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Fundamental limits of repeaterless quantum
communications
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Quantum communications promises reliable transmission of quantum information, efficient

distribution of entanglement and generation of completely secure keys. For all these tasks, we

need to determine the optimal point-to-point rates that are achievable by two remote parties

at the ends of a quantum channel, without restrictions on their local operations and classical

communication, which can be unlimited and two-way. These two-way assisted capacities

represent the ultimate rates that are reachable without quantum repeaters. Here, by

constructing an upper bound based on the relative entropy of entanglement and devising a

dimension-independent technique dubbed ‘teleportation stretching’, we establish these

capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited

amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly

determine the fundamental rate-loss tradeoff affecting any protocol of quantum key

distribution. Our findings set the limits of point-to-point quantum communications and

provide precise and general benchmarks for quantum repeaters.
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Q
uantum information1–3 is evolving towards next-
generation quantum technologies, such as the reali-
zation of completely secure quantum communications4–6

and the long-term construction of a quantum Internet7–10. But
quantum information is more fragile than its classical
counterpart, so that the ideal performances of quantum
protocols may rapidly degrade in realistic practical
implementations. In particular, this is a basic limitation that
affects any point-to-point protocol of quantum communication
over a quantum channel, where two remote parties transmit
qubits, distribute entanglement or secret keys. In this
communication context, it is a crucial open problem to
determine the ultimate rates achievable by the remote parties,
assuming that they may apply arbitrary local operations (LOs)
assisted by unlimited two-way classical communication (CCs),
that we may briefly call adaptive LOCCs. The maximum rates
achievable by these adaptive protocols are known as two-way
(assisted) capacities of a quantum channel and represent
fundamental benchmarks for quantum repeaters11.

Before our work, a single two-way capacity was known,
discovered about 20 years ago12. For the important case of
bosonic channels2, there were only partial results. Building
on previous ideas13, ref. 14 introduced the reverse coherent
information. By exploiting this notion and other tools15,16, the
authors of ref. 17 established lower bounds for the two-way
capacities of a Gaussian channel. This inspired a subsequent
work18, which exploited the notion of squashed entanglement19

to build upper bounds; unfortunately the latter were too large to
close the gap with the best-known lower bounds.

Our work addresses this basic problem. We devise a general
methodology that completely simplifies the study of adaptive
protocols and allows us to upperbound the two-way capacities of
an arbitrary quantum channel with a computable single-letter
quantity. In this way, we are able to establish exact formulas for
the two-way capacities of several fundamental channels, such as
bosonic lossy channels, quantum-limited amplifiers, dephasing
and erasure channels in arbitrary dimension. For these channels,
we determine the ultimate rates for transmitting quantum
information (two-way quantum capacity Q2), distributing
entanglement (two-way entanglement distribution capacity D2)
and generating secret keys (secret-key capacity K). In particular,
we establish the exact rate-loss scaling that restricts any point-to-
point protocol of quantum key distribution (QKD) when
implemented through a lossy communication line, such as an
optical fibre or a free-space link.

Results
General overview of the results. As already mentioned in the
Introduction, we establish the two-way capacities (Q2, D2 and K)
for a number of quantum channels at both finite and infinite
dimension, that is, we consider channels defined on both discrete
variable (DV) and continuous variable (CV) systems2. Two-way
capacities are benchmarks for quantum repeaters because they are
derived by removing any technical limitation from the point-to-
point protocols between the remote parties, who may perform the
most general strategies allowed by quantum mechanics in the
absence of pre-shared entanglement. Clearly, these ultimate limits
cannot be achieved by imposing restrictions on the number of
channel uses or enforcing energy constraints at the input. The
relaxation of such constraints has also practical reasons since it
approximates the working regime of current QKD protocols,
that exploit large data blocks and high-energy Gaussian
modulations13,20.

To achieve our results we suitably combine the relative entropy
of entanglement (REE)21–23 with teleportation9,24–26 to design a

general reduction method, which remarkably simplifies the study
of adaptive protocols and two-way capacities. The first step is to
show that the two-way capacities of a quantum channel cannot
exceed a general bound based on the REE. The second step is the
application of a technique, dubbed ‘teleportation stretching’,
which is valid for any channel at any dimension. This allows us to
reduce any adaptive protocol into a block form, so that the
general REE bound becomes a single-letter quantity. In this way,
we easily upperbound the two-way capacities of any quantum
channel, with closed formulas proven for bosonic Gaussian
channels2, Pauli channels, erasure channels and amplitude
damping channels1.

Most importantly, by showing coincidence with suitable lower
bounds, we prove simple formulas for the two-way quantum
capacity Q2 (¼D2) and the secret-key capacity K of several
fundamental channels. In fact, for the erasure channel we show
that K¼ 1� p where p is the erasure probability (only its Q2 was
previously known12); for the dephasing channel we show that
Q2¼K¼ 1�H2(p), where H2 is the binary Shannon entropy and
p is the dephasing probability (these results for qubits are
extended to any finite dimension). Then, for a quantum-limited
amplifier, we show that Q2 ¼ K ¼ � log2 1� g � 1ð Þ where g
is the gain. Finally, for the lossy channel, we prove that
Q2 ¼ K ¼ � log2ð1� ZÞ where Z is the transmissivity. In
particular, the secret-key capacity of the lossy channel is the
maximum rate achievable by any optical implementation of
QKD. At long distance, that is, high loss ZC0, we find the
optimal rate-loss scaling of KC1.44 Z secret bits per channel use,
a fundamental bound that only quantum repeaters may surpass.

In the following, we start by giving the main definitions. Then
we formulate our reduction method and we derive the analytical
results for the various quantum channels.

Adaptive protocols and two-way capacities. Suppose that Alice
and Bob are separated by a quantum channel E and want to
implement the most general protocol assisted by adaptive LOCCs.
This protocol may be stated for an arbitrary quantum task and
then specified for the transmission of quantum information,
distribution of entanglement or secret correlations. Assume that
Alice and Bob have countable sets of systems, a and b, respec-
tively. These are local registers which are updated before and after
each transmission. The steps of an arbitrary adaptive protocol are
described in Fig. 1.

After n transmissions, Alice and Bob share an output state
rn

ab :¼ rab E�n� �
depending on the sequence of adaptive LOCCs

1 2

21

Alice a

Bob b

a Alice

Λ2Λ1Λ0

b Bob

Figure 1 | Adaptive quantum protocol. The first step is the preparation of

the initial separable state r0
ab of a and b by some adaptive LOCC L0. After

the preparation of the local registers, there is the first transmission: Alice

picks a system from her local register a1Aa, so that the register is updated

as a-aa1; system a1 is sent through the channel E, with Bob getting the

output b1; Bob includes the output in his local register, which is updated as

b1b-b; finally, Alice and Bob apply another adaptive LOCC L1 to their

registers a,b. In the second transmission, Alice picks and sends another

system a2Aa through channel E with output b2 for Bob. The parties apply a

further adaptive LOCC L2 to their registers and so on. This procedure is

repeated n times, with output state rn
ab for the Alice’s and Bob’s local

registers.
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L ¼ L0; � � � ;Lnf g. By definition, this adaptive protocol has a rate
equal to Rn if the output rn

ab is sufficiently close to a target state
fn with nRn bits, that is, we may write rn

ab�fn

�� �� � e in trace
norm. The rate of the protocol is an average quantity, which
means that the sequence L is assumed to be averaged over local
measurements, so that it becomes trace-preserving. Thus, by
taking the asymptotic limit in n and optimizing over L, we define
the generic two-way capacity of the channel as

CðEÞ :¼ sup
L

lim
n

Rn: ð1Þ

In particular, if the aim of the protocol is entanglement
distribution, then the target state fn is a maximally entangled
state and CðEÞ ¼ D2ðEÞ. Because an ebit can teleport a qubit and
a qubit can distribute an ebit, D2ðEÞ coincides with the two-way
quantum capacity Q2ðEÞ. If the goal is to implement QKD, then
the target state fn is a private state27 and CðEÞ ¼ KðEÞ. Here the
secret-key capacity satisfies KðEÞ � D2ðEÞ, because ebits are
specific types of secret bits and LOCCs are equivalent to LOs and
public communication27. Thus, the generic two-way capacity C
can be any of D2, Q2 or K, and these capacities must satisfy
D2¼Q2rK. Also, note that we may consider the two-way private
capacity P2ðEÞ, which is the maximum rate at which classical
messages can be securely transmitted15. Because of the unlimited
two-way CCs and the one-time pad, we have P2ðEÞ ¼ KðEÞ, so
that this equivalence is implicitly assumed hereafter.

General bounds for two-way capacities. Let us design suitable
bounds for CðEÞ. From below we know that we may use the
coherent28,29 or reverse coherent14,17 information. Take a
maximally entangled state of two systems A and B, that is, an
Einstein–Podolsky–Rosen (EPR) state FAB. Propagating the
B-part through the channel defines its Choi matrix
rE :¼ I � E FABð Þ. This allows us to introduce the coherent
information of the channel ICðEÞ and its reverse counterpart
IRCðEÞ, defined as ICðRCÞðEÞ :¼ S TrAðBÞ rEð Þ

� �
� S rEð Þ, where S( � )

is the von Neumann entropy. These quantities represent lower
bounds for the entanglement that is distillable from the Choi
matrix rE via one-way CCs, denoted as D1 rEð Þ. In other words,
we can write the hashing inequality16

max ICðEÞ; IRCðEÞf g � D1 rEð Þ � CðEÞ: ð2Þ
For bosonic systems, the ideal EPR state has infinite-energy, so

that the Choi matrix of a bosonic channel is energy-unbounded
(see Methods for notions on bosonic systems). In this case we
consider a sequence of two-mode squeezed vacuum (TMSV)
states2 Fm with variance m¼ �nþ 1/2, where �n is the mean number
of thermal photons in each mode. This sequence defines the
bosonic EPR state as F:¼ limm Fm. At the output of the channel,
we have the sequence of quasi-Choi matrices

rmE :¼ I � E Fmð Þ; ð3Þ
defining the asymptotic Choi matrix rE:¼ limm r

m
E . As a result, the

coherent information quantities must be computed as limits on
rmE and the hashing inequality needs to be suitably extended (see
Supplementary Note 2, which exploits the truncation tools of
Supplementary Note 1).

In this work the crucial tool is the upper bound. Recall that, for
any bipartite state r, the REE is defined as ERðrÞ¼ infss S rkssð Þ,
where ss is an arbitrary separable state and S rkssð Þ :¼
Tr r log2 r� log2 ss

� �� �
is the relative entropy23. Hereafter we

extend this definition to include asymptotic (energy-unbounded)
states. For an asymptotic state s :¼ limm sm defined by a sequence
of states sm, we define its REE as

ERðsÞ :¼ inf
sms

lim
m!

inf
þ1

S smksms
� �

; ð4Þ

where sms is an arbitrary sequence of separable states such that
sms �ss

�� ��-0 for some separable ss. In general, we also consider
the regularized REE

E1R ðsÞ :¼ lim
n

n� 1ER s�nð Þ � ERðsÞ; ð5Þ

where s�n:¼ limm sm�n for an asymptotic state s.
Thus, the REE of a Choi matrix ER rEð Þ is correctly defined for

channels of any dimension, both finite and infinite. We may also
define the channel’s REE as

ERðEÞ :¼ sup
r

ER I � EðrÞ½ � � ER rEð Þ; ð6Þ

where the supremum includes asymptotic states for bosonic
channels. In the following, we prove that these single-letter
quantities, ERðEÞ and ER rEð Þ, bound the two-way capacity CðEÞ
of basic channels. The first step is the following general result.

Theorem 1 (general weak converse): At any dimension, finite or
infinite, the generic two-way capacity of a quantum channel E is
upper bounded by the REE bound

CðEÞ � E?RðEÞ :¼ sup
L

lim
n

ER rn
ab

� �
n

: ð7Þ

In Supplementary Note 3, we provide various equivalent
proofs. The simplest one assumes an exponential growth of the
shield system in the target private state27 as proven by ref. 30
and trivially adapted to CVs. Another proof is completely
independent from the shield system. Once established the bound
E?RðEÞ, our next step is to simplify it by applying the technique of
teleportation stretching, which is in turn based on a suitable
simulation of quantum channels.

Simulation of quantum channels. The idea of simulating
channels by teleportation was first developed31,32 for Pauli
channels33, and further studied in finite dimension34–36 after
the introduction of generalized teleportation protocols37. Then,
ref. 38 moved the first steps in the simulation of Gaussian
channels via the CV teleportation protocol25,26. Another type of
simulation is a deterministic version39 of a programmable
quantum gate array40. Developed for DV systems, this is based
on joint quantum operations, therefore failing to catch the LOCC
structure of quantum communication. Here not only we fully
extend the teleportation-simulation to CV systems, but we also
design the most general channel simulation in a communication
scenario; this is based on arbitrary LOCCs and may involve
systems of any dimension, finite or infinite (see Supplementary
Note 8 for comparisons and advances).

As explained in Fig. 2a, performing a teleportation LOCC
(that is, Bell detection and unitary corrections) over a mixed state
s is a way to simulate a (certain type of) quantum channel E from
Alice to Bob. However, more generally, the channel simulation
can be realized using an arbitrary trace-preserving LOCC T and
an arbitrary resource state s (see Fig. 2b). Thus, at any dimension,
we say that a channel E is ‘s-stretchable’ or ‘stretchable into s’ if
there is a trace-preserving LOCC T such that

EðrÞ ¼ T r� sð Þ: ð8Þ
In general, we can simulate the same channel E with different

choices of T and s. In fact, any channel is stretchable into some
state s: A trivial choice is decomposing E ¼ I � E, inserting E in
Alice’s LO and simulating I with teleportation over the ideal EPR
state s¼F. Therefore, among all simulations, one needs to
identify the best resource state that optimizes the functional
under study. In our work, the best results are achieved when the
state s can be chosen as the Choi matrix of the channel. This is
not a property of any channel but defines a class. Thus, we define
‘Choi-stretchable’ a channel that can be LOCC-simulated over its
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Choi matrix, so that we may write equation (8) with s ¼ rE (see
also Fig. 2c).

In infinite dimension, the LOCC simulation may involve limits
T :¼ limm T m and s :¼ limm sm of sequences T m and sm. For any
finite m, the simulation T m; smð Þ provides some teleportation
channel Em. Now, suppose that an asymptotic channel E is
defined as a pointwise limit of the sequence Em, that is, we have

I � EðrÞ�I � EmðrÞk k!m 0 for any bipartite state r. Then, we
say that E is stretchable with asymptotic simulation ðT ; sÞ. This
is important for bosonic channels, for which Choi-based
simulations can only be asymptotic and based on sequences rmE .

Teleportation covariance. We now discuss a property which
easily identifies Choi-stretchable channels. Call Ud the random
unitaries which are generated by the Bell detection in a
teleportation process. For a qudit, Ud is composed of generalized
Pauli operators, that is, the generators of the Weyl–Heisenberg
group. For a CV system, the set U1 is composed of displacement
operators9, spanning the infinite dimensional version of the
previous group. In arbitrary dimension (finite or infinite), we say
that a quantum channel is ‘teleportation-covariant’ if, for any
teleportation unitary U 2 Ud , we may write

E UrUy
� �

¼ VEðrÞVy; ð9Þ

for some another unitary V (not necessarily in Ud).
The key property of a teleportation-covariant channel is that

the input teleportation unitaries can be pushed out of the channel,
where they become other correctable unitaries. Because of this
property, the transmission of a system through the channel can be
simulated by a generalized teleportation protocol over its Choi
matrix. This is the content of the following proposition.

Proposition 2 (tele-covariance): At any dimension, a teleporta-
tion-covariant channel E is Choi-stretchable. The simulation is a
teleportation LOCC over its Choi matrix rE , which is asymptotic
for a bosonic channel.

The simple proof is explained in Fig. 3. The class of
teleportation-covariant channels is wide and includes bosonic
Gaussian channels, Pauli and erasure channels at any dimension
(see Methods for a more detailed classification). All these
fundamental channels are therefore Choi-stretchable. There are
channels that are not (or not known to be) Choi-stretchable but

still have decompositions E ¼ E00 � ~E � E0 where the middle part
~E is Choi-stretchable. In this case, E0 and E00 can be made part of
Alice’s and Bob’s LOs, so that channel E can be stretched into the
state s ¼ r~E . An example is the amplitude damping channel as
we will see afterwards.

AliceAlice

Bob
V –1

�

Bob Bob

�

�

�

�

A

B

a b c

A

B

Alice

A

B

Φ �

(�) (�) (�)

Figure 2 | From teleportation- to LOCC-simulation of quantum channels. (a) Consider the generalized teleportation of an input state r of a d-dimensional

system a by using a resource state s of two systems, A and B, with corresponding dimensions d and d0 (finite or infinite). Systems a and A are subject to a

Bell detection (triangle) with random outcome k. This outcome is associated with a projection onto a maximally entangled state up to an associated

teleportation unitary Uk which is a Pauli operator for doþN and a phase-displacement for d¼ þN (see Methods for the basics of quantum teleportation

and the characterization of the teleportation unitaries). The classical outcome k is communicated to Bob, who applies a correction unitary V � 1
k to his

system B with output b. In general, Vk does not necessarily belong to the set {Uk}. On average, this teleportation LOCC defines a teleportation channel E
from a to b. It is clear that this construction also teleports part a of an input state involving ancillary systems. (b) In general we may replace the

teleportation LOCC (Bell detection and unitary corrections) with an arbitrary LOCC T : Alice performs a quantum operation Ak on her systems a and A,

communicates the classical variable k to Bob, who then applies another quantum operation Bk on his system B. By averaging over the variable k, so that T is

certainly trace-preserving, we achieve the simulation EðrÞ ¼ T ðr� sÞ for any input state r. We say that a channel E is ‘s-stretchable’ if it can be simulated

by a resource state s for some LOCC T . Note that Alice’s and Bob’s LOs Ak and Bk are arbitrary quantum operations; they may involve other local ancillas

and also have extra labels (due to additional local measurements), in which case T is assumed to be averaged over all these labels. (c) The most important

case is when channel E can be simulated by a trace-preserving LOCC T applied to its Choi matrix rE :¼ I� EðFÞ, with F being an EPR state. In this case,

we say that the channel is ‘Choi-stretchable’. These definitions are suitably extended to bosonic channels.
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�
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A′ ��

B

��� V –1V –1
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TMSV
Φ

EPR

a b
�

Figure 3 | Teleportation-covariant channels are Choi-stretchable.

(a) Consider the teleportation of an input state ra by using an EPR state

FAA0 of systems A and A0. The Bell detection B on systems a and A

teleports the input state onto A0, up to a random teleportation unitary, that

is, rA0 ¼UkraUw
k . Because E is teleportation-covariant, Uk is mapped into an

output unitary Vk and we may write rB ¼ E rA0ð Þ ¼ E UkraUw
k

� �
¼VkE rað ÞVw

k .

Therefore, Bob just needs to receive the outcome k and apply V � 1
k , so that

rb ¼ V � 1
k rB V � 1

k

� �w¼ E rað Þ. Globally, the process describes the simulation

of channel E by means of a generalized teleportation protocol over the Choi

matrix rE . (b) The procedure is also valid for CV systems. If the input a is a

bosonic mode, we need to consider finite-energy versions for the EPR state

F and the Bell detection B, that is, we use a TMSV state Fm and a

corresponding quasi-projection Bm onto displaced TMSV states. At finite

energy m, the teleportation process from a to A0 is imperfect with some

output rmA0 6¼ rA0 ¼ UkraUw
k . However, for any e40 and input state ra,

there is a sufficiently large value of m such that rmA0 � rA0
�� �� � e (refs 25,26).

Consider the transmitted state rmB ¼ E rmA0
� �

. Because the trace distance

decreases under channels, we have rmB � rB

�� �� � rmA0 �rA0
�� �� � e. After the

application of the correction unitary V � 1
k , we have the output state rmb

which satisfies rmb �E rað Þ
�� �� � e. Taking the asymptotic limit of large m, we

achieve rmb �E rað Þ
�� ��-0 for any input ra, therefore achieving the perfect

asymptotic simulation of the channel. The asymptotic teleportation-LOCC

is therefore B;rEð Þ :¼ limm Bm; rmE
� �

where rmE :¼ I � E Fmð Þ. The result is

trivially extended to the presence of ancillas.
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Teleportation stretching of adaptive protocols. We are now
ready to describe the reduction of arbitrary adaptive protocols.
The procedure is schematically shown in Fig. 4. We start by
considering the ith transmission through the channel E, so that
Alice and Bob’s register state is updated from ri� 1

ab to ri
ab. By

using a simulation ðT ; sÞ, we show the input–output formula

ri
ab ¼ Di ri� 1

ab � s
� �

; ð10Þ
for some ‘extended’ LOCC Di (Fig. 4c). By iterating the
previous formula n times, we may write the output state rn

ab¼
L(r0

ab#s#n) for L :¼ Dn � . . . � D1 (as in Fig. 4d). Because the
initial state r0

ab is separable, its preparation can be included in L
and we may directly write rn

ab¼L(s#n). Finally, we average over
all local measurements present in L, so that rn

ab¼ �L(s#n) for a
trace-preserving LOCC �L (Fig. 4e). More precisely, for any
sequence of outcomes u with probability p(u), there is a
conditional LOCC Lu with output rn

ab(u)¼ p(u)� 1Lu(s#n).
Thus, the mean output state rn

ab is generated by �L¼
P

uLu (see
Methods for more technical details on this LOCC averaging).

Note that the simulation of a bosonic channel E is typically
asymptotic, with infinite-energy limits T :¼ limm T m and
s :¼ limm sm. In this case, we repeat the procedure for some m,
with output rn;m

ab :¼ �Lm sm�nð Þ, where �Lm is derived assuming the
finite-energy LOCCs T m. Then, we take the limit for large m,
so that rn;m

ab converges to rn
ab in trace norm (see Methods for

details on teleportation stretching with bosonic channels). Thus,
at any dimension, we have proven the following result.

Lemma 3 (Stretching): Consider arbitrary n transmissions through
a channel E which is stretchable into a resource state s. The output
of an adaptive protocol can be decomposed into the block form

rn
ab ¼ �L s�nð Þ; ð11Þ

for some trace-preserving LOCC �L. If the channel E is
Choi-stretchable, then we may write

rn
ab ¼ �L r�n

E
� �

: ð12Þ
In particular, �L s�nð Þ :¼ limm

�Lm sm�nð Þ for an asymptotic channel
simulation ðT ; sÞ :¼ limm T m; smð Þ.

According to this Lemma, teleportation stretching reduces an
adaptive protocol performing an arbitrary task (quantum
communication, entanglement distribution or key generation)
into an equivalent block protocol, whose output state rn

ab is the
same but suitably decomposed as in equation (11) for any
number n of channel uses. In particular, for Choi-stretchable
channels, the output is decomposed into a tensor product of Choi
matrices. An essential feature that makes the technique applicable
to many contexts is the fact that the adaptive-to-block reduction
maintains task and output of the original protocol so that, for
example, adaptive key generation is reduced to block key
generation and not entanglement distillation.

Remark 4: Some aspects of our method might be traced back to a
precursory but very specific argument discussed in Section V of
ref. 31, where protocols of quantum communication (through
Pauli channels) were transformed into protocols of entanglement
distillation (the idea was developed for one-way CCs, with an
implicit extension to two-way CCs). However, while this argument
may be seen as precursory, it is certainly not developed at the level
of generality of the present work where the adaptive-to-block
reduction is explicitly proven for any type of protocol and any
channel at any dimension (see Supplementary Notes 9 and 10 for
remarks on previous literature).

REE as a single-letter converse bound. The combination of
Theorem 1 and Lemma 3 provides the insight of our entire
reduction method. In fact, let us compute the REE of the output
state rn

ab, decomposed as in equation (11). Using the mono-
tonicity of the REE under trace-preserving LOCCs, we derive

ER rn
ab

� �
� ER s�nð Þ; ð13Þ

where the complicated �L is fully discarded. Then, by replacing
equation (13) into equation (7), we can ignore the supremum in
the definition of E?RðEÞ and get the simple bound

E?RðEÞ � E1R ðsÞ � ERðsÞ: ð14Þ

Thus, we can state the following main result.
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i i
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…
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�i
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–1 �i
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�n
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�
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�Λi

Λ �on Λ

Figure 4 | Teleportation stretching of an adaptive quantum protocol. (a) Consider the ith transmission through channel E, where the

input (i� 1)th register state is given by ri� 1
ab :¼ raai b. After transmission through E and the adaptive LOCC Li, the register state is updated to

ri
ab ¼ Li � Ia � E � Ibð Þ raai b

� �
. (b) Let us simulate the channel E by a LOCC T and a resource state s. (c) The simulation LOCC T can be combined with

the adaptive LOCC Li into a single ‘extended’ LOCC Di while the resource state s can be stretched back in time and out of the adaptive operations. We may

therefore write ri
ab ¼Di(ri� 1

ab #s). (d) We iterate the previous steps for all transmissions, so as to stretch n copies s#n and collapse all the extended

LOCCs Dn o yo D1 into a single LOCC L. In other words, we may write rn
ab ¼L(r0

ab#s#n). (e) Finally, we include the preparation of the separable state

r0
ab into L and we also average over all local measurements present in L, so that we may write the output state as rn

ab ¼ �L(s#n) for a trace-preserving

LOCC �L. The procedure is asymptotic in the presence of asymptotic channel simulations (bosonic channels).
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Theorem 5 (one-shot REE bound): Let us stretch an arbitrary
quantum channel E into some resource state s, according to
equation (8). Then, we may write

CðEÞ � E1R ðsÞ � ERðsÞ: ð15Þ

In particular, if E is Choi-stretchable, we have

CðEÞ � E1R rEð Þ � ERðrEÞ ¼ ERðEÞ: ð16Þ

See Methods for a detailed proof, with explicit derivations for
bosonic channels. We have therefore reached our goal and found
single-letter bounds. In particular, note that ER rEð Þ measures the
entanglement distributed by a single EPR state, so that we may
call it the ‘entanglement flux’ of the channel FðEÞ :¼ ER rEð Þ.
Remarkably, there is a sub-class of Choi-stretchable channels for
which ER rEð Þ coincides with the lower bound D1 rEð Þ in
equation (2). We call these ‘distillable channels’. We establish
all their two-way capacities as CðEÞ ¼ ER rEð Þ. They include lossy
channels, quantum-limited amplifiers, dephasing and erasure
channels. See also Fig. 5.

Immediate generalizations. Consider a fading channel, described
by an ensemble pi; Eif g, where channel Ei occurs with probability
pi. Let us stretch Ei into a resource state si. For large n,
we may decompose the output of an adaptive protocol as
rn

ab ¼ �L �is
�npi
i

� �
, so that the two-way capacity of this channel is

bounded by

C pi; Eif gð Þ �
X

i

piER sið Þ: ð17Þ

Then consider adaptive protocols of two-way quantum
communication, where the parties have forward (E) and back-
ward E0ð Þ channels. The capacity C E; E0ð Þ maximizes the number
of target bits per channel use. Stretching E; E0ð Þ into a pair of
states (s, s0), we find C E; E0ð Þ � max ERðsÞ; ER s0ð Þf g. For Choi-
stretchable channels, this means C E; E0ð Þ � max FðEÞ;F E0ð Þf g,
which reduces to C E; E0ð Þ¼ max C Eð Þ; C E0ð Þf g if they are
distillable. In the latter case, the optimal strategy is using the
channel with the maximum capacity (see Methods).

Yet another scenario is the multiband channel Emb, where
Alice exploits m independent channels or ‘bands’ Eif g, so that
the capacity C Embð Þ maximizes the number of target bits
per multiband transmission. By stretching the bands Eif g
into resource states {si}, we find C Embð Þ �

P
i ER sið Þ. For

Choi-stretchable bands, this means C Embð Þ �
P

i F Eið Þ, giving

the additive capacity C Embð Þ ¼
P

i C Eið Þ if they are distillable (see
Methods).

Ultimate limits of bosonic communications. We now apply our
method to derive the ultimate rates for quantum and secure
communication through bosonic Gaussian channels. These
channels are Choi-stretchable with an asymptotic simulation
involving rE :¼ limm r

m
E . From equations (4) and (16), we may

write

CðEÞ � FðEÞ � lim inf
m!þ1

S rmE
��~sms

� �
; ð18Þ

for a suitable converging sequence of separable states ~sms .
For Gaussian channels, the sequences in equation (18) involve

Gaussian states, for which we easily compute the relative entropy.
In fact, for any two Gaussian states, r1 and r2, we prove the
general formula S(r1||r2)¼S(V1, V2)� S(r1), where S is a
simple functional of their statistical moments (see Methods).
After technical derivations (Supplementary Note 4), we then
bound the two-way capacities of all Gaussian channels, starting
from the most important, the lossy channel.

Fundamental rate-loss scaling. Optical communications through
free-space links or telecom fibres are inevitably lossy and the
standard model to describe this scenario is the lossy channel. This
is a bosonic Gaussian channel characterized by a transmissivity
parameter Z, which quantifies the fraction of input photons
surviving the channel. It can be represented as a beam splitter
mixing the signals with a zero-temperature environment (back-
ground thermal noise is negligible at optical and telecom
frequencies).

For a lossy channel EZ with arbitrary transmissivity Z we apply
our reduction method and compute the entanglement flux
FðZÞ � � log2 1� Zð Þ. This coincides with the reverse coherent
information of this channel IRC(Z), first derived in ref. 17. Thus,
we find that this channel is distillable and all its two-way
capacities are given by

CðZÞ ¼ D2ðZÞ ¼ Q2ðZÞ ¼ KðZÞ ¼ � log2ð1� ZÞ: ð19Þ
Interestingly, this capacity coincides with the maximum discord41

that can be distributed, since we may write42 IRC(Z)¼D(B|A),
where the latter is the discord of the (asymptotic) Gaussian
Choi matrix rEZ (ref. 43). We also prove the strict separation
Q2(Z)4Q(Z), where Q is the unassisted quantum capacity28,29.

Expanding equation (19) at high loss Z ’ 0, we find

CðZÞ ’ Z=ln 2 ’ 1:44Z bits per channel useð Þ; ð20Þ
or about Z nats per channel use. This completely characterizes the
fundamental rate-loss scaling which rules long-distance quantum
optical communications in the absence of quantum repeaters. It is
important to remark that our work also proves the achievability
of this scaling. This is a major advance with respect to existing
literature, where previous studies with the squashed entangle-
ment18 only identified a non-achievable upper bound. In Fig. 6,
we compare the scaling of equation (20) with the maximum rates
achievable by current QKD protocols.

The capacity in equation (19) is also valid for two-way
quantum communication with lossy channels, assuming that Z is
the maximum transmissivity between the forward and feedback
channels. It can also be extended to a multiband lossy channel,
for which we write C ¼ �

P
i log2 1� Zið Þ, where Zi are the

transmissivities of the various bands or frequency components.
For instance, for a multimode telecom fibre with constant
transmissivity Z and bandwidth W, we have

C ¼ �W log2 1� Zð Þ: ð21Þ

�-stretchable
  (  ) ≤ ER (�)
(any channel)

Choi-stretchable
  (  ) ≤ ER(� ) := Φ (  )

(Gaussian channels, Pauli channels)

Distillable
D1(� ) =  (  ) = ER (� )

(lossy channels, quantum-limited amplifiers,
dephasing and erasure channels)

Figure 5 | Classification of channels in DVs and CVs. We depict the

classes of channels that are considered in this work, together with the

bounds for their two-way capacities.
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Finally, note that free-space satellite communications may be
modelled as a fading lossy channel, that is, an ensemble of lossy
channels EZi

with associated probabilities pi (ref. 44). In
particular, slow fading can be associated with variations of

satellite-Earth radial distance45,46. For a fading lossy channel
EZi
; pi

	 

, we may write

C � �
X

i

pi log2 1� Zið Þ: ð22Þ

Quantum communications with Gaussian noise. The funda-
mental limit of the lossy channel bounds the two-way capacities
of all channels decomposable as E ¼ E00 � EZ � E0 where EZ is a
lossy component while E0 and E00 are extra channels. A channel E
of this type is stretchable with resource state s ¼ rEZ 6¼ rE and
we may write CðEÞ � � log2ð1� ZÞ. For Gaussian channels, such
decompositions are known but we achieve tighter bounds if we
directly stretch them using their own Choi matrix.

Let us start from the thermal-loss channel, which can be
modelled as a beam splitter with transmissivity Z in a thermal
background with �n mean photons. Its action on input
quadratures x̂ ¼ q̂; p̂ð Þ is given by x̂-

ffiffiffi
Z
p

x̂þ ffiffiffiffiffiffiffiffiffiffiffi
1� Z
p

x̂E with E
being a thermal mode. This channel is central for microwave
communications47–50 but also important for CV QKD at optical
and telecom frequencies, where Gaussian eavesdropping via
entangling cloners results into a thermal-loss channel2.

For an arbitrary thermal-loss channel EZ;�n we apply our
reduction method and compute the entanglement flux

F Z; �nð Þ � � log2 1� Zð ÞZ�n½ � � h �nð Þ; ð23Þ
for �noZ/(1� Z), while zero otherwise. Here we set

hðxÞ :¼ ðxþ 1Þlog2ðxþ 1Þ� x log2 x: ð24Þ
Combining this result with the lower bound given by the reverse
coherent information17, we write the following inequalities for the
two-way capacity of this channel

� log2ð1� ZÞ� h �nð Þ � C Z; �nð Þ � F Z; �nð Þ: ð25Þ
As shown in Fig. 7a, the two bounds tend to coincide at
sufficiently high transmissivity. We clearly retrieve the previous
result of the lossy channel for �n¼ 0.

Another important Gaussian channel is the quantum amplifier.
This channel Eg;�n is described by x̂-

ffiffiffi
g
p

x̂þ ffiffiffiffiffiffiffiffiffiffi
g� 1
p

x̂E , where
g41 is the gain and E is the thermal environment with �n mean
photons. We compute

F g; �nð Þ � log2
g�nþ 1

g� 1

� 

� h �nð Þ; ð26Þ
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Figure 6 | Ideal performances in QKD. We plot the secret-key rate (bits

per channel use) versus Alice–Bob’s distance (km) at the loss rate of 0.2 dB

per km. The secret-key capacity of the channel (red line) sets the

fundamental rate limit for point-to-point QKD in the presence of loss.

Compare this capacity with a previous non-achievable upperbound18

(dotted line). We then show the maximum rates that are potentially

achievable by current protocols, assuming infinitely long keys and ideal

conditions, such as unit detector efficiencies, zero dark count rates, zero

intrinsic error, unit error correction efficiency, zero excess noise (for CVs)

and large modulation (for CVs). In the figure, we see that ideal

implementations of CV protocols (purple lines) are not so far from the

ultimate limit. In particular, we consider: (i) One-way no-switching

protocol63, coinciding with CV-MDI-QKD20,64 in the most asymmetric

configuration (relay approaching Alice65). For high loss Z ’ 0ð Þ, the rate

scales as Z/ln 4, which is just 1/2 of the capacity. Same scaling for the

one-way switching protocol of ref. 13; (ii) Two-way protocol with coherent

states and homodyne detection66,67 which scales as ’ Z= 4 ln 2ð Þ for high

loss (thermal noise is needed for two-way to beat one-way QKD66). For the

DV protocols (dashed lines), we consider: BB84 with single-photon

sources4 with rate Z/2; BB84 with weak coherent pulses and decoy states6

with rate Z/(2e); and DV-MDI-QKD68,69 with rate Z/(2e2). See

Supplementary Note 6 for details on these ideal rates.
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for �no(g� 1)� 1, while zero otherwise. Combining this result
with the coherent information51, we get

log2
g

g� 1

� 

� h �nð Þ � C g; �nð Þ � F g; �nð Þ; ð27Þ

whose behaviour is plotted in Fig. 7b.
In the absence of thermal noise (�n¼ 0), the previous channel

describes a quantum-limited amplifier Eg , for which the bounds
in equation (27) coincide. This channel is therefore distillable and
its two-way capacities are

CðgÞ ¼ D2ðgÞ ¼ Q2ðgÞ ¼ KðgÞ ¼ � log2 1� g � 1
� �

: ð28Þ
In particular, this proves that Q2(g) coincides with the unassisted
quantum capacity Q(g)51,52. Note that a gain-2 amplifier can
transmit at most 1 qubit per use.

Finally, one of the simplest models of bosonic decoherence is
the additive-noise Gaussian channel2. This is the direct extension
of the classical model of a Gaussian channel to the quantum
regime. It can be seen as the action of a random Gaussian
displacement over incoming states. In terms of input–output
transformations, it is described by x̂-x̂þ z; zð ÞT where z is a
classical Gaussian variable with zero mean and variance xZ0. For
this channel Ex we find the entanglement flux

FðxÞ � x� 1
ln 2

� log2 x; ð29Þ

for xo1, while zero otherwise. Including the lower bound given
by the coherent information51, we get

� 1
ln 2
� log2 x � CðxÞ � FðxÞ: ð30Þ

In Fig. 7c, see its behaviour and how the two bounds tend to
rapidly coincide for small added noise.

Ultimate limits in qubit communications. We now study the
ultimate rates for quantum communication, entanglement
distribution and secret-key generation through qubit channels,
with generalizations to any finite dimension. For any DV channel
E from dimension dA to dimension dB, we may write the

dimensionality bound CðEÞ � min log2 dA; log2 dB
	 


. This is
because we may always decompose the channel into I � E
(or E � I ), include E in Alice’s (or Bob’s) LOs and stretch the
identity map into a Bell state with dimension dB (or dA). For DV
channels, we may also write the following simplified version of
our Theorem 5 (see Methods for proof).

Proposition 6: For a Choi-stretchable channel E in finite
dimension, we may write the chain

KðEÞ ¼ K rEð Þ � E1R rEð Þ � ER rEð Þ ¼ ERðEÞ; ð31Þ

where K rEð Þ is the distillable key of rE .
In the following, we provide our results for DV channels, with

technical details available in Supplementary Note 5.

Pauli channels. A general error model for the transmission of
qubits is the Pauli channel

PðrÞ ¼ p0rþ p1XrXþ p2YrY þ p3ZrZ; ð32Þ

where X, Y, and Z are Pauli operators1 and p:¼ {pk} is a
probability distribution. It is easy to check that this channel is
Choi-stretchable and its Choi matrix is Bell-diagonal. We
compute its entanglement flux as

FðPÞ ¼ 1�H2 pmaxð Þ; ð33Þ

if pmax:¼max{pk}Z1/2, while zero otherwise. Since the channel
is unital, we have that ICðPÞ ¼ IRCðPÞ ¼ 1�HðpÞ, where H is
the Shannon entropy. Thus, the two-way capacity of a Pauli
channel satisfies

1�HðpÞ � CðPÞ � FðPÞ: ð34Þ

This can be easily generalized to arbitrary finite dimension (see
Supplementary Note 5).

Consider the depolarising channel, which is a Pauli channel
shrinking the Bloch sphere. With probability p, an input state
becomes the maximally-mixed state

PdepolðrÞ ¼ ð1� pÞrþ pI=2: ð35Þ

Setting k(p):¼ 1�H2 (3p/4), we may then write

kðpÞ� 3p
4

log23 � C Pdepol
� �

� kðpÞ; ð36Þ

for pr2/3, while 0 otherwise (Fig. 8a). The result can be extended
to any dimension dZ2. A qudit depolarising channel is defined
as in equation (35) up to using the mixed state I/d. Setting
f:¼ p(d2� 1)/d2 and kðd; pÞ :¼ log2 d�H2ðf Þ� f log2ðd� 1Þ,
we find

kðd; pÞ� f log2ðdþ 1Þ � C Pdepol
� �

� kðd; pÞ; ð37Þ

for prd/(dþ 1), while zero otherwise.
Consider now the dephasing channel. This is a Pauli channel,

which deteriorates quantum information without energy decay, as
it occurs in spin-spin relaxation or photonic scattering through
waveguides. It is defined as

PdephðrÞ ¼ ð1� pÞrþ pZrZ; ð38Þ

where p is the probability of a phase flip. We can easily check that
the two bounds of equation (34) coincide, so that this channel is
distillable and its two-way capacities are

C Pdeph
� �

¼ D2 Pdeph
� �

¼ Q2 Pdeph
� �

¼ K Pdeph
� �

¼ 1�H2ðpÞ:
ð39Þ

Note that this also proves Q2 Pdeph
� �

¼ Q Pdeph
� �

, where the
latter was derived in ref. 53.
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Figure 8 | Two-way capacities of basic qubit channels. (a) Two-way

capacity of the depolarizing channel Pdepol with arbitrary probability p. It is

contained in the shadowed region specified by the bounds in equation (36).

We also depict the best-known bound based on the squashed

entanglement54 (dashed). (b) Two-way capacity of the amplitude damping

channel Edamp for arbitrary damping probability p. It is contained in the

shadowed area identified by the lower bound (LB) of equation (48) and the

upper bound (UB) of equation (49). We also depict the bound of

equation (47) (upper solid line), which is good only at high dampings; and

the bound CA Edampð Þ=2 of ref. 54 (dotted line), which is computed from the

entanglement-assisted classical capacity CA. Finally, note the separation of

the two-way capacity C Edampð Þ from the unassisted quantum capacity

Q Edampð Þ (dashed line).
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For an arbitrary qudit with computational basis {|ji}, the
generalized dephasing channel is defined as

PdephðrÞ ¼
Xd� 1

i¼0

PiZ
ir Zy
� �i

; ð40Þ

where Pi is the probability of i phase flips, with a single flip being
Z jj i ¼ eij2p=d jj i. This channel is distillable and its two-way
capacities are functionals of P¼ {Pi}

C Pdeph
� �

¼ log2 d�HðPÞ: ð41Þ

Quantum erasure channel. A simple decoherence model is the
erasure channel. This is described by

EeraseðrÞ ¼ ð1� pÞrþ p ej i eh j; ð42Þ
where p is the probability of getting an orthogonal erasure state
ej i. We already know that Q2 Eeraseð Þ ¼ 1� p (ref. 12). Therefore,

we compute the secret-key capacity.
Following ref. 12, one shows that D1 rEerase

� �
� 1� p. In fact,

suppose that Alice sends halves of EPR states to Bob. A fraction
1� p will be perfectly distributed. These good cases can be
identified by Bob applying the measurement ej i eh j; I� ej i eh jf g
on each output system, and communicating the results back to
Alice in a single and final CC. Therefore, they distill at least 1� p
ebits per copy. It is then easy to check that this channel is Choi-
stretchable and we compute F rEerase

� �
� 1� p. Thus, the erasure

channel is distillable and we may write

C Eeraseð Þ ¼ K Eeraseð Þ ¼ 1� p: ð43Þ
In arbitrary dimension d, the generalized erasure channel is
defined as in equation (42), where r is now the state of a qudit
and the erasure state ej i lives in the extra dþ 1 dimension. We
can easily generalize the previous derivations to find that this
channel is distillable and

K Eeraseð Þ ¼ ð1� pÞlog2 d: ð44Þ
Note that the latter result can also be obtained by computing the
squashed entanglement of the erasure channel, as shown by the
independent derivation of ref. 54.

Amplitude damping channel. Finally, an important model of
decoherence in spins or optical cavities is energy dissipation or
amplitude damping55,56. The action of this channel on a qubit is

EdampðrÞ ¼
X
i¼0;1

AirAyi ; ð45Þ

where A0 :¼ 0j i 0h j þ ffiffiffiffiffiffiffiffiffiffi
1� p
p

1j i 1h j, A1 :¼ ffiffiffi
p
p

0j i 1h j, and p is the
damping probability. Note that Edamp is not teleportation-
covariant. However, it is decomposable as

Edamp ¼ ECV!DV � EZðpÞ � EDV!CV; ð46Þ
where EDV!CV teleports the original qubit into a single-rail
bosonic qubit9; then, EZðpÞ is a lossy channel with transmissivity
Z(p):¼ 1� p; and ECV-DV teleports the single-rail qubit back to
the original qubit. Thus, Edamp is stretchable into the asymptotic
Choi matrix of the lossy channel EZðpÞ. This shows that we need a
dimension-independent theory even for stretching DV channels.

From Theorem 5 we get C Edamp
� �

� F EZðpÞ
� �

, implying

C Edamp
� �

� min 1; � log2 p
	 


; ð47Þ
while the reverse coherent information implies14

max
u

H2 uð Þ�H2 upð Þf g � C Edamp
� �

: ð48Þ

The bound in equation (47) is simple but only good for strong
damping (p40.9). A shown in Fig. 8b, we find a tighter bound

using the squashed entanglement, that is,

C Edamp
� �

� H2
1
2
� p

4

� 

�H2 1� p

4

� �
: ð49Þ

Discussion
In this work, we have established the ultimate rates for
point-to-point quantum communication, entanglement
distribution and secret-key generation at any dimension, from
qubits to bosonic systems. These limits provide the fundamental
benchmarks that only quantum repeaters may surpass. To
achieve our results we have designed a general reduction method
for adaptive protocols, based on teleportation stretching and the
relative entropy of entanglement, suitably extended to quantum
channels. This method has allowed us to bound the two-way
capacities (Q2, D2 and K) with single-letter quantities, establishing
exact formulas for bosonic lossy channels, quantum-limited
amplifiers, dephasing and erasure channels, after about 20 years
since the first studies12,31.

In particular, we have characterized the fundamental rate-loss
scaling which affects any quantum optical communication,
setting the ultimate achievable rate for repeaterless QKD at
� log2 1� Zð Þ bits per channel use, that is, about 1.44Z bits per
use at high loss. There are two remarkable aspects to stress about
this bound. First, it remains sufficiently tight even when we
consider input energy constraints (down to C1 mean photon).
Second, it can be reached by using one-way CCs with a maximum
cost of just log2ð3peÞ 	 4:68 classical bits per channel use; this
means that our bound directly provides the throughput in terms
of bits per second, once a clock is specified (see Supplementary
Note 7 for more details).

Our reduction method is very general and goes well beyond the
scope of this work. It has been already used to extend the results
to quantum repeaters. Reference 57 has shown how to simplify
the most general adaptive protocols of quantum and private
communication between two end-points of a repeater chain and,
more generally, of an arbitrary multi-hop quantum network,
where systems may be routed though single or multiple paths.
Depending on the type of routing, the end-to-end capacities are
determined by quantum versions of the widest path problem and
the max-flow min-cut theorem. More recently, teleportation
stretching has been also used to completely simplify adaptive
protocols of quantum parameter estimation and quantum
channel discrimination58. See Supplementary Discussion for a
summary of our findings, other follow-up works and further
remarks.

Methods
Basics of bosonic systems and Gaussian states. Consider n bosonic modes
with quadrature operators x̂ ¼ q̂1; . . . ; q̂n; p̂1; . . . ; p̂nð ÞT . The latter satisfy
the canonical commutation relations59

x̂; x̂T
� �

¼ iO; O :¼ 0 1
� 1 0

� 

� In; ð50Þ

with In being the n
 n identity matrix. An arbitrary multimode Gaussian state
r(u, V), with mean value u and covariance matrix (CM) V, can be written as60

r ¼
exp � 1

2 x̂� uð ÞT G x̂� uð Þ
h i

det V þ iO=2ð Þ1=2 ; ð51Þ

where the Gibbs matrix G is specified by

G ¼ 2iO coth� 1ð2ViOÞ: ð52Þ

Using symplectic transformations2, the CM V can be decomposed into the
Williamson’s form � n

k¼1nkI2 where the generic symplectic eigenvalue nk satisfies
the uncertainty principle nkZ1/2. Similarly, we may write nk¼ �nkþ 1/2 where �nk

are thermal numbers, that is, mean number of photons in each mode. The von
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Neumann entropy of a Gaussian state can be easily computed as

SðrÞ ¼
Xn

k¼1

h �nkð Þ; ð53Þ

where h(x) is given in equation (24).
A two-mode squeezed vacuum (TMSV) state Fm is a zero-mean pure Gaussian

state with CM

Vm ¼ m c
c m

� 

� m � c

� c m

� 

; ð54Þ

where c :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1=4

p
and m¼ �nþ 1/2. Here �n is the mean photon number of the

reduced thermal state associated with each mode A and B. The Wigner function of
a TMSV state Fm is the Gaussian

W Fm½ �ðxÞ ¼ p� 2 exp � xT Vmð Þ� 1x
2

� �
; ð55Þ

where x :¼ (qA, qB, pA, pB)T. For large m, this function assumes the delta-like
expression25

W Fm½ �ðxÞ ! N d qA � qBð Þd pA þ pBð Þ; ð56Þ

where N is a normalization factor, function of the anti-squeezed quadratures
qþ :¼ qAþ qB and p� :¼ pA� pB, such that

R
N qþ ; p�ð Þdqþ dp� ¼ 1. Thus, the

infinite-energy limit of TMSV states limm Fm defines the asymptotic CV EPR state
F, realizing the ideal EPR conditions q̂A ¼ q̂B for position and p̂A ¼ � p̂B for
momentum.

Finally, recall that single-mode Gaussian channels can be put in canonical
form2, so that their action on input quadratures x̂ ¼ q̂; p̂ð ÞT is

x̂! Tx̂þNx̂E þ z; ð57Þ

where T and N are diagonal matrices, E is an environmental mode with �nE mean
photons, and z is a classical Gaussian variable, with zero mean and CM xIZ0.

Relative entropy between Gaussian states. We now provide a simple formula
for the relative entropy between two arbitrary Gaussian states r1(u1, V1) and
r2(u2, V2) directly in terms of their statistical moments. Because of this feature,
our formula supersedes previous expressions61,62. We have the following.

Theorem 7: For two arbitrary multimode Gaussian states, r1(u1, V1) and
r2(u2, V2), the entropic functional

�:¼ �Tr r1 log2 r2

� �
ð58Þ

is given by

�ðV1;V2; dÞ ¼
ln det V2 þ iO

2

� �
þTr V1G2ð Þþ dT G2d
2 ln 2

; ð59Þ

where d:¼ u1� u2 and G:¼ g(V) as given in equation (52). As a consequence, the
von Neumann entropy of a Gaussian state r(u, V) is equal to

SðrÞ :¼ �Tr r log2 r
� �

¼ �ðV ;V ; 0Þ; ð60Þ

and the relative entropy of two Gaussian states r1(u1, V1) and r2(u2, V2) is given by

S r1 r2kð Þ :¼Tr r1 log2 r1 � log2 r2

� �� �
¼� S r1ð Þ�Tr r1 log2 r2

� �
¼��ðV1;V1; 0Þþ� V1;V2; dð Þ:

ð61Þ

Proof: The starting point is the use of the Gibbs-exponential form for Gaussian
states60 given in equation (51). Start with zero-mean Gaussian states, which can be
written as ri ¼ Z� 1

i exp � x̂T Gix̂=2½ �, where Gi¼ g(Vi)is the Gibbs-matrix and
Zi¼ det(Viþ iO/2)1/2 is the normalization factor (with i¼ 1, 2). Then, replacing
into the definition of S given in equation (58), we find

2 ln 2ð Þ� ¼2 ln Z2 þTr r1x̂T G2x̂
� �

¼ln det V2 þ iO=2ð Þ
þ
X

jk

Tr r1x̂j x̂k
� �

G2jk:
ð62Þ

Using the commutator x̂j; x̂k
� �� �

¼ iOjk and the anticommutator
x̂j; x̂k
	 
� �

¼ 2Vjk , we derive

X
jk

Tr r1x̂j x̂k
� �

G2jk ¼Tr V1 þ
iO
2

� 
T

G2

" #

¼Tr V1G2ð Þ;
ð63Þ

where we also exploit the fact that Tr(OG)¼ 0, because O is antisymmetric and G is
symmetric (as V).

Let us now extend the formula to non-zero mean values (with difference
d¼ u1� u2). This means to perform the replacement x̂-x̂� u2, so that

Tr r1x̂j x̂k
� �

! Tr r1 x̂j � u2j
� �

x̂k � u2kð Þ
� �

¼ Tr r1 x̂j � u1j þ dj
� �

x̂k � u1k þ dkð Þ
� �

¼ Tr r1 x̂j � u1j
� �

x̂k � u1kð Þ
� �

þ djdk:

ð64Þ

By replacing this expression in equation (63), we getX
jk

Tr r1x̂j x̂k
� �

G2jk ! Tr V1G2ð Þþ dT G2d: ð65Þ

Thus, by combining equations (62) and (65), we achieve equation (59). The other
equations (60) and (61) are immediate consequences. This completes the proof of
Theorem 7.

As discussed in ref. 60, the Gibbs-matrix G becomes singular for a pure state or,
more generally, for a mixed state containing vacuum contributions (that is, with
some of the symplectic eigenvalues equal to 1/2). In this case the Gibbs-exponential
form must be used carefully by making a suitable limit. Since S is basis
independent, we can perform the calculations in the basis in which V2, and
therefore G2, is diagonal. In this basis

� ¼ 1
2

Xn

k¼1

X
�

a�k log2 v2k � 1=2ð Þ; ð66Þ

where {v2k} is the symplectic spectrum of V2, and

a�k ¼ 1� V1ð Þk;k þ V1ð Þkþ n;kþ n

h i
: ð67Þ

Now, if v2k¼ 1/2 for some k, then its contribution to the sum in equation (66) is
either zero or infinity.

Basics of quantum teleportation. Ideal teleportation exploits an ideal EPR state
FAB ¼ Fj iAB Fh j of systems A (for Alice) and B (for Bob). In finite dimension d,
this is the maximally entangled Bell state

Fj iAB:¼ d� 1=2
Xd� 1

i¼0

ij iA ij iB: ð68Þ

In particular, it is the usual Bell state 00j i þ 11j ið Þ=
ffiffiffi
2
p

for a qubit. To teleport, we
need to apply a Bell detection B on the input system a and the EPR system A (that
is, Alice’s part of the EPR state). This detection corresponds to projecting onto a
basis of Bell states Fk

�� �
aA

where the outcome k takes d2 values with probabilities
pk¼ d� 2.

More precisely, the Bell detection is a positive-operator valued measure with
operators

Mk ¼ Uk � Ið ÞyFaA Uk � Ið Þ; ð69Þ

where FaA :¼ Fj iaA Fh j is the Bell state as in equation (68) and Uk is one of d2

teleportation unitaries, corresponding to generalized Pauli operators (described
below). For any state r of the input system a, and outcome k of the Bell detection,
the other EPR system B (Bob’s part) is projected onto UkrUw

k . Once Alice has
communicated k to Bob (feed-forward), he applies the correction unitary Uk

� 1 to
retrieve the original state r on its system B. Note that this process also teleports all
correlations that the input system a may have with ancillary systems.

For CV systems (d-þN), the ideal EPR source FAB can be expressed as a
TMSV state Fm in the limit of infinite-energy m -þ N. The unitaries Uk are
phase-space displacements D(k) with complex amplitude k (ref. 9). The CV Bell
detection is also energy-unbounded, corresponding to a projection onto the
asymptotic EPR state up to phase-space displacements D(k). To deal with this,
we need to consider a finite-energy version of the measurement, defined as a
quasi-projection onto displaced versions of the TMSV state Fm with finite
parameter m. This defines a positive-operator valued measure Bm with operators

Mm
k :¼ p� 1 Dð� kÞ � I½ �Fm

aA DðkÞ � I½ �: ð70Þ
Optically, this can be interpreted as applying a balanced beam-splitter followed

by two projections, one onto a position-squeezed state and the other onto a
momentum-squeezed state (both with finite squeezing). The ideal CV Bell
detection B is reproduced by taking the limit of m-þN in equation (70). Thus,
CV teleportation must always be interpreted a la Braunstein and Kimble25, so that
we first consider finite resources Fm;Bmð Þ to compute the m-dependent output and
then we take the limit of large m.

Teleportation unitaries. Let us characterize the set of teleportation unitaries Ud ¼
Ukf g for a qudit of dimension d. First, let us write k as a multi-index k¼ (a, b) with

a; b 2 Zd :¼ 0; . . . ; d� 1f g. The teleportation set is therefore composed of d2

generalized Pauli operators Ud ¼ Uabf g, where Uab :¼XaZb. These are defined by
introducing unitary (non-Hermitian) operators

X jj i ¼ j � 1j i;Z jj i ¼ oj jj i; ð71Þ
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where " is the modulo d addition and

o :¼ exp i2p=dð Þ; ð72Þ
so that they satisfy the generalized commutation relation

ZbXa ¼ oabXaZb: ð73Þ
Note that any qudit unitary can be expanded in terms of these generalized Pauli

operators. We may construct the set of finite-dimensional displacement operators
D(j, a, b):¼ojXaZb with j; a; b 2 Zd which form the finite-dimensional
Weyl–Heisenberg group (or Pauli group). For instance, for a qubit (d¼ 2), we have
U2 ¼ I;X;XZ;Zf g and the group ±1
 {I, X, XZ, Z}. For a CV system
(d¼ þN), the teleportation set is composed of infinite displacement operators,
that is, we have U1 ¼ DðkÞf g, where D(k) is a phase-space displacement operator2

with complex amplitude k. This set is the infinite-dimensional Weyl–Heisenberg
group.

It is important to note that, at any dimension (finite or infinite), the
teleportation unitaries satisfy

UkU‘ ¼ eifðk;lÞUf ; ð74Þ

where Uf is another teleportation unitary and fðk; ‘Þ is a phase. In fact, for finite d,
let us write k and ‘ as multi-indices, that is, k¼ (a, b) and ‘ ¼ ðs; tÞ. From
Uab ¼ XaZb ¼

P
n
onb n � aj i nh j, we see that UabUst ¼ osbUa� s;b� t . Then, for

infinite d, we know that the displacement operators satisfy
DðuÞDðvÞ ¼ euv
 � u
vDðuþ vÞ, for any two complex amplitudes u and v.

Now, let us represent a teleportation unitary as

UgðrÞ :¼ UgrUyg : ð75Þ

It is clear that we have Ua;b � U s;t ¼ Ua� s;b� t for DV systems, and Uu � Uv ¼
Uuþ v for CV systems. Therefore Ug satisfies the group structure

Ug � Uh ¼ Ug�h g; h 2 Gð Þ; ð76Þ

where G is a product of two groups of addition modulo d for DVs, while G is the
translation group for CVs. Thus, the (multi-)index of the teleportation unitaries
can be taken from the abelian group G.

Teleportation-covariant channels. Let us a give a group representation to the
property of teleportation covariance specified by equation (9). Following
equation (75), we may express an arbitrary teleportation unitary as UgðrÞ :¼
UgrUw

g where gAG. Calling VgðrÞ :¼ VgrVw
g , we see that equation (9) implies

Vg � Vh � E ¼ E � Ug � Uh ¼ E � Ug�h ¼ Vg�h � E; ð77Þ
so that U and V are generally different unitary representations of the same abelian
group G. Thus, equation (9) can also be written as

Vyh � E � Uh ¼ E; ð78Þ
for all hAG, where VwhðrÞ :¼ Vw

hrVh ¼ Vh� 1 ðrÞ.
The property of equation (9) is certainly satisfied if the channel is covariant with

respect to the Weyl–Heisenberg group, describing the teleportation unitaries in
both finite- and infinite-dimensional Hilbert spaces. This happens when the
channel is dimension-preserving and we may set Vk¼Uk0 for some k0 in
equation (9). Equivalently, this also means that U and V are exactly the same
unitary representation in equation (78). We call ‘Weyl-covariant’ these specific
types of tele-covariant channels.

In finite-dimension, a Weyl-covariant channel must necessarily be a Pauli
channel. In infinite-dimension, a Weyl-covariant channel commutes with
displacements, which is certainly a property of the bosonic Gaussian channels. A
simple channel that is tele-covariant but not Weyl-covariant is the erasure channel.
This is in fact dimension-altering (since it adds an orthogonal state to the input
Hilbert space) and the output correction unitaries to be used in equation (9) have
the augmented form Vk¼Uk"I. Hybrid channels, mapping DVs into CVs or vice
versa, cannot be Weyl-covariant but they may be tele-covariant. Finally, the
amplitude damping channel is an example of a channel, which is not tele-covariant.

Note that, for a quantum channel in finite dimension, we may easily re-write
equation (9) in terms of an equivalent condition for the Choi matrix. In fact, by
evaluating the equality in equation (9) on the EPR state F ¼ Fj i Fh j and using the
property that I � U Fj i ¼ UT � I Fj i, one finds

rE ¼ U
k � Vk
� �

rE UT
k � V

y
k

� �
: ð79Þ

Thus, a finite-dimensional E is tele-covariant if and only if, for any teleportation
unitary Uk, we may write

rE ;U
k � Vk
� �

¼ 0; ð80Þ

for another generally different unitary Vk. There are finite-dimensional channels
satisfying conditions stronger than equation (80). For Pauli channels, we may write
rE ;U



k � Uk

� �
¼ 0 for any k, that is, the Choi matrix is invariant under twirling

operations restricted to the generators of the Pauli group {Uk}. For depolarising
channels, we may even write rE ;U
 � U½ � ¼ 0 for an arbitrary unitary U. This
means that the Choi matrix of a depolarising channel is an isotropic state.

LOCC-averaging in teleportation stretching. Consider an arbitrary adaptive
protocol described by some fundamental preparation of the local registers ra

0#rb
0

and a sequence of adaptive LOCCs L :¼ L0; . . . ;Lnf g. In general, these LOs may
involve measurements. Call ui the (vectorial) outcome of Alice’s and Bob’s local
measurements performed within the ith adaptive LOCC, so that Li ¼ Lui

i . It is
clear that Lui

i will be conditioned by measurements and outcomes of all the pre-
vious LOCCs, so that a more precise notation will be Lui

iji� 1;i� 2��� where the output
ui is achieved with a conditional probability p uijui� 1; ui� 2 . . .ð Þ. After n trans-
missions, we have a sequence of outcomes u¼ u0 y un with joint probability

pðuÞ ¼ p u0ð Þp u1 u0jð Þ . . . p unjun� 1 . . .ð Þ; ð81Þ
and a sequence of LOCCs

LðuÞ :¼ Lu0
0 ;L

u1
1 j 0; . . . ;Lun

n j n� 1 ...

n o
: ð82Þ

The mean rate of the protocol is achieved by averaging the output state over all
possible outcomes u, which is equivalent to considering the output state generated
by the trace-preserving LOCC-sequence L :¼

P
u LðuÞ.

In fact, suppose that the (normalized) output state rn
ab(u) generated by the

conditional LðuÞ is epsilon-close to a corresponding target state fn(u) with rate
Rn(u). This means that we have D rn

abðuÞ;fnðuÞ
� �

� e in trace distance. The mean
rate of the protocol Rn ¼ RnðuÞh i :¼

P
u pðuÞRnðuÞ is associated with the average

target state fn ¼ fnðuÞh i. It is easy to show that fn is approximated by the mean
output state rn

ab ¼ rn
abðuÞ

� �
generated by L. In fact, by using the joint convexity of

the trace distance1, we may write

D rn
ab;fn

� �
�
X

u

pðuÞD rn
abðuÞ;fnðuÞ

� �
� e: ð83Þ

Now we show that the LOCC-simulation of a channel E does not change the
average output state rn

ab and this state can be re-organized in a block form. The ith
(normalized) conditional output ri

ab can be expressed in terms of the i� 1th output
ri� 1

ab ¼ raai b as follows

ri
ab uijui� 1 . . .ð Þ ¼

Lui

i j i� 1��� � E raaib

� �
p uijui� 1 . . .ð Þ ; ð84Þ

where E is meant as I a � Eai � Ib with ai being the system transmitted. Thus,
after n transmissions, the conditional output state is rn

abðuÞ¼ pðuÞ� 1LEu r0
a � r0

b

� �
,

where

LEu :¼ Lun
njn� 1 ... � E � L

un� 1
n� 1jn� 2 ... � � � � � L

u1
1j0 � E � L

u0
0 ; ð85Þ

and the average output state is given by

rn
ab ¼

X
u

pðuÞrn
abðuÞ ¼ �LE r0

a � r0
b

� �
; ð86Þ

where �LE :¼
P

u
LEu .

For some LOCC T and resource state s, let us write the simulation

E raaib

� �
¼ T raai b � s

� �
¼
X

k

T k raaib � s
� �

; ð87Þ

where T kðrÞ :¼ Ak � Bkð Þr Ak � Bkð Þy is Alice and Bob’s conditional LOCC with
probability p(k). For simplicity we omit other technical labels that may describe
independent local measurements or classical channels, because they will also be
averaged at the end of the procedure. Let us introduce the vector k¼ k1 y kn

where ki identifies a conditional LOCC T ki associated with the ith transmission.
Because the LOCC-simulation of the channel is fixed, we have the factorized
probability p(k)¼ p(k1) y p(kn).

By replacing the simulation in equation (84), we obtain

ri
ab uijui� 1 . . .ð Þ ¼

Lui
iji� 1��� � T raaib � s

� �
p uijui� 1 . . .ð Þ : ð88Þ

By iteration, the latter equation yields

rn
abðuÞ ¼ pðuÞ� 1LTu r0

a � r0
b � s�n

� �
; ð89Þ

where

LTu :¼Lun
njn� 1��� � T � � � � � T � L

u0
0

¼
X

k

pðkÞLun
njn� 1��� � T

kn � � � � � T k1 � Lu0
0 :

ð90Þ

Therefore, the average output state of the original protocol may be equivalently
expressed in the form

rn
ab ¼ �LT r0

a � r0
b � s�n

� �
; �LT :¼

X
u

LTu : ð91Þ

Finally, we may include the preparation ra
0#rb

0 in the LOCC, so that we may write

rn
ab ¼ �L s�nð Þ: ð92Þ

To extend this technical proof to CV systems, we perform the replacementP
u-

R
du with the probabilities becoming probability densities. Then, T and

s may be both asymptotic, that is, defined as infinite-energy limits T :¼ limm T m
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and s :¼ limm sm from corresponding finite-versions T m and sm. In this case, we
repeat the previous procedure for some m and then we take the limit on the output
state rn;m

ab .

Details on Lemma 3 in relation to teleportation stretching with bosonic
channels. For a bosonic channel, the Choi matrix and the ideal Bell detection are
both energy-unbounded. Therefore, any Choi-based LOCC simulation of these
channels must necessarily be asymptotic. Here we discuss in more detail how an
asymptotic channel simulation ðT ;sÞ :¼ limm T m; smð Þ leads to an asymptotic form
of stretching as described in Lemma 3. Any operation or functional applied to
ðT ; sÞ is implicitly meant to be applied to the finite-energy simulation T m; smð Þ,
whose output then undergoes the m-limit.

Consider a bosonic channel E with asymptotic simulation
ðT ; sÞ :¼ limm T m;smð Þ. As depicted in Fig. 9, this means that there is a channel Em
generated by T m; smð Þ such that E :¼ limm Em in the sense that

I � E raa0ð Þ � I � Em raa0ð Þk k!m 0 for any raa0 : ð93Þ
In other words, for any (energy-bounded) bipartite state raa0, whose a0-part is
propagated, the original channel output rab :¼ I � E raa0ð Þ and the simulated
channel output rmab :¼ I � Em raa0ð Þ satisfy the limit

rmab � rab

�� ��!m 0: ð94Þ
By teleportation stretching, we may equivalently decompose the output state

rab
m into the form

rmab ¼ �Lm smð Þ; ð95Þ

where �Lm is a trace-preserving LOCC, which is includes both T m and the
preparation of raa0 (it is trace-preserving because we implicitly assume that we
average over all possible measurements present in the simulation LOCC T m). By
taking the limit of m-þN in equation (95), the state rmab becomes the channel
output state rab according to equation (94). Therefore, we have the limit

rab � �LmðsmÞ
�� ��!m 0; ð96Þ

that we may compactly write as

rab ¼ lim
m

�Lm smð Þ: ð97Þ

Note that we may express equation (93) in a different form. In fact, consider the
set of energy-constrained bipartite states DN :¼ raa0 jTr N̂raa0

� �
� N

	 

, where N̂ is

the total number operator. Then, for two bosonic channels, E1 and E2, we may
define the energy-bounded diamond norm

E1 �E2k k}N :¼ sup
raa0 2DN

I � E1 raa0ð Þ � I � E2 raa0ð Þk k: ð98Þ

Using the latter definition and the fact that DN is a compact set, we have that the
pointwise limit in equation (93) implies the following uniform limit

E �Emk k}N!
m

0 for any N: ð99Þ
The latter expression is useful to generalize the reasoning to the adaptive

protocol, with LOCCs applied before and after transmission. Consider the output
rn

ab after n adaptive uses of the channel E, and the simulated output rn;m
ab , which is

generated by replacing E with the imperfect channel Em . Explicitly, we may write

rn
ab ¼ Ln � E � Ln� 1 � � � � L1 � E r0

ab

� �
; ð100Þ

with its approximate version

rn;m
ab ¼ Ln � Em � Ln� 1 � � � � L1 � Em r0

ab

� �
; ð101Þ

where it is understood that E and Em are applied to system ai in the ith
transmission, that is, E ¼ I a � Eai � Ib .

Assume that the mean photon number of the total register states rn
ab and rn;m

ab is
bounded by some large but yet finite value N(n). For instance, we may consider a
sequence N(n)¼N(0)þ nt, where N(0) is the initial photon contribution and t is
the channel contribution, which may be negative for energy-decreasing channels
(like the thermal-loss channel) or positive for energy-increasing channels (like the
quantum amplifier). We then prove

rn
ab � rn;m

ab

�� �� �Xn� 1

i¼0

E �Emk k}NðiÞ: ð102Þ

In fact, for n¼ 2, we may write

r2
ab �r2;m

ab

�� ��
¼ L2 � E � L1 � E r0

ab

� �
�L2 � Em � L1 � Em r0

ab

� ��� ��
�
ð1Þ
E � L1 � E r0

ab

� �
�Em � L1 � Em r0

ab

� ��� ��
�
ð2Þ
E � L1 � E r0

ab

� �
�E � L1 � Em r0

ab

� ��� ��
þ E � L1 � Em r0

ab

� �
�Em � L1 � Em r0

ab

� ��� ��
�
ð3Þ
E r0

ab

� �
�Em r0

ab

� ��� ��
þ E L1 � Em r0

ab

� �� �
�Em L1 � Em r0

ab

� �� ��� ��
�
ð4Þ
E �Emk k}Nð0Þ þ E �Emk k}Nð1Þ;

ð103Þ

where: (1) we use monotonicity under L2; (2) we use the triangle inequality;
(3) we use monotonicity with respect to E � L1; and (4) we use the definition of
equation (98) assuming a0 ¼ ai and the energy bound N(n). Generalization to
arbitrary n is just a technicality.

By using equation (99) we may write that, for any bound N(n) and eZ0, there is
a sufficiently large m such that E �Emk k}NðnÞ� e, so that equation (102) becomes

rn
ab �rn;m

ab

�� �� � ne: ð104Þ

By applying teleportation stretching we derive rn;m
ab ¼ �Lm sm�nð Þ, where �Lm includes

the original LOCCs Li and the teleportation LOCCs T m. Thus, equation (104)
implies

rn
ab � �Lm sm�nð Þ

�� �� � ne; ð105Þ

or, equivalently, rn
ab � �Lm sm�nð Þ

�� ��!m 0.
Therefore, given an adaptive protocol with arbitrary register energy, and

performed n times through a bosonic channel E with asymptotic simulation,
we may write its output state as the (trace-norm) limit

rn
ab ¼ lim

m
�Lm sm�nð Þ: ð106Þ

This means that we may formally write the asymptotic stretching �L s�nð Þ :¼
limm

�Lm sm�nð Þ for an asymptotic channel simulation ðT ; sÞ :¼ limm T m; smð Þ.

More details on the one-shot REE bound given in Theorem 5. The main steps
for proving equation (15) are already given in the main text. Here we provide more
details of the formalism for the specific case of bosonic channels, involving
asymptotic simulations ðT ; sÞ :¼ limm T m; smð Þ. Given the asymptotic stretching of
the output state rn

ab as in equation (106), the simplification of the REE bound
ER rn

ab

� �
explicitly goes as follows

ER rn
ab

� �
¼ inf

ss

S rn
ab ssk

� �
�
ð1Þ

inf
sms

S lim
m

�Lm sm�nð Þ lim
m

sms

����
� �

�
ð2Þ

inf
sms

lim inf
m!þ1

S �Lm sm�nð Þ sms
��� �

�
ð3Þ

inf
sms

lim inf
m!þ1

S �Lm sm�nð Þ �Lm sms
� ���� �

�
ð4Þ

inf
sms

lim inf
m!þ1

S sm�n sms
��� �

¼ð5Þ ER s�nð Þ;

ð107Þ

where: (1) sms is a generic sequence of separable states that converges in trace norm,

that is, such that there is a separable state ss :¼ limm sms so that kss� sms k!
m

0; (2)
we use the lower semi-continuity of the relative entropy3; (3) we use that �Lm sms

� �
are specific types of converging separable sequences within the set of all such
sequences; (4) we use the monotonicity of the relative entropy under trace-
preserving LOCCs; and (5) we use the definition of REE for asymptotic states given
in equation (4).

Alice �

��

Bob

′

A

B

��

Figure 9 | Asymptotic LOCC simulation of bosonic channels. The finite-

energy LOCC simulation T m; smð Þ generates a teleportation channel Em.

Assume that Em defines a target bosonic channel E according to the

pointwise limit in equation (93). Then, we say that the bosonic channel E
has asymptotic simulation ðT ;sÞ :¼ limm T m;smð Þ.
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Thus, from Theorem 1, we may write the following upper bound for the
two-way capacity of a bosonic channel

CðEÞ � E?RðEÞ � lim
n

n� 1ER s�nð Þ ¼ E1R ðsÞ: ð108Þ

The supremum over all adaptive protocols, which defines E?RðEÞ disappears in the
right hand side of equation (108). The resulting bound applies to both energy-
constrained protocols and the limit of energy-unconstrained protocols. The proof of
the further condition E1R ðsÞ � ERðsÞ in equation (15) comes from the subadditivity
of the REE over tensor product states. This subadditivity also holds for a tensor
product of asymptotic states; it is proven by restricting the minimization on tensor
product sequences sm�n

s in the corresponding definition of the REE.
Let us now prove equation (16). The two inequalities in equation (16) are simply

obtained by using s ¼ rE for a Choi-stretchable channel (where the Choi matrix is
intended to be asymptotic for a bosonic channel). Then we show the equality
ER rEð Þ ¼ ERðEÞ. By restricting the optimization in ERðEÞ to an input EPR state F,
we get the direct part ERðEÞ � ER rEð Þ as already noticed in equation (6). For CVs,
this means to choose an asymptotic EPR state F :¼ limm Fm , so that

I � EðFÞ :¼ lim
m
I � E Fmð Þ ¼ lim

m
rmE :¼ rE ; ð109Þ

and therefore

ERðEÞ � ERðrEÞ :¼ inf
sms

lim inf
m!þ1

S rmE sms
��� �

: ð110Þ

For the converse part, consider first DVs. By applying teleportation stretching
to a single use of the channel E, we may write I � EðrÞ ¼ �L rEð Þ for a trace-
preserving LOCC �L. Then, the monotonicity of the REE leads to

ERðEÞ ¼ sup
r

ER I � EðrÞ½ � ¼ sup
r

ER
�L rEð Þ
� �

� ER rEð Þ: ð111Þ

For CVs, we have an asymptotic stretching I � EðrÞ¼ limm sm where
sm :¼ �Lm rmE

� �
. Therefore, we may write

ER I � EðrÞ½ � ¼ inf
sms

lim inf
m!þ1

S sm sms
��� �

� inf
sms

lim inf
m!þ1

S �Lm rmE
� �

�Lm sms
� ���� �

� inf
sms

lim inf
m!þ1

S rmE sms
��� �

¼ ER rEð Þ:

ð112Þ

Since this is true for any r, it also applies to the supremum and, therefore, to the
channel’s REE ERðEÞ.

Proof of Proposition 6 on the one-shot REE bound for DV channels. At finite
dimension, we may first use teleportation stretching to derive KðEÞ � K rEð Þ and
then apply any upper bound to the distillable key K rEð Þ, among which the REE
bound has the best performance. Consider a key generation protocol described by a
sequence L of adaptive LOCCs (implicitly assumed to be averaged). If the protocol
is implemented over a Choi-stretchable channel E in finite dimension d, its
stretching allows us to write the output as rn

ab ¼ �L r�n
E

� �
for a trace-preserving

LOCC �L. Since any LOCC-sequence L is transformed into �L, any key generation
protocol through E becomes a key distillation protocol over copies of the Choi
matrix rE . For large n, this means KðEÞ � K rEð Þ.

To derive the opposite inequality, consider Alice sending EPR states through
the channel, so that the shared output will be r�n

E . There exists an optimal LOCC
on these states, which reaches the distillable key K rEð Þ for large n. This is a specific
key generation protocol over E, so that we may write K rEð Þ � KðEÞ. Thus, for a
d-dimensional Choi-stretchable channel, we find

KðEÞ ¼ K rEð Þ � E1R rEð Þ; ð113Þ
where we also exploit the fact that the distillable key of a DV state is bounded by its
regularized REE27. It is also clear that E1R rEð Þ � ER rEð Þ ¼ ERðEÞ, where the latter
equality is demonstrated in the proof of Theorem 5.

Note that KðEÞ ¼ K rEð Þ cannot be directly written for a bosonic channel,
because its Choi matrix rE is energy-unbounded, so that its distillable key K rEð Þ
is not well-defined. By contrast, we know how to extend E1R rEð Þ to bosonic
channels and show KðEÞ � E1R rEð Þ at any dimension: This is the more general
procedure of Theorem 5, which first exploits the general REE bound KðEÞ � E?RðEÞ

and then simplifies E?RðEÞ � E1R rEð Þ by means of teleportation stretching at any
dimension.

Two-way quantum communication. Our method can be extended to more
complex forms of quantum communication. In fact, our weak converse theorem
can be applied to any scenario where two parties produce an output state by means
of an adaptive protocol. All the details of the protocol are contained in the LOCCs
L which are collapsed into �L by teleportation stretching and then discarded using
the REE.

Consider the scenario where Alice and Bob send systems to each other by
choosing between two possible channels, E (forward) or E0 (backward), and
performing adaptive LOCC after each single transmission (see also Fig. 10). The
capacity C E; E0ð Þ is defined as the maximum number of target bits distributed per
individual transmission, by using one of the two channels E and E0 , and assuming
LOs assisted by unlimited two-way CCs.

In general, the feedback transmission may occur a fraction p of the rounds, with
associated capacity

C p; E; E0ð Þ � ð1� pÞCðEÞþ pC E0ð Þ: ð114Þ
The lower bound is a convex combination of the individual capacities of the two
channels, which is achievable by using independent LOCC-sequences for the two
channels.

Assume that E; E0ð Þ are stretchable into the pair of resource states (s, s0). Then,
we can stretch the protocol and decompose the output state as

rn
ab ¼ �L s�nð1� pÞ � s0�np

h i
; ð115Þ

where the tensor exponents n(1� p) and np are integers for suitably large n (it is
implicitly understood that we consider suitable limits in the bosonic case). Using
the monotonicity of the REE under trace-preserving LOCCs and its subadditivity
over tensor products, we write

ER rn
ab

� �
�ER s�nð1� pÞ � s0�np

h i
�nð1� pÞERðsÞþ npER s0ð Þ:

ð116Þ

As previously said, our weak converse theorem can be applied to any adaptive
protocol where two parties finally share a bipartite state rn

ab . Thus, we may write

C p; E; E0ð Þ � sup
L

lim
n!þ1

ER rn
ab

� �
n

�ð1� pÞERðsÞþ pER s0ð Þ:
ð117Þ

From equations (114) and (117), we find that C E; E0ð Þ¼ maxpC p; E; E0ð Þ must
satisfy

max CðEÞ; C E0ð Þf g � C E; E0ð Þ � max ERðsÞ;ER s0ð Þf g: ð118Þ
For Choi-stretchable channels, this means

max CðEÞ; C E0ð Þf g � C E; E0ð Þ � max FðEÞ;F E0ð Þf g: ð119Þ
In particular, if the two channels are distillable, that is, CðEÞ ¼ FðEÞ and
C E0ð Þ ¼ F E0ð Þ, then we may write

C E; E0ð Þ¼ max CðEÞ; C E0ð Þf g; ð120Þ
and the optimal strategy (value of p) corresponds to using the channel with
maximum capacity.

Note that we may also consider a two-way quantum communication protocol
where the forward and backward transmissions occur simultaneously, and
correspondingly define a capacity that quantifies the maximum number of target
bits which are distributed in each double communication, forward and backward
(instead of each single transmission, forward or backward). However, this case can
be considered as a double-band quantum channel.

Multiband quantum channel. Consider the communication scenario where Alice
and Bob can exploit a multiband quantum channel, that is, a quantum channel
whose single use involves the simultaneous transmission of m distinct systems. In
practice, this channel Emb is represented by a set of m independent channels or
bands E1; . . . ; Emf g, that is, it can be written as

Emb ¼ �m
i¼1Ei: ð121Þ

For instance, the bands may be bosonic Gaussian channels associated with
difference frequencies.

In this case, the adaptive protocol is modified in such a way that each
(multiband) transmission involves Alice simultaneously sending m quantum
systems to Bob. These m input systems may be in a generally entangled state, which
may also involve correlations with the remaining systems in Alice’s register. Before
and after each multiband transmission, the parties perform adaptive LOCCs on
their local registers a and b. The multiband protocol is therefore characterized by a
LOCC sequence L ¼ L0; . . . ;Lnf g after n transmissions.

The definition of the generic two-way capacity is immediately extended to a
multiband channel. This capacity quantifies the maximum number of target bits
that are distributed (in parallel) for each multiband transmission by means of

Alice a

Bob b

a Alice

Λ2Λ1Λ0

b Bob

′
1 2

1 2

Figure 10 | Adaptive protocol for two-way quantum or private

communication. The protocol employs a forward channel E and backward

channel E0 . Transmissions are alternated with adaptive LOCCs

L ¼ L0;L1;L2; . . .f g.
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adaptive protocols. It must satisfy

C Embð Þ �
Xm

i¼1

C Eið Þ; ð122Þ

where the lower bound is the sum of the two-way capacities of the single bands Ei .
This lower bound is obtained by using adaptive LOCCs that are independent
between different Ei , and considering an output state of the form �ir

n;i
ab where rn;i

ab
is the output associated with Ei .

Now consider an adaptive protocol performed over a multiband channel, whose
m bands Eif g are stretchable into m resources states {si}. By teleportation
stretching, we find that Alice and Bob’s output state can be decomposed in the
form

rn
ab ¼ �L �m

i¼1s
�n
i

� �
: ð123Þ

(it is understood that the formulation is asymptotic for bosonic channels). This
previous decomposition leads to

ER rn
ab

� �
�
Xm

i¼1

ER s�n
i

� �
: ð124Þ

Using our weak converse theorem, we can then write

C Embð Þ � sup
L

lim
n!þ1

ER rn
ab

� �
n

�
Xm

i¼1

E1R sið Þ �
Xm

i¼1

ER sið Þ:
ð125Þ

Combining equations (122) and (125) we may then write

Xm

i¼1

C Eið Þ � C Embð Þ �
Xm

i¼1

ER sið Þ: ð126Þ

For Choi-stretchable bands, this means

Xm

i¼1

C Eið Þ � C Embð Þ �
Xm

i¼1

F Eið Þ: ð127Þ

Finally, if the bands are distillable, that is, C Eið Þ ¼ F Eið Þ, then we find the additive
result

C Embð Þ ¼
Xm

i¼1

C Eið Þ: ð128Þ

Code availability. Source codes of the plots are available from the authors on
request.

Data availability. No relevant research data were generated in this study.

References
1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum

Information (Cambridge Univ. Press, 2000).
2. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84,

621–669 (2012).
3. Holevo, A. in Quantum Systems, Channels, Information: A Mathematical

Introduction (De Gruyter, 2012).
4. Bennett, C. H. & Brassard, G. in Proceedings of IEEE International Conference

on Computers, Systems, and Signal Processing, 175–179 (Bangalore, India,
1984).

5. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev.
Mod. Phys. 74, 145–196 (2002).

6. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod.
Phys. 81, 1301–1350 (2009).

7. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
8. Pirandola, S. & Braunstein, S. L. Unite to build a quantum internet. Nature 532,

169–171 (2016).
9. Pirandola, S. et al. Advances in quantum teleportation. Nat. Photon. 9, 641–652

(2015).
10. Andersen, U. L., Neergaard-Nielsen, J. S., van Loock, P. & Furusawa, A. Hybrid

discrete- and continuous-variable quantum information. Nat. Phys. 11,
713–719 (2015).

11. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of
imperfect local operations in quantum communication. Phys. Rev. Lett. 81,
5932–5935 (1998).

12. Bennett, C. H., DiVincenzo, D. P. & Smolin, J. A. Capacities of quantum
erasure channels. Phys. Rev. Lett. 78, 3217–3220 (1997).

13. Grosshans, F. et al. Quantum key distribution using gaussian-modulated
coherent states. Nature 421, 238–241 (2003).

14. Garca-Patrón, R., Pirandola, S., Lloyd, S. & Shapiro, J. H. Reverse coherent
information. Phys. Rev. Lett. 102, 210501 (2009).

15. Devetak, I. The private classical capacity and quantum capacity of a quantum
channel. IEEE Trans. Info. Theory 51, 44–55 (2005).

16. Devetak, I. & Winter, A. Distillation of secret key and entanglement from
quantum states. Proc. R. Soc. A 461, 207–235 (2005).

17. Pirandola, S., Garca-Patrón, R., Braunstein, S. L. & Lloyd, S. Direct and
reverse secret-key capacities of a quantum channel. Phys. Rev. Lett. 102, 050503
(2009).

18. Takeoka, M., Guha, S. & Wilde, M. M. Fundamental rate-loss tradeoff for
optical quantum key distribution. Nat. Commun. 5, 5235 (2014).

19. Christandl, M. The Structure of Bipartite Quantum States: Insights from Group
Theory and Cryptography (PhD thesis, University of Cambridge, 2006).

20. Pirandola, S. et al. High-rate measurement-device-independent quantum
cryptography. Nat. Photon. 9, 397–402 (2015).

21. Vedral, V., Plenio, M. B., Rippin, M. A. & Knight, P. L. Quantifying
Entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997).

22. Vedral, V. & Plenio, M. B. Entanglement measures and purification procedures.
Phys. Rev. A 57, 1619–1633 (1998).

23. Vedral, V. The role of relative entropy in quantum information theory. Rev.
Mod. Phys. 74, 197–234 (2002).

24. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical
and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

25. Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum
variables. Phys. Rev. Lett. 80, 869–872 (1998).

26. Braunstein, S. L., D’Ariano, G. M., Milburn, G. J. & Sacchi, M. F. Universal
teleportation with a twist. Phys. Rev. Lett. 84, 3486–3489 (2000).

27. Horodecki, K., Horodecki, M., Horodecki, P. & Oppenheim, J. Secure key from
bound entanglement. Phys. Rev. Lett. 94, 160502 (2005).

28. Schumacher, B. & Nielsen, M. A. Quantum data processing and error
correction. Phys. Rev. A 54, 2629–2635 (1996).

29. Lloyd, S. Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613–1622
(1997).

30. Christiandl, M., Schuch, N. & Winter, A. Entanglement of the antisymmetric
state. Commun. Math. Phys. 311, 397–422 (2012).

31. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state
entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851
(1996).

32. Horodecki, M., Horodecki, P. & Horodecki, R. General teleportation channel,
singlet fraction, and quasidistillation. Phys. Rev. A 99, 1888–1898 (1999).

33. Bowen, G. & Bose, S. Teleportation as a depolarizing quantum channel, relative
entropy and classical capacity. Phys. Rev. Lett. 87, 267901 (2001).

34. Albeverio, S., Fei, S.-M. & Yang, W.-L. Optimal teleportation based on Bell
measurements. Phys. Rev. A 66, 012301 (2002).

35. Müller-Hermes, A. Transposition in Quantum Information Theory (MSc
Thesis, Technische Universität München, 2012).

36. Leung, D. & Matthews, W. On the power of ppt-preserving and nonsignalling
codes. IEEE Trans. Inf. Theory 61, 4486–4499 (2015).

37. Werner, R. F. All teleportation and dense coding schemes. J. Phys. A 34,
7081–7094 (2001).

38. Niset, J., Fiurasek, J. & Cerf, N. J. No-go theorem for Gaussian quantum error
correction. Phys. Rev. Lett. 102, 120501 (2009).

39. Ji, Z., Wang, G., Duan, R., Feng, Y. & Ying, M. Parameter estimation of
quantum channels. IEEE Trans. Inform. Theory 54, 5172–5185 (2008).

40. Nielsen, M. A. & Chuang, I. L. Programmable quantum gate arrays. Phys. Rev.
Lett. 79, 321–324 (1997).

41. Modi, K. et al. The classical-quantum boundary for correlations: discord and
related measures. Rev. Mod. Phys. 84, 1655–1707 (2012).

42. Pirandola, S. Quantum discord as a resource for quantum cryptography. Sci.
Rep. 4, 6956 (2014).

43. Pirandola, S., Spedalieri, G., Braunstein, S. L., Cerf, N. J. & Lloyd, S. Optimality
of Gaussian discord. Phys. Rev. Lett. 113, 140405 (2014).

44. Hosseinidehaj, N. & Malaney, R. Gaussian entanglement distribution via
satellite. Phys. Rev. A 91, 022304 (2015).

45. Vallone, G. et al. Experimental satellite quantum communications. Phys. Rev.
Lett. 115, 040502 (2015).

46. Dequal, D. et al. Experimental single-photon exchange along a space link of
7,000 km. Phys. Rev. A 93, 010301 (R) (2016).

47. Usenko, V. C. & Filip, R. Feasibility of continuous-variable quantum key
distribution with noisy coherent states. Phys. Rev. A 81, 022318 (2010).

48. Weedbrook, C. et al. Quantum cryptography approaching the classical limit.
Phys. Rev. Lett. 105, 110501 (2010).

49. Weedbrook, C. et al. Continuous-variable quantum key distribution using
thermal states. Phys. Rev. A 86, 022318 (2012).

50. Weedbrook, C., Ottaviani, C. & Pirandola, S. Two-way quantum cryptography
at different wavelengths. Phys. Rev. A 89, 012309 (2014).

51. Holevo, A. S. & Werner, R. F. Evaluating capacities of bosonic Gaussian
channels. Phys. Rev. A 63, 032312 (2001).
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