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Abstract 

Microbiomes associated with multicellular organisms influence disease susceptibility of 

hosts. Potential exists for such bacteria to protect wildlife from infectious diseases, 

particularly in the case of the globally distributed and highly virulent fungal pathogen 

Batrachochytrium dendrobatidis (BdGPL), responsible for mass extinctions and population 

declines of amphibians. BdGPL exhibits wide genotypic and virulence variation, and the 

ability of candidate probiotics to restrict growth across B. dendrobatidis isolates has not 

previously been considered. Here we show that only a small proportion of candidate 

probiotics exhibit broad-spectrum inhibition across BdGPL isolates. Moreover, some 

bacterial genera show significantly greater inhibition than others, but overall, genus and 

species are not particularly reliable predictors of inhibitory capabilities. These findings 

indicate ‘bacterial consortia’ are likely to offer a more stable and effective approach to 

probiotics, particularly if related bacteria are selected from genera with greater anti-microbial 

capabilities. Together these results highlight a complex interaction between pathogens and 

host-associated symbiotic bacteria that will require consideration in the development of 

bacterial probiotics for wildlife conservation. Future efforts to construct protective 

microbiomes should incorporate bacteria that exhibit broad-spectrum inhibition of BdGPL 

isolates. 
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Introduction 

The ability to withstand or mitigate pathogenic infection is partly determined by the host 

immune response. This has traditionally been examined in the context of immunity intrinsic 

to the host phenotype or genotype. However, all multicellular organisms coexist with a 

plethora of microbial organisms that are influential for host growth, development and health 

[1]. Although some of these microbes may be detrimental to the host, the importance of this 

microbiome in maintaining and improving host health is increasingly being recognised. The 

most obvious example of this is the gut community of humans: gut bacteria are essential for 

the digestion of food, but recent research has indicated a healthy gut microbiome may also 

contribute to the prevention or moderation of liver, heart and mental disease (reviewed in 

[2]). The benefits to humans of a diverse microbiome are mirrored in other animal species, 

where the presence and composition of gut, buccal and skin microbial communities have 

been linked to the occurrence and severity of both chronic and infectious disease [1].  

Conservation practitioners are increasingly interested in manipulating host 

microbiomes as a management tool to combat infectious diseases that pose threats and 

welfare issues to wild animals. Using host-associated bacteria to act as ‘probiotics’ for 

disease mitigation is already common practice in agriculture and human health (e.g. reviewed 

in [3,4]). The fundamental strategy is to identify bacterial genotypes that inhibit pathogens in 

vitro and apply these to susceptible hosts. Amphibians provide a particularly interesting 

example of this. This class of vertebrates is currently undergoing major population declines 

and extinctions in the wild, with 31% of species listed as threatened by the International 

Union for the Conservation of Nature [5,6]. This is in part due to pathogenic chytridomycete 

fungi and the resulting chytridiomycosis disease [7,8], which is arguably the most devastating 

infectious disease confronting wildlife today. Two fungal species have been identified, 

Batrachochytrium dendrobatidis and B. salamandivorans, both of which infect the skin of 
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amphibian hosts and cause disease in an extraordinary range of species [8-11]. Current 

methods to mitigate the disease (e.g. antifungals, heat treatment of hosts) cannot be 

practically used for wild populations, but one that holds some promise and has been the 

subject of significant scrutiny and research investment is the application of so-called 

probiotic bacteria (reviewed in [12]). Several bacteria that reside on amphibian skin have 

been shown to inhibit the growth and survival of B. dendrobatidis in vitro. The presence or 

application of such bacteria to some host species has proven to reduce the likelihood of 

infection and disease significantly [13-17]. However B. dendrobatidis is a rapidly evolving 

pathogen composed of multiple, deeply diverged lineages [18,19]. Studies of potential 

probiotics have not yet explored how reliable these bacteria are when confronted with the 

shifting targets that amphibian-associated chytridiomycete fungi present. The globally 

distributed and hypervirulent global panzootic lineage (BdGPL) is the genetic lineage of B. 

dendrobatidis that has been associated with mass mortalities and rapid population declines of 

amphibians [11,19,20]. Isolates within this lineage exhibit enormous and unpredictable 

genetic variation [18] and significant variation in virulence, even within a single host species 

exposed under laboratory conditions [19]. To date, single bacterial species have been used in 

the majority of amphibian probiotic studies, and although they have proven effective in 

inhibiting growth of single BdGPL isolates and can be effective at limiting disease when 

applied as augments to amphibian microbiomes (e.g. [13,14,16]), it is not clear if this ability 

is universal across BdGPL. This would be essential because amphibian communities may be 

host to multiple BdGPL genotypes, all of which may cause mortality in susceptible hosts 

[19].  

Here we use quantitative in vitro assessment to determine whether potentially 

probiotic bacteria exhibit differences in inhibitory capabilities across isolates of B. 

dendrobatidis, focusing on isolates typed to the global pandemic lineage. All bacteria used in 
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this study are amphibian-associated, and therefore have the potential to act as probiotics in 

the event they inhibit B. dendrobatidis growth and reproduction. Our objectives were two-

fold: first, to determine if candidate bacterial isolates could inhibit any of the three B. 

dendrobatidis isolates that made up our panel of pathogens, and second, to ascertain if 

bacterial taxonomy, as characterized using 16S typing, could be used to infer inhibitory 

capacity. This second objective is important for developing a strategy for mining amphibian 

microbiomes for target probiotics. 

 

Materials and Methods 

Ethics statement 

Prior to starting, this study was approved by The University of Manchester Research Ethics 

Committee. Bacteria were collected and exported from the wild populations of Agalychnis 

moreletii and A. callidryas by permission of Belize Forest Department (Research and Export 

Permit Number CD/60/3/12) and imported to the UK by permission of DEFRA 

(Authorisation Number TARP/2012/224). 

 

Bacterial sampling from Agalychnis frogs 

Eight A. moreletii and eight A. callidryas (four males and four females of each species) were 

collected from Elegans Pond at Las Cuevas Research Station, Chiquibul Rainforest, Belize 

(16˚43’N, 88˚59’W), placed individually in sterile plastic bags, and returned to the research 

station (~200m distance). Sterile gloves were worn throughout handling and changed 

between frogs to minimise cross-contamination. Frogs were rinsed twice on their dorsal and 

ventral surfaces using sterile water to remove any transient bacteria from their skin, then 
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swabbed all over their skin using sterile Eurotubo collection swabs (Deltalab, Spain), which 

were placed into 1.5 ml sterile screw-top tubes containing 1ml of 1M NaCl2 solution. Care 

was taken to ensure frogs were not harmed during this process, and frogs were released back 

at the pond the same evening as they were collected. Tubes containing swabs were shaken 

vigorously for 30 seconds and the contents poured on to R2A agar plates, which were 

covered in parafilm, inverted, and bacteria left to grow at ambient temperature (~25C) for 

eight days. Morphologically distinct bacterial colonies were collected using individual sterile 

swabs and placed into screw-top tubes containing 1ml R2A broth media. Tubes were then 

shipped to the UK where the contents were poured on to fresh R2A agar plates and incubated 

at 25C until bacteria grew (~3 days). These were then re-streaked to ensure a pure culture 

was obtained. In total 56 strains of bacteria were isolated and sequenced according to [21] 

(GenBank accession numbers KC853168 – KC853224, KF444793). 

 

In vitro B. dendrobatidis challenges 

We initially tested the anti-Bd capabilities of all 56 bacterial isolates using in vitro agar plate 

challenges against two B. dendrobatidis isolates (BdGPL SFBC 014 and BdGPL AUL 1.2) 

according to [21]. Briefly, B. dendrobatidis cultures were grown in 1% TGhL liquid media at 

18°C until zoospore density and activity reached ~10,000 zoospores/ml (at around three days 

post-passage). Three ml of active B. dendrobatidis was spread across the surface of 1% 

tryptone, 1% agar plates and left to dry in a sterile hood. Two bacterial pure cultures were 

then streaked on to opposing sides of each plate, which were inverted and incubated at 18°C 

for 10 days. Bacterial streaks were scored for the presence or absence of a zone of inhibition, 

characterized by dead B. dendrobatidis zoosporangia and zoospores and no evidence of 

continuing B. dendrobatidis growth and reproduction. If both bacterial streaks on one plate 
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exhibited inhibition, the in vitro challenge was repeated for both bacterial isolates separately 

using a non-inhibitory bacterial isolate as a control.  

Based on the results of the initial screening, we selected four bacterial isolates that 

inhibited growth of BdGPL SFBC 014, four that inhibited BdGPL AUL 1.2, three that 

inhibited both B. dendrobatidis isolates and four bacterial isolates that had not previously 

shown any inhibition of B. dendrobatidis in vitro (n = 15 bacterial isolates). Three previously 

un-assessed B. dendrobatidis isolates (BdGPL CORN 3.2, isolated from Mesotriton alpestris 

in the UK, BdGPL JEL 423 isolated from Agalychnis lemur in Panama, and BdGPL VA05 

isolated from Alytes obstetricans in Spain) were cultured and in vitro inhibition assays 

conducted using the methods described above, with each bacterial isolate replicated on three 

different plates and never paired with the same bacterial isolate twice. These B. dendrobatidis 

isolates were chosen because they exhibited good zoospore growth on 1% tryptone, 1% agar 

plates, and one (JEL 423) originated from within the natural range of A. callidryas from 

which some of the bacteria were isolated. Batrachochytrium dendrobatidis plate challenges 

were conducted as described above, again using 3ml of B. dendrobatidis cultures containing 

~10,000 zoospores/ml. Care was taken to ensure similar sized colonies were picked for each 

streak for the three repeats of a given bacterial strain, as well as across bacterial strains for all 

the inhibition assays.  

 

Inhibition scores 

Each plate was photographed and the areas of the zone of B. dendrobatidis inhibition around 

each bacterial streak along with the areas of the bacterial streaks were measured in ImageJ 

(http://imagej.nih.gov/ij/). The inhibitory capabilities of each bacterium were quantified by 

dividing the area of the zone of inhibition by the area of the bacterial streak and rounded to 
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the nearest integer to give an ‘inhibition score’. The inclusion of the size of the bacterial 

streak in this data conversion step ensured bacterial density was controlled for in the 

analyses. An alternative method of quantifying B. dendrobatidis inhibition using 96-well 

plates may be more accurate and quantifiable than plate challenges, but does not allow for 

direct competition that may occur between B. dendrobatidis and bacteria (e.g. for space and 

resources) that may also occur on the skin of amphibians [22].  

 

Statistical analyses 

The effects of B. dendrobatidis isolate, bacterial isolate and their interaction on inhibition 

scores were analysed using a Generalised Linear Model with a Poisson error structure and 

log-link. To control for phylogenetic structure in the data, models initially contained bacterial 

isolate nested within genus as random effects, but this model structure was too complex given 

the data and models would not converge, and so GLMs were used. In addition, individual 

Generalised Linear Models with a Poisson error structure and log-link were run for each 

bacterial strain separately to determine differences in inhibition between B. dendrobatidis 

isolates.  

Multiple bacterial isolates had been tested for four genera (Acinetobacter, 

Chryseobacterium, Enterobacter and Serratia), and so differences in the overall propensity of 

a given genus to inhibit BdGPL isolates were analysed using a Generalised Linear Mixed 

Model with a Poisson error structure and log-link.  ‘Genus’, ‘B. dendrobatidis isolate’, and 

their interaction were fitted as fixed effects, and bacterial isolate nested within genus were 

fitted as random effects to control for phylogenetic structure in the data. Statistical 

significance was determined by stepwise removal of terms from the maximal model (Bd * 

Genus) and performing likelihood ratio tests between nested models. Where appropriate post-
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hoc tests were performed on models by collapsing factor levels within an explanatory 

variable (e.g. by combining multiple B. dendrobatidis isolates into one factor level) and 

testing the simplified model against the original model with a likelihood ratio test. A non-

significant result suggests that the combined factor levels all have similar influence on the 

response variable, and that the simpler model explains the data equally well.    

Poisson models make distributional assumptions about the data, including the 

variance being equal to the fitted mean. To test the robustness of the distributional 

assumptions of the models, analyses were re-run using ordinal models using the package 

‘MCMCglmm’ [23]. Five competing models were fitted, all with the same random effects 

structure as above (~Genus/Bacteria). The most complex model contained BdGPL, bacterial 

genus, and their interaction as fixed effects. All four nested models were also fitted: BdGPL 

and bacterial isolate as main effects without their interaction, BdGPL isolate only, bacterial 

genus only, and an intercept only model. All five models were compared using the Deviance 

Information Criterion (DIC). All models were run for 100,000 iterations following a burn-in 

of 20,000 iterations, with a thinning interval of 100. Uninformative priors were used for the 

random effects (G) structure specifying V = 1 and nu = 0.002. As the residual variance is not 

identifiable for ordinal models, it was fixed at 1. 

 

Results 

Fifty-six bacterial strains isolated from wild Agalychnis callidryas and Agalychnis moreletii 

frogs were initially screened for anti-Bd capabilities against two BdGPL isolates. Of these, 

six inhibited AUL 1.2, six inhibited SFBC 014, and three inhibited both isolates (Table S1). 

Because these challenges were not replicated, no statistical analyses were performed. Four 

bacterial isolates that inhibited growth of SFBC 014, four that inhibited AUL 1.2, three that 
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inhibited both B. dendrobatidis isolates and four bacterial isolates that had not previously 

shown any inhibition of B. dendrobatidis in vitro (n = 15 bacterial isolates) were then used 

for a quantitative assessment of anti-Bd capabilities using three previously unassessed 

BdGPL isolates (CORN 3.2, VA05, and JEL 423). Inhibition scores were significantly 

predicted by bacterial strain (χ2 = 53.442, d.f. = 14, p < 0.001), B. dendobatidis isolate (X2 = 

20.270, d.f. = 2, p > 0.001), and the interaction between bacterial strain and B. dendobatidis 

isolate (χ2 = 68.173, d.f. = 28, p > 0.001). Host species from which the bacteria were isolated 

had no significant effect on overall inhibition capabilities of bacteria (χ2 = 0.001, d.f. = 1, p = 

0.981; Table S1). Individual models for each bacterial strain indicated that 10 of the 15 

bacteria exhibited inconsistent inhibition across the B. dendrobatidis isolates (Table 1, Figure 

1). Only three bacteria consistently inhibited all three B. dendrobatidis isolates, and only one 

of these also inhibited both BdGPL isolates during the initial screening (Chryseobacterium 

sp. 2; Table S1). Two bacteria exhibited no or negligible inhibition of any of the three BdGPL 

isolates is the quantitative assessment (Figure 1), although interestingly, of these 

Agrobacterium sp. inhibited both BdGPL isolates in the initial screening, whereas 

Enterobacter sp. 2 inhibited neither (Table S1). Despite Serratia sp. 1, sp. 2, and sp. 3 all 

typing as identical bacterial species at the 16S locus and all being isolated from the same host 

species (A. moreletii), only Serratia sp. 3 showed comprehensive ability to inhibit all three 

isolates of B. dendrobatidis (Figure 1). Growth of two of the B. dendrobatidis isolates 

(BdGPL CORN 3.2 and BdGPL JEL 423) was consistently inhibited by the candidate 

bacteria, while growth of the third (BdGPL VA05) was rarely impaired (Figure 1).  

 

Genus-level models 
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There was no evidence for a significant interaction between bacterial genus and B. 

dendrobatidis isolate (χ2 = 5.2, d.f. = 6, p = 0.51). However, both bacterial genus (χ2 = 9.32, 

d.f. = 3, p = 0.025) and B. dendrobatidis isolate (χ2 =14.8, d.f. = 2, p < 0.001) were 

significant predicators of inhibition of B. dendrobatidis growth. Posthoc comparisons showed 

there were no significant differences in the inhibitory capabilities of the genera 

Acinetobacter, Chryseobacterium and Serratia (χ2 = 0.54, df = 1, p =0.76), but that 

Enterobacter species had significantly lower inhibitory capabilities than the other three 

genera (Acinetobacter, Chryseobacterium and Serratia; χ2 = 8.77, df = 1, p = 0.003, Figure 

2). Similarly, there was no significant difference in the degree of inhibition of CORN 3.2 and 

JEL 423 by the four bacterial genera (χ2 = 0.46, df = 1, p =0.47), but all four bacterial genera 

were significantly less likely to inhibit growth of BdGPL VA05 (χ2 = 14.2, df = 1, p < 0.001) 

than any of the other B. dendrobatidis isolates (Figure 2).  

Results from the ordinal analyses mirrored results from the Poisson mixed models; the 

model with the lowest DIC (the best supported model) contained BdGPL isolate and bacterial 

genus as main effects, without an interaction. The genus Enterobacter was associated with 

significantly lower inhibition scores (mean difference = -2.03, 95% credible interval [-3.53, -

0.57]). In addition, BdGPL VA05 was also associated with significantly lower scores (mean 

difference = -1.42, 95% credible interval [-2.46, -0.43]). Parameter estimates for the best-

supported model, as well as the model selection table containing DIC values for all five 

models are provided as online supplementary information (Tables S2 and S3). 

 

Discussion 

Here we show that symbiotic bacteria from the skin of amphibians exhibit differences in 

inhibitory capabilities across BdGPL isolates, with only a small proportion of candidate 
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probiotics showing broad-spectrum inhibition against the global pandemic B. dendrobatidis 

lineage. This is strong evidence that candidate bacteria tested in vitro for use in probiotic B. 

dendrobatidis mitigation in situ are unlikely to be consistently successful when confronting a 

variety of fungal genotypes. Because of the enormous genetic variability of BdGPL 

[10,18,19,24,25], the propensity for B. dendrobatidis to rapidly evolve in situ [10,18,26], and 

the pan-global, on-going dissemination of B. dendrobatidis through numerous vectors 

[11,27], amphibians and their microbiomes can be expected to confront an ever-changing and 

diverse distribution of B. dendrobatidis genotypes. Thus the pathogen represents a “moving 

target” for potential interventions [28], and mitigating chytridiomycosis in the wild also 

needs to account for complex interactions between the host, the pathogen and the 

environment as well as multiple pathogen genotypes in order to be successful [28-30].  

We did not test our wild study animals for the presence of B. dendrobatidis, however 

Kaiser & Pollinger [31] sampled amphibians between 2006 and 2008 at the same study site in 

Belize and found only 5% B. dendrobatidis prevalence on A. moreletii and 0% prevalence on 

A. callidryas. Museum specimens date the arrival of B. dendrobatidis in the general region 

(Mexico and Guatemala) in the late 1960s or early 1970s [32], suggesting that both host 

species are persisting in spite of long-term presence of B. dendrobatidis in the area. That a 

reasonable proportion of the bacteria isolated from these two host species in this study 

inhibited at least one of the B. dendrobatidis isolates suggests these populations may possess 

a microbiome capable of at least partially mitigating B. dendrobatidis infection.  

For manipulation of amphibian skin microbiota is to be of value for mitigating B. 

dendrobatidis in the wild, amphibian microbiomes will need to be managed for functional 

redundancy that provide broad-spectrum capacity against the evolving threat represented by 

B. dendrobatidis. Studies have repeatedly illustrated the importance in a complex 

microbiome for resilience of the community to pathogenic infection [33-35]. A ‘bacterial 



 13 

consortium’ approach that treats microbiomes as a suite of functional traits rather than a 

substrate for the insertion of candidate bacteria is likely to offer more comprehensive 

protection of hosts from B. dendrobatidis and other threatening amphibian pathogens 

[12,28,36]. How the different members of such consortia will be determined is currently 

unknown, but our results highlight the limitations of a taxonomic approach for understanding 

what bacterial communities may afford resistance to B. dendrobatidis: both species and genus 

showed limited potential to identify potentially inhibitory bacteria in our study. That said, 

devising probiotic strategies that incorporate bacterial genus as a criterion might yield better 

results than bacterial species-specific approaches, and a recently-developed open access 

database for antifungal bacterial isolates from amphibian skin will allow researchers to 

optimise approaches to identifying candidate probiotics [37]. Ultimately, understanding 

functional redundancy in amphibian skin microbiomes will require a deeper understanding of 

how bacteria inhibit B. dendrobatidis growth and ability to infect hosts. Mining the B. 

dendrobatidis genome for virulence factors will be fraught with difficulty, as aneuploidy and 

polyploidy are common across B. dendrobatidis isolates and changes in ploidy levels do not 

map to infectivity and virulence in any predictable fashion [18]. However, our identification 

of some bacteria exhibiting broad spectrum B. dendrobatidis inhibition capabilities, and a 

significant effect of genus on B. dendrobatidis growth and reproduction, suggests some 

bacterial phylogenetic conservation of the ability to inhibit B. dendrobatidis. This bodes well 

for the presence of bacterial genetic factors that are responsible for impairment of the ability 

of B. dendrobatidis to infect and cause disease in amphibian hosts. Current criteria for 

selecting candidate probiotic bacteria include successful inhibition of B. dendrobatidis, 

residency in the normal microbiota of the host, and an ability to persist on the skin of 

inoculated individuals [12]. We propose that candidate probiotics should also exhibit 
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inhibitory activity against a range of B. dendrobatidis isolates, particularly the hypervirulent 

BdGPL. 
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Table 1 

Statistical significance values for Generalised Linear Models with Poisson error structure and 

log-link to analyse the effect of each bacterial isolate on B. dendrobatidis inhibition scores 

for the three isolates. An * indicates a statistically significant result (p < 0.05), meaning 

statistically different inhibition scores between the three B. dendrobatidis isolates for a given 

bacterial isolate. For all models, the degrees of freedom are equal to 2.  

Bacterial isolate X2 value p value 

Acinetobacter sp. 1 9.843 0.007 * 

Acinetobacter sp. 2 1.567 0.457 

Agrobacterium sp. 0.000 1.000 

Arthrobacter sp. 14.756 <0.001 * 

Chryseobacterium sp. 1 14.120 <0.001 * 

Chryseobacterium sp. 2 23.789 <0.001* 

Chryseobacterium sp. 3 3.170 0.205 

Enterobacter sp. 1 9.442 0.009 * 

Enterobacter sp. 2 3.915 0.141 

Lysobacter sp. 10.109 0.006 * 
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Serratia sp. 1 11.046 0.004 * 

Serratia sp. 2 9.825 0.007 * 

Serratia sp. 3 1.273 0.529 

Serratia sp. 4 17.723 <0.001 * 

Stentrophomonas sp. 25.994 <0.001* 
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Figure 1 

Average (± 1 SEM) inhibition scores for 15 bacteria from quantitative in vitro challenges 

against three BdGPL isolates. Within each bacteria, B. dendrobatidis isolates with an * have 

significantly different inhibition scores to those without an *. 

 

Figure 2 

Average (± 1 SEM) inhibition scores for multiple bacteria from four genera challenged 

against three BdGPL isolates. VA05 isolates had significantly lower inhibition scores than the 

other BdGPL isolates (as indicated by an *), and Enterobacter spp. showed significantly 

lower inhibition of BdGPL across the range of isolates (indicated by an #). 


