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Abstract—This paper proposes a novel cooperative localization
method for distributed wireless networks in 3-dimensional (3D)
global positioning system (GPS) denied environments. The pro-
posed method, dubbed as hybrid ellipsoidal variational algorithm
(HEVA), combines the use of non-parametric belief propagation
(NBP) and variational Bayes (VB) to benefit from both the use
of the rich information in NBP and compact communication
size of a parametric form. In HEVA, two novel filters are em-
ployed. The first one mitigates non-line-of-sight (NLoS), Time-of-
Arrival (ToA) messages, permitting it to work well in high noise
environments with NLoS bias while the second one decreases
the number of calculations. Simulation results demonstrate that
HEVA significantly outperforms traditional NBP methods in
localization and at the same time requires only about 50% of
their complexity. The superiority of VB over other clustering
techniques is also illustrated.

Index Terms—Cooperative localization, Non-line-of-sight, Non-
parametric belief propagation, Variational Bayes.

I. INTRODUCTION

Location awareness (or localization) has become an impor-
tant feature in both military and civilian wireless networks,
with applications ranging from search-and-rescue missions to
team coordination and logistics in military scenarios, and even
efficient use of the spectrum in cognitive radio technologies.
In fact, there has been an explosive growth in the number of
location-based services (LBSs) and so has the need for mobile
devices to quickly self-localize in arbitrary and potentially very
unfriendly environments. The current de facto technology for
localization is the global positioning system (GPS) [1], which
uses satellite-derived metrics for a device to estimate its loca-
tion. GPS works well in outdoors scenarios, but unfortunately,
the efficiency of GPS is quite limited in closed environments
such as building complexes, underground or heavily canopied
forests. This precipitates the urgent need for the development
of localization technologies for indoors environments.

One of the major differences in localization between indoors
and outdoors is the availability of devices willing to assist in
the localization process. In the case of using GPS, a device is
required to communicate with at least four and usually seven
or more different satellites in order to localize. For indoors,
however, the number of suitable neighbors is highly random,
and there is no guarantee that it will be adequate. To tackle
this, the idea of cooperation between devices (or nodes) has
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been developed. Nodes can achieve localization by exchanging
positioning information [2]. In this case, nodes should share
their position estimates and derive distances metrics, such as
time-of-arrival (ToA), time-difference-of-arrival (TDA), angle-
of-arrival (AoA), or received-signal strength (RSS), etc, from
the signals of the exchanged messages to refine their position
estimates. Also, ultra-wideband (UWB) signals are especially
suited for this purpose [3], since they can provide reliable fine
resolution distance measurements in indoors environments.

Given a wireless network, some nodes, which are usually
referred to as anchors, have precise location estimates, but
some, referred to as agents, aim to self-localize using two types
of information. Firstly they share their believed location with
their neighbors and secondly they derive metrics of the relative
distance between themselves and their neighbors from the
physical properties of the corresponding transmissions. Each
position estimate and distance metric an agent possesses for
a corresponding neighbor defines a geometric area (e.g., ring,
sphere or hyperbole) for its whereabout. As a consequence, the
location of the agent can then be estimated by the intersection
of all such geometric areas defined from all its neighbors, a
process called multilateration. The advantage is twofold. First
of all, the requirement of having at least 4 (in the 3D case)
anchors to communicate with an agent is overcome. Secondly,
by sharing information, anchor estimates can diffuse to agents
that are out of range of any anchor, thereby virtually extending
the communication range of all nodes. Cooperative localiza-
tion for GPS-denied environments is currently a hot research
topic and there has been extended interest from the robotic,
optimization and wireless communication communities.

The fundamental limits of cooperation in localization are
also of tremendous interest. In [4], an accuracy measure for
a node’s localization was introduced which takes into account
both the measurement noise variance and the geometry of
the neighboring noise in order to derive a Cramer-Rao lower
bound (CRLB). Most recently in [5], Shen et al. derived the
squared position error bound (SPEB), a CRLB specifically for
localization in multi-path Rayleigh fading channels.

The shared information in a cooperative network can either
be analyzed centrally [6], or in a distributed manner. However,
a much greater importance has been dedicated to distributed
solutions since they provide a much more flexible and robust
framework. In the distributed case a number of algorithms have
been developed and they can be divided into deterministic and
probabilistic algorithms. For deterministic algorithms, nodes
consider localization as an optimization problem trying to find



the best point estimate. A well-known example of this is the
IPPM algorithm reported in [7]. IPPM treats each message
from a neighboring node as a distinct optimization problem,
and then tries to find the solution to minimize the average of
all the neighboring optimization problems. Other well-known
deterministic methods are the least-square (LS) method in [2]
and the multidimensional scaling (MDS) algorithm in [8].

For the probabilistic methods, instead of making an initial
guess and then attempting to converge to the true solution,
they assign probability distributions for the whole space and
attempt to avoid the trap of local optima. There have been a
number of probabilistic techniques to address the localization
problem. One family uses particles to approximate the lo-
calization distribution. A representative particle-based method
is the non-parametric belief propagation (NBP) approach [9].
Later, [10] studied the effect of different kernels and argued the
choice of spherical Gaussian kernel with variances calculated
using the “rule of thumb”. The SPAWN algorithm proposed in
[2] was a general framework encompassing algorithms based
on NBP, introducing a factor graph message passing analysis.
Other methods include Monte-Carlo chains in [11], or vari-
ational message passing (VMP) in [12]. VMP approximates
the real localization distributions with a simpler one, which
is more tractable and easier to handle. The use of clustering
techniques has also been proposed to create a parametric form
of the transmitting messages, e.g., expectation maximization
(EM) and k-means have been suggested in [13].

Also, it should be noted that in the family of message pass-
ing techniques, ameliorating the effects of loopy propagation
(i.e., non-guaranteed convergence, and overpowering effect of
a few nodes via loops) is an open research topic. Research sug-
gests that the use of asynchronous message passing scheduling
offer solutions in the aforementioned problems [14, 15] and a
solution for the localization problem based on tree-reweighed
belief propagation has also been proposed in [16].

Finally, non-line-of-sight (NLoS) mitigation is a key issue in
indoors localization and has been a major research topic. NLoS
message identification for UWB systems has been considered
in [17, 18] and NLoS mitigation for the deterministic case has
been extensively addressed in [17, 19, 20]. A survey for UWB
NLoS mitigation techniques can be found in [21]. The issue of
NLoS is especially important when using ToA measurement
methods, as NLoS bias errors are always positive and much
larger than the distance measurement, c.f. [22], causing large
estimation errors. ToA NLoS mitigation has been extensively
studied and a survey can be found in [23]. Nevertheless, most
studies on NLoS localization mentioned above only consider
single-node localization, and are based on linearizing the
measurement model which is not applicable in the distributed
and cooperative case [7]. To the authors’ knowledge, only [7,
22, 24] explicitly considered the cooperative and distributive
case, the first two being truly distributed solutions.

Nevertheless, critical issues remain in localization. Most of
the algorithms in the literature are limited in scope and cannot
be extended to more realistic and complex scenarios. First,
although most algorithms state that they can be extended to
the 3D case, few results can be found in the literature. In
particular, particle-based algorithms such as NBP will quickly

become computationally prohibitive in the 3D case due to the
exponential increase in the number of particles. Likewise, for
VMP, despite avoiding the pitfall of the number of particles, it
requires a huge increase in the required number of messages
passed between the nodes until convergence.

The main contribution of this paper is a novel hybrid
ellipsoidal variational algorithm (HEVA) that overcomes the
pitfalls of the aforementioned algorithms and is computation-
ally tractable in the 3D case. Our proposed algorithm can
achieve higher localization accuracy, getting more nodes self-
localized within given accuracy and at much less complexity
than NBP [9]. Although IPPM in [7] and LS in [2] are less
complex, their accuracies are much inferior, especially under
high noise environments. HEVA combines the strengths of
both VMP and NBP to reach a fine balance between the
information used in the probabilistic inference, the message
size and convergence speed. The proposed HEVA manages to
decrease the amount of lost useful information in the approx-
imations in the inference calculations and as such localizes
with high resolution. Also, HEVA introduces a cooperative
NLoS mitigation technique for distributed networks using
ToA distance measurements that filters out unhelpful NLoS
messages.

The remainder of this paper is organized as follows. Section
II formulates the bayesian localization problem. Section III de-
scribes the HEVA algorithm, including analysis for complexity
and communication costs. Simulation results are provided in
Section IV and we conclude the paper in Section V.

II. PROBLEM FORMULATION

We consider a set of nodes in a 3D environment of size
X × Y × Z m3. The nodes consist of N agents and M
anchors, where |V| = N + M , M ≥ 4 and N � M .1 Let
θ = [θ1, . . . ,θi, . . . ,θN+M ] denote the locations of all nodes,
with θi = [xi, yi, zi] being the coordinates of node i, and Θi

be the respective random variable. The nodes communicate
wirelessly and it is assumed that the maximum communication
range for each node is rmax. Time is slotted and time slots are
denoted by the time index superscript (t) for t = 1, . . . ,∞.

A network of such can be viewed as a graph. The wireless
nodes are represented by the set V of vertices of the graphical
model. If two nodes, say node i and node j, are within range,
there will be an edge eji ∈ E , connecting the two nodes.
The set of all nodes j with edges eji to node i is denoted as
the neighborhood Ni. A simple network graph example with
agents, represented as “a” labelled red circles and anchors,
represented as “A” labelled green circle, is depicted in Fig. 1.

Let p(t)(Θi) be the probability density function (pdf), i.e.,
the belief that node i has about its location at time t. Initially,
the belief for the agents can be an information-less uniform
pdf over the grid, while the anchors’ pdfs would be spherical
multivariate Gaussians with mean being their exact locations
and a covariance matrix of σ2

aI for some noise power σ2
a.

Nodes can measure a corresponding distance estimate via
ranging. For example, node i receiving a message from node j

1Typically the number of agents is assumed much larger than the number
of anchors [2].
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Fig. 1. An example of a network where agents are represented by lowercase
“a” (red circles), anchors are represented by capital “A” (green circles) and
branches (or edges) correspond to communication between them.

at time slot t can derive a noisy estimate r(t)j→i of the distance
between them. It is assumed that the measurement taken from
node i receiving a message from node j and that from node
j receiving a message from node i are the same and as a
result, the direction of the message plays no role, i.e., r(t)j→i =

r
(t)
i→j = r

(t)
ji . In practice, distance measurements will differ and

the nodes can share their measurements and use the average.
We assume that the nodes use ToA distance measurements, as
in [25] and we define the random variable rji as

rji = dji + ηji ≡ ‖θi − θj‖+ ηji, (1)

where ηji is a noise factor following a Gaussian distribution
with variance Ke‖θi−θj‖βji , in which Ke is a proportionality
constant capturing the combined physical layer and receiver
effect [26], and βji denotes the path loss exponent. In the case
of line-of-sight (LoS) ηji is assumed to have zero mean, and
βji = 2, i.e., ηji ∼ N (0,Ke‖θi − θj‖2). Alternatively, in the
case of NLoS, the Gaussian random variable has a positive
mean bji � s2ji, where bji ∼ U(

dji
3 ,

2dji
3 ) (i.e., a uniform

distribution) and βji = 3, i.e., ηji ∼ N (bji,Ke‖θi − θj‖3).
Let p(t)(Rji = r

(t)
ji |Θi,Θj) be the conditional pdf (cpdf)

of observing distance r
(t)
ji at time slot t, given the loca-

tion beliefs p(t)(Θi) and p(t)(Θj) for node i and node
j, respectively. Assuming statistically independent noise and
statistically independent priors between nodes, the joint pdf
of the whole probabilistic model with ϑ , ({∀Θi ∈ V}) and
R , ({Rji}∀i,j∈E), for a given time slot t, is found as

p(t)(ϑ,R) = p(t)(R|ϑ)p(t)(ϑ)

=
∏
i,j∈E

p(t)(Rji = rji|Θi,Θj)
∏

Θi∈V

p(t)(Θi).

(2)

Our aim is to find the most probable position for every node
given the observed positions and prior information, i.e., find
the maximum a posteriori (MAP):

ϑ̂ = arg max
ϑ

p(t)(ϑ|R = r), (3)

where r is a vector representing all the observed distances.
To accomplish this, we employ a message passing algorithm
[14], in which information from the graph can be summarized
in local edge information, allowing for an efficient distributed
algorithm, despite its lack of guaranteed optimal solution or
even convergence for the given random graph geometry.

A. Belief Message Passing

The network can be modelled by a cluster graph and a
loopy belief message passing algorithm can be applied. We
choose the Bethe cluster graph [27] which is composed of
two types of factors. The lower factors, which represent the
node beliefs, are composed of univariate potentials ψ(Θi),
whereas the upper region, which represents the interactions
between the node variables, is composed of “large” factors
equal to ψ(Θi,Θj , rji). An example of the network in Fig. 1
is shown in Fig. 2. The lower factors are set to the initial node
beliefs for the given time slot (t), and the upper factors to the
corresponding cpdfs, i.e.,

ψ(Θi) = p(t)(Θi), (4)

ψ(Θi,Θj , rji = r
(t)
ji ) = p(t)(rji = r

(t)
ji |Θi,Θj). (5)

Messages are then passed between nodes for multiple itera-
tions until the node beliefs have converged, or a predetermined
number of iterations has passed. The message from node j to
node i at BP (belief propagation) iteration (s+ 1) is found by

δ
(s+1)
j→i (Θi) =

∫
ψ(Θi,Θj , Rji = r

(t)
ji )

b
(s)
j→i(Θj)

δ
(s)
i→j(Θj)

dΘj , (6)

where r(t)ji is the observed value of the distance between the
nodes, at time slot t. Intuitively, a message δ(s+1)

j→i (Θi) is the
belief that node j has about the location of node i and is a
function of Θi. After it calculates all the incoming messages,
each node updates its belief by

b
(s+1)
i (Θi) = λψ(Θi)

∏
k∈Ni

δ
(s+1)
k→i (Θi) + (1− λ)b

(s)
i (Θi),

(7)
in which λ ∈ [0, 1] is a dampening factor used to facilitate
convergence, c.f. [14].2 The algorithm continues until conver-
gence or a set number of iterations smax has ellapsed. The
belief that represents an aproximation to the true marginal,
for each node is given by (7), i.e.,

p(t+1)(Θi) = bsi (Θi). (8)

This can be thought of as a process of merging every node’s
belief about a specific node’s location to get the best estimate.
This message passing analysis naturally leads to a distributed
cooperative system because each node is only required to do
calculation concerning its local factors and messages.

A major issue in calculating the messages (6) and (7) is
the computational cost. If Θi can take one of D discrete
values, then the messages and marginals in the 3D case will

2Dampening is not required for 2D localization, but simulations show that
it helps in 3D localization where the increased ambiguity results in oscillating
behaviors more often.
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Fig. 2. A Bethe cluster graph of the network in Fig. 1.

be represented by dimensional vectors of cardinality D. The
integral in (6) becomes a matrix-vector product and this in
general requires O(D2) operations [28], making the problem
intractable because the dimensions of the grid and the reso-
lution of the required localization will increase quadratically.
This makes the use of approximation methods necessary.

In the literature, various methods have been proposed, such
as particle filtering methods [29, 30], Monte-Carlo methods
[11], and the more general NBP, e.g., [9, 31, 32]. They try
to approximate the cpdf by a Gaussian mixture of particles,
achieving a complexity ofO(L2), where L denotes the number
of particles, and L � D. If the density of the number of
particles is to remain approximately the same in the 3D case
as in 2D, then the number of particles will increase by a
factor of 2dji (dji being the exact distance). This phenomenon
is known as the curse of dimensionality [33]. This would
require finding the product of large Gaussian mixtures, which
is already an expensive operation and can quickly become
prohibitively expensive. Also it requires a considerable amount
of overhead, since the parameters for all the components of
each particle message need to be communicated. Another
important issue is the convergence of the algorithm, although
this paper does not directly tackle this issue. Due to the
loopy characteristics of the graph, beliefs of factors will move
around closed loops, creating opportunities for some factors to
overpower their beliefs and oscillations to occur in the graph,
essentially affecting the convergence. In practice, most nodes
would actually converge to a local optimum with only a few
nodes oscillating unable to converge [14]. In the next section,
we will present HEVA to overcome those critical issues.

III. HEVA
A. Overview

HEVA is a hybrid method that combines elements of both
parametric and non-parametric approximations for optimizing
the local computational cost at each node, the communication
overhead, and the convergence speed. In HEVA, the factors of

ψ(Θi) are first approximated by a Gaussian mixture, while the
factors of the cpdf’s ψ(Θi,Θj , Rji = rji) are approximated
by weighted particles with a spherical Gaussian kernel density.
Two novel filters are proposed here. The first filter provides
NLoS mitigation by removing the messages with positive bias
characteristics in their respective ranging measurements. The
second one is designed to intelligently decrease the number
of particles in each mixture in order to minimize calculations
and is defined as an ellipsoid filter which utilizes the intuition
that the location of a node will be close to the intersections
between two belief cpdfs. Finally, after calculating the weights
of the particles, i.e., utilizing mixture importance sampling
(MIS) to solve the product in (7), we use a clustering technique
called variational Bayes (VB) to obtain the parameters of the
Gaussian mixture ψ(Θi). In so doing, only the parameters of
the Gaussian mixture distribution require transmission.

The algorithm is summarized in Algorithm 1. It begins by
all nodes broadcasting their initial beliefs. In the first iteration,
the agents have a uniform distribution and hence skip transmit-
ting their beliefs, as it would not add any useful information.
As more iterations pass, agents begin to have non-uniform
beliefs about their locations and start to transmit. After each
agent receives the messages (7) from their neighbors, the next
step is to pass them from the NLoS mitigation filter.

B. NLoS Mitigation Filter

In order to understand the effect of the NLoS mitigation
filter, it is important to understand the impact of NLoS propa-
gation in ToA measurements. ToA measurements are affected
by positive bias and removing biased messages does not affect
the CRLB of the localization error, c.f. [34]. Assuming a
simple 2D example with three anchors communication with
one agent, it is easy to visualize that in the case of no noise,
the incoming message “ring”-shaped pdfs will combine to a
single Gaussian centred on the intersection of the messages.
Alternatively, if one anchor is NLoS, then due to the positive
bias, the measured distance estimate will account to a larger



Algorithm 1 HEVA

1: Initialize beliefs p(0)(Θi)∀i ∈ Nodes
2: for t = 0 to T do
3: for all i ∈ Nodes do
4: Broadcast current belief p(t)(Θi)
5: for all j ∈ Ni do
6: Collect distance estimates r(t)ji
7: end for
8: end for
9: Initialize ψ(Θi) = p(t)(Θi)

10: Initialize

ψ(Θi,Θj , Rji = rji) = p(t)(Rji = r
(t)
ji |Θi,Θj)

11: repeat
12: for all i ∈ Nodes do
13: for all j ∈ Ni do
14: Receive b(s)j (Θj)

15: if b(s)j (Θj) passes NLOS filter (Algorithm 2)
then

16: Calculate δ
(s+1)
j→i (Θi) using Spherical Gibbs

sampling (Algorithm 3)
17: end if
18: end for
19: Calculate b(s+1)

i (Θi) using the proposed ellipsoid
filter (Algorithm 4) and VB clustering

20: Check for convergence
21: Broadcast b(s+1)

i (Θi)
22: end for
23: s = s+1
24: until all messages have converged or the maximum

number of iterations is reached
25: Update belief p(t+1)(Θi), using (8)
26: end for

radius in the “ring”-shaped pdf message skewing the centre of
the Gaussian further away from the intersection, and possibly
creating new components in the Gaussian mixture.

To mitigate that, the proposed NLoS filter checks all incom-
ing messages in the following manner. Each node compares
the distance between itself and the corresponding neighbour
computed using the current beliefs of both nodes with the
range estimate. If it is larger than the estimate, the correspond-
ing marginal (6) will be calculated and used in estimating the
product (7); otherwise it will be dropped. The intuition behind
is simple. As stated in Section II, NLoS measurements are
affected by a positive bias, which means that they will be
greater than the real estimates. Let the estimated position of
node i be θ̂(t)i , that of node j be θ̂(t)j , and the respective dis-
tance measurement be r(t)ji . As a result, if ‖θ̂(t)i − θ̂

(t)
j ‖ ≥ r

(t)
ji ,

then the corresponding messages will be calculated as normal;
otherwise, the message from node j will be dropped.

To take full advantage of the information in the distribution,
the following idea is proposed. Firstly, we draw L weighted
samples {w(l)

j ,θ
(l)
j }Ll=1 from b

(s)
j (Θj) ∀j ∈ Ni and an-

other L weighted samples {w(l)
i ,θ

(l)
i }Ll=1 from ψ(Θi). Given

the samples from the belief pdfs in {w(l)
j ,θ

(l)
j }
|Ni|,L
j=1,l=1 and

{w(l)
i ,θ

(l)
i }Ll=1, the convex hull of each node set is calculated

and the maximum distance between the two convex hulls of
node i and any of its neighbors, node j, is compared with the
distance measurement r(t)ji . This is done by using the maxdist
algorithm in [35]. For j ∈ Ni, if

maxdist
(
convex hull({w(l)

i ,θ
(l)
i }

L
l=1),

convex hull({w(l)
j ,θ

(l)
j }

L
l=1)

)
≥ r(t)ji , (9)

then the message is kept and added to the set Qi; otherwise, it
is dropped. Note that Qi will hold only the messages that will
be used in subsequent calculations to reduce the complexity.
By using this condition, NLoS messages will be used in the
first iterations of the algorithm where there is not enough
information about the belief of the nodes, but in the later
iterations, NLoS messages will tend to be dropped. It should
be noted that no effort is made to identify if the message is
NLoS or not by using any NLoS identification technique. This
means that there is a probability that both LoS message could
be ignored and NLoS message might pass the filter. The NLoS
filter algorithm is summarized in Algorithm 2.

Algorithm 2 NLoS Filter

Require: non-uniform b
(s)
i→∀j∈Ni

(Θi)

1: Sample {w(l)
i ,θ

(l)
i }Ll=1 ∼ bi→∀j∈Ni

(Θi)
2: Initialize Qi to empty
3: for all j ∈ Ni do
4: Sample {w(l)

j ,θ
(l)
j }Ll=1 ∼ b

(s)
j→i(Θj)

5: CHi=convex hull({w(l)
i ,θ

(l)
i }Ll=1)

6: CHj=convex hull({w(l)
j ,θ

(l)
j }Ll=1)

7: if maxdist(CHi,CHj) > r
(t)
ji then

8: Add {w(l)
j ,θ

(l)
j }Ll=1 to Qi

9: end if
10: end for
11: return Qi

C. Filtering Operation: δ(s+1)
j→i (Θi)

The next step of Algorithm 1 (HEVA) is for each node,
say node i, to compute the received messages δ

(s+1)
j→i (Θi)

from its neighbors, where δ(s+1)
j→i (Θi)) is the product of the

distance cpdf with the neighbor location belief integrated over
the neighbourhood variable Θj , for BP iteration (s+ 1), i.e.,

δ
(s+1)
j→i (Θi) =

∫
ψ(Θi,Θj , Rji = r

(t)
ji )b

(s)
j→i(Θj)

δ
(s)
i→j(Θj)

dΘj (10)

with ψ(Θi,Θj , rji = r
(t)
ji ) = p(t)(rji = r

(t)
ji |Θi,Θj).

Although node i has received the beliefs b(s)j (Θj) and obtained
the measurements r(t)ji for deriving the cpdf, for complexity
reasons, this will be done by using particle filtering. Specif-
ically, given the set of particles Qi, for each subset j of
particles {w(l)

j ,θ
(l)
j }Ll=1, we calculate a set of parameters

Gj→i ,
{
w

(l)
j→i,µ

(l)
j→i,Σj→i

}L
l=1

(11)



that approximate

δ
(s+1)
j→i (Θi) '

∑
l

w
(l)
j→iN (Θi;µ

(l)
j→i,Σj→i), (12)

where w
(l)
j→i is a weighting factor and N (Θi;µ

(l)
j→i,Σj→i)

refers to a Gaussian distribution in Θi with mean vector µ(l)
j→i

and covariance matrix Σj→i. As such, the estimated lth sample
θ
(l)
i will be close to the surface of a sphere with radius r(t)ji

around the sample θ(l)j and the mean vector for the mixture
δ
(s+1)
j→i (Θi) is given by

µ
(l)
j→i = θ

(l)
j + r

(t)
ji + νl

sin(ρ(l)) cos(φ(l))
sin(ρ(l)) sin(φ(l))

cos(ρ(l))

 , (13)

where φ(l) ∼ U [0, 2π), ρ(l) ∼ U [−π2 ,
π
2 ] and ν(l) ∼ pν , in

which U(· · · ) denotes a uniform distribution and pν is the
noise pdf, with a standard deviation of σν . In addition, a
covariance matrix Σj→i is assigned to all Gaussians (inde-
pendent of l) and is calculated as

Σj→i =
1

5.991

4σν

(
3(r

(t)
ji )2 + 4σ2

ν

)
L


2
3

I. (14)

The analysis leading to the above expression is given in the
appendix. On the other hand, the weight of the lth sample is
given by

w
(l)
j→i ∝

w
(l)
j

δ
(s)
i→j(θ

(l)
j )

. (15)

This can be considered as the belief pdf of node j with the
influence of node i from the previous iteration being removed
(i.e., δ(s)i→j(Θj)), in order to avoid overpowering of a node’s
belief due to loops [31]. Alternatively, we can concentrate the
samples taking advantage of the angle in the same manner
as Parsimonious NBP, c.f. [31]. We call this this variation of
HEVA as Parsimonious HEVA, or PHEVA.

After calculating the approximations of all cpdfs for all the
incoming messages, we add all sets Gj→i to the superset Gi.
This set can be viewed as |Ni| Gaussian mixtures with L
components each, and will be used to calculate the product of
all incoming beliefs with the belief of node i (7). The steps are
summarized in Algorithm 3. Note that the terms “component”
and “particle” will be used interchangeably thereafter.

D. Product Operation: Gaussian Mixture Product Calculation

A commonly used approach to prevent the huge computa-
tional cost for evaluating the product of Gaussian mixtures is
the use of the MIS technique [10]. As each Gaussian mixture
in the product (7) has L components, the computational cost
will be proportional to L2 [10]. Unfortunately, even in the
case of MIS, the cost can become prohibitive in the 3D case,
because of the increased number of components per mixture,
as discussed in Section I. To avoid this, we propose the use
of a novel filter on the particles of the incoming messages,
minimizing the total number of particles in MIS and hence
the number of calculations, thereby making MIS feasible.

Algorithm 3 Spherical Gibbs Sampling
1: Initialize Gi as an empty set
2: for all j ∈ Qi do
3: Sample {φ(l)}Ll=1 ∼ U [0, 2π]
4: Sample {ρ(l)}Ll=1 ∼ U

[
−π2 ,

π
2

]
5: Sample {ν(l)}Ll=1 ∼ N (0, σ2

ν)
6: Calculate the mean vector, using (13)
7: Calculate the covariance matrix Σj→i, using (14)
8: Calculate the weights w(l)

j→i, using (15)
9: Add {w(l)

j→i,µ
(l)
j→i,Σj→i}Ll=1 to Gi

10: end for
11: return Gi

The filter takes advantage of the intuition that the relevant
particles should be close to the intersection of the “sphere”-
shaped particle sets. This intersectional area can be enclosed
inside an ellipsoid, and therefore the filter is referred to as an
ellipsoid filter. Fig. 3 shows a 2D example of the filter. As
the majority of the particles are not near the ellipsoid, and in
no way near the intersections, they can be safely removed to
avoid a huge amount of unnecessary computations.

Box shaped Volume

Fig. 3. A 2D example showing the ellipsoidal filter in operation. The mean
and covariance for the ellipsoid are calculated based on the particles inside
the box, and then resampling with replacement is done for each message
proportional to their distance from the ellipsoidal area.

The proposed ellipsoidal filter is a “soft” decision proba-
bilistic filter. Instead of simply removing all particles that are
outside the filter area, it weights them based on their Euclidean
distance from the ellipsoid and then resamples the V = αL
particles from each message, where 0 < α < 1. This gives the
filter a greater flexibility allowing to consider for situations,
where the real location is further away from the intersection
due to high noise. We define a box-shaped volume as shown
in Fig. 3, with the edges defined by the coordinates:
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(16)
From the superset Gi, we select all the particles that reside
inside the box. From these particles, we calculate the mean
vector µbox and the covariance matrix Σbox. Then we calculate
the ellipsoid weight for every particle {w(l)

j→i,µ
(l)
j→i,Σj→i}Ll=1

in every message set Gj→i, by using the mean of the particle
in the following function and normalize the weights for each
message set. Mathematically, that is,

w(l)
e,µj→i

= wellipsoid(µ
(l)
j→i) ∝

exp

(
−γ

2

(√
(µ

(l)
j→i − µbox)TΣ−1box(µ

(l)
j→i − µbox)− 1

)2
)
,

(17)

where the variable γ is defined as the filter precision, and it
controls the steepness of the filter. We add the relevant weight
to every element in the superset Gi:{{

w(l)
e,µj→i

, w
(l)
j→i,µ

(l)
j→i,Σj→i

}L
l=1

}
j∈Ni

. (18)

After that, V particles are randomly sampled with replace-
ment, from each message set Gj→i, according to their weights
(17), giving a new particle set {w(v)

j→i,µ
(v)
j→i,Σ

(v)
j→i}Vv=1 that

is added to the set Ji. The ellipsoid filter is summarized and
formally described in Algorithm 4.

Algorithm 4 Ellipsoid Filter

1: Given all particles {w(l)
j→i,µ

(l)
j→i,Σj→i}Ll=1 ∈ Gi, find

(16)

2: Calculate box borders based on

xmin xmax

ymin ymax

zmin zmax


3: Calculate µbox = mean(µlj→i) ∀ µlj→i inside box
4: Calculate Σbox = covariance(µlj→i) ∀ µlj→i inside box
5: Weight all samples using (17)
6: Initialize Ji to be an empty set
7: for all j ∈ Qi do
8: Re-sample from {w(l)

j→i,µ
(l)
j→i,Σj→i}Ll=1 proportion-

ally to their weights {w(l)
e,µj→i}Ll=1, aL times with re-

placement.
9: Add {w(l)

j→i,µ
(l)
j→i,Σj→i}aLl=1 to Ji

10: end for
11: return Ji

Additionally, we draw V samples from ψ(Θi) to complete
the calculation (7). Essentially, we have a new product of
Gaussian mixtures, but with V components, instead of L. In
order to compute the product, we employ MIS [10]. From each

message j ∈ Ni, we draw V samples θ(v)j and weight them
by

w
(v)
j =

ψ(θ
(v)
j )

∏
j∈Ni

δ
(s+1)
j→i (θ

(v)
j )

ψ(θ
(v)
j ) +

∑
j∈Ni

δ
(s+1)
j→i (θ

(v)
j )

1

wellipsoid(θ
(v)
j )

. (19)

It should be noted that we divide by the weight wellipsoid(θ)
to cancel out the asymptotic effect of drawing samples from
the ellipsoid filter. After that, L particles are sampled with re-
placement from the (|Ni|+1)V samples {w(v)

j ,θ
(v)
j }

|Ni|+1,V
j=1,v=1

proportional to the weights w(v)
j , to give {θ(l)}Ll=1. As we keep

only V particles for each incoming message, the computational
cost can be drastically reduced, while the computational cost
of weighting all the particles is linear with the total number
of particles, having complexity of O(V 2(|Ni|+ 1)) compared
to the O(L2(|Ni| + 1)) if using all components. The MIS
algorithm is summarized in Algorithm 5.

Algorithm 5 Mixture Importance Sampling (MIS)
1: for all j ∈ Ji do

2: Initialize pi→j(θi) =
aL∑
k=1

w
(k)
j→iN

(
θi,µ

(k)
j→i,Σj→i

)
3: end for
4: Initialize qi(θi) = 1

|Ji|
∑
j′∈Ji

pi→j′(θi)

5: Draw KaL samples {θ(n)i }KaLn=1 ∼ qi(θi), where K > 1

6: Weight them by w(n)
i =

∏
j′∈Ji

pi→j′ (θ
(n)
i )

qi(θ
(n)
i )

7: Re-sample from {w(n)
i ,θ

(n)
i }KaLn=1 proportionally to their

weights, aL times with replacement.

As such, we have a particle approximation of b(s+1)
i (θi).

From this current belief, we randomly choose λL samples and
(1 − λ)L samples from the calculated belief in the previous
iteration, in order to estimate the dampened belief as in (7).

Given the set of the L particles that approximate b(s+1)
i (θi),

the final step is to convert the non-parametric kernel represen-
tation of the belief in a parametric form using a Gaussian
mixture with parameters π = (π1, . . . , πK), mean vectors
{µk}Kk=1 and covariance matrices {Σk}Kk=1 so that

δlower→upper
i→∀j (θi) =

K∑
k=1

πkN (θi;µk,Σk), (20)

where K is regarded as the number of clusters. The optimiza-
tion of the parameters is addressed in the next subsection.

E. VB

VB (variational Bayes) is a Bayesian learning algorithm that
finds the parameters that best fit an approximate distribution
to a dataset [36]. The idea is similar to the well-known EM
algorithm but with the major difference that the parameters
of the mixtures are considered themselves stochastic variables
derived from prior distributions.

The advantage of this is threefold. First, singularity issues
encountered in EM can be completely avoided. Also, there is
no issue of fitting too many clusters, as even if a large number
of initial clusters are initially considered, the superfluous ones



will degenerate to zero through self-optimization. This allows
the algorithm to start with a large K that will decrease as the
algorithm progresses and more information received resolves
ambiguities. Essentially, this gives a compromise among the
message size, computational cost and information loss. Finally,
the optimal number of clusters can be obtained without using
techniques such as cross-validation. For more information,
interested readers are referred to [36, Chapter 10]. These prior
pdfs are chosen to be conjugate priors of the corresponding
distributions in order to facilitate the derivations.

In VB, the parameters in (20) are considered stochastic and
their priors are a Dirichlet distribution for π and a Gaussian-
Wishart distribution for µk,Λk, where Λk = Σ−1k . That is,

p(π) = Dir(π|a) = C(a)

K∏
k=1

πak−1k (21)

p(µ,Λ) = p(µ|Λ)p(Λ) (22)

=

K∏
k=1

N (µk|mk, (βkΛk)−1)W(Λk|Wk, νk), (23)

where a = {a1, . . . , aK} can be interpreted as the effective
prior number of observations associated with each component,
Wk is a positive definite matrix, and νk denotes the number
of degrees of freedom of the distribution for the kth cluster.
The parameters of the priors are called hyper-parameters. In
the rest of the section the steps of the algorithm are presented,
but for a complete derivation of the algorithm, see [36].

The method to optimize the parameters in (20) is iterative
and cycles between two steps, similar to the EM steps, with
some initialization of the hyper-parameters:

ak = a0 ∀k, (24)
βk = β0 ∀k, (25)

mk = m0 ∀k, (26)
Wk = W0 ∀k, (27)
νk = ν0 ∀k. (28)

In the first step, referred to as the E-step, the parameters of
the distributions are considered constant and the responsibil-
ities of each component (cluster k) for each sample (particle
θl obtained in Section III-D), denoted as rlk, are calculated.
Very briefly, rlk indicates how probable it is for particle l to
belong to cluster k. In more detail, the E-step calculates

ln Λ̃k =

F∑
i=1

ψ

(
νk + 1− i

2

)
+ F ln 2 + ln det(Wk), (29)

ln π̃k = ψ(ak)− ψ

(
K∑
k=1

ak

)
, (30)

rlk ∝ π̃kΛ̃
1
2

k exp

{
−F

2
− νk

2
(θl −mk)TWk(θl −mk)

}
,

(31)

where ψ(·) is the digamma function, and F is the number of
features. In 3D cases, F = 3 but in 2D, F = 2.

In the M-step, given the responsibilities rlk, we recalculate
the parameters for maximizing the log-likelihood by

Lk =

L∑
l=1

rlk, (32)

θ̄k =
1

Lk

L∑
l=1

rlkθl, (33)

Sk =
1

Lk

L∑
l=1

rlk(θl − θ̄k)(θl − θ̄k)T , (34)

ak = a0 + Lk, (35)
βk = β0 + Lk, (36)

mk =
1

βk
(β0m0 + Lkθ̄k), (37)

W−1
k = W−1

0 + LkSk +
β0Lk
β0 + Lk

(θl −m0)(θl −m0)T ,

(38)
νk = 1 + ν0 + Lk. (39)

The algorithm continues to iterate between the E- and M-
steps until either the parameters or the log-likelihood converge
to meet a certain precision. Finally, the values of the optimized
parameters in (20) are then chosen as the expectations of the
corresponding distributions, i.e.,

πk =
ak
K∑
k=1

ak

, (40)

µk = mk, (41)

Σk = (νkWk)−1. (42)

It is well understood that VB has the advantage of achieving
a high log-likelihood quickly, and gives a good parametric
approximation of p(θi). In HEVA, the distribution consists of a
relatively large number of components evenly spread out in the
area already calculated in for the ellipsoid filter. There are two
advantages. In case there is a large space of possible locations,
the large number of components will provide flexibility for the
approximation to fit well with the data. In addition, if there is
little or no ambiguity, most of the components degenerate to
zero allowing for a small Gaussian mixture (i.e., small K).

F. Computational Convergence

A cluster graph is not guaranteed to achieve the optimal
solution, but if the running intersection property and the family
preservation property are held [14], typically most clusters will
converge to a local optimum with just a few clusters oscillating
unable to achieve convergence. HEVA uses a dampened belief
propagation message passing, which empirically helps even
the oscillating nodes converge to a local optimum. An added
complexity is inserted in the algorithm because of the use
of VB. For this reason, it is important to explicitly define a
convergence criterion. As location beliefs are approximated by
Gaussian mixtures, Kullback-Leibler (KL) divergence between
the belief of the previous and present iterations is calculated. If
the difference is below a prescribed threshold, the node is said
to have converged to a solution. As there is no easy way to



calculate the KL divergence between two Gaussian mixtures,
the approximation method proposed in [37] is used.

G. Complexity

The complexity of HEVA is dominated by three processes:
(1) the filtering operation, (2) the product operation and (3)
the VB algorithm, i.e., the clustering operation. In order to
analyze the complexity, we let

|Ni| the number of incoming messages to a specific node,
L the number of drawn particles,
α the ratio of particles kept in the product calculation,
S the number of components in the Gaussian mixture,
F the number of features,

IVB the maximum number of iterations VB will run,
IHEVA the number of iterations HEVA will run.

At every iteration of the algorithm, each node first draws
particles from each incoming message, namely, the filtering
operation, an operation that scales with the number of neigh-
bors, and the number of drawn particles (therefore scales with
complexity L|Ni|F ). Then the samples are passed through
the ellipse function and every particle is weighted. Thus, this
operation scales with L|Ni|F . The next step is to draw αL
samples for each message with replacement, with a complexity
of αL|Ni|. Finally the MIS algorithm is used to calculate the
product. This operation’s complexity scales with (αL)2|Ni|F
[10]. Finally, a parametric form is found with VB, an op-
eration that scales with αLSIVBF

3 [36]. The computational
complexity of the above operations is summarized in Table I.

Next we compare HEVA with various alternative algorithms
used for distributed cooperative localization. In NBP and its
non-parametric variants, the squared L factor in calculating
MIS makes the product operation (7) computationally domi-
nate the algorithm. As such, the complexity cost is bounded by
O(L2|Ni|F ). NBP variations like Parsimonius NBP (PNBP)
[31] and Box-NBP (BNBP) [32] aim to decrease the number of
particles L required, by focusing the energy mass of the pdfs,
but the computational cost remains dominated by (7). Similarly
they are also computationally bounded by O(L2|Ni|F ).

In HEVA, we make α small to decrease the computational
cost of the product operation. By choosing a suitably low α,
the decrease in computational cost will be (αL)2

L2 ⇒ α2. For
example, if α = 0.2, there will be more than 96% decrease
in complexity for the message product operation. Essentially
this ameliorates the bottleneck of the product operation. This
lowers the complexity bound of HEVA by almost an order of
L approaching aproximately O(L|Ni|F ), if one chooses α2 ≈
1
L . Finally, for PHEVA, as will be shown in the sequel, the
focused sampling provides betters results for a given number
of particles L, albeit at a computational cost.

In Fig. 4, we present the average simulation time for a
3D network with 25 nodes, and average connectivity 4.9 for
different numbers of L. Computation was done on an Intel core
2 duo at 2.33GHz. All algorithms were implemented in python
using the numpy and scipy libraries [38]. For each scenario,
100 iterations were run and the average time was calculated.

HEVA

PHEVA

Box-NBP

Fig. 4. The average time versus the number of particles when the average
node connectivity is 4.9.

TABLE I
COMPUTATIONAL COMPLEXITY OF HEVA STEPS FOR A EACH AGENT

(SAY THE i-TH)ON ONE ITERATION

Computation Cost
The following operations are repeated IHEVA times

Draw samples from messages L|Ni|F
Weight using Ellipse function L|Ni|F

Draw weighted samples with replacement αL|Ni|
Compute particle product (αL)2|Ni|F

Run VB αLSIVBF
3

As can be seen, for NBP, PNBP and BNBP, the processing
time all increases quadratically with L, while HEVA is much
smoother, and almost approaches a linear increase. In contrast,
PNBP has a much steeper increase in processing time than
HEVA, providing a compromise between the speed of HEVA,
for slightly better accuracy. Finally, it can be seen that IPPM is
much faster than the aforementioned family of belief message
passing algorithms, but at a higher error rate. IPPM does
not use particles, thus the mean time does not vary with
the number of particles. Unfortunately, this provides lower
accuracy and requires a larger communication overhead, in
order to decide on the initial values before the optimization
starts, as will be discussed in Section III-H. The complexity
costs of the various algorithms are given in Table II.

TABLE II
COMPUTATIONAL COMPLEXITY FOR EACH AGENT (SAY THE i-TH) ON ONE

ITERATION OF DIFFERENT ALGORITHMS

Algorithm Complexity Typical Values
NBP O(L2(|Ni|) L = 104 − 106

PNBP O(L2(|Ni|) L = 102 − 103

Box-NBP O(L2(|Ni|) L = 102 − 103

HEVA O((aL)2|Ni|) L = 102 − 103

PHEVA O((aL)2|Ni|) L = 102 − 103

IPPM O(|Ni|) –

The average computational time for HEVA, and other algo-
rithms is provided in Fig. 5 for different sizes of neighboring
nodes. The same experiment was conducted but with varying



PHEVA

HEVA

Box-NBP

Fig. 5. The average simulation time versus mean node connectivity. Number
of particles is L = 300.

communication range R, while keeping the number of particles
constant L = 300, hence increasing the average number of
neighbors. All techniques increase linearly with time, but the
gradient of HEVA is much smaller 0.27s/neighbor, compared
to 0.77s/neighbor for NBP, scaling much better when the
average number of neighbors increases. The steepness that
can be seen in the graph for less than 3 neighbors on average
can be explained by the lack of computations as there are
not enough neighbors to localize. The variations of NBP take
similar time to NBP but require slightly more computations
as they also need to calculate the angles of the samples.

HEVA-Sphere Kernel

EVNBP-Sphere Kernel

ENBP-Sphere Kernel

NBP-Sphere Kernel

NBP-RoT Kernel

Fig. 6. The average simulation time versus mean node connectivity. Number
of particles is L = 300.

In Fig. 6, results for the average computational time of NBP
and HEVA are compared with the respective algorithms of
adding to NBP one component of HEVA at a time, for the
same 3D scenario as before. First, the new kernel is added,
namely “NBP Sphere Kernel”, decreasing the computational
cost slightly. Then the ellipsoid filter is added, namely “ENBP”
or “NBP+EF”, which manages to decrease the cost consider-

ably. Then if VB is applied, this will actually increase the
computation cost, and finally the NLoS filter, which relatively
keeps the cost equal to “EVNBP” or “NBP+EF+VB”. It should
be noted that as the number of average neighbors increases the
computational time of HEVA decreases relative to “EVNBP”,
as messages will be dropped, from the NLoS filter.

H. Communication Overhead

In a distributed algorithm, most of the energy is spent on
the local computations and broadcasting messages to one-hop
neighboring nodes. In the literature focus is mostly given in
the broadcasting part as the energy required for transmission
is much higher than the energy required for a single floating
point operation, c.f. [39]. Following the analysis in [24], we
assume that all nodes are uniformly distributed over a 3-D
unit square grid, and all real values are represented in double
precision floating point format (64-bit precision). Hence, the
total energy consumed for communication by any cooperative
localization algorithm can be written as

E(|V|) = b(|V|)h(|V|)e(|V|), (43)

where E(·) returns the expectation, b(|V|) denotes the total
number of transmitted bits for |V| nodes, h(|V|) is the average
number of hops required for transmitting one bit to the des-
tination and e(|V|) is the average amount of energy required
for transmitting one bit over one hop. As all communication is
assumed to be done only by broadcasting to one-hop neighbors
we set h(|V|) = 1. The total number of real values transmitted
in one iteration for one agent is approximately L(1 + F ) for
non-parametric algorithms and LVB(1 + F + F 2) for HEVA,
where LVB is the average number of non zero components in
VB. Therefore, we have that bNBP(|V|) = O(L(|V|)(1 + F ))
and bHEVA(|V|) = O(LVB(|V|)(1 + F + F 2)).

IPPM nodes on the contrary only transmit their point
estimate, broadcasting F real values, which gives bIPPM(|V|) =
O((|V|)F ). Given a fixed total number of nodes and ignoring
e(|V|), which is assumed the same for all algorithms, we get
the energy cost bounds presented in Table III.

TABLE III
ENERGY CONSUMED BY ALL NODES ON ONE ITERATION OF DIFFERENT

ALGORITHMS

Algorithm Energy Cost Typical Values
NBP O(L((|V|)) L = 104 − 106

PNBP O(L((|V|)) L = 102 − 103

BNBP O(L((|V|)) L = 102 − 103

HEVA O(LVB(|V|)) LVB = 100 − 101

IPPM O(|V|) –

Note that as was shown in Section III-G, even though simply
using ENBP is computationally cheaper than EVNBP and
HEVA, by transmitting the belief in parametric form using VB.
Based on the above analysis, there is a significant decrease in
communication overhead. Simulations illustrate that for 3D
positioning on average, VB uses LV B ' 4 and assuming
L = 800, as in Section IV, we have approximately a 98%
decrease in communication overhead throughout the network.
Even if NBP, used only L = 100 particles, the communication



cost of HEVA would still be approximately 87% less, show-
casing the importance of transmitting a parametric form when
minimizing communication throughput is the priority.

The ability to actually achieve consistently better accuracy
than NBP and its variants, with a large decrease in com-
putational cost, ameliorating the bottleneck of MIS, as well
as a large decrease in communication overhead is the main
contribution of HEVA, and important, as it paves the path of
practically using probabilistic techniques in 3D localization.

IV. SIMULATION RESULTS

In this section, we present simulation results for HEVA for
cooperative localization. The root-mean-square (RMS) error is
compared with those of NBP and Parsimonious NBP [9] as
well as boxed NBP [32]. In experiments with NLoS edges we
compare HEVA with IPPM [7] and ECM [24].

PNBP is a variant of NBP that uses the angle of particles
between iterations to focus the sampling instead of using a
uniform sampling. The equations from [9] have been extended
for the 3D case in order for the simulation to work. BNBP is
another variant that uses information of anchors in order to box
the sampling in a specific area, in the same spirit as HEVA,
even though in this case the limit is “hard”, as all samples
inside the box are taken, and all samples outside are dropped.
ECM uses a distributed expectation conditional maximization
algorithm while IPPM is a deterministic optimization method,
based on the parallel projection method (PPM).

The RMS error can be defined as

εRMS =

√√√√ 1

N

N∑
i=1

E(‖θ̂i − θi‖2), (44)

where E(·) denotes the expectation over noise realizations. As
a summary, we will show that HEVA provides consistently
better results than NBP and its variants with a large decrease
in computational cost. In the 3D case, the advantages become
much more pronounced, while NBP and its variants become
computationally prohibitive. The biggest advantage of HEVA
can be seen in the case of NLoS. We will define the edge NLoS
probability as the probability that any network communication
edge eji ∈ E is in NLoS for a given experiment, and present
results for varying the edge NLoS probabilities. Finally, the
variants of HEVA using EM and K-means will be shown,
compared to our proposal of VB. Note that the higher errors
here are due to the spherical Gaussian distributions for the an-
chor beliefs, thus increasing the inherent noise. The important
thing to note is the comparison between algorithms.

We consider a three dimensional scenario of a 95 × 95 ×
20m2 grid with N = 125 agents uniformly distributed over
the grid and M = 8 anchors placed near the 8 corners of the
grid. The maximum communication range is 15m for every
node and the average node connectivity is |N̄i| ≈ 6.1. For
each noise level, 300 independent simulations were run and the
RMS error was calculated for all algorithms. Also, L = 800
and HEVA/PHEVA used a factor α = 0.2.

Initially, a comparison will be made between NBP and the
various components of HEVA. Thus, NBP is compared to NBP

with the novel kernel, NBP with the ellipsoid filter, i.e., ENBP,
ENBP with VB and finally the complete HEVA.

NBP-Sphere Kernel

NBP-RoT Kernel

ENBP-Sphere Kernel

EVNBP-Sphere Kernel

HEVA-Sphere Kernel

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Fig. 7. The rms error versus the amount of range estimation noise Ke when
the average node connectivity is 6.1 and no NLoS.

In Fig. 7, results are provided to show that an improvement
is achieved as we add the various components of HEVA on
NBP. Firstly we see an improvement by adding the kernel
to NBP. It should be noted here, that in the 2D case, there
is no noticeable improvement in the accuracy by using the
kernel compared to the rule of thumb, but a reduction in
the computational cost as the kernel covariance matrix is
simpler to compute than the rule of thumb kernel covariance
matrix. Also, we see that VB does not improve or deteriorate
the results so is used purely in order to convert the pdf to
a parametric form. Finally, it is also interesting to note an
improvement by using the NLoS filter even when there are
no NLoS edges in the network. This is explained as the filter
does not only remove messages from NLoS edges but omits all
messages that do not facilitate converge in the later iterations,
hence helping convergence.

0.0 0.05 0.10 0.15 0.20 0.25 0.30

NBP

PNBP

BNBP

PHEVA

HEVA

IPPM

Fig. 8. The rms error versus the amount of range estimation noise Ke when
the average node connectivity is 6.1 and no NLoS.



Next we compare HEVA with the aforementioned compet-
ing algorithms in Fig. 8. As expected, all algorithms that focus
their particles outperform NBP. Further, HEVA and PHEVA
outperform all other methods especially in higher noise levels,
with HEVA achieving almost equal accuracy to PHEVA for
much less computational cost as was shown in Fig. 5.

Edge NLoS Probability

PHEVA

HEVA

Fig. 9. The average error versus the Edge NLoS Probability, when the average
node connectivity is 6.1 .

In Fig. 9, we compare the algorithms for various edge NLoS
probabilities. HEVA and PHEVA are compared to IPPM and
ECM [24], both of which have NLoS mitigation capabilities.
As can be seen, both HEVA and PHEVA outperform the other
algorithms even in very high NLoS scenarios. As ECM tries
to approximate the noise pdf fitting a non-parametric pdf to
the measured distances, it manages to keep the RMS error
constant at all edge NLoS probabilities. Finally, it is interesting
to note that in the case of high edge NLoS probability, HEVA
outperforms PHEVA. We believe that as the high noise creates
more ambiguity, it is easier for PHEVA to initially focus the
particles in the wrong regions, increasing the RMS error.

A. Comparison with Other Clustering Techniques

As there is a number of possible clustering techniques that
could be used instead of VB, in this subsection, we provide
simulation results for two other clustering methods, namely,
K-means and EM [36] for comparison. Fig. 10 provides the
average RMS error results against the number of iterations.
As is expected, VB and EM have almost the same results,
for both the error cdfs and the average RMS errors and they
both outperform K-means. A close observation for the results
further shows that VB performs slightly better than EM. As
explained earlier in Section III, the advantage of VB over EM
is not only performance but VB can avoid singularity issues,
and can automatically optimize its clustering even if it starts
with an arbitrary large number of clusters.

V. CONCLUSIONS

In this paper, we have presented a novel cooperative local-
ization method which we refer to it as HEVA. Based on NBP,

Fig. 10. The average RMS error versus the number of iterations with Ke =
0.1

HEVA uses intelligent filtering of the particles to both improve
the localization accuracy and decrease the computational cost.
Through VB, it also decreases drastically the communication
overhead, without sacrificing the convergence speed or accu-
racy. It has been shown that it outperforms all other methods,
and offers considerable computational advantages to existing
methods. It was also shown to consistently achieve accurate
position estimates even in high noise scenarios with NLoS,
even in the more ambiguous 3D case. In the future, we will
incorporate node mobility, and a number of different kernels
will be considered to reduce the cost even further.

APPENDIX

In order to find a good approximation for the particle kernel
covariance the following novel idea is suggested. Assuming a
message from an anchor, whose location is precisely known,
we can formulate δ(s+1)

j→i (Θi) as

δ
(s+1)
j→i (Θi) =

1√
2πσν

exp

(
−1

2σν

√
x2i + y2i + z2i − r

(t)
ji

)2

. (45)

Essentially, this is a Gaussian distribution and what we want
is to approximate a spherical hull with a volume that captures
the 0.95 confidence interval of the Gaussian. This spherical
hull volume is equal to

Vc =
4

3
π

[(
r
(t)
ji + 2σν

)3
−
(
r
(t)
ji − 2σν

)3]
. (46)

Also, we want to distribute this equally to L particles where
each particle is a 3D multivariate Gaussian. The volume
corresponding to the 0.95 confidence level of a multivariate
Gaussian is given by

Vs =
2π

p
2

pΓ
(
p
2

) (χ2
p,α)

p
2 |Σj→i|

1
2 , (47)

where χ2
p,α is taken from the χ-square distribution table and

in this case as p = 3, α = 0.95, we have χ2
3,0.95 = 5.991.



Also we assume that the Gaussians are spherical and the co-
variance matrix for the 0.95 ellipsoid is given by Σj→i,0.95 =√
λχ2

3,0.95× I, where λ are the eigenvalues of the covariance
matrix. Equating Vc = LVs and solving for λ, after some
algebra, we finally get

Σj→i =
1

5.991

4σν

(
3(r

(t)
ji )2 + 4σ2

ν

)
L


2
3

I. (48)

Calculation of (48) is faster than having to calculate the
weight covariance matrix as is required, e.g., in the rule of
thumb technique [10], and simulations show that using this
approximation consistenly achieves better results.
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