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Abstract
The differentiation of haemorrhagic from ischaemic stroke using electrical 
impedance tomography (EIT) requires measurements at multiple frequencies, 
since the general lack of healthy measurements on the same patient excludes 
time-difference imaging methods. It has previously been shown that the 
inaccurate modelling of electrodes constitutes one of the largest sources of 
image artefacts in non-linear multi-frequency EIT applications. To address 
this issue, we augmented the conductivity Jacobian matrix with a Jacobian 
matrix with respect to electrode movement. Using this new algorithm, 
simulated ischaemic and haemorrhagic strokes in a realistic head model 
were reconstructed for varying degrees of electrode position errors. The 
simultaneous recovery of conductivity spectra and electrode positions removed 
most artefacts caused by inaccurately modelled electrodes. Reconstructions 
were stable for electrode position errors of up to 1.5 mm standard deviation 
along both surface dimensions. We conclude that this method can be used for 
electrode model correction in multi-frequency EIT.

Keywords: electrical impedance tomography, stroke type detection,  
multi-frequency image reconstruction, electrode model correction

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Background

Multifrequency electrical impedance tomography (MFEIT) is a method for imaging biologi-
cal tissues with frequency-dependent conductivity. While time-difference (TD) EIT is used 
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to image conductivity changes between a baseline voltage measurement and a data measure-
ment, MFEIT differentiates tissues based on their conductivity spectra at different modulation 
frequencies of the applied current. Therefore MFEIT does not require a baseline measurement 
and can be used as a diagnostic tool for multiple applications (Brown et al 1995, Hampshire  
et al 1995, Malich et al 2003), including stroke type differentiation (Holder 1992, Romsauerova 
et al 2006, Packham et al 2012).

While cerebral haemorrhages require surgery, ischaemic strokes could be treated with a 
clot dissolving drug if diagnosed within 3 h of onset. The current diagnostic procedure is to 
take a computed tomography (CT) scan, and results in only 2.5–6% of the 80% of ischaemic 
strokes to be treated in time (Power 2004, Saver et al 2013). While EIT cannot compete with 
CT in terms of image quality, the small size and low cost of an EIT system make it feasible to 
equip ambulances for early ischaemia diagnosis and thrombolytic treatment.

A novel non-linear method for performing MFEIT using spectral constraints was recently 
proposed by Malone et al (2014a), because the complicated geometry of the head excludes 
linear multi-frequency reconstruction algorithms, such as weighted frequency difference (Jun 
et al 2009). In the new MFEIT algorithm, the inverse problem is reformulated to express the 
conductivity at each frequency in terms of tissue volume fractions and known tissue conduc-
tivity spectra. This separation of variables makes it possible to use measurements at different 
frequencies simultaneously, since the tissue fractions are frequency independent. An analysis 
of the influence of modelling errors on images reconstructed with this method has shown that 
inaccurately modelled electrode positions strongly affect the image quality, whereas wrongly 
modelled contact impedances were negligible and spectral errors were tolerable as long as 
tissue spectra did not overlap (Malone et al 2014b).

Methods for correction of electrode modelling inaccuracies are recently gaining interest in 
the EIT community (Soleimani et al 2006, Dardé et al 2012), and have already been applied 
to a realistic three dimensional head model for simultaneous TD recovery of conductivity 
changes and electrode movement (Jehl et al 2015b). In this paper, the first application of 
simultaneous MFEIT image reconstruction and electrode model correction is demonstrated 
on a realistic 3D head model with skull and scalp. The implementation is discussed and the 
performance is evaluated for different levels of electrode position errors.

1.2. Purpose

The purpose of this study is to evaluate the performance of simultaneous recovery of electrode 
positions and conductivity spectrum changes. Specifically, the following two questions will 
be addressed:

 (i) Does the simultaneous recovery of conductivity changes and electrode modelling errors 
remove image artefacts caused by inaccurately modelled electrode positions?

 (ii) At which magnitude of electrode position errors does the proposed algorithm begin to 
fail?

To answer these questions, multi-frequency boundary voltages were simulated on a fine  
5 million element head mesh with different levels of electrode position errors. Reconstructions 
were made with and without the proposed addition of electrode modelling corrections and 
the resulting images were compared. It was found that the proposed algorithm could stably 
recover simulated strokes in the presence of electrode modelling errors of up to 1.5 mm stand-
ard deviation.

M Jehl and D Holder Physiol. Meas. 37 (2016) 893
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2. Methods

2.1. Tissue fraction reconstruction with electrode position correction

The general structure of the used multi-frequency reconstruction algorithm was identical to 
the one published by Malone et al (2014a). To be able to use conductivity measurements 
at different frequencies ω = …i W, 1, ,i  simultaneously in a single image reconstruction, the 
conductivity spectrum of one element in the mesh was described as a linear combination of 
the known spectra of present tissues = …t j T, 1, ,j . Instead of reconstructing conductivities 
directly, the prior knowledge of the conductivity spectrum εij of all tissues was therefore used 
to assign fractions fnj of these tissues to all finite elements = …n N1, , , such that

( ) ∑σ ω = ⋅
=

εf ,n i
j

T

nj ij
1

 (1)

where ⩽ ⩽f0 1nj , ∑ == f 1j
T

nj1  and [ ]∈ = …×Rf f f, ,j
N

j Nj
1

1 . The modified Jacobian matrix 
at each frequency was obtained from the non-linear EIT forward map A using the chain rule

( ) ( )σ
σ
σ

σ
σ∂

∂
=
∂
∂
∂
∂
=
∂
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f f
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j i
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j i
ij i ij ij
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where = …r R1, ,  are the lines in the protocol, i.e. the combinations of different current injec-
tion and voltage measurement electrode pairs d and m. The Jacobian matrix ( )σJ i  relating 
voltage changes to changes in conductivity σi at each frequency ωi, was computed using the 
adjoint fields method (derived e.g. in the appendix of Polydorides and Lionheart (2002)),  
giving one entry for element n as

∫= − ∇ ⋅ ∇u u VJ d ,rn
n

d m (3)

where ( )∈ Ωu Hd 1  is the electric potential emerging when the drive current Id is applied to 
the electrodes and ( )∈ Ωu Hm 1  the electric potential when a unit current is applied to the two 
measurement electrodes.

In order to correct for wrongly modelled electrode positions, this ‘traditional’ Jacobian 
matrix was augmented by an electrode boundary Jacobian ∈ ×REBJ R E, relating electrode 
boundary changes (in our case electrode movement) to voltage changes. Given a continuous 
vector field v on the boundary of electrode = …e E1, , , one entry of the EBJ can be computed 
similarly to the conductivity Jacobian (Dardé et al 2012, Jehl et al 2015b)

( )( )( )∫= − ⋅ − −
∂

∂v n u u
z

U U sEBJ
1

d ,re
e E

E e
d d

e
m m

e

 (4)

where ze is the contact impedance, Ue
d and Ue

m the drive and measurement electrode potentials 
and ∂n E the outward normal of the electrode boundary, tangential to the head surface. The 
vector field v describes the studied change in the electrode boundary, e.g. to compute the EBJ 
with respect to movement along one direction, the vector field was chosen to point homo-
geneously in this direction. The Jacobian matrices were combined [ ]ϒ = …J J EBJ, , ,i i iT i1  
and the unknown electrode position errors p were appended to the vector of the tissue frac-
tions to be recovered [ ]�=x f p, , where f f f, , T1[ ]= …  and p consisted of two variables 
per electrode that described electrode movements along both surface directions xs and ys, 

[ ]= …p p p p p, , , ,x y x y
1 1 2 2

s s s s
. The regularised objective function to be minimised was then
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with ( )ωv i  being the boundary voltages measured at frequency ωi and the regularisation term

( ) Σ ΣΨ = � � �x x xD D .x x (6)

The regularisation matrix D comprised one Laplacian matrix per recovered tissue and one 
identity matrix for the electrode movement variables. All components were scaled accord-
ing to the expected standard deviation of the corresponding variable changes =std 0.01f  and 
=std 1p  mm
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The minimisation of the objective function (5) was performed by alternating steps of gradi-
ent projection) and damped Gauss–Newton algorithms. The gradient projection (Nocedal and 
Wright 1999) step was used to quickly move to the neighbourhood of the minimum, while 
considering the constraints on the fractions. This was done by computing the step sizes along 
the gradient, at which one of the fraction values reaches a constraint, i.e. 0 or 1. The change of 
the objective function value along each of the resulting intervals was approximated quadrati-
cally using Taylor series. Once one Taylor approximation found a minimum on an interval, 
this so-called Cauchy point xc was chosen, otherwise the gradient projection algorithm con-
tinued on the next interval until a minimum was found.

The subsequent Gauss–Newton step was only applied to the components that did not reach 
a constraint during the gradient projection. The search direction was calculated by solving

( ) ( )Φ⋅ = −∇x d xH c c (8)

using a generalised minimal residual algorithm in order to avoid the explicit calculation of the 
Hessian matrix H, which is the second derivative of ( )Φ x  (which was approximated by disre-
garding the second order derivative of the residual error). The step width along direction d was 
determined using the Brent line-search method (Brent 1973) and the resulting minimum xg 
was projected back to the fraction constraints. The point, xc or xg, that gave a smaller function 
value was chosen for the next iteration.

The reconstruction of the fractions was constrained to the closed interval [0, 1] and the 
constraint ∑ == f 1j

T
nj1  was enforced by substituting = −∑ =f f1 j

T
j1 2 . After two iterations of 

gradient projection and Gauss–Newton, the electrode positions had normally converged and 
were subsequently kept fixed for the remaining iterations. The number of iterations of this 
reconstruction algorithm was fixed to 10 for all image reconstructions. To avoid the inverse 
crime (Lionheart 2004) and speed up image reconstruction, all reconstruction were made on 
a coarse 180 thousand element mesh on which the skull and scalp were kept fixed and it was 
assumed the inside of the skull was occupied by either the brain or the stroke with the ini-
tial guess being the healthy brain. The regularisation parameter of τ = × −8 10 10 was chosen 
empirically and was the same for all reconstructed images. After each iteration of gradient 
projection and Gauss–Newton minimisation, the regularisation parameter was halved in the 
case of ischaemias, and given that the spectral contrast was lower, divided by three for haem-
orrhages (Viklands and Gulliksson 2001, Malone et al 2014b).

M Jehl and D Holder Physiol. Meas. 37 (2016) 893
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2.2. Data simulation

The simulation parameters in this study were identical to the ones used in the preliminary 
feasibility study (Malone et al 2014b). Boundary voltages were computed on a fine 5 million 
element mesh, which was created from a CT scan of a human head and included three homo-
geneous tissues: brain, skull and scalp. Computation of the boundary voltages was done with 
Peits (Jehl et al 2015a) on all 16 processors of a workstation with two 2.4 GHz Intel Xeon 
CPUs with eight cores and 20 MB cache each. It took less than 2 min to compute the required 
31 forward solutions for each frequency. 32 electrodes of diameter 10 mm were placed on the 
surface of the model in the same positions used to acquire EEG measurements (Tidswell et al 
2001). The electrodes were modelled using the complete electrode model (CEM) (Somersalo 
et al 1992), and the contact impedance was set to Ω ⋅| |E1k  for all electrodes, where | |E  was 
the electrode area. The amplitude of the current was set to 140 μA and twelve frequencies 
between 5 Hz and 5 kHz were used (figure 1(a)). 31 linearly independent current injection 
pairs were created by finding the maximum spanning tree of the electrode positions, thereby 
maximising the distance between injecting electrodes. Voltage measurements were made for 
each injection on all adjacent pairs not involved in delivering current. The total number of 
measurements acquired for each frequency was 869.

Strokes were simulated by changing the conductivities of all elements within a 1.5 cm 
radius of the stroke location. Simulated locations were set in a posterior (figure 1(c)) or lateral 
position in the head (figure 1(b)), and stroke conductivities were set to the spectral values of 
ischaemic tissue (figure 1(a)) or to the conductivity of blood, 0.697 S m−1, for haemorrhage 
(Horesh 2006). Both proportional and additive noise was added to all simulated voltages:

( ( )) ( )ς ς= + +v v 1 rand rand ,p awith noise no noise (9)

where ( )ςrand  indicates a random number drawn from a Gaussian distribution with zero mean 
and standard deviation ς. The standard deviation of the proportional noise was ς = 0.02%p  
and the standard deviation of the additive noise was  ς µ= 5 Va , which correspond to human 
measurements (Goren et al 2015).

Electrode positions can currently be measured to around 1 mm precision using photogram-
metry (Qian and Sheng 2011). Other technologies, such as the commercial MicroScribe, 
laser 3D scanners, or electrode helmets, can achieve an even higher precision in electrode 

Figure 1. Model: (a) conductivity spectra of the simulated tissues, (b) simulated lateral 
and (c) posterior stroke position. These simulation parameters were already used in 
Malone et al (2014b). CC BY
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localisation. Simulated electrode position errors were therefore created by drawing two  
random numbers for each electrode from Gaussian distributions with zero mean and standard 
deviations 0.5 mm, 1 mm, 1.5 mm and 2 mm. According to these drawn random numbers, the 
electrodes were then moved along a two dimensional surface coordinate system Jehl et al 
(2015b). Consequently, the overall electrode position errors were the combined errors of the 
displacement along the two surface dimensions, and deviations of up to three times the stand-
ard deviation of the error were expected in the majority of cases.

Previous methods for computing the electrode movement Jacobian include the compu-
tationally intensive differential approximations by moving nodes in the mesh (Soleimani  
et al 2006), which are limited to relatively coarse meshes, direct methods based on the mesh 
geometry (Gómez-Laberge and Adler 2008) and the approximation error approach (Nissinen 
et al 2011). However, the analytical formulation of the Fréchet derivative with respect to the 
electrode boundary presented by Dardé et al (2012) is the most flexible approach, since it 
can be used for different electrode characteristics independent of mesh refinement and can be 
implemented in a very fast and memory efficient way (Jehl et al 2015b). Another advantage of 
this implementation is the possibility to move electrodes without altering the mesh geometry, 
by changing the assignment of the surface facets to the electrodes instead. This allows for 
larger movement of electrodes, while maintaining a good mesh quality and refinement.

2.3. Image quantification

The quality of an image was objectively quantified in terms of the ability to distinguish 
the stroke from the brain. This was done by assessing the fraction fs corresponding to the  
tissue that made up the anomaly. First, the images reconstructed on the 180 thousand element 
mesh were averaged onto cubic voxels with 0.5 cm sides. The volume P corresponding to the 
reconstructed perturbation was identified as the largest connected cluster of voxels with values 
larger than 50% of the maximum of the image (Malone et al 2014a, Jehl et al 2015b). Three 
measures of image errors were defined:

 (i) Location error: ratio between the distance ∥( )∥x y z, ,P P P  of the centre of mass of the recon-
structed perturbation P from the actual position, and the average dimension of the head 

( )d d dmean , ,x y z

∥( )∥
( )

x y z

d d d

, ,

mean , ,
.P P P

x y z
 (10)

 (ii) Shape error: ratio of the difference between the dimensions of the simulated ( )s s s, ,x y z  and 
reconstructed perturbation ( )r r r, ,x y z , and the dimensions of the simulated perturbation

∥( )∥
∥( )∥

− − −r s r s r s

s s s

, ,

, ,
.

x x y y z z

x y z
 (11)

 (iii) Image noise: inverse of the contrast-to-noise ratio between the perturbation P and the 
background B

( )
¯ ¯−

f

f f

std
,s

B

s
P

s
B (12)

  where f̄ s
P and f̄ s

B are the mean intensities of the perturbation and background and std the 
standard deviation.
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3. Results

3.1. Multi-frequency tissue fraction reconstructions

When electrode positions were modelled accurately in the reconstruction algorithm, image 
reconstructions with electrode modelling correction were slightly worse than without correc-
tion (figure 2(a)). The average image error of reconstructions without electrode correction was 
10% and with correction 17%; particularly the reconstruction of the lateral haemorrhage was 
not good (24%). The reason for the decreased image quality was the larger number of variables 
to recover, which slightly increased the ill-posedness of the inverse problem. Consequently, 
conductivity changes were sometimes explained by electrode movements, if this reduced the 
value of the objective function.

With the traditional fraction reconstruction MFEIT algorithm, already 0.5 mm of electrode 
position modelling errors made stroke detection impossible (figure 3(a)). The average image 
error of the reconstructions without electrode modelling correction was 55% (figure 3(b)).

Simultaneous recovery of stroke tissue fractions and electrode positions significantly 
improved image quality in the presence of electrode modelling errors (figure 4(a)). The aver-
age image error of the reconstructed images with correction was 23% (figure 4(b)), excluding 
the three outliers (numbers 5, 10 and 14) only 16%. Remarkably, all three bad reconstructions 
occurred for ischaemic strokes, suggesting that local conductivity spectrum changes caused 
by ischaemia were more difficult to separate from electrode position errors than for haemor-
rhage. Such image errors are the result of the combination of errors added to the simulated 
voltages and the combined uncertainty on all electrode positions, and are consequently diffi-
cult to characterise. The shape error of the reconstruction of a lateral ischaemia with electrode 
movement of 2 mm (number 13) is misleadingly small, because the recovered perturbation 
was a diagonal disc with very similar x–y–z dimensions than the simulated stroke.

3.2. Electrode placement correction

The 2-norm of the difference between recovered and simulated electrode position mismatch 

for both surface dimensions ( xd  and dy) was computed as ( )∑ +xd dyi i i
2 2 1/2

, for electrodes  

i. While the electrode position correction was more accurate for ischaemic strokes when  
electrodes were correctly modelled, for position mismatch of 1 mm standard deviation the 

Figure 2. (a) Multi-frequency fraction reconstructions of strokes without and with 
electrode modelling correction when electrodes were modelled accurately and (b) the 
corresponding image error measures.
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correction was better in the presence of haemorrhages (table 1). The accuracy of the electrode 
position recovery tended to correlate with the quality of the reconstructed image (figures 2(a) 
and 4(a)). This is intuitive and was already observed for time-difference electrode movement 
corrections (Jehl et al 2015b).

The reason for the worse 2-norm of ischaemic electrode position correction of 1 mm errors, 
was electrode 17 (entries 33 and 34 on x-axis of figure 5). Interestingly, after one iteration of 
the proposed algorithm, the electrode position recovery of this electrode was still accurate. 
Only in the second iteration, the electrode was moved several millimetres in both surface 
dimensions. Since electrode 17 was located laterally, 5.4 cm from the centre of the lateral 
ischaemia, this affected the reconstruction of the lateral ischaemia more than the reconstruc-
tion of the posterior ischaemia (figure 4(a)).

Figure 3. (a) Multi-frequency fraction reconstructions of strokes without electrode 
modelling correction for two different levels of electrode position errors and (b) the 
corresponding image error measures.
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Figure 4. (a) Multi-frequency fraction reconstructions of strokes using electrode 
correction for four different levels of electrode position modelling errors and (b) the 
corresponding image error measures.
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4. Discussion

The simultaneous recovery of stroke tissue fractions and electrode positions significantly 
improved image quality in the presence of electrode modelling errors and had only small  
negative effects on the image quality when electrode were modelled accurately. For move-
ments between 0.5 mm and 2 mm standard deviation along both surface dimensions, the 
average image error was 23% compared to 55% without electrode correction. While recon-
structions of haemorrhagic strokes were even successful in the presence of 2 mm of electrode 
errors, ischaemia detection was less reliable from 1 mm onwards. The lower reliability could 
be caused by a worse differentiability of ischaemic changes to electrode movements, but this 
could so far not be confirmed.

Ideally, several reconstructions would have been made for each electrode movement level 
in order to characterise the effect of electrode modelling errors over a number of samples. 
However, the computational expense of multiple repetitions was prohibitive, since reconstruc-
tion of a single image took around 6 h. For the same reason, only two stroke positions were 

Table 1. 2-norm of the difference in simulated and recovered electrode position errors 
when electrodes were accurately modelled in the reconstruction algorithm (first row) 
and when there was a position mismatch of 1 mm standard deviation along both surface 
dimensions (second row).

Ischaemia Haemorrhage

Lateral Posterior Lateral Posterior

0 mm ⋅ −0.8 10 3 ⋅ −1.6 10 3 ⋅ −1.7 10 3 ⋅ −3.7 10 3

1 mm ⋅ −13.0 10 3 ⋅ −11.2 10 3 ⋅ −7.1 10 3 ⋅ −5.8 10 3

Figure 5. Recovery of electrode position modelling errors for different stroke types and 
positions, when electrodes were simulated with standard deviation of 1 mm positional 
errors (black dashed line). Along the x-axis are the movement components along both 
surface dimensions for each electrode, i.e. 1&2 are xs and ys of electrode 1, 3&4 for 
electrode 2 and so on.
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studied. Nonetheless, the produced images clearly illustrate the advantage of simultaneous 
tissue fraction and electrode position recovery in the presence of electrode modelling errors.

Many methods for computing the Jacobian matrix with respect to electrode movement 
could have been used on the multi-frequency data. The presented method for correction of 
inaccurate electrode modelling had the advantage over previous approaches, that the mesh 
geometry did not have to be altered. This allowed for the iterative recovery of movements 
of several millimetres on fine meshes, which is not possible with traditional differential 
approaches for electrode movement recovery (Soleimani et al 2006). Furthermore, the imple-
mentation based on the Fréchet derivative (Dardé et al 2012) used here has been shown to be 
fast and memory efficient (Jehl et al 2015b).

5. Conclusion

Simultaneous iterative electrode position correction with the fraction reconstruction method 
using spectral constraints was applied to a numerical head phantom with realistic conductivi-
ties. Realistic noise was added to the simulated voltages to investigate the robustness of the 
proposed method. The results show that

 (i) the simultaneous recovery of tissue volume fractions and electrode position errors 
removed most image artefacts caused by inaccurately modelled electrodes.

 (ii) while haemorrhagic strokes could be reconstructed with electrode position errors up to 
2 mm standard deviation in both surface dimensions, the reconstruction of ischaemic 
strokes was less reliable from electrode movements of 1 mm onwards.

Further work is required to understand why ischaemic stroke reconstructions were less 
reliable with the proposed method, and to correct for it. Additionally, it has so far not been 
studied how stable non-linear multi-frequency reconstruction methods are in the presence of 
geometric modelling errors, such as skull shape. We plan to validate the presented results in 
tank experiments with 3D printed head shaped tanks and skull (Jehl et al 2015b) and recom-
mend the presented algorithm for any planned human studies.
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