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Photonic simulation of entanglement growth and
engineering after a spin chain quench
Ioannis Pitsios1,2, Leonardo Banchi3, Adil S. Rab4, Marco Bentivegna4, Debora Caprara4, Andrea Crespi1,2,

Nicolò Spagnolo4, Sougato Bose3, Paolo Mataloni4, Roberto Osellame 1,2 & Fabio Sciarrino4

The time evolution of quantum many-body systems is one of the most important processes

for benchmarking quantum simulators. The most curious feature of such dynamics is the

growth of quantum entanglement to an amount proportional to the system size (volume law)

even when interactions are local. This phenomenon has great ramifications for fundamental

aspects, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum

networking). Here we use an integrated photonic chip with a circuit-based approach to

simulate the dynamics of a spin chain and maximise the entanglement generation. The

resulting entanglement is certified by constructing a second chip, which measures the

entanglement between multiple distant pairs of simulated spins, as well as the block

entanglement entropy. This is the first photonic simulation and optimisation of the extensive

growth of entanglement in a spin chain, and opens up the use of photonic circuits for

optimising quantum devices.
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R ichard Feynman suggested the idea of a quantum simu-
lator: using a controllable quantum system to mimic the
behaviour of a different, more complex one1. An important

milestone for such a simulator in any platform is to demonstrate
the ability to reproduce characteristically quantum features of the
model to be simulated. Exactly solvable models of statistical
mechanics2 are an ideal testbed for benchmarking the simulator,
since they provide a plethora of exact results for genuinely
quantum attributes, such as the extensive growth of entanglement
after a quantum non-equilibrium dynamics. For example, a
sudden global change of a many-body Hamiltonian (a quantum
quench) can induce a dynamics that ultimately entangles two
complementary parts of the system by an amount proportional to
their size: a volume law3–8 (see ref. 3 for an up-to-date review).
This quench-induced entanglement growth is not only a
phenomenon to benchmark genuinely quantum features of
exactly solvable models, but is of pivotal importance in many
other areas, as it underpins the ubiquitous process of
equilibration7, 9, and, through a holographic correspondence, the
dynamical formation of black holes in space-time10, 11. Entan-
glement12, entanglement growth13, and its propagation14–16 due
to quenches have been verified in atomic/ionic many-body
simulators. However, a complete maximisation of the entangle-
ment between two complementary blocks of spins due to
the dynamics of spin chains remains to be observed, even in a
few-body setting.

In a generic spin chain, after the dynamics following a quench,
the entanglement between complementary blocks is proportional
to the blocks’ size (volume law). However, it is of highly multi-
partite form, so that the entanglement between individual spins is
vanishing. Even for a Hamiltonian only comprising of permanent
nearest-neighbour interactions, the generated entanglement can
be tuned, through appropriate engineering of the couplings, into
that between individual distant pairs of spins17, 18. It is this latter
form that is directly useful (without distillation) for, say, quan-
tum teleportation, and thereby for quantum networking. The
same high degree of control also enables its usage as ballistic
quantum wires19–23 and computers24. This degree of control in
entanglement generation is yet to be achieved in any quantum
simulator of condensed matter Hamiltonians. Photonic circuits
have been used for realising varied phenomena such as bosonic
and fermionic quantum walks25, 26, quantum-classical differences
in complexity27–30, quantum chemistry31 and localisation in
transport32. The ground states of some few-body spin systems33–
35, as well as some analogues of quantum state transfer (QST)
through spin chains using coherent optics36, 37, have been rea-
lised in photonics.

Here we show, using an appropriately engineered photonic
circuit, the capability of photonic devices to simultaneously
accomplish the following: (i) the verification of the expected
extensive growth of entanglement from the dynamics of a spin
chain following a quench, and (ii) the demonstration of a high
level of control and optimisation of the generated entanglement,
as necessary for building future devices. The simulation of the
many-body dynamics is obtained by first mapping the evolution
to a continuous time quantum-walk, and then by implementing it
via a circuit-based (discrete-step) approach. We demostrate the
ability to measure not only the entropy of a block of simulated
spins, which would be needed to assess naturally occuring
equilibration in generic spin chains that are mappable to free
fermions, but also the ability to measure optimised distant
entanglement between multiple spin pairs, which would be very
difficult in other quantum simulators. Our achievements are
made possible by engineering two novel photonic chips as fol-
lows: (a) the quantum transport chip and (b) the entanglement
characterisation chip. The first chip is designed to implement a

spin chain dynamics, which generates multiple entangled pairs of
distant “simulated” spins. This pattern is simultaneously of an
useful form, as well as one which demonstrates volume law.
Entanglement, however, is a notoriously difficult entity to detect
even for single pairs and require local measurements in at least
two non-commuting bases. Thus, we design the second chip that
directly interferes distant output modes of the first chip to make
entanglement detection (both the entanglement entropy and the
pair-wise spin entanglements) feasible through photon counting.
This detection methodology is unique to the field of photonic
chips, as it would be extremely difficult to bring several distant
atomic paths to interfere.

Results
Theory. Through our quantum transport chip, we simulate the
dynamics induced by a “quantum quench”—a process in which
the interactions inside a many-body system are suddenly chan-
ged. Let us consider preparing initially the Néel state

��ψN�eel

� ¼��#"# ::: "#� of simulated spins, which is one of the ground states
of the antiferromagnetic Ising chain and manifestly has no
entanglement between any pairs of spins (the whole state is a
separable state). In a condensed matter scenario, this state would
be prepared by cooling under a Ising Hamiltonian. In photonic
technology, we simply inject our apparatus with a simulated Néel
state as to be described later. Immediately following the injection,
the state starts evolving in accordance to the Hamiltonian
simulated by our chip. This corresponds to one of the most
extensively theoretically studied spin chain quench6, 17, 18, 38 in
which the system Hamiltonian is suddenly changed from the
Ising model to the XY model

H ¼
XN�1

i¼1

1
2
Ji σ

X
i σ

X
iþ1 þ σYi σ

Y
iþ1

� �
; ð1Þ

where σαi for α= X, Y, Z represent the Pauli matrices for the spin
in the site i and N is the length of the chain. Further, the pho-
tonics platform enables us to set the Ji ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðN � iÞp

(which has
not yet been feasible in the atomic/ionic platforms for quench).
Then, one generates, after a relevant time t*, a remarkable pattern
of nested entangled states17, 39, also dubbed as “rainbow states”40

(cf Fig. 1):
��ψv:l:

� ¼ ��ψþ
1;N

���ψþ
2;N�1

�
:::; ð2Þ

where
��ψþ

i;j

� ¼ 1ffiffi
2

p ð��"#�ij þ
��#"�ijÞ. This state corresponds to a

“volume law” for entanglement as the number of entangled pairs
is ~N/2 (exactly N/2 for even N and (N − 1)/2 for the odd N). In
other words, the amount of entanglement between the left and
the right halves of the spin chain generated due to the quench
dynamics scales as the size ~N/2 of each part. This corresponds to
the maximal entropy of entanglement, a much discussed quantity
in recent theory and experiment12, between the left and the right
blocks of the spin chain. Although the “pattern” of the entan-
glement is not of the multipartite type, as in a generic equili-
brated state, in quasi-free models, the dynamical mechanism
giving rise to the rainbow state is precisely the same: the pro-
pagation of quasiparticles in superposition in opposite directions
after the quench3, 7. However, note here that the machanism of
equilibration in non-integrable systems is quite different5, 41.
Only a precise interference between the amplitudes of all the
quasiparticle propagations, whose mechanism is related to perfect
QST20, can give rise to the rainbow state. Thus, the “same type of
dynamics” as the one behind equilibration can be evidenced by
generating and verifying the rainbow state, although the latter has
a different form from a generic equilibrated state. Simultaneously,
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producing the rainbow state demonstrates the ability to optimise
the entanglement pattern.

Our simulation technique combines three principal ingredi-
ents. Firstly, using the Jordan–Wigner transformation2, 3, 17, 18, it
is possible to map spin excitations in a chain with nearest-

neighbour interactions onto non-interacting fermions hopping in
a lattice (hence the name quantum transport chip). Indeed,
H � P

n Jnc
†
ncnþ1 þ h:c:, where the creation/annihilation opera-

tors, defined by c†n ¼ σþn
Qn�1

j¼1 ð�σZj Þ with σþn ¼ σXn þ iσYn
� �

=2,
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Fig. 2 Experimental layout. a Representation of the experimental apparatus comprised of the first quantum transport chip and the second entanglement
characterisation chip. The insets highlight the specific elements and the three-dimensional geometry of the photonic devices. b Schematisation of the
quantum transport device of the first chip showing in green the directional couplers of the bulk (with transmissivity Tbulk= 0.36) and in red those at the
edge (with transmissivity Tend= 0.25) of the device. c Schematic representation of the entanglement characterisation device of the second chip, showing
the dynamic phase controls ϕ2 and ϕ5 acting on the 2nd and 5th waveguides and the 50/50 beam splitters between the (2, 4) and (1, 5) pairs of modes.
The 3rd waveguide (in grey) is not involved in any interference processes
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Fig. 1 Quantum simulation of spin chain dynamics and the entanglement growth therein in photonic platforms. Fermions simulated on the network map, via
the Jordan–Wigner transformation, to spin excitations in a chain: occupied and unoccupied modes correspond respectively to spin up and spin down. The
couplings of the effective spin chain Hamiltonian are so engineered as to generate, starting from a Néel state, at a time t*, a state with maximal
entanglement between distant symmetric sites with respect to the centre of the chain. ψþ

i;j

���
E
stands for a maximally entangled state of spins in sites i and j.

This rainbow state exhibits a volume law entanglement in which the entanglement between the left and the right halves of the chain is ~N/2. The time
evolution is approximated through a set of discrete steps (a digital approach). If the dynamics was continued up to time 2t*, it would implement an
approximately perfect QST
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satisfy canonical anti-commutation relations. Moreover,
as discussed in Supplementary Note 1, in spite of the
non-local nature of this transformation, a generic spin
state with a fixed number L of spin up,��ψ� ¼ P

m1<¼<mL
ψm1;;mL

QL
i¼1 σ

þ
mi

��# ¼ #�, can be written as

a L-fermion state
��ψ� � P

m1<¼<mL
ψm1;¼ ;mL

QL
i¼1 c

†
mi

��0�, where
we identify a spin up state with the presence of the fermion:��0� � �� # �

,
��1� � �� " �

. In spite of the mapping to a free fermion
model, it is customary to regard Eq. (1) as a many-body spin
model, in the same sense of quantum Ising model, which has the
same feature2. Secondly, fermionic behaviour can be simulated in
photonic platforms using anti-symmetric configurations of the
photons’ internal degrees of freedom; in this respect, two-photon
polarisation-entangled states have already been exploited for
simulating several phenomena such as Bosonic–Fermionic
continuous transition25, 26, Anderson localisation32 and Fano
interference effect in quantum decay42. The injection of an anti-
symmetric two-photon state in the even modes of the 5-mode
interferometer corresponds thus to setting the initial state of the
simulator in the equivalent of the 5-sites Néel state. The
quenching from the Ising Hamiltonian to the XY Hamiltonian
is simulated when the initial state is injected in the quantum
transport chip. Third is the fact that, while the spin chain
dynamics maps effectively to a continuous time quantum walk of
multiple fermions, it can be simulated via discrete quantum walks
in the weak transmission limit43. Discrete quantum walks provide
more accurate control over the implemented Hamiltonian44 due
to the additional degree of freedom given by the coin operator.
An N-sites continuous quantum walk for a ‘fixed’ time t with site-
to-site coupling Ji can be simulated by a photonic network
constituted by M layers of beamsplitters in cascade (Fig. 1) with
transmissivities Ti ¼ sin2 ϵJið Þ, where ϵ ¼ t

M is the time step
implemented by each layer. The accuracy of this approximation
increases with larger number of steps. In essence, this third
ingredient is thus a circuit-based approach to quantum
simulations as recently undertaken in superconducting net-
works45. Further details on the theoretical model are provided in
Supplementary Notes 1–5 and Supplementary Figs. 1–5.

Experiments. In our work, the quantum transport chip is a 5-
sites-, 6-steps-integrated interferometer with engineered cou-
plings for approximating the dynamical generation of the rain-
bow state of Eq. (2), which displays the volume law. We studied
the evolution of a two-particle fermionic state (equivalent to the
Néel state of a 5-site antiferromagnet) and its bosonic counter-
part, analysing the different statistics at the output and con-
firming the prediction for creation of the rainbow pattern of
entanglement in the fermionic case. This has been possible by
merging several experimental techniques such as entanglement
generation in bulk optics, state propagation in polarisation-
insensitive integrated circuits and entanglement analysis in a 3D
tuneable integrated circuit.

Optical circuits fabrication. The Quantum Transport Chip
(QTC) is a 5 input–output waveguide interferometer, encom-
passing a series of directional couplers as shown in Fig. 2a. In this
scheme, each spin particle site is represented by a waveguide, and
the directional couplers discretise the interaction between the
spins. The spin states at each site are encoded by the presence of a
photon for state

�� " �
and by the absence of a photon for state�� # �

.
In order to properly reproduce the discrete-time quantum state

transfer, it is required to use two different transmission values,
Tbulk= 0.36 and Tend= 0.25, for the internal and the external

beam splitters, respectively (Fig. 2b and Supplementary Note 3).
This can be achieved by increasing the separation between the
two waveguides in the interaction region of the external couplers.

The initial state of the spin chain is prepared by injecting two
polarisation-entangled photons (see below). Since the entangle-
ment in the polarization degree of freedom is exploited to
emulate the particle statistics, it should not directly influence the
propagation of the two-photon state, thus the chip needs to be
polarisation insensitive. This is achieved by means of the tilted
geometry design of the directional couplers, allowing equal
transmissivity for both horizontal and vertical polarisation25.

The entanglement characterisation chip (ECC) is a 5
waveguide device designed with the purpose of evaluating the
entanglement generated in the QTC chip (as seen in Fig. 2a). The
ECC interferes the signal from the QTC output by using two
polarisation insensitive directional couplers between waveguides
1–5 & 2–4. By means of two thermal phase shifters fabricated
over waveguides 2 and 5, the chip allows to scan the interference
between the two pairs of waveguides by modulating the phase
(Fig. 2c)46, 47.

The ECC adopts a fully three-dimensional design. The
waveguides start at a shallow depth of 25 μm on the collection
side, so that the heating elements will operate efficiently. Then
they go deeper at 65 μm to form the couplers without any
physical crossing of the waveguides (see Fig. 2a inset). The central
waveguide is not interacting with any other one.

Measurements with the quantum transport chip. The simula-
tion of the spin chain dynamics on the photonic platform has
been performed by exploiting polarisation-entangled pairs of
photons, generated by type-II parametric downconversion pro-
cess in a beta barium borate (BBO) crystal (see Methods section,
Supplementary Note 6 and Supplementary Figs. 6 and 7 for more
details). The general expression for the state of the generated
photons can be written as

��Ψ χ
2p

�¼ 2�1=2
��HV

�þ eiχ
��VH�� �

,
where the subscript 2p indicates a two-photon state. The phase
parameter χ can be controlled by means of an electrically con-
figurable liquid crystal positioned on one of the two-photon
paths. Thus both bosonic and fermionic statistics can be simu-
lated by using the Bell states

��Ψþ
2p

�
and

��Ψ�
2p

�
, respectively for

their symmetric and anti-symmetric wavefunctions25.
The Néel state

��#"#"#� of the spin chain was simulated by
injecting the polarisation-entangled state

��Ψ�
2p

�
in the inputs 2

and 4 of the QTC (Fig. 2a, b) through a single mode fibre array
and, after evolution into the interferometers, photons are
collected via a multimode fiber array and sent to single-photon
avalanche photodiodes (APDs). At the output, we collect
coincidence measurements from all pairs of outputs to measure
the off-diagonal elements (outputs i≠ j); for the diagonal
contributions (outputs i= j) an in-fiber beam-splitter is inserted
in each single output mode. The same experiment is also
performed with

��Ψþ
2p

�
to capture the distinctive features of

bosonic and fermionic dynamics on the QTC. It is important to
observe that this is achievable due to the polarisation insensitivity
of the waveguides, and that the input state is insensitive to phase
instabilities between two arms of the interferometer. Further-
more, we note that entanglement in two different degrees of
freedom is present in the simulator. On one side, polarisation-
entanglement is generated by the photon source, and is employed
to simulate particles statistics. On the other side, mode
entanglement is generated by the QTC as a result of the
evolution, and corresponds to the emergence of entanglement
between the spins of the simulated chain.

In the limit of a QTC with an infinite number of steps, one
would expect a perfect generation of the entangled state of the
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form (2) exhibiting the volume law at t*. A device with 6 steps
(whose unitary we denote U), when injected with a Néel state,
would give unbalanced

��ψþ� states at symmetric sites (see below).
Finally, one has to take into account imperfections of the
implemented unitary (Supplementary Note 7), by considering
also the possible small residual difference when acting on
photons with different polarisations (~UH and ~UV).

As a first step, tomographic reconstruction of the unitary
transformation matrix by exploiting single-photon and two-
photon measurements48, 49 has been performed for both
polarisations H and V (Supplementary Note 8 and Supplemen-
tary Figs. 8–11). The fidelities of the reconstructed unitaries with
respect to the expected one, defined as F π ¼ jTr U† ~U

π� �j=5 for
π=H, V, is found to be FH ¼ 0:962± 0:001 and
FV ¼ 0:977± 0:002, proving the high quality and the polarisa-
tion independence of the device.

The results of the quantum dynamics are shown in Fig. 3 for
both bosonic and fermionic behaviour, where the experimental

ð~ΓB=F
ij Þ and theoretical (ΓB=F

ij , calculated from the 6-steps unitary
U) correlation functions50, 51 are reported. The output prob-
abilities detected experimentally are related to the correlation
function by the equations ~Γii ¼ Pii and ~Γij ¼ Pij

2 , due to the
symmetrisation of the correlation function matrix. The difference
between the two dynamics is clear by observing that
bosonic behaviour presents a strong contribution on the diagonal
terms, while the latter are suppressed in the fermionic case.
Finally, we calculated the similarities between the experimental
distributions and the theoretical predictions, defined as

SB=F ¼ ½Pi;j ðΓB=F
i;j

~ΓB=F
i;j Þ1=2�2, which are found to be SB ¼

0:942± 0:005 and SF ¼ 0:836± 0:004.

Entanglement certification. The time evolution of the state��Ψ�
2p

�
24 (which simulates the Néel state) through an effective

Hamiltonian of the form (1) acting on simulated spins gives a
state equal to

��ψþ
1p

�
15

��ψþ
1p

�
24

��0�3 at time t*, where
��ψþ

1p

�
ij denotes

the one-photon path-encoded Bell state
��ψþ� over the modes i

and j52. This state simulates the volume-law-entangled state��ψv:l:

�
of Eq. (2). As we perform the evolution with a finite

number of steps, we get a state of the form��ψout

� ¼ ðα��"#�15 þ β
��#"�15Þðγ

��"#�24 þ δ
��#"�24Þ

�� # �
3. The

imbalance between α and β and between γ and δ, which can be
observed in Fig. 3, comes from the fact that a finite number of
discrete step is an approximation of a perfect state transfer. To
check the coherence between the terms

��"#�ij and
��#"�ij, a phase

shift and a beamsplitter transformation over the modes i and j
can be applied, where (i, j)= (1, 5) and (2, 4). This transforma-
tion is implemented in the ECC device shown in Fig. 2c (see
Methods section, Supplementary Note 9 and Supplementary
Fig. 12 for more details).

We first measured the two-photon interference fringes obtained
by varying the phases ϕ2 and ϕ5. More specifically, we defined the
quantities Ii (see Methods section), which depend on the effects of
one variable phase shift on a single waveguide, and are independent
of cross-talk effects by heat dispersion over neighbouring modes.
Interference fringes for quantities I1 and I5 (I2 and I4) obtained
when varying phase shift ϕ5 (ϕ2) are shown in Fig. 4a, b.

To characterise the degree of entanglement, we first evaluated
the entanglement fraction of systems 1–5 and 2–4 with respect to
the ideal one-photon Bell state

��ψþ
1p

�
: Ei;j¼ij

�
ψþ
1p

��ρij
��ψþ

1p

�
ij, where

ρij is the reduced density matrix for two qubits in positions i
and j53. These quantities can be evaluated by measuring the
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single-photon probabilities N′i and two-photon probabilities P′
ij

after evolution through the second device. Indeed, one can find
that E1;5 ¼ N ′

5 � P′
15 and E2;4 ¼ N ′

2 � P′
24 � P′

23 þ P′
34 (Supple-

mentary Note 4). The first expression implies finding a photon in
mode 5 and no photons in mode 1. The second one keeps non-
local terms from the mapping, from spin excitations to fermions,
which in the case of E1;5 are factorised into a fixed phase term. By
evaluating the entanglement fractions from
the two-photon probabilities shown in Fig. 4c, we obtain
E1;5 ¼ 0:66± 0:03 and E2;4 ¼ 0:74± 0:03: This amounts to an
approximate verification of Eq. (2) and thereby the growth of
entanglement to a volume law.

A further verification of the presence of entanglement, without
assuming a specific form for the output state, can be obtained
from the measured data. We evaluated the entanglement entropy
SA,B= S(ρA)= S(ρB) of a given bipartition ρA/ρB of the chain. The
volume law corresponds here to a scaling of SA,B∝N. This
quantity can be evaluated directly from the measured data or by
exploiting a maximum likelihood approach (see Supplementary
Notes 10 and 11 and Supplementary Figs. 13–15 for more
details). The second approach permits also to estimate the overall
entropy of the state SAB= S(ρAB) and its purity. Here we consider
the bipartition A= (1, 2) and B= (3, 4, 5). We obtain SA,B=
1.640± 0.016 for the entanglement entropy, SAB= 0.22± 0.05 for
the overall entropy and ~Ψ ¼ 0:943± 0:017 for the purity. From
these results it is then possible to evaluate a lower bound on the
amount of distillable entanglement by exploiting the hashing
inequality53, which reads EDA,B>SA,B − SAB. The experimental
value obtained from the complete set of measured data leads to
EDA;B > EDA;B ¼ 1:42± 0:06.

Discussion
Using integrated photonics quantum simulation, we show that
we can verify the expected growth of entanglement in a spin
chain after a quench, as well as its engineering for future appli-
cations. The amount of entanglement between the two halves of
the spin chain is measured in a 5-site simulated chain after an
appropriate time t*, and is found to be close to the expected
maximal possible value for such a block of spins. The combina-
tion of spin chain dynamics, its optimisation to get a rainbow
pattern, and the verification of distant entanglement are unique
to this photonic realisation. Such results further provide an

approach to benchmark the simulator, thus opening up the way
for the exploitation of photonic circuits for a significant range of
fundamental and practical many-body dynamics investigations.
In the future, the technique will allow scaling of such devices to
larger spin chains, also enabled by the possibity of fully anti-
symmetric states of more photons26, for example, using addi-
tional degrees of freedom, thus mimicking more fermions. The
level of control offered by integrated photonics makes it already
feasible to include the capability of dynamically reconfiguring the
evolution46, 47. Moreover, our methodology of designing the
QTC, in particular, a time discretisation of the dynamics that we
exploit, makes it amenable to alter the chip design to simulate a
large range of such spin chain dynamics—e.g., driven Hamilto-
nians54, 55. Furthermore, by introducing nonlinearities to the
waveguides56, a larger range of spin Hamiltonians such as those
that exhibit thermalisation and are intractable in classical simu-
lations, can be accessed. The principles demonstrated through the
ECC, on the other hand, are versatile: both the block entangle-
ment entropy (which can evidence generic many-body entan-
glement), as well as the entanglement between distant pairs
(which depicts its optimisation for usefulness) was measured.
Moreover, as we show in Supplementary Note 12, the combi-
nation of an ECC chip and photo-detection can be used in the
future also in the non-integrable case to measure entanglement
by extending the technique developed in refs 57, 58. Aside the
fundamental interest, the level of control shown by the genera-
tion of the rainbow states with a high entangled fraction, will
make integrated photonics a suitable platform to benchmark and
optimise quantum nano-devices of the future.

Methods
Single-photon source. Pairs of entangled single photons were generated by a
Spontaneous Parametric Down Conversion (SPDC) process occurring in a 2 mm
beta barium borate (BBO) crystal, pumped by a 160 fs pulsed beam at 392.5 nm
wavelength. The detected generation rates were ~120 kHz for single-photon counts
and ~7 kHz for two-fold coincidences. The phase of the generated entangled state
was controlled by means of an electrically-tunable liquid crystal device.

Devices fabrication technique. In both chips, the QTC and the ECC, the
waveguides are inscribed by femtosecond laser writing in Corning Eagle-2000
borosilicate glass. We used a femtosecond Yb:KYW cavity-dumped oscillator at
1030 nm wavelength, emitting pulses with 300 fs duration, and at a 1MHz
repetition rate. The laser beam was focused through a 50×, 0.6 NA microscope
objective lens into the glass substrate, which was translated by a computer-
controlled three-axis Aerotech FiberGlide 3D series stage, at a velocity of 40 mm/s.
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Fig. 4 Measurements with the entanglement characterisation chip. a Interference fringes for I2 (blue points) and I4 (red points) as a function of the
dissipated heat on mode 2 (proportional to ϕ2). b Interference fringes for I1 (blue points) and I5 (red points) as a function of the dissipated heat on mode 5
(proportional to ϕ5). In both a, b, solid lines and shaded areas represent respectively the best fit curves and 1σ fit, while the dashed lines corresponds to
theoretical predictions. The latter is obtained by considering that the QTC followed by each of the directional coupler of the ECC can be considered as a
Mach–Zehnder interferometer. Hence, the adopted best fit model for the experimental data was a + bcos(c + 2πx/d). c Green bars: two-photon probability
distribution obtained at the output of the second chip, when the polarisation-entangled anti-symmetric state is injected into input 2 and 4 of the first chip.
The distribution is obtained for values of the two phases which maximise P′25; blue bars: theoretical predictions. All theoretical models are obtained taking
into account the reconstructed matrices of the first chip (~UH and ~UV) and the coupling efficiencies at the interface between the two devices
(Supplementary Notes 7 and 9). Error bars in the plots are 1σ intervals and are due to the poissonian statistics of the coincidence events. Typical
coincidence rates in this regime are ~500/h for all output configurations combined
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In the QTC, the waveguides are inscribed using 220 mW of laser power at a depth
of 170 μm. In the ECC, the power of inscription was slightly lower at 210 mW
since the waveguides were closer to the surface.

QTC characterisation. After fabrication, the circuit was characterised classically
using a diode laser. The overall performance was verified by collecting the output
power distribution for each individual input and comparing it to the theoretically
expected one. The polarisation response of the chip was identical for both vertical
and horizontal polarisations within 2%, and the similarities between the theore-
tically expected and experimentally measured output distributions were SH ¼
0:963± 0:002 and SV ¼ 0:976± 0:002.

ECC characterisation. Before using the ECC in the actual quantum experiment,
the device was characterised independently by coupling it to a chip containing
balanced directional couplers, thus forming Mach–Zehnder interferometers. By
applying different voltages to the heating electrodes it was possible to observe the
interference fringes at the output of the corresponding interferometers with visi-
bilities V1–5= 0.86± 0.02 and V2–4= 0.94 ± 0.02 (for an expected value of Vi−j=
1). In addition, we verified the stability of the thermal tuning of the phase and we
have observed that a constant phase value could be maintained for a period of 8 h
with a standard deviation σΦ ¼ 0:03 radians.

Interference fringes measurement. Let us define I1 ¼ P′
12 þ P′

14, where P
′
ij is the

two-photon probability at the outputs i and j of the second device. Such quantity
depends only from the tuning of phase ϕ5 on mode 5, while being insensitive to
possible thermal cross-talks between the modes. Analogous quantities can be
defined for modes 2, 4 and 5 (I2 ¼ P′

21 þ P′
25, I4 ¼ P′

41 þ P′
45 and I5 ¼ P′

52 þ P′
54).

The recorded visibilities were VI1 ¼ 0:51± 0:05, VI5 ¼ 0:40± 0:03,
VI2 ¼ 0:74± 0:03, and VI4 ¼ 0:82± 0:03.

Data availability. The data sets generated during and/or analysed during the
current study are available from the corresponding author on reasonable request.
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