ranging from 80ng to 0.3125ng. To each 5µl pAAV dilution, 400µl of 0.4M 
NaOH/10mM EDTA was added. While heating the viral and plasmid samples at 
100oC for 5min a piece of Hybond-N+ nitrocellulose membrane and three pieces of 
3MM Whatman blotting paper were cut to the size of the dot-blot manifold and pre-
wetted in ddH2O. The manifold was set up with the membrane overlaying the three 
sheets of blotting paper and attached to a vacuum pump. Each well to be used in the 
analysis was washed with 400µl of ddH2O and the vacuum was applied to dry. The 
two denatured vector genome samples and the pAAV DNAs were then added to the 
appropriate wells of the apparatus and the vacuum applied. Once the samples had 
passed through, each well was rinsed with 400µl 0.4M NaOH/10mM EDTA and the 
membrane was removed and air-dried for 15min. 

 

The ECL direct nucleic acid labelling and detection system was used for labelling the 
DNA probe and the subsequent hybridisation and detection of the DNA dot-blot. The 
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membrane was first rinsed in 2× SSC (NaCl and Na3Citrate·2H2O) and transferred 
to a hybridisation cylinder with 34ml ECL gold hybridisation buffer containing 1g 
NaCl and 1.7g ECL blocking agent pre-dissolved at 42°C for 2h. The membrane was 
pre-hybridised by incubation with rotation at 42°C for a minimum of 1h. Meanwhile, 
the DNA probe, which was 100ng of an agarose gel-purified DNA fragment derived 
from the pAAV vector, was diluted to 10ng/µl in ddH2O and denatured by incubating 
at 100°C for 5min. The denatured DNA was cooled on ice and 10µl DNA labelling 
reagent was added, mixed gently, followed by the addition of 10µl of glutaraldehyde 
solution. The labelling mix was vortexed and incubated at 37°C for 10min. The 
labelled DNA probe could then be added to the cylinder containing the pre-
hybridised membrane and incubated at 42°C with rotation overnight. The next day 
the hybridisation mix was replaced with 100ml pre-warmed primary wash buffer (1L = 
2× SSC, 360g urea, 4g SDS) and incubated at 42°C with rotation for 30min. The 
wash procedure was repeated once more and then the membrane was removed and 
washed twice with 400ml of 2× SSC at room temperature for 6min with gentle 
agitation. Detection was carried out by chemiluminescence, with the use of an ECL 
system (described in section 2.6.5 western blot). 

 

The intensity of the signals produced by the 1µl and 5µl portions of virus stock was 
compared with those of the quantified pAAV serial dilution and densitometric 
analyses was used to estimate the number of vector genomes in ng in each dot. 

 

 

Chapter 4: In situ hybridisation 

 

S4.1 Synthesis and labeling of riboprobes 

PCR primers were designed to amplify a 220bp amplicon from Hs DDAH-1 cDNA, as 
in section 2.2.1. The PCR product was subsequently cloned into the pGEMTE vector 
(Promega UK), as in sections 2.2.3-2.2.6. The construct was subsequently 
sequenced from the T7 forward sequencing primer. 

 

In vitro transcription of the riboprobe was performed by linearising the construct by 
digesting with Spe1 for transcription from T7 polymerase promoter, and Nco1 for 
transcription from SP6 polymerase promoter. In vitro transcription was performed 
using the Roche SP/T7 RNA polymerases, and the riboprobes were labeled with the 
Roche DIG RNA Labelling kit according to manufacturers instructions. 
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Subsequently a dot-blot was performed of each probe to determine the degree of 
labeling. Detection of DIG labeling was performed using the Roche DIG Detection kit 
according to manufacturers instructions. 

 

S4.2 In situ hybridisation 

Paraffin embedded sections were dewaxed and rehydrated using serial alcohol and 
water immersion according to standard techniques. Sections were subsequently 
permeabilised using Tris-EDTA buffer containing 10ug/ml Proteinase K. 
Subsequently sections were incubated with prehybridisation solution (1.5ml 4x 
DEPC treated SSc + 1.5ml Formamide) for 2 hours at 37°, followed by hybridisation 
with 5ul of riboprobe in 1ml of hybridization buffer (1M Tris pH7.5 200uL, 100x 
Denharts 2.5mL, 20x SSc 1.95mL, Formamide 10mL, 40%Dextransulfate 4mL, 
Salmon sperm DNA (10mg/ml) 500uL, DEPC H20 350uL) overnight at 37°C. 

 

Subsequently, sections were incubated with 100uL of 20ug/mL RNAse A at 37 
degrees for 30 minutes, and washed in RNAse buffer and 2xSSc/Formamide for 10 
minutes each. Antibody detection was performed by incubation with 150uL anti-Dig 
Ab (1:500) in for 4 hours. Signal was developed with NBT/BCIP stock solution 
(Roche, UK). A negative control section was treated with RNAse A for 30 minutes at 
37°C prior to incubation with riboprobe. 

 

A further set of experiments were performed on paraffin embedded sections using 
the Affymetrix ViewRNA kit for mRNA and miRNA in situ hybridization. Dewaxing 
and rehydration was performed as above. Subsequently protease digestion and 
probe hybridisation was performed according to manufacturers instructions. 
Subsequently signal amplification and detection was performed according to 
manufacturers instructions. 

 

 

 

 

 

 

 


