
Medical Image Analysis 35 (2017) 83–100 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

Autoadaptive motion modelling for MR-based respiratory motion 

estimation 

Christian F. Baumgartner a , ∗, Christoph Kolbitsch 

a , Jamie R. McClelland 

b , Daniel Rueckert c , 
Andrew P. King 

a 

a Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK 
b Centre for Medical Image Computing, University College London, London, UK 
c Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK 

a r t i c l e i n f o 

Article history: 

Received 1 June 2015 

Revised 22 April 2016 

Accepted 7 June 2016 

Available online 9 June 2016 

Keywords: 

MR-guided interventions 

Respiratory motion correction 

Motion modelling 

Manifold learning 

Manifold alignment 

a b s t r a c t 

Respiratory motion poses significant challenges in image-guided interventions. In emerging treatments 

such as MR-guided HIFU or MR-guided radiotherapy, it may cause significant misalignments between 

interventional road maps obtained pre-procedure and the anatomy during the treatment, and may affect 

intra-procedural imaging such as MR-thermometry. Patient specific respiratory motion models provide 

a solution to this problem. They establish a correspondence between the patient motion and simpler 

surrogate data which can be acquired easily during the treatment. Patient motion can then be estimated 

during the treatment by acquiring only the simpler surrogate data. 

In the majority of classical motion modelling approaches once the correspondence between the surrogate 

data and the patient motion is established it cannot be changed unless the model is recalibrated. How- 

ever, breathing patterns are known to significantly change in the time frame of MR-guided interventions. 

Thus, the classical motion modelling approach may yield inaccurate motion estimations when the rela- 

tion between the motion and the surrogate data changes over the duration of the treatment and frequent 

recalibration may not be feasible. 

We propose a novel methodology for motion modelling which has the ability to automatically adapt to 

new breathing patterns. This is achieved by choosing the surrogate data in such a way that it can be used 

to estimate the current motion in 3D as well as to update the motion model. In particular, in this work, 

we use 2D MR slices from different slice positions to build as well as to apply the motion model. We 

implemented such an autoadaptive motion model by extending our previous work on manifold alignment. 

We demonstrate a proof-of-principle of the proposed technique on cardiac gated data of the thorax and 

evaluate its adaptive behaviour on realistic synthetic data containing two breathing types generated from 

6 volunteers, and real data from 4 volunteers. On synthetic data the autoadaptive motion model yielded 

21.45% more accurate motion estimations compared to a non-adaptive motion model 10 min after a 

change in breathing pattern. On real data we demonstrated the method’s ability to maintain motion esti- 

mation accuracy despite a drift in the respiratory baseline. Due to the cardiac gating of the imaging data, 

the method is currently limited to one update per heart beat and the calibration requires approximately 

12 min of scanning. Furthermore, the method has a prediction latency of 800 ms. These limitations may 

be overcome in future work by altering the acquisition protocol. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

Recent advances in magnetic resonance (MR) compatible ma-

erials and the development of fast parallel computational tech-
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iques now allow an increasing range of interventions to be guided

y MR images in real-time. MR-guided high intensity focused ul-

rasound (MRg-HIFU) has been successfully applied to treat a range

f conditions such as uterine fibroids, and prostate and liver can-

ers in patients where invasive therapy is not possible ( Tempany

t al., 2011; Foley et al., 2013 ). In MRg-HIFU, targets are identi-

ed in MR images and a computer controlled transducer is moved
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to sequentially ablate them. Furthermore, MR thermometry can

be used to monitor temperature elevation of the tissue and MR

imaging can be used after the ablation to evaluate the success of

the treatment ( Hynynen et al., 1996 ). Similarly, the recent devel-

opment of integrated MR linear accelerators shows great potential

for accurate guidance of radiotherapy (RT) treatments ( Raaymakers

et al., 2009 ) using MR imaging. In MRg-RT, magnetic resonance

imaging is not only used to accurately identify and track the target

but also to prevent the irradiation of healthy tissue in organs at

risk ( Crijns et al., 2012 ). 

For treatments targeting organs affected by breathing motion

such as the lungs, the liver, the kidneys or the heart, accurate

knowledge of the respiratory motion is essential. Apart from ensur-

ing the irradiation or ablation of the intended target and sparing

of the organs at risk, knowledge of respiratory motion is also cru-

cial to correct for motion-induced image-artefacts and for adjusting

accumulated dose calculations such as temperature maps in MRg-

HIFU or dose simulations in MRg-RT ( De Senneville et al., 2015 ).

Respiratory motion correction is complicated by the fact that

breathing, though approximately periodic, may exhibit large vari-

ations within a single breathing cycle (intra-cycle variation or hys-

teresis) or across breathing cycles (inter-cycle variation) ( Blackall

et al., 2006; Kini et al., 2003; McClelland et al., 2011 ). For ex-

ample, abdominal organs are known to undergo continuous drifts

for long treatment durations ( von Siebenthal et al., 2007; Arnold

et al., 2011 ) and the motion observed in the lungs may significantly

change over the duration of a treatment session due to changing

breathing patterns ( Blackall et al., 2006; King et al., 2009; Kini

et al., 2003 ). 

Respiratory motion correction can be roughly divided into two

classes of techniques: Tracking methods, which attempt to track a

single (or a few) targets, such as tumours or fibroids, and motion

estimation techniques which aim to provide dense motion fields

for an entire region of interest. Both can be achieved in real-time

by either directly measuring the motion in the images, or indi-

rectly , using respiratory motion modelling. In this paper, we pro-

vide the proof-of-principle for a novel autoadaptive motion mod-

elling framework for MR-guided interventions which can provide

dense three-dimensional motion estimates in the entire region of

interest while automatically adapting to changes in respiratory pat-

terns such as drift. 

The foremost objective in image guided treatments is to keep

the radiation beam or transducer aligned with the moving target.

Methods to track targets in real-time using MR imaging informa-

tion have been proposed by a number of authors for MRg-HIFU

( Ries et al., 2010; Zachiu et al., 2015 ) and MRg-RT ( Crijns et al.,

2012; Brix et al., 2014 ). Some tracking solutions not requiring any

imaging data have been proposed as well ( Sawant et al., 2009 ).

While tracking has been used for estimating the motion of single

targets, many interventions may benefit from richer motion infor-

mation. In radiotherapy it is desirable to model the motion of the

organs at risk as well as the target in order to avoid their irradi-

ation ( Crijns et al., 2012 ). In MRg-HIFU, MR thermometry is used

to monitor the temperature of the sonicated tissue in order to de-

tect when a lethal thermal dose has been delivered ( Zachiu et al.,

2015 ). Respiratory motion may distort the temperature measure-

ments and ideally the entire organ’s motion should be densely esti-

mated in three dimensions to correct for this motion ( Zachiu et al.,

2015; Rijkhorst et al., 2011; Ries et al., 2010; Arnold et al., 2011 ).

MR is a good candidate to provide dense motion estimates dur-

ing such treatments and has been used to this end. For example,

( Ries et al., 2010 ) demonstrated a combination of 2D MR in-plane

imaging and 1D through-plane tracking using an MR pencil beam

navigator. Zachiu et al. (2015) proposed 2D MR imaging with in-

termittent adjustment using 3D MR imaging. De Senneville et al.

(2015) proposed a general real-time 2D motion estimation tech-
ique for MRg-HIFU and MRg-RT. Current MR technology does not

llow imaging in 3D directly with sufficient temporal and spatial

esolution. It has been shown, however, that high-quality 3D mo-

ion estimations of the whole thorax can be obtained making use

f sequentially acquired 2D MR data from different imaging planes

 Würslin et al., 2013; Dikaios et al., 2012; von Siebenthal et al.,

007; Baumgartner et al., 2014a ). 

.1. Motion modelling 

Motion models offer a solution for indirect estimation of res-

iratory motion. A motion model is built by relating the patient-

pecific breathing motion to a simpler respiratory surrogate signal

efore the treatment. During the treatment, motion estimates can

e obtained using only the surrogate signal. Patient-specific motion

odels have been proposed extensively for motion correction in

adiotherapy ( Seppenwoolde et al., 2002; Schweikard et al., 20 0 0;

005; Hoogeman et al., 2009; Cho et al., 2010; Isaksson et al.,

005 ) and to a lesser degree also in MR-guided HIFU ( Rijkhorst

t al., 2010; 2011 ). A comprehensive review of respiratory motion

odelling can be found in McClelland et al. (2013) . 

Traditionally, motion models consist of three distinct stages as

llustrated in Fig. 1 a: before the treatment, in a model calibration

tep, typically imaging data are acquired along with some sim-

ler surrogate data and image registration techniques are used to

xtract motion estimates from the imaging data. Surrogate data

re often one-dimensional signals derived, for example, by tracking

nfra-red markers on the patient’s chest ( Schweikard et al., 20 0 0 )

r from a spirometer ( Low et al., 2005 ). However, due to increas-

ng requirements for precise motion estimation, recently there has

een a trend in motion modelling towards the use of more com-

lex surrogate signals, which offer the chance to capture more res-

iratory motion variabilities. Examples include chest surface data

 Fassi et al., 2014 ), real-time ultrasound images ( Peressutti et al.,

013; 2012 ), or real-time 2D MR slices ( King et al., 2012 ). Next, in

he model formation stage, the motion estimates are related to the

urrogate data using an appropriate correspondence model. Then,

uring the treatment (i.e. in the application phase ), only the sur-

ogate data are continually acquired and motion estimates are de-

ived by using them as input to the correspondence model. 

An underlying assumption of the majority of traditional motion

odels is that the nature of the relationship between the surrogate

ata and the motion (i.e. the correspondence model) remains con-

tant. For long treatment durations it is possible for the breathing

otion to undergo significant changes, for example due to vary-

ng degrees of relaxation of the patient during the procedure, be-

ause of pain or discomfort experienced ( King et al., 2012; Hooge-

an et al., 2009 ) or because of organ drift ( Arnold et al., 2011; von

iebenthal et al., 2007 ). In the traditional motion model paradigm

he model is formed before the treatment and has no ability to

dapt to changing breathing patterns. 

In response to this problem, a number of papers have proposed

daptive motion modelling techniques. A common approach is to

orrect for changing breathing patterns through occasional intra-

ractional imaging. For example, in stereotactic x-ray guided ra-

iotherapy systems, the 3D target location can be intermittently

btained every 1–6 min using intra-fractional imaging along with

 surrogate signal value ( Seppenwoolde et al., 2007; Hoogeman

t al., 2009 ). This data can then be used to recalibrate the model

n a first-in-first-out basis ( Schweikard et al., 20 0 0; Cho et al.,

010 ). Isaksson et al. (2005) employed an adaptive motion model

ased on neural networks in which the model didn’t require recal-

bration. Instead, the weights of the neural network were adjusted

ased on frequent intra-fractional x-ray imaging. Some radiother-

py systems use the distance between the actual tumour position

nd the position predicted by the system as a quality measure.
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(a) Traditional subject-specific motion model

(b) Our proposed autoadaptive motion model
Fig. 1. Schematic representation of (a) the traditional subject-specific motion model paradigm and (b) our autoadaptive subject-specific motion model allowing for continu- 

ous adaptivity to changing breathing patterns. The red arrow indicates our proposed change to the motion model paradigm allowing for new surrogate/calibration data to be 

incorporated into the motion model without interrupting the application phase. In this new paradigm the model is initially formed pre-treatment, but is updated continually 

during the treatment. 
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hen this distance goes above a given threshold, the model ap-

lication phase is interrupted and the current motion model is

iscarded, new calibration and surrogate data are acquired, and

 new motion model is built ( Hoogeman et al., 2009 ). A similar

pproach was used by King et al. (2012) for motion correction

n a simultaneous PET/MR system. An adaptive motion modelling

pproach not requiring intra-fractional imaging was proposed by

assi et al. (2014) , who accounted for respiratory baseline drift in

-ray guided radiotherapy by registering a chest surface mesh ob-

ained during the treatment to the chest surface extracted from the

D CT planning scan. To the best of our knowledge, no adaptive

otion modelling techniques have been proposed for MR-guided

reatments. 

In this paper, we propose a novel autoadaptive motion model

or MR-guided interventions, which is automatically updated each

ime surrogate data is acquired. This is achieved by altering the

raditional motion model paradigm as shown in Fig. 1 b. In our pro-

osed framework, both the calibration as well as the surrogate data

re 2D MR slices acquired from variable imaging planes. Since the

odel calibration and surrogate data are of the same type, the sur-

ogate data acquired in the application phase can be fed back into

he model formation phase as the treatment goes on, allowing a

ontinuous updating of the model. In Fig. 1 b this update process

s indicated by the red feedback arrow. This allows the model to

aintain motion estimation accuracy despite gradual changes in
he breathing motion and to adapt to previously unseen breath-

ng patterns. Such a framework has potential application in all MR-

uided interventions, in particular in MRg-RT and MRg-HIFU. Note

hat motion estimates derived from 2D MR data have the potential

o more accurately reflect (in-plane) motion than 3D MR data due

o their superior image quality ( Würslin et al., 2013; Dikaios et al.,

012; Baumgartner et al., 2014a ). In the proposed framework, the

unction of the motion model is to relate 2D MR motion surrogates

o dense 3D motion estimates. 

We demonstrate how such a motion model can be implemented

ased on the concepts of manifold learning (ML) and manifold

lignment (MA). 

.2. Manifold learning and manifold alignment 

Time series of medical imaging data, such as the 2D motion

elds which form the calibration and update data in the pro-

osed motion model, are often inherently high-dimensional. In re-

ent years manifold learning was shown to be useful in the anal-

sis of motion in such data, either directly on image intensities

 Wachinger et al., 2011; Fischer et al., 2014 ) or on motion fields

 Souvenir et al., 2006 ), making use of the fact that similar points

n the low-dimensional space correspond to similar motion states.

pplications include the extraction of respiratory gating navigators
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Table 1 

List of frequently used mathematical notations in this paper. 

Variable Size Description 

b i p − The i -th 2D MR image acquired at slice position p . 

c i p − 2D motion field derived by registering b i p to an exhale 

slice. 

D 1 The dimensionality of the input data, i.e. the number 

of pixels in one slice (in Section 2 ), or the total 

number of motion components (in Section 3 ). 

d 1 The dimensionality to which the data gets reduced in 

the manifold alignment step. 

τ p 1 Total number of slices acquired from slice position p at 

a specific time of the application phase. 

x i p D × 1 Vectorised image b i p (in Section 2 ), or vectorised 

motion field c i p (in Section 3 ). 

X p D × τ p Matrix containing τ p vectorised data points x i p . 

y i p d × 1 Low-dimensional point corresponding to x i p . 

Y p d × τ p Matrix containing τ p low-dimensional points. 

W p τ p × τ p Reconstruction weight matrix in LLE cost function (see 

Eq. (1) ). 

M p τ p × τ p Centred version of weight matrix W p . 

U pq τ p × τ q Similarity kernel matrix connecting data from slice 

positions p and q . 

S p − Sagittal slice position p . 

C − Coronal slice position. 

G(·, ·) − Groupwise embedding of data from two different slice 

positions. 
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from MR and ultrasound images ( Wachinger et al., 2011 ) and the

derivation of navigators from X-ray fluoroscopy images for motion

modelling in image guided minimally invasive surgeries ( Fischer

et al., 2014 ). 

Manifold alignment techniques establish correspondences be-

tween multiple related datasets, which are not directly comparable

in high/dimensional space, by aligning the low-dimensional man-

ifold structure. Such approaches allow the identification of simi-

lar data points in distinct datasets. Recently a number of works

in medical imaging have exploited the potential of such tech-

niques. For example, ( Bhatia et al., 2012 ) applied manifold align-

ment for the robust region-wise separation of cardiac and respi-

ratory motion from cardiac MR images. Georg et al. (2008) used

a basic manifold alignment approach for the gating of lung CT

volumes. 

In our previous work ( Baumgartner et al., 2013; 2014a ) we

developed the simultaneous groupwise manifold alignment (SGA)

technique on which this work is based. The technique was pro-

posed to relate partial image intensity information from coronal

high-resolution 2D MR slices based on the groupwise alignment

of manifolds derived from data acquired at the different slice posi-

tions. This allowed for accurate 4D MR reconstructions which could

be used to correct simultaneously acquired PET data for respiratory

motion. 

In this paper, we extend our previously proposed SGA tech-

nique to build an autoadaptive motion model from multiple 2D

motion fields derived from sagittal 2D MR slices acquired at dif-

ferent anatomical positions. These 2D motion fields can then be

combined to estimate 3D motion in the thorax. To allow this,

significant changes to the original SGA methodology were nec-

essary. (1) manifold alignment was performed on motion fields

rather than images; (2) the method was extended to use a com-

bination of coronal and sagittal slices; (3) in order to estimate

motion at points where the respiratory pattern is not sufficiently

sampled, a new interpolation scheme on the manifold was devel-

oped. The present work was presented with preliminary results in

Baumgartner et al. (2014b) . In this work we extend the methodol-

ogy by incorporating slices of different orientation into the model

and include more extensive evaluations on real and synthetic data.

The technique is evaluated for its feasibility in MR-guided inter-

ventions using real 20 min MR scans of healthy volunteers, and on

synthetic MR data with two different breathing types. 

2. Background 

In the following we will briefly review the necessary theory

to understand our previous work, as well as the extension of it

which will be introduced in Section 3 . Our goal in this work, as

well as in our previous works ( Baumgartner et al., 2013; 2014a ),

is to obtain correspondences between high-dimensional data ob-

tained from slices at different anatomical positions by finding cor-

respondences between their low-dimensional representations. In

Baumgartner et al. (2013 ; 2014a) the high-dimensional data were

2D MR slices. In this work, as well as in the preliminary version of

this work ( Baumgartner et al., 2014b ), they are motion fields de-

rived from such slices. In the next section, we will give an intro-

duction to locally linear embeddings (LLE) ( Roweis and Saul, 20 0 0 ),

which is the manifold learning technique used in this work, and

how it can be applied to data obtained from one slice position.

Next, we will discuss how correspondences in the low-dimensional

embedded space can be established for data obtained from two

slice positions ( Section 2.2 ). In Section 2.3 we will then show

how the concept can be extended to many slice positions. For an

overview of the mathematical notation used in the remainder of

this paper refer to Table 1 . 
.1. Manifold learning on one dataset 

LLE can be used to reduce the dimensionality of a high-

imensional imaging dataset X p ∈ R 

D ×τp . Such a dataset can be de-

ived by vectorising all τ p images b i p acquired at a single slice po-

ition p , or alternatively, by additionally deriving a motion field c i p
or each image and vectorising those. Each of the columns x i p ∈ R 

D 

f X p , can be thought of as a point in D dimensional space where

 is the number of pixels in the original image b i p , or the number

f motion components in c i p . 

In LLE, dimensionality reduction is accomplished by first form-

ng a k -nearest neighbour graph of the data based on the L 2 -

istance between the data points. The key assumption is that the

eighbourhood of each point and its nearest neighbours are on a

ocally linear patch of the manifold and that therefore each point

an be reconstructed as a linear combination of its nearest neigh-

ours. The optimal contributions of each point j to the reconstruc-

ion of i are given by a weight term w 

i j 
p . The matrix W p containing

ll the weights can be calculated in closed form as described in

oweis and Saul (20 0 0) . A d -dimensional embedding, where d �
 , preserving this locally linear structure is given by the Y p ∈ R 

d×τp 

inimising the following cost function: 

(Y p ) = 

∑ 

i 

|| y i p −
∑ 

j∈ η(i ) 

w 

i j 
p y 

j 
p || 2 = T r(Y p M p Y 

T 
p ) . (1)

ere η( i ) is the neighbourhood of the data point i, Tr ( · ) is the

race operator, and M p = (I − W p ) T (I − W p ) is the centred weight

atrix. This optimisation problem can be solved under the con-

traint that Y T p Y p = I by calculating the eigendecomposition of M p .

he embedding Y p is given by the eigenvectors corresponding to

he second smallest to d + 1 smallest eigenvalues of M ( Roweis and

aul, 20 0 0 ). 

.2. Simultaneous embedding of two datasets 

Separate datasets generated by the same mechanics, e.g. respi-

ation, will typically lie on similar manifolds, as is the case, for

xample, for two datasets X p and X q acquired from two different

natomical positions p and q . It has been shown by Wachinger

t al. (2011) that this holds for 2D MR data from neighbouring,
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Fig. 2. Graph sparsification of similarity kernel U pq . The two columns of circles in 

(a) and (b) represent all the data points acquired from the respective slice positions 

p and q . (a) shows a fully connected similarity kernel where all of the edges u i j 
pq ex- 

ist. (b) shows the sparsified similarity kernel where each x i p is connected to exactly 

one x j q and the sum over the remaining edge weights u i j 
pq is maximised. 
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s well as distant slice positions and for slice positions of differ-

nt orientations. This can be explained by the observation that the

anifold of data from each slice position is defined by the prin-

ipal modes of variation, which depend on the respiratory motion

ommon to all slice positions rather than the absolute appearance

f the slices. This knowledge can be used to identify corresponding

ata points from the two datasets. In our case this means finding

orresponding data acquired from different anatomical positions

ut with similar respiratory phases. Unfortunately, generally em-

eddings obtained from different datasets are not aligned in the

ow-dimensional space as they may vary due to flipping or ro-

ations of the eigenvectors, and slight variations in the manifold

tructure. One approach to find aligned manifold embeddings Y p ,

 q of two high-dimensional datasets is to embed them simultane-

usly. The cost function of LLE lends itself ideally to be extended

o two datasets. The problem of finding a simultaneous embedding

an be written as the following minimisation problem 

rgmin 

Y p ,Y q 

φ(Y p ) + φ(Y q ) + μ · ψ(Y p , Y q ) , (2)

here φ is the embedding error within the respective datasets p

nd q (intra-dataset cost functions) as given by Eq. (1) , and ψ is

he embedding error between the two datasets (inter-dataset cost

unction). This term ensures that corresponding points will be em-

edded close to each other. Note that typically no correspondences

etween the datasets are known a priori . Rather, corresponding

ata points must be identified at runtime. The parameter μ reg-

lates the influence of the inter-dataset cost function ψ on the

mbedding. 

The cost function ψ can be defined as follows 

(Y p , Y q ) = 

∑ 

i, j 

(
y i p − y j q 

)2 
u 

i j 
pq , (3)

here 

 

i j 
pq = K(x i p , x 

j 
q ) , 

s a (non-symmetric) similarity kernel of the form 

(x i p , x 
j 
q ) = exp 

( 

−ε(x i p , x 
j 
q ) 

2 

2 σ 2 

) 

. (4)

bove, ε( ·, ·) is a distance function which must be defined such

hat the kernel K ( ·, ·) will take large values for similar data points

nd small values for dissimilar data points. The similarity ker-

el can be written as a matrix U pq with high values connect-

ng similar images from slice positions p and q . In Baumgartner

t al. (2013) we used intensity-based distance of slices from neigh-

ouring positions p and q to define the distance function ε. In

aumgartner et al. (2014a) we improved the method by correct-

ng this distance measure for deformations that may occur be-

ween slice positions using non-rigid registration. As we will show

n Section 3.2 , in this work we used a similar kernel to the one

escribed in Baumgartner et al. (2014a) for neighbouring slices of

he same orientation, and a novel kernel based on motion similar-

ties in the slice overlap for slices with different orientations (see

ection 3.2.2 ). 

Next, the similarity kernel U pq is sparsified to increase the ro-

ustness of the method. We use the Hungarian algorithm ( Kuhn,

955 ) to identify the optimal one-to-one mapping between the

wo datasets. That is, the mapping where each data point from

ataset X p is connected to exactly one data point from X q and the

um of the remaining weights u 
i j 
pq is maximised. This is illustrated

n Fig. 2 . We found in Baumgartner et al. (2013) that this kind of

parsification is more robust than a simple nearest neighbour spar-

ification. 

Using the sparsified kernel the problem in Eq. (2) can then eas-

ly be rewritten in matrix form and can be solved as an eigenvalue
roblem analogous to the original LLE algorithm as is described in

aumgartner et al. (2013 ; 2014a) . 

.3. Embedding data from many slice positions 

In our previous work we were interested in simultaneously em-

edding not only two but up to 40 datasets, i.e. the number of

lice positions from which our slice-by-slice data originated. It is

ossible to augment the minimisation problem in Eq. (2) to an ar-

itrary number of datasets, however, it is not trivial to define the

imilarity kernel for non-neighbouring slice positions and leaving

hese kernels undefined leads to an unstable optimisation problem

 Baumgartner et al., 2013 ). 

In Baumgartner et al. (2013 ; 2014a) we proposed to embed the

ata in overlapping groups of two consisting of data from neigh-

ouring slice positions, which is a much more manageable prob-

em. In order to relate the groups to each other they are chosen

o that they share some data. In particular, data from each slice

osition appears in two different groups. For example, one group

ay contain data from slice positions 7 and 8, and another data

rom slice positions 8 and 9. The aligned embeddings of the data

athered from slice position 7 can then be related to the embed-

ings from slice position 9 by means of the shared data from slice

osition 8. 

. Materials and methods 

Simultaneous groupwise manifold alignment was originally pro-

osed for coronal input slices, since the anatomy changes less from

lice position to slice position in this plane. In the motion mod-

lling context, however, it is essential that the input data captures

s much of the motion as possible. It is well known that respi-

atory motion is largest in the superior-inferior (S-I) and anterior-

osterior (A-P) directions ( Seppenwoolde et al., 2002 ). Therefore,

e focused on sagittal input slices in this work. Unfortunately,

GA as described in the previous section is not robust to sagit-

al input slices because respiratory information often gets lost

hile propagating from group to group through the body centre,

here anatomy changes rapidly from slice position to slice posi-

ion. Therefore, here we extend the technique to additionally incor-

orate data acquired from a single coronal slice position to aid this

ransition through the body centre. Note that the preliminary ver-

ion of this work ( Baumgartner et al., 2014b ) included only sagittal

lices. 

In the following we will describe our proposed method for au-

oadaptive motion modelling following the three motion modelling

tages outlined in the introduction. We first show how we acquire

agittal and coronal input slices and derive 2D motion estimates

rom them to train the model. Next, we show how SGA can be ex-

ended to use motion fields, rather than images, and how different

lice orientations are incorporated into the model. Lastly, we show

ow the model can be updated during a treatment in the applica-

ion phase, and how this leads to continuous adaptivity. 
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Fig. 3. Schematic of group connections through simultaneous manifold embeddings. Motion fields from neighbouring and orthogonal slices can be embedded simultaneously 

using appropriate similarity kernels leading to aligned embeddings. Two close-up views of aligned manifold embeddings, originating from a dataset with 50 motion fields 

per slice position, are shown on the right hand side. 
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3.1. Calibration scan 

The image acquisition scheme of the present work is an exten-

sion of the acquisition scheme used in Baumgartner et al. (2014a) .

We divide the entire region of interest into adjacent sagittal slice

positions S 1 , . . . , S P each spanning 8 mm. Here, the region of inter-

est is the entire thorax including the liver and lungs. Additionally,

we also choose one coronal slice position C to help with the prop-

agation of respiratory information between distant sagittal slices.

A schematic of the slice positions is shown in Fig. 3 . The coro-

nal slice is chosen such that it coincides with the dome of the left

hemi-diaphragm in order to maximise the amount of captured res-

piratory motion. 

We acquire 2D images b i p from these slice positions in a slice-

by-slice fashion, iterating through the slice positions, first the

sagittals then the coronal, until each slice position is covered τ p 

times. In order to isolate the respiratory motion, in this study, we

acquire only one slice per heart beat at systole. However, in prin-

ciple, similar data could also be acquired without cardiac gating

which would significantly reduce overall acquisition times. The ac-

quisitions were carried out on a Philips Achieva 3T MR scanner

using a T1-weighted gradient echo sequence with an acquired in-

plane image resolution of 1.4 × 1.4 mm 

2 , a slice thickness of 8 mm,

repetition and echo times (TR and TE) of 3.1 and 1.9 ms, a flip an-

gle (FA) of 30 degrees, and a SENSE-factor of 2. The field of view

covering the entire thorax was 400 × 370 mm 

2 , and each slice

took around 180 ms to acquire. To cover the entire thorax typically

around 30 sagittal slice positions were needed. Additionally, we ac-

quired exhale slices b (exh ) 
p using the same slice-by-slice protocol in

a scan consisting of two consecutive breath holds. The volunteers

were instructed to try and reproduce the same exhale position as

best as they could. Lastly, we acquired a 1D pencil beam navigator

immediately before each dynamic image solely for the purpose of

validating our method. 

In the next step we derive 2D motion fields c i p for each slice

position by registering each of the τ p 2D images b i p to the corre-

sponding slice b (exh ) 
p from the exhale breath hold image. We used

the NiftyReg implementation of a non-rigid B-spline registration

algorithm with 3 hierarchy levels, a final grid spacing of 15 mm in

each direction and no bending energy penalty term ( Modat et al.,

2010 ). The vectorised motion fields c i p derived from the slice posi-

tions S p and C, respectively, form the datasets X ( p, sag ) and X ( cor ) . 

 

.2. Motion model formation 

We propose that a groupwise embedding of all the motion data

cquired during the calibration phase can be viewed as a motion

odel as it contains all respiratory information collected during

he calibration and can be applied using new 2D motion informa-

ion, as will be explained in Section 3.3 . Thus, in order to form the

otion model we perform an embedding of all the sagittal and

oronal slices acquired during the calibration phase in groups of

wo as shown in Figs. 3 and 5 . The embeddings can be performed

s described in Sections 2.2 and 2.3 . To embed the motion data

erived from sagittal and coronal motion fields we need to intro-

uce two significant methodological novelties. First, we need new

imilarity kernels of the form described in Eq. (4) with which mo-

ion fields of slices with the same as well as slices with different

rientations can be compared. In particular, we need to define ap-

ropriate distance functions ε( ·, ·) for both these cases. Secondly,

e need a new propagation scheme which allows respiratory in-

ormation to propagate across the body centre. 

.2.1. Distance functions for neighbouring slices of the same 

rientation 

We base our choice for neighbouring sagittal motion data on

he robust distance measure we proposed in Baumgartner et al.

2014a) for coronal images and adapt it to the scenario of mo-

ion fields. For two neighbouring slice positions S p and S q the dis-

ance of data points x i 
(p,sag) 

and x 
j 
(q,sag) 

is assessed based on the

 2 -distance of the corresponding motion fields c i 
(p,sag) 

and c 
j 
(q,sag) 

.

n order to account for the changes in anatomy between sagittal

lices we transform one of the motion fields into the coordinate

ystem of the other using transformations T q �→ p , T p �→ q which we

btain by registering the breath hold slices b (exh ) 
(p,sag) 

to b (exh ) 
(q,sag) 

, and

ice versa. As is discussed in more depth in Baumgartner et al.

2014a) , transporting motion fields to the new coordinate system

s achieved using the method proposed by Rao et al. (2002) . To in-

rease robustness we average the results of the comparisons in the

paces of slice position S p and S q . The final distance measure is

efined as 

neighb. (x i (p,sag) , x 
j 

(q,sag) 
) = 

1 

2 

L 2 (c i (q,sag) , T p�→ q (c j 
(p,sag) 

)) 

+ 

1 L 2 (c i (p,sag) , T q �→ p (c j 
(q,sag) 

)) . (5)

2 
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(a) Intersection of two slices (b) Motion along the intersection

Fig. 4. Derivation of similarity kernel based on motion in slice overlap. (a) Illustration of the overlap of two orthogonal slices, (b) S-I motion components derived from the 

overlapping area from a coronal (left) and sagittal (right) slice position. We show two possible S-I motion components originating from the sagittal slice: One that is similar 

to the one derived from the coronal slice (blue) and hence corresponds to a similar motion state, and one that is dissimilar (red) and consequently corresponds to a different 

motion state . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Schematic of the connection of slice positions by means of pairwise embedding and propagation of respiratory information through the manifolds. Assuming a new 

input slice at S 2 the neighbouring groups can be directly updated as indicated by the squares with yellow background. Then through a combination of nearest neighbour 

searches (dotted arrows) and group transitions based on shared data (solid arrows) low-dimensional coordinates, which correspond to the respiratory state, can be propagated 

to all remaining slice positions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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 possible source of errors are structures appearing and disappear-

ng from the plane due to through-plane motion. In Baumgartner

t al. (2014a) we showed that, despite such effects, including the

ransformations T q �→ p , T p �→ q significantly improves the matching ac-

uracy compared to the simple L 2 -distance between images. Since

he changes from sagittal slice position to sagittal slice position

an be even larger than for coronal slices, we expect this effect

o be more pronounced for slices of this orientation. Note that we

sed normalised cross correlation in the preliminary version of this

ork ( Baumgartner et al., 2014b ). However, in this work we found

he L 2 -distance to be a more robust measure in this context. 

.2.2. Distance function for slices with different orientation 

To define a distance function for two slices acquired from a

agittal slice position S p and a coronal slice position C we use the

act that such slices have an overlap and thus visualise the same

natomy in the overlapping region as is illustrated in the exam-

le in Fig. 4 a. Motion estimates derived from two such slices share

he S-I motion component along the slice overlap. If o i 
(p,sag) 

is the
-I motion in the overlapping region originating from the i -th ac-

uired sagittal slice at S p and o 
j 
(cor) 

the motion in the overlapping

egion from the j -th acquired coronal slice, we define the distance

unction as 

orthog. (x i (p,sag) , x 
j 

(cor) 
) = L 2 (o i (p,sag) , o 

j 

(cor) 
) . (6)

o illustrate this we show examples of S-I line motions

 

i 
(p,sag) 

, o 
j 
(cor) 

originating from sagittal and coronal slices in Fig. 4 b.

he left hand side shows S-I motion extracted along the intersec-

ion (highlighted in Fig. 4 a) from a coronal slice and the curves on

he right hand side show two possible S-I motions extracted from

he same region from the sagittal slice position. The blue curve

hows a good match in respiratory position of the sagittal to the

oronal slice and will lead to a low distance in Eq. (6) . Conversely,

he motion in the sagittal slice from which the red curve was ex-

racted has a higher distance to the coronal slice motion and thus

orresponds to a different respiratory state. 
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3.2.3. Group connectivity and propagation of respiratory information 

By using the distance measures defined in Eqs. (5) and (6) we

are able to simultaneously embed any two neighbouring sagittal

slice positions S p and S q and any overlapping sagittal and coronal

slice positions S p and C. This is achieved by converting the dis-

tances into similarities using Eq. (4) and then solving the general

optimisation in Eq. (2) to obtain an embedding. 

Similar to our previous work this allows us to embed data from

all acquired slice positions in overlapping groups of two. In this

work, we again connect all neighbouring sagittal slice positions by

embedding them in overlapping groups. However, in addition, we

align the data from each sagittal slice position together with the

data from the coronal slice position. This is illustrated in Fig. 3 .

By embedding the data in this way, the 2D motion fields from all

slice positions are embedded in three groups, with the exception

of S 1 and S L which don’t have a left-hand or right-hand neighbour,

respectively. For example, data from slice position S 3 is embedded

in the groups G(S 2 , S 3 ) , G(S 3 , S 4 ) and G(S 3 , C) . 

Note that the data within each group are aligned, as is illus-

trated by the close-up views of G(S 1 , C) and G(S 2 , S 3 ) in Fig. 3 . 

As opposed to our earlier works ( Baumgartner et al., 2014a;

2013 ) there now no longer is just one path from each slice position

to each other slice position. Rather, the different slice positions are

now connected by a network of groups as is illustrated in Fig. 5 . 

This is a crucial element of our proposed technique which

allows propagation of respiratory information in the form of

low-dimensional embedded coordinates from slice position to slice

position without having to go through difficult areas such as the

body centre where there are larger anatomical differences between

adjacent slices. 

In the following section we will outline how low-dimensional

coordinates obtained from a 2D input motion field can be propa-

gated from slice position to slice position. 

3.3. Model updating and adaptivity 

After the calibration scan and model formation phase the model

is ready to be applied. During the application phase slices can

be acquired in the same slice-by-slice fashion as described in

Section 3.1 . That means each input image is again acquired at a

different slice position and can have sagittal or coronal orientation.

From each of these slices we can derive a new 2D motion es-

timate, embed this motion estimate in the groups containing data

from this slice position and reconstruct a pseudo 3D motion esti-

mate by looking up corresponding 2D motions from all other slice

positions. Note that the resulting 3D motion fields will lack the

left-right (L-R) motion component. The new 2D motion, as well as

being used as the surrogate input to the motion model, is retained

in the manifold embeddings of the appropriate groups. This leads

to the desired autoadaptivity. Each of these steps will be explained

in detail below. We will illustrate the process using the example

shown in Fig. 5 . 

3.3.1. Obtaining a 2D update motion estimate 

In a first step, the most recently acquired image b (new ) 
p is regis-

tered in 2D to the corresponding breath hold slice b (exh ) 
p in order

to form the current update motion field c (new ) 
p . That is, the mo-

tion field c (new ) 
p obtained in this way acts as the surrogate data for

the motion model application. We used the same registration pa-

rameters as in the initial calibration (see Section 3.1 ). On a work-

station with 8 cores clocked at 2.7 GHz this operation took around

500 ms. In the example in Fig. 5 , we assumed that the newest slice

was acquired at slice position S 2 , which is highlighted in yellow.

Note that only the registrations from b (new ) 
p to b (exh ) 

p have to be per-

formed during the application phase. The registrations across slice
ositions (i.e. b (exh ) 
p to b (exh ) 

q ), which are required for the registra-

ion based similarity kernel described in Section 3.2.1 , only need

o be performed once during the model formation. 

.3.2. Estimating current 3D motion 

In order to estimate 3D motion from partial motion informa-

ion provided by the single input 2D motion field c (new ) 
p , the mo-

ion from the newly acquired slice must be related to that from

ll other slice positions. First, all groups which contain data from

he slice position at which the new slice was acquired must be

ecalculated. If, as in our example, the current update slice was

cquired at slice position S 2 , the groups G(S 1 , S 2 ) , G(S 2 , S 3 ) and

(S 2 , C) must be re-evaluated (see Figs. 3 and 5 ). To achieve this

he dataset X 2 is simply augmented by the new entry and the re-

pective embeddings are recalculated. Updating just a few groups

s relatively fast and on average took fewer than 100 ms in our

ingle thread MATLAB implementation. 

As is shown in Fig. 5 , the new motion field now has a corre-

ponding low-dimensional point in each of the low-dimensional

mbeddings which include dataset X 2 . These points are highlighted

y squares with yellow backgrounds in Fig. 5 . The coordinates

f these low-dimensional embedded points are propagated from

roup to group following the shortest path, i.e. using the path re-

uiring the fewest group transitions. This is done by making use

f the fact that the groups share datasets, and that the datasets

ithin a group are aligned. This effectively means that neighbour-

ng slices are updated through the sagittal-to-sagittal groups and

urther away sagittal slice positions are connected through the

oronal slice. Other methods for choosing the update paths taking

nto account the quality of the embedding were also investigated

nd may lead to small improvements. However, in this work for

implicity we confine our analysis to the shortest path method. 

Following our example, first the nearest neighbours of low-

imensional points corresponding to data from S 1 , S 3 and C are

ound in the respective groups. The nearest neighbour operation

s indicated by the dotted arrows in Fig. 5 and the nearest points

re indicated by circles. The high-dimensional motion fields corre-

ponding to the circled points in G(S 1 , S 2 ) and G(S 2 , S 3 ) are at the

ame respiratory position as the input slice. Note that in the ex-

mple in Fig. 5 , only one nearest neighbour is shown per slice po-

ition. In reality, κ nearest neighbours are identified at this stage

nd the corresponding 2D motion fields are interpolated. 

Next, motion fields from all other sagittal slice positions are

hosen by using the coronal slice. The nearest low-dimensional

eighbour of the input point in group G(S 2 , C) is then transported

o all other groups containing the coronal slice because that same

oint exists in all other groups. Note that only the closest neigh-

our is transported across groups. From there the corresponding

oints from the sagittal motion datasets are again found by look-

ng up the κ nearest neighbours. 

At the end of this process, κ 2D motion fields have been iden-

ified for each slice position. In the following section, it will be de-

cribed how these 2D motion fields can be combined to arrive at

n interpolated motion estimate for each slice position, and how

hese partial 2D motion estimates can then be stacked into a full

seudo 3D motion field. 

.3.3. Interpolating motion fields on the manifold and 3D 

econstruction 

If the motion model has not yet fully sampled all the possible

otion states of the new breathing pattern, it is important that it

as the ability to interpolate between the motion states which are

lready there. 

In order to estimate the 2D motion field for a slice position,

nearest neighbours are identified for each slice position as de-

cribed in the previous section. The estimated motion field is then
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Fig. 6. Close-up view of the right-hand side of group G(S 2 , S 3 ) in Fig. 5 . Here p = 

S 2 and q = S 3 . In addition to the nearest neighbour in the manifold embedding y i p 
(blue dot in solid circle), the figure shows the other κ − 1 nearest neighbours (blue 

dots in dotted circles), the original point belonging to the manifold of S 2 , i.e. y j q (red 

dot in yellow box), and the distances ω i from which the similarities s i are derived. 

The similarities are then used to form a weighted average of the corresponding 

motion fields. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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iven as a weighted average of the κ motion fields corresponding

o those nearest neighbours. That is, the estimated motion field for

 slice position q is given by 

 

(est) 
q = 

∑ 

i ∈ η(y j p ) 
s i c 

i 
q ∑ 

i ∈ η(y j p ) 
s i 

, (7) 

here η(y 
j 
p ) are the κ nearest neighbours on the manifold of slice

osition q to the low-dimensional point y 
j 
p from a slice position p

hich is sharing a group with q . Furthermore, s i = 

1 
ω i 

, where ω i is

istance of each neighbour to y 
j 
p in the manifold embedding. This

rocess is illustrated in the close-up of G(S 2 , S 3 ) which is shown

n Fig. 6 . Note that the distances ω i could also be used to estimate

ow well the manifold is sampled around a given motion state

hich could be used to derive a confidence measure for motion

stimation. However, this is not investigated further in this paper. 

The c (est) 
p for all sagittal slice positions S 1 , . . . , S L are then

tacked into a pseudo 3D motion field, i.e. a dense 3D motion field

acking the L-R component. This 3D motion estimate is the output

f the motion model given the 2D surrogate image b (new ) 
p as input.

ote that the coronal motion field from slice position C is currently

nly used for the propagation of manifold coordinates but not for

he reconstruction. This means the motion field from the coronal

lice position will not be part of the volume. 

.3.4. Updating the model and adaptivity 

The mechanism of embedding the new slice motion field into

he corresponding groups automatically updates the model. The

ew motion fields, after being used to stack a 3D motion field,

tay in the model and may be used themselves in the future for

ew motion estimations. 

In this manner, as the application phase goes on, more and

ore data is added to the model making it adaptive. In the case

f respiratory drift or changes in the breathing pattern the model

oes not lose its validity but rather incorporates these new motion

atterns. 

. Experiments and results 

In order to validate our proposed autoadaptive motion model

AAMM) technique we compared it to two versions of the method,

ach with one of our major novelties removed: AAMM without the

utoadaptivity, and AAMM without the incorporation of slices of

ifferent orientations in the groupwise manifold alignment step.

hat is, we compared the following techniques: 
• AAMM: The proposed autoadaptive motion modelling method

as described in Section 3 . 
• AAMM (no adapt.): The proposed method without the adaptiv-

ity. This means that after each update step we discarded the

most recently added 2D motion field again. 
• SGA: The proposed AAMM method but without using the coro-

nal input slices. Essentially, this is our simultaneous groupwise

manifold alignment technique ( Baumgartner et al., 2014a ) ex-

tended to use sagittal motion fields instead of coronal images.

The adaptivity was implemented in exactly the same way as for

AAMM with the sole exception that there were no coronal in-

put slices. 

The experiments in this section aim to answer the following

ain research questions: 

1. How does autoadaptivity affect the motion estimates after a

short calibration phase with a constant breathing pattern? 

2. Can the autoadaptive motion model adapt to a previously un-

seen breathing pattern? 

3. Can the method be applied using real MR data? 

In order to pursue these questions, we evaluate the three meth-

ds described above on synthetic data derived from 6 volunteer

cans and on real data acquired from 4 volunteers. In Experiment

 ( Section 4.2.2 ), synthetic data representing normal free breathing

s generated to answer the first research question. In Experiment 2

 Section 4.2.3 ), additionally, synthetic data which corresponds to a

eep breathing pattern is generated in order to investigate the sec-

nd of the above questions. Lastly, in Experiment 3, the algorithms

re evaluated on real volunteer scans acquired over 20 min. Us-

ng this data we seek to answer the third research question and

nvestigate the method’s feasibility in a real MR-guided scenario.

urthermore, it is investigated how the methods respond to natu-

al, gradual changes in the breathing pattern which may not have

een observed during model calibration and whether the proposed

echnique can maintain motion estimation accuracy in such cir-

umstances. 

Note that no comparison of AAMM to any other state-of-the-

rt motion modelling techniques was performed. All motion mod-

ls from the literature follow the traditional motion modelling

aradigm (see Fig. 1 ) and could not be built using the 2D slice-

y-slice data used in this work. Thus an evaluation on equal terms

as not feasible. 

.1. Parameter choices 

We chose the free parameters of the investigated techniques

ased on our previous experience with SGA. In Baumgartner et al.

2014a) we investigated the optimal values for the reduced dimen-

ionality d , and the weighting parameter μ (see Eq. (2) ). Further-

ore, we found that the method is not significantly affected by the

hoices of the kernel shape parameter σ (see Eq. (4) ) and the num-

er of nearest neighbours k used in the LLE cost function (see Eq.

1) ). Based those findings, here we chose the following parameters

or all of the methods: σ = 0 . 5 , μ = 0 . 25 , d = 3 . 

In Baumgartner et al. (2014a) we set the parameter k to half

he number of acquired slices per slice position. In this work, the

umber of 2D motion fields increased steadily as the model was

pplied. Consequently, we continually adapted the parameter k to

he current data size. That is, we set 

 = round(τp / 2) , 

here τ p is the number of 2D motion fields per slice position cur-

ently part of the respective groups. 
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(a) Derivation of ground truth motion fields

(b) Derivation of synthetic slice-by-slice data

Fig. 7. Generation of synthetic slice-by-slice data. (a) Generation of ground truth motion fields from a 3D low-resolution MR scan, (b) generation of synthetic slice-by-slice 

data by applying the ground truth motion to slice data acquired at end-exhale. The procedure was performed twice, once for normal breathing data and once for deep 

breathing data. 
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4.2. Experiments on synthetic data 

To quantitatively assess our method we generated very realis-

tic synthetic 2D motion fields containing two breathing types by

mimicking an actual slice-by-slice acquisition process as will be

described in Section 4.2.1 . We separately generated two synthetic

datasets with two different breathing types: normal breathing, and

deep breathing. The normal breathing data was used in Experiment

1 ( Section 4.2.2 ), and a combination of both breathing types was

used for Experiment 2 ( Section 4.2.3 ). 

4.2.1. Generation of realistic synthetic data 

The method to generate synthetic data in this work differs from

the approach we took in our previous works ( Baumgartner et al.,

2014b; 2013; 2014a ). Previously, we directly transformed a breath

hold volume using motion fields derived from low-resolution vol-

umes. However, using this method resulted in a dataset where all

slice positions have an identical distribution of respiratory states,

which is unrealistic and oversimplifies the problem of finding

matching motion states from different slice positions. Here, we

aimed to generate 50 synthetic slices per slice position, such that

no respiratory state was exactly repeated in the whole dataset. 

The underlying idea of our data generation framework was to

first build a simple linear subject specific motion model based

on two 1D navigators and 3D motion fields derived from short

dynamic low-resolution 3D MR scans under different breathing

modes. Note that the motion model used to generate the syn-

thetic data is distinct from the autoadaptive motion model we are
roposing in this work. By generating random samples of synthetic

avigator values and using them as input to the motion model

e obtained synthetic, but realistic, respiratory motion deforma-

ions. Note that the number of random samples that can be gen-

rated is not limited and can be freely chosen. The respiratory

otion deformations, on one hand, served as a ground truth for

ur experiments, and on the other hand, were used to generate

ynthetic slice-by-slice data by transforming a slice-by-slice breath

old scan. This approach had two main advantages: 1) more real-

stic sampling of respiratory positions, 2) even though only a 50 s

can was used as input, an arbitrary number of 2D slices could be

enerated using this generating framework. 

In the following we explain each step in detail. The generation

f the synthetic data is summarised in Fig. 7 . We split the descrip-

ion of the generation into two parts: 

1. The generation of realistic ground truth motion (see Fig. 7 a). 

2. The generation of synthetic slice-by-slice images and the

derivation of slice-by-slice motion fields from them (see

Fig. 7 b). 

For the generation of the ground truth data, in a first step we

cquired two sets of 50 3D low-resolution MR volumes on a Philips

chieva 3T MR system using a cardiac-triggered T1-weighted gra-

ient echo sequence with an acquired image resolution of 1.5 × 5

4.1 mm 

3 (S-I, A-P, L-R), an acquisition time of approximately 600

s per volume, a SENSE-factor of 2 in A-P and a SENSE-factor of

 in L-R, TR/TE = 3.3 ms/0.9 ms, a FA of 10 °, and a field of view

f 500 × 450 × 245 mm 

3 covering the entire thorax. The highest
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esolution was chosen in the S-I direction, where most respiratory

otion occurs ( Seppenwoolde et al., 2002 ). For the first set of im-

ges the volunteers were instructed to breathe freely (i.e. normal

reathing). For the second set of images we instructed the volun-

eers to take slow, deep breaths (i.e. deep breathing). 

From these two sets of volumes we generated two separate

ynthetic datasets; a normal breathing and a deep breathing one.

o this end we derived 50 B-spline grid displacements for each

reathing type by registering the volumes to an exhale volume

hosen manually from the set of normal breathing images. The reg-

stration was performed using NiftyReg ( Modat et al., 2010 ) using

he same parameters as for the real data, that is, 3 hierarchy lev-

ls, a final grid spacing of 15 mm in each direction and no bend-

ng energy penalty term. Furthermore, we extracted two series of

0 navigator signals s 1 , s 2 from the images by measuring the dis-

lacements of small rectangular regions on the dome of the left

emidiaphragm and the anterior chest wall ( Savill et al., 2011 ). We

hose two signals to increase the amount of respiratory variabil-

ties captured in the resulting model. Next, we formed a motion

odel for each breathing type by fitting a linear function of the

ime series of navigator signal values to the displacements of each

-spline grid point ( McClelland et al., 2013 ), i.e. 

 (t ) = α1 (t ) + α2 (t ) s 1 + α3 (t ) s 2 , (8)

here α1 , α2 , α3 are the parameters of the motion model and v ( t )

re the grid displacements at grid location t . 

In the next step, we fitted a 2D distribution to the naviga-

or signal values for each breathing mode using kernel density

stimation ( Rosenblatt et al., 1956 ). We then sampled S random

avigator value pairs ˜ s 1 , ̃  s 2 from this distribution. In the final syn-

hetic datasets each 2D slice was associated with a ground truth

D motion field. Hence, we needed to draw as many synthetic nav-

gator values as the total number of synthetic 2D slices in each

ataset. Since we aimed to generate 50 slices per slice position, we

eeded to sample S = L · 50 navigator values, where L is the total

umber of slice positions in the synthetic sequence. Next, by sub-

tituting the sampled values ˜ s 1 , ̃  s 2 into Eq. (8) we obtained S syn-

hetic B-spline transformations per breathing mode, which were

hen used for the generation of the ground truth 3D motion fields

s well as for the generation of the synthetic slice-by-slice data.

he ground truth motion fields were derived simply by interpolat-

ng a dense motion field using the voxel sizes of the slice-by-slice

reath hold volumes described below. 

In the following, we will describe how the synthetic slice-by-

lice data was generated (see Fig. 7 b). In addition to the low-

esolution volumes, we also acquired all sagittal slice positions and

ne coronal slice position in two exhale breath hold acquisitions

sing the same protocol as for the real data, which was described

n Section 3.1 . The breath hold data was then transformed using

he synthetic B-spline grid displacements. This led to a sequence of

 synthetic slice-by-slice volumes for each of the breathing types.

n the real acquisitions at each time point we can observe only

ne slice position, and hence, we sampled only one slice from each

f these volumes, and discarded the rest. However, note that each

lice was still associated with a 3D ground truth motion field (see

ig. 7 a). The sampled slices were chosen according to the acquisi-

ion order of the real data described in Section 3.1 . This sampled

ata constituted the synthetic slice-by-slice dataset and was the

ynthetic equivalent to the data obtained from a real slice-by-slice

can. As part of the model calibration phase, the slice-by-slice im-

ge data was then registered in 2D to the corresponding breath

old slices in order to obtain slice-by-slice 2D motion fields which

re the input to the proposed AAMM. The parameters used for the

egistration were the same as in Section 3.1 . 

Note that in order to make the acquisition of 3D dynamic vol-

mes feasible, compromises had to be made in the image quality.
he relatively low-resolutions in A-P and L-R directions, and the

igh SENSE factors led to artefacts and blurring of certain struc-

ures. Furthermore, the residual motion during the volume acqui-

ition may cause slight blurring, especially during deep breathing,

hich may in turn lead to underestimation of the motion close

o end-inhale. Nevertheless, we found that the simulated 2D im-

ges and motion fields reasonably approximated a real 2D MR

cquisition. 

.2.2. Experiment 1: synthetic training adaptivity 

In this section, we investigate the autoadaptive behaviour of our

roposed method in the presence of an approximately constant

reathing pattern. We quantitatively assessed the motion estima-

ion accuracy using the three compared models on the synthetic,

ormal-breathing slice-by-slice data which was generated using

he technique described in the previous section. Note that the re-

ulting data mimics an acquisition of around 20–25 min. However,

t can only reflect breathing patterns observed in the 50 s normal

reathing dynamic 3D MR scan. On average L-R motion accounted

or 15.85% of the total motion, and the A-P and S-I accounted for

0.44% and 63.71%, respectively. 

The motion estimation accuracy was quantitatively assessed us-

ng the three compared models on the synthetic slice-by-slice data.

ach of the three stages of motion modelling shown in Fig. 1 was

erformed, i.e. model calibration, model formation and model ap-

lication. The synthetic data generation can be seen as a synthetic

odel calibration stage yielding slice-by-slice motion fields. In the

ext step, we formed the model by embedding a subset of the syn-

hetic data using the three compared methods. We used 10 slices

rom each slice position for the initial formation of the model. Ob-

aining this amount of data in a real (cardiac-gated) scan would

ake approximately 5 min. We then applied the motion model by

ontinually adding all remaining slices one after the other, and

t each time step evaluated the accuracy of the estimated mo-

ion against the 3D ground truth motion field corresponding to the

ewest update slice. 

In Fig. 8 we show the resulting motion estimation error curves

or all of the volunteers during a synthetic application phase. The

volution of the errors is shown over the duration of the ap-

lication phase, which is the time it would take to acquire and

dd the remaining slices in a real scenario. Here we assumed

n acquisition frequency of one slice per second which corre-

ponds to a heart rate of 60 beats per minute. Each point in

ig. 8 represents the mean error obtained over a time interval of

 L update slices, i.e. the time taken to acquire each slice position

wice. 

In order to quantitatively evaluate the 3D motion estimation er-

ors and the adaptivity of the compared techniques, we split the

pplication phase into 5 time periods T 1 , . . . , T 5 , of equal length.

hose are highlighted in Fig. 8 . The mean 3D motion estimation

rrors in the corresponding time intervals using the three methods

or all 6 volunteers can be found in Table 1 in the supplementary

aterials. 

For all volunteers the AAMM technique significantly ( p < 0.01)

utperformed the other two methods in all of the intervals as can

e seen by comparing to the error curves shown in Fig. 8 and the

gures in Table 1 in the supplementary materials. Significance was

ssessed using a 1-tailed Wilcoxon signed rank test since the error

istributions were generally not symmetric. The estimation errors

or AAMM and its non-adaptive counterpart, AAMM (no adapt.),

ere similar in the beginning of the application phase, but as an-

icipated, as the application phase went on, the AAMM technique

ontinually improved its accuracy by incorporating more and more

ata into the model. On average the motion estimation of AAMM

mproved by 22.94% in T 5 with respect to its non-adaptive coun-

erpart. However, the method has already significantly adapted to



94 C.F. Baumgartner et al. / Medical Image Analysis 35 (2017) 83–100 

0 5 10 15 20

1.4

1.6

1.8

2

2.2

T
1

T
2

T
3

T
4

T
5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
) SGA

AAMM (no adapt.)
AAMM

0 5 10 15 20

1.4

1.6

1.8

2

2.2

2.4

2.6
T

1
T

2
T

3
T

4
T

5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
)

0 2 4 6 8 10 12 14 16

1

1.1

1.2

1.3

1.4

1.5

1.6

T
1

T
2

T
3

T
4

T
5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
)

0 2 4 6 8 10 12 14 16

1

1.2

1.4

1.6

1.8

2 T
1

T
2

T
3

T
4

T
5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
)

0 2 4 6 8 10 12 14 16

1.2

1.4

1.6

1.8

2
T

1
T

2
T

3
T

4
T

5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
)

0 2 4 6 8 10 12 14 16

1.4

1.6

1.8

2

2.2

2.4

T
1

T
2

T
3

T
4

T
5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
)

(a) Volunteer A (b) Volunteer B

(c) Volunteer C (d) Volunteer D

(e) Volunteer E (f) Volunteer F
Fig. 8. Results of synthetic validation on normal breathing data. The figure shows average 3D motion estimation errors in mm for all volunteers over the entire duration of 

the synthetic application phase. 
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the breathing pattern in T 2 , i.e. after between 3 and 7 min of

imaging, where motion estimations where on average 16.87% more

accurate than at the beginning of the adaptation phase. By vi-

sually inspecting the curves for AAMM in Fig. 8 it can be seen

that for many volunteers (in particular volunteers A, D, E, and F)

the error curves start to flatten approximately around the 7 min

mark. From this it can be concluded that a longer calibration

scan of around 12 min would be optimal, that is the 5 min that
ere used for calibration in this experiment plus 7 min worth

f data added during the application phase. Note that this time

ould be significantly reduced if a non-cardiac-gated sequence was

sed. 

The AAMM technique also consistently performed better than

GA, i.e. the version without coronal slices. This shows that the

ddition of data from a coronal slice position in the manifold align-

ent step improves the 3D motion estimation accuracy. 
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A fraction of the remaining errors was due to the fact that

he technique currently cannot estimate L-R motion. In this ex-

eriment on synthetic data the L-R motion was responsible for

n average 46.53% of the remaining motion estimation error of

he AAMM technique, or on average 0.63 mm. The motion estima-

ion error did not vary depending on the position of the surrogate

lice. 

Note that the error curves did not necessarily steadily decrease

ver the entire period of time, but exhibited some variations usu-

lly affecting all methods equally. See for example T 3 and T 4 of vol-

nteer C ( Fig. 8 c). The motion estimation error tends to be smaller

or exhale motion states than for inhale motion states, since the

otions involved are smaller. The variations in the error can be

xplained by differences in the frequency of occurrence of exhale

r inhale states. For example, there were a large amount of inhale

otion states around the 11 min mark of volunteer C, and a large

mount of exhale states around the 9 min mark. The variations in

he error between volunteers can be explained by the fact that the

ynthetic data was derived from real volunteers scans and some

olunteers naturally had larger or more complicated motion pat-

erns. 

.2.3. Experiment 2: synthetic adaptivity to a new breathing pattern 

In Experiment 1, we investigated how the autoadaptive tech-

ique behaves if more data of the same breathing pattern is added.

owever, the data used in that experiment does not reflect any

f the long term changes which may occur in real data, such as

rift or changes in breathing mode. In order to investigate if the

odel can adapt to previously unseen breathing patterns, for this

xperiment, a second synthetic dataset was generated using a 50 s

ynamic 3D MR scan performed under deep breathing as input as

as described in Section 4.2.1 . That scan was performed immedi-

tely after the 50 s free breathing scan, but the volunteers were

nstructed to take deep quiet breaths. For all volunteers this re-

ulted in synthetic data with significantly longer respiratory cycles

nd significantly larger displacements of the anatomy. The average

agnitude of the motion varied significantly between volunteers.

n average, L-R motion accounted for 17.59% of the total motion,

nd the A-P and S-I accounted for 23.76% and 58.65%, respectively.

In order to investigate how the examined methods would re-

ct to this new deep breathing pattern, in a first step the models

ere calibrated and formed by using all time points of the normal

reathing data. This means that the models had largely adapted to

he normal breathing pattern. Note that the state of the models

as the same as for the last time point of the AAMM technique in

ig. 8 . In a next step, the motion models were applied using the

ynthetic deep breathing data. That is, the 2D deep breathing mo-

ion fields were added to the model one-by-one, and the motion

stimation error was evaluated exactly as in Experiment 1. The re-

ulting error curves are shown in Fig. 9 , where each point corre-

ponds to an average over 2 L motion estimates. In order to assess

he performance of the models quantitatively, the errors for each

ubject were averaged within 5 time intervals of equal length. The

uantitative error figures for all volunteers are given in Table 2 in

he supplementary materials. 

As before the AAMM method significantly outperformed the

wo other techniques for all volunteers and for all time inter-

als. As expected, the estimation errors for AAMM and its non-

daptive counterpart AAMM (no adapt.) started at similar values

n T 1 , but AAMM led to improved motion estimates the more data

f the new breathing type was added to the model. Already in

ime-interval T 2 , AAMM led to significant average improvements

f 21.45% over AAMM (no adapt.) In T 5 , the average improvements

mounted to 27.10%. As before AAMM also performed significantly

etter than the SGA technique, which is due to the additional ro-
ustness added by the coronal slice employed in the AAMM tech-

ique. 

For all examined methods the motion estimation errors were

ignificantly larger for the deep breathing pattern than for the nor-

al breathing pattern in Experiment 1. This is due to the fact that

he deep breathing data contained much larger motion amplitudes.

he variations between the subjects are due to the fact that the ex-

ent of the deep breathing motion varied from volunteer to volun-

eer. The average error over all subjects due to the missing motion

stimates in the L-R direction amounted to 42.15% of the motion

stimation error of AAMM, or 2.28 mm. As before, the motion es-

imation error did not vary depending on the position of the sur-

ogate slice. 

.3. Experiment 3: adaptivity on real data 

For the experiments on real data we acquired real dynamic

lice-by-slice data and a slice-by-slice breath hold volume as de-

cribed in Section 3.1 . In order to validate the model we acquired

he data for the calibration and model formation, and for the

odel application in one long scan. Overall, we acquired each slice

osition 40 times which typically resulted in an approximately

0 min scan. Additionally, we acquired a 1D pencil beam navigator

ignal from the left hemi-diaphragm immediately before the acqui-

ition of each 2D slice, which we used to validate the accuracy of

he motion estimations, but not for any part of the motion mod-

lling framework. 

As in Experiment 1, we formed the three models on the motion

elds derived from the first 10 slices acquired from each slice po-

ition. During the model application phase we then added the re-

ainder of the slices one by one and estimated a 3D motion field

or each of the input slices. Note that according to our findings in

xperiment 1, ideally the model should be trained with 12 min of

lice-by-slice data, or 24 slices per slice position in order to guar-

ntee that the models have been trained to convergence. However,

ince this would not leave enough data to adequately study the

daptivity, we chose to use only the first 10 slices of each slice

osition and leave 30 slices per slice position to investigate the

ethods’ behaviour during the model application phase. However,

s a consequence we are underestimating the accuracy of the non-

daptive model AAMM (no adapt.). 

Because, for the real data, no ground truth motion was avail-

ble, we instead transformed the slice-by-slice breath hold volume

sing each estimated 3D motion field and extracted a 1D nav-

gator value from a rectangular region of interest on the dome

f the left hemi-diaphragm, i.e. approximately the same location

rom which the real pencil beam navigator was acquired. Note

hat for both the pencil beam navigator and the signal estimated

rom the reconstructed volumes, the displacements in millimetres

re known, however, the two signals are offset by an unknown

alue from each other. For visualisation of the navigator curves

n Fig. 11 , we corrected the curves estimated by AAMM and pen-

il beam navigator curves for this shift by subtracting the mean

f each from itself. For the quantitative evaluation, we chose to

eport the normalised cross correlation (NCC) between the sig-

als because this measure is invariant to such offsets. For per-

ect motion estimation the extracted navigator signal should be

trongly correlated with the pencil beam navigator. In reality, how-

ver, this correlation depends on the accuracy of the estimated 3D

otion. 

In order to quantitatively assess the adaptivity of the compared

ethods we measured the NCC of the estimated navigator sig-

al with the pencil beam navigator over fixed intervals. In Fig. 10

e show the progression of this correlation for all four volun-

eers. For a robust estimation of the NCC we chose intervals of



96 C.F. Baumgartner et al. / Medical Image Analysis 35 (2017) 83–100 

0 5 10 15 20 25

3.5

4

4.5

5

T
1

T
2

T
3

T
4

T
5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
)

0 5 10 15 20 25

5

5.5

6

6.5

7

7.5

8

8.5 T
1

T
2

T
3

T
4

T
5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
)

0 5 10 15 20

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
T

1
T

2
T

3
T

4
T

5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
)

SGA
AAMM (no adapt.)
AAMM

0 5 10 15 20

7

8

9

10

11

12

13
T

1
T

2
T

3
T

4
T

5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
)

0 5 10 15 20

4

4.5

5

5.5

6

6.5

7

7.5

8 T
1

T
2

T
3

T
4

T
5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
)

0 5 10 15 20

7

8

9

10

11

12

13

14 T
1

T
2

T
3

T
4

T
5

Time (minutes)

E
st

im
at

io
n 

er
ro

r 
(m

m
)

(a) Volunteer A (b) Volunteer B

(c) Volunteer C (d) Volunteer D

(e) Volunteer E (f) Volunteer F
Fig. 9. Average 3D motion estimation errors in mm for all volunteers over the entire duration of the synthetic application phase when the breathing type was changed to 

deep breathing. The entire interval shown contains only deep breathing. 
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twice the number of slice positions, i.e. 2 L , to calculate each error

point. 

As for the synthetic data we divided the entire application

phase into 5 larger time intervals T 1 , . . . , T 5 . Table 3 in the supple-

mental materials contains the NCC between the pencil beam navi-

gator and the retrospectively derived navigator signal for all volun-

teers over the entire duration of these periods. 
f  
AAMM outperformed the other two methods for most time in-

ervals. Furthermore, as for the synthetic data, it could again be ob-

erved that the motion estimation accuracy, as measured by NCC,

mproved over the duration of the application phase. Note that the

ata in this experiment was derived from a relatively long scan,

here natural changes in respiration patterns are very likely to

appen due to relaxation or, occasionally, due to the volunteer

alling asleep in the scanner. We observed that motion estima-
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Fig. 10. NCC of pencil beam navigator with a navigator signal derived from volume deformed using a 3D motion estimation provided by each of the three investigated 

methods over time. 
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Fig. 11. Example of the pencil beam navigator signal acquired for validation for volunteer III (top row) and navigator estimations produced by AAMM (no adapt.) (middle 

row) and AAMM (bottom row). The original pencil beam navigator is underlaid in grey for comparison. We show the entire time interval including the approximately 5 min 

of the calibration scan, and the approximately 15 min of model application. All signals have been normalised by subtracting the mean signal value such that the pencil beam 

navigator signal and the estimated signals can be visually compared. 
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tion accuracy sometimes dropped due to such changes. For exam-

ple, volunteer II (see Fig. 10 b) started taking deep breaths around

T 3 , but then returned to his previous breathing pattern. Had he

continued breathing deeply, presumably our model would have

adapted to that pattern. Note that for volunteer III the NCC quickly

approaches its maximum for AAMM, but continually decreases for

its non-adaptive counterpart. AAMM manages to maintain the mo-

tion estimation accuracy for the remainder of the session. By ex-

amining the original pencil beam navigator signal shown in the top

row of Fig. 11 , it can be seen that the subject exhibited a significant

drift of close to 10 mm in the respiration base level throughout the

imaging session. By comparing this signal to the estimated signals

by AAMM and AAMM (no adapt.) it can be observed that AAMM

manages to follow this drift whilst AAMM (no adapt.) cannot adapt

its range of motion predictions. 

In contrast to the synthetic experiments, in the experiments

on real data, SGA consistently performed worse than the other

examined methods. We found that on real data SGA was funda-

mentally not robust to the sagittal input slices. We observed that

respiratory information often failed to propagate through the body

middle, that is for example, an input slice from the left body half

would often fail to properly estimate motion in the right body

half and vice versa. Incorporating data from coronal slice positions

in the manifold alignment step of AAMM effectively solved this

problem. 

5. Discussion 

We have proposed a novel motion modelling framework which

enables accurate 3D motion estimations over extended periods of

time in the scenario of MR-guided interventions. This is achieved

by using partial motion information, i.e. 2D motion fields esti-

mated from MR slices, to form as well as to apply the motion

model. In contrast to 3D MR imaging, 2D MR slices can be acquired

close to real-time and offer better in-plane image quality. By ac-

quiring 2D MR data from variable imaging planes we are able to

combine the image quality of 2D MR with the coverage of 3D MR.

The fact that the calibration and surrogate data are of the same

type inherently enables the proposed motion model to automat-

ically adapt to changing breathing patterns without the need to

rebuild the model during the application phase. 

The vast majority of motion models in the literature cannot

adapt to changing breathing patterns and need to be rebuilt en-

tirely if the correlation between the surrogate and the motion data

loses validity ( McClelland et al., 2013 ). A small number of pa-

pers such as Schweikard et al. (2005) and Cho et al. (2010) pro-

posed adaptive techniques, which have the ability to update the

model using intra-fractional imaging. These models can only up-

date the model intermittently whereas the proposed AAMM frame-

work can make use of all the surrogate data acquired to update

the model continuously. Adaptive approaches not requiring intra-

fractional imaging such as Fassi et al. (2014) can also continually

adapt, but, nevertheless, may lose validity if the change in respira-

tory pattern is more complicated than a simple drift, such as, for

example, a change to a new breathing pattern. 

We implemented the autoadaptive motion model by extending

our previously proposed simultaneous groupwise manifold align-

ment (SGA) technique to use 2D motion fields as input. This ap-

proach has two important limitations: Through-plane motion may

distort the motion estimations and motion in the direction orthog-

onal to the slices cannot be estimated. Park et al. (2012) found that

liver tumour motion is smallest in the L-R direction with a mag-

nitude of 3.0 mm on average. In comparison, the average motions

in the S-I and A-P directions amount to 17.9 mm and 5.1 mm, re-

spectively. Similarly, Seppenwoolde et al. (2002) found that the S-I

motion of lung tumours was 12 mm on average in the lower lobes,
hile A-P and L-R motion was 2.2 mm and 1.2 mm on average.

ence, in order to minimise the effects of through-plane motion

e derive the motion from sagittal input slices. The large differ-

nces in the appearance of sagittal slices acquired from different

ocations necessitated the incorporation of coronal images from a

ingle slice position. In order to combine sagittal and coronal data

e substantially expanded the methodology of SGA to arrive at the

roposed AAMM technique. 

We demonstrated a proof-of-principle of our proposed motion

odelling framework and validated it on realistic synthetic and

eal data. Our experiments show that the autoadaptive motion

odel is able to adapt to novel breathing patterns and can thus

roduce significantly better 3D motion estimations over the du-

ation of an MR-guided treatment compared to its non-adaptive

ounterpart. Furthermore, the experiments show that the incorpo-

ation of data from a single coronal slice position leads to signif-

cant improvements in motion estimation. Note that we did not

ompare the performance of AAMM to traditional motion models

rom the literature. Our proposed method follows a new paradigm

sing 2D MR data in all stages of the model, which is conceptually

ifferent from the classical motion model paradigm. Hence, it was

ot possible to compare against existing techniques using the same

ata. In the synthetic experiments we could have trained a classi-

al motion model on the 3D ground truth motion fields. However,

 comparison to such a model would not have been on equal terms

ecause the synthetic 2D motion fields were derived through an

dditional registration step. 

The proposed technique offers a novel way of performing adap-

ive motion modelling, however, the method has only been evalu-

ted on healthy volunteers and there are a number of challenges

hich need to be addressed before the technique will be ready for

se in a clinical system. In the following we will discuss a number

f limitations and possible extensions of the technique. 

The current implementation of the proposed autoadaptive

ramework suffers from significant latency. In the current system,

or each update, the following steps need to be performed: 2D MR

mage acquisitions and reconstruction ( ∼ 200 ms), 2D registra-

ion ( ∼ 500 ms) and the groupwise embedding and lookup ( ∼
00 ms). Consequently, the motion modelling system in its present

orm has a latency of around 800 ms, which would be unaccept-

ble in a clinical scenario and would increase the motion predic-

ion errors. However, we would like to stress that the focus of

his paper is not an efficient implementation but rather a proof-

f-principle of autoadaptive motion modelling. The large latency

s not an inherent drawback of our proposed method. Rather, it is

 result of the acquisition sequence and computational techniques

sed in this work. In the context of MR-guided interventions, Ries

t al. (2010) have demonstrated that motion estimations can be ob-

ained from 2D MR images with latencies less than 114 ms, and

e Senneville et al. (2015) has proposed a framework which can

rovide motion estimations from 2D MR data with a latency of

nly 80 ms. Significant speed improvements could also be achieved

or the groupwise manifold alignment with a more efficient paral-

el implementation, as the groups containing the aligned manifold

mbeddings can be processed independently of each other. In this

anner it would be possible to reduce the computational times of

he manifold alignment to just a few milliseconds by using a par-

llel implementation and a modern GPU (graphics processing unit)

r multi-core work-station. It is therefore believed that an opti-

ised version of the proposed autoadaptive motion modelling sys-

em may be able to run with update latencies close to 100 ms. The

emaining latency could be addressed by combining the method

ith a motion prediction technique such as Kalman filtering ( Sharp

t al., 2004; Ries et al., 2010 ). 

In the present work the update frequency is limited by the car-

iac gating of the images to around 1 Hz, based on a typical heart
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ate of 60 beats per minute. The reason cardiac gated images were

mployed was to isolate the respiratory motion for this study. The

ardiac gating, however, is not an essential part of the technique

nd could be easily dropped if the region of interest excluded the

eart as in the scenario of a MR-guided HIFU of the liver. For ex-

mple, De Senneville et al. (2015) acquired 2D MR slices of the

iver with a imaging frame-rate of 10 Hz. In the experiments in

his paper it was found that the proposed system can significantly

mprove the motion estimation accuracy by close to 20% in less

han 10 min. Potentially, however, much faster adaptivity could be

chieved. Based on a hypothetical update frame-rate of 10 Hz, the

ame improvements in the motion estimation in the whole thorax

ould be achieved in as little as 1 min. 

Currently the motion is estimated only from sagittal 2D MR

lices. This orientation was chosen to minimise the effects of

hrough-plane motion. However, the remaining L-R motion may

ause artefacts in the registration step of the calibration phase. Fur-

hermore, the 3D motion estimations are obtained by simply stack-

ng the 2D motion fields, which leads to motion fields lacking the

-R component. In the evaluation on synthetic data the missing

-R component accounted for over 40% of the remaining motion

stimation error. This is a significant drawback of the presented

ethod and extending it to account also for through-plane motion

ill be a priority in future work. Note that currently the coronal

otion fields are used only in the groupwise manifold alignment

tep but are not part of the final 3D motion estimations. It may be

ossible to mitigate the through-plane motion effects by also using

otion information derived from one or potentially several coronal

lice positions in the 3D motion estimation step. 

Lastly, in the autoadaptive motion model in its present form all

he data added is retained. The rationale behind this is that, in this

anner, the model can go back to breathing patterns which were

bserved before a change occurred. A patient may, for example, go

ack and forth between a calm and a nervous breathing pattern

s a result of certain actions of the surgeon or the progress of the

reatment. However, the larger the model grows the more memory

s used to store the 2D motion fields and the more computation-

lly expensive it becomes to evaluate the updated group embed-

ings. It may therefore make sense to implement a “ring buffer”

pproach, where older data is discarded as new data is added to

he model. An interesting future direction would be to automat-

cally determine which data is essential to model certain breath-

ng types and selectively delete data which is unlikely to be used

gain. 

. Conclusion 

Modelling respiratory motion from MR data may provide a solu-

ion for correcting MR-guided treatments for respiratory motion. In

articular it can provide intra-procedure 3D motion estimations in

R-guided interventions such as MRg-HIFU or MRg-RT. However,

uch treatments are typically performed in a time frame in which

espiratory motion patterns are known to change, causing conven-

ional motion models to lose their validity. This work demonstrates

 proof-of-principle for a novel autoadaptive motion modelling

ramework which is calibrated and applied using the same type

f data, i.e. 2D MR slices acquired from variable imaging planes.

his allows the proposed motion model to continually adapt every

ime a new 2D slice is acquired and used to estimate 3D motion.

 number of challenges must be addressed before the method can

e applied in a clinical setting, in particular the long calibration

ime and large latency of 800 ms. Nevertheless, our novel motion

odelling paradigm provides an important stepping stone which

ay allow lengthy MR-guided treatments to go on uninterrupted

hilst the model continually maintains its ability to provide accu-
ate, up-to-date 3D motion estimations, despite changing breathing

atterns. 
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The real 2D MR data acquired for the evaluation of our pro-

osed framework in Section 4.3 are freely available and can be

ownloaded from https://zenodo.org/record/55345 under the Cre-

tive Commons Attribution license. 
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