Supporting Information

Integrated Optimisation of Upstream and Downstream Processing in Biopharmaceutical Manufacturing under Uncertainty: A Chance Constrained Programming Approach

Songsong Liu^a, Suzanne S. Farid^b, Lazaros G. Papageorgiou^{a,*}

^a Centre for Process Systems Engineering, Department of Chemical Engineering, UCL (University College London), London WC1E 7JE, United Kingdom

^b The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, UCL (University College London), London WC1E 7JE, United Kingdom

* Corresponding Author

1. Literature model

The literature MILP model¹⁹ for the optimal chromatography strategies of antibody purification processes is presented as follows.

The integer variables, CN_{si} , CYN_s and BN, are expressed by binary variables:

$$CN_{si} = \sum_{j=1}^{J_s} j \cdot W_{sij}, \ \forall s \in CS, i$$
(S.1)

$$\sum_{j=1}^{j_s} W_{sij} = X_{si}, \ \forall s \in CS, i$$
(S.2)

$$CYN_s = \sum_{k=1}^{k_s} k \cdot Y_{sk}, \ \forall s \in CS$$
(S.3)

$$\sum_{k=1}^{k_s} Y_{sk} = 1, \ \forall s \in CS \tag{S.4}$$

$$BN = \sum_{n=1}^{q} 2^{n-1} \cdot Z_n \tag{S.5}$$

For each packed-bed chromatography step, only one resin can be used:

$$\sum_{r \in R_s} U_{sr} = 1, \ \forall s \in CS \tag{S.6}$$

At most one resin of each resin type can be used:

$$\sum_{s \in CS} \sum_{r \in R_s \cap R_t} U_{sr} \le 1, \ \forall t \tag{S.7}$$

The initial product protein mass, M_0 , is the protein mass from the upstream bioreactors: $M_0 = titre \cdot \alpha \cdot brv$ (S.8)

The product protein mass remaining after step s, M_s is related to the yield of the step:

$$M_s = ncy_s \cdot M_{s-1}, \ \forall s \notin CS \tag{S.9}$$

$$M_s = \sum_{r \in R_s} (cy_{sr} \cdot \overline{UM}_{s-1,r}), \ \forall s \in CS$$
(S.10)

$$\overline{UM}_{s-1,r} \le titre \cdot \alpha \cdot brv \cdot U_{sr}, \ \forall s \in CS, r \in R_s$$
(S.11)

$$\sum_{r \in R_s} \overline{UM}_{s-1,r} = M_{s-1}, \quad \forall s \in CS$$
(S.12)

The annual product output, AP, is amount of product produced per year by the facility:

$$AP = \sum_{n=1}^{q} \sigma \cdot 2^{n-1} \cdot \overline{ZM}_{sn}, \ \forall s = bf$$
(S.13)

$$\overline{ZM}_{sn} \le titre \cdot \alpha \cdot brv \cdot Z_n, \ \forall s = bf, n = 1, \dots, q$$
(S.14)

$$\overline{ZM}_{sn} \le M_s, \ \forall s = bf, n = 1, \dots, q \tag{S.15}$$

$$\overline{ZM}_{sn} \ge M_s - titre \cdot \alpha \cdot brv \cdot (1 - Z_n), \ \forall s = bf, n = 1, \dots, q$$
(S.16)

The number of completed batches, *BN*, is limited by an upper bound:

$$BN \le maxbn$$
 (S.17)

The total column volume of chromatography step *s*, *TCV_s*, is the number of columns, *CN_{si}*, multiplied by the single column volume, cv_{si} :

$$TCV_s = \sum_i cv_{si} \cdot CN_{si}, \ \forall s \in CS$$
(S.18)

Only one column size is allowed at each chromatography step.

.

$$\sum_{i} X_{si} = 1, \ \forall s \in CS$$

$$CN_{si} \le maxcn_s \cdot X_{si}, \ \forall s \in CS, i$$

$$(S. 19)$$

$$(S. 20)$$

The total amount of resin available is no less than the minimum required amount, RV_s :

$$\sum_{k=1}^{R_s} k \cdot \overline{YV}_{sk} \ge RV_s, \ \forall s \in CS \tag{S.21}$$

$$\overline{YV}_{sk} \le maxcn_s \cdot maxcv_s \cdot Y_{sk}, \ \forall s \in CS, k = 1, \dots, k_s$$
(S.22)

$$\sum_{k=1}^{k_s} \overline{YV}_{sk} = TCV_s, \ \forall s \in CS$$
(S.23)

$$RV_s = \sum_{r \in R_s} \frac{\overline{UM}_{s-1,r}}{dbc_r \cdot \mu}, \ \forall s \in CS$$
(S.24)

The number of cycles, CYN_s , at each chromatography step has an upper bound:

$$CYN_s \le maxcyn_s, \ \forall s \in CS$$
 (S.25)

Volumetric flow rate, VFR_s , is determined by the velocity of flow and the diameter of the column:

$$VFR_s = \frac{1}{1000} \cdot \frac{1}{60} \cdot \sum_{r \in R_s} \sum_i vel_r \cdot \pi \cdot (\frac{dm_{si}}{2})^2 \cdot \overline{UX}_{sri}, \ \forall s \in CS$$
(S.26)

$$\sum_{r \in R_s} \overline{UX}_{sri} = X_{si}, \ \forall s \in CS, i$$
(S.27)

$$\sum_{i} \overline{UX}_{sri} = U_{sr}, \ \forall s \in CS, r \in R_s$$
(S.28)

The initial product volume entering downstream processes, PV_0 , is the working volume of bioreactor:

$$PV_0 = \alpha \cdot brv \tag{S.29}$$

The product volume remaining after each step s, PV_s , and the required buffer material volume at each step s, BV_s , are given in Eq. (A30)-(S.43):

$$PV_s = (fvr_s + 1) \cdot PV_0, \ \forall s = h \tag{S.30}$$

$$BV_s = f v r_s \cdot P V_0, \ \forall s = h \tag{S.31}$$

$$PV_{s} = \sum_{r \in R_{s} \cap BER} \sum_{k=1}^{k_{s}} ecv_{r} \cdot k \cdot \overline{UYV}_{srk} + \sum_{r \in R_{s} \cap FTR} \overline{UV}_{s-1,r}, \ \forall s \in CS$$
(S.32)

$$BV_s = \sum_{r \in R_s} \sum_{k=1}^{k_s} bcv_r \cdot k \cdot \overline{UYV_{srk}}, \ \forall s \in CS$$
(S.33)

$$\overline{UYV}_{srk} \le maxcn_s \cdot maxcv_s \cdot U_{sr}, \ \forall s \in CS, r \in R_s, k = 1, \dots, k_s$$
(S.34)

$$\sum_{r \in R_s} \overline{UYV}_{srk} = \overline{YV}_{sk}, \ \forall s \in CS, k = 1, \dots, k_s$$
(S.35)

$$\overline{UV}_{s-1,r} \le maxpv_{s-1} \cdot U_{sr}, \ \forall s \in CS, r \in R_s$$
(S.36)

$$\sum_{r \in R_s} \overline{UV}_{s-1,r} = PV_{s-1}, \ \forall s \in CS$$
(S.37)

$$PV_s = (nvr_s + 1) \cdot PV_{s-1}, \ \forall s = vi$$
(S.38)

$$BV_s = nvr_s \cdot BV_{s-1}, \ \forall s = vi \tag{S.39}$$

$$PV_s = (fvr_s + 1) \cdot PV_{s-1}, \ \forall s = vf$$
(S.40)

$$BV_s = f v r_s \cdot BV_{s-1}, \ \forall s = v f \tag{S.41}$$

$$PV_s = \frac{M_s}{f conc}, \ \forall s = u f df \tag{S.42}$$

$$BV_s = dvr_s \cdot \frac{M_s}{fconc}, \ \forall s = ufdf$$
(S.43)

The total buffer usage per batch, BBV, is the summation of buffer usage, BV_s , in all downstream steps:

$$BBV = \sum_{s} BV_{s} \tag{S.44}$$

The annual total buffer volume, ABV, is related to the number of completed batches:

$$ABV = \sum_{n=1}^{q} 2^{n-1} \cdot \overline{ZV_n} \tag{S.45}$$

$$\overline{ZV_n} \le maxbbv \cdot Z_n, \ \forall n = 1, \dots, q \tag{S.46}$$

$$\overline{ZV_n} \le BBV, \ \forall n = 1, \dots, q \tag{S.47}$$

$$\overline{ZV_n} \ge BBV - maxbbv \cdot (1 - Z_n), \ \forall n = 1, \dots, q$$
(S. 48)

The total processing time at each chromatography step, T_s , is comprised of processing time for both adding buffer (*PLT_s*) and loading product (*BAT_s*):

$$T_s = PLT_s + BAT_s, \ \forall s \in CS \tag{S.49}$$

The processing time for loading product, PLT_s is related to the incoming product volume:

$$\frac{1}{1000} \cdot \frac{1}{60} \cdot \sum_{r \in R_s} \sum_i \sum_{j=1}^{j_s} vel_r \cdot \pi \cdot \left(\frac{dm_{si}}{2}\right)^2 \cdot j \cdot \overline{UWT}_{srij} = PV_{s-1}, \ \forall s \in CS$$
(S.50)

$$\overline{UWT}_{srij} \le brt \cdot W_{sij}, \ \forall s \in CS, r \in R_s, i, j = 1, \dots, j_s$$
(S.51)

$$\overline{UWT}_{srij} \le brt \cdot U_{sr}, \ \forall s \in CS, r \in R_s, i, j = 1, \dots, j_s$$
(S.52)

$$\sum_{i} \sum_{j=1}^{j_{s}} \sum_{r \in R_{s}} \overline{UWT}_{srij} = PLT_{s}, \ \forall s \in CS$$
(S.53)

The processing time for adding buffer, BAT_s is related to the required buffer volume:

$$BAT_{s} = \sum_{r \in R_{s}} \sum_{i} \sum_{k=1}^{k_{s}} \frac{bcv_{r} \cdot cv_{si} \cdot k \cdot \overline{UXY}_{srik}}{\frac{1}{1000} \frac{1}{60} vel_{s} \cdot \pi \cdot (\frac{dm_{si}}{2})^{2}}, \quad \forall s \in CS$$
(S.54)

$$\sum_{r \in R_s} \sum_i \overline{UXY_{srik}} = Y_{sk}, \ \forall s \in CS, k = 1, \dots, k_s$$
(S.55)

$$\sum_{k=1}^{k_s} \overline{UXY}_{srik} = \overline{UX}_{sri}, \ \forall s \in CS, r \in R_s, i$$
(S.56)

The processing time per batch, *BT*, is the summation of processing time of all downstream steps:

$$BT = \frac{\sum_{s} T_s}{60 \cdot sfd \cdot sfn}$$
(S. 57)

The annual DSP time, AT, is related to the number of completed batches:

$$AT = \sum_{n=1}^{q} 2^{n-1} \cdot \overline{ZT}_n \tag{S.58}$$

$$\overline{ZT}_n \le (aot - st - brt) \cdot Z_n, \ \forall n = 1, \dots, q$$
(S.59)

$$\overline{ZT}_n \le BT, \ \forall n = 1, \dots, q \tag{S.60}$$

$$\overline{ZT}_n \ge BT - (aot - st - brt) \cdot (1 - Z_n), \ \forall n = 1, \dots, q$$
(S.61)

The annual DSP time, AT, cannot exceed the annual available time: $AT \le aot - st - brt$ (S.62)

The labour cost, LC, involves the direct labour cost, DLC, supervisors cost, SC, quality control and quality assurance (QCQA) cost, QC, and management cost, MC:

$$LC = DLC + SC + QC + MC \tag{S.63}$$

$$DLC = 24 \cdot uon \cdot w \cdot brt \cdot BN + don \cdot w \cdot sfd \cdot sfn \cdot AT$$
(S.64)

$$SC = s\lambda \cdot DLC$$
 (S. 65)

$$QC = q\lambda \cdot DLC \tag{S.66}$$

$$MC = m\lambda \cdot DLC \tag{S.67}$$

The chemical reagents cost, *CRC*, is assumed to include the cost for buffer, *BC*, and bioreactor media, *MEC*:

$$CRC = BC + MEC \tag{S.68}$$

$$BC = bpc \cdot ABV \tag{S.69}$$

$$MEC = \theta \cdot mepc \cdot \alpha \cdot brv \cdot BN \tag{S.70}$$

The key consumables cost, *CC*, in this study is the resin cost:

$$CC = \sum_{s \in CS} \sum_{r \in R_s} \sum_{n=1}^q \sum_{k=1}^{k_s} \frac{of \cdot rpc_r \cdot 2^{n-1} \cdot k \cdot \overline{ZUYV}_{srkn}}{l_r}$$
(S.71)

$$\overline{ZUYV}_{srkn} \le maxtcv_s \cdot Z_n, \ \forall s \in CS, r \in R_s, k = 1, \dots, k_s, n = 1, \dots, q$$
(S.72)

$$\overline{ZUYV}_{srkn} \le \overline{UYV}_{srk}, \ \forall s \in CS, r \in R_s, k = 1, \dots, k_s, n = 1, \dots, q$$
(S.73)

$$\overline{ZUYV}_{srkn} \ge \overline{UYV}_{sk} - maxtcv_s \cdot (1 - Z_n), \ \forall s \in CS, r \in R_s, k = 1, \dots, k_s, n = 1, \dots, q \quad (S.74)$$

The miscellaneous material cost, *MIC*, is proportional to the total chemical reagents cost, *CRC*, and consumables cost, *CC*.

$$MIC = mi\lambda \cdot (CRC + CC) \tag{S.75}$$

The utilities cost, *UC*, can be expressed as the summation of three terms: $UC = a \cdot brn \cdot brv + b \cdot brv \cdot BN + c \cdot ABV$ (S.76)

The annualised capital cost, *CAC*, is calculated by the fixed capital investment, *FCI*, and the capital recovery factor:

$$CAC = FCI \cdot \frac{r \cdot (1+r)^{el}}{(1+r)^{el} - 1}$$
 (S.77)

$$FCI = lang \cdot (1 + gef) \cdot (brn \cdot brc + \sum_{s \in CS} \sum_{i} cc_{si} \cdot CN_{si} + oe\lambda \cdot brc \cdot brn)$$
(S.78)

Other indirect costs include the annual maintenance cost, *MAC*, insurance cost, *IC*, local tax costs, *TC*, and general utilities cost, *GUC*:

$$MAC = ma\lambda \cdot FCI \tag{S.79}$$

$$IC = i\lambda \cdot FCI \tag{S.80}$$

$$TC = t\lambda \cdot FCI \tag{S.81}$$

$$GUC = gu \cdot brn \cdot brv \tag{S.82}$$

$$OIC = MAC + IC + TC + GUC$$
(S.83)

The annual total cost of goods is the summation of the above costs:

$$COG = LC + CRC + CC + MIC + UC + CAC + OIC$$
(S.84)

The objective is to minimise COG/g:

$$OBJ = \frac{COG}{AP}$$
(S.85)

Nomenclature

brt

brv

cc_{si} cf

 cv_{si}

 cy_{sr}

 dbc_r

 dm_{si}

bioreaction time, day

scale-up factor of column cost

Indices	
bf	bulk fill step
ĥ	harvest step
i	column size
j	column number
k	cycle number
n	digit of the binary representation
r	resin
S	downstream step
t	resin type
ufdf	UF/DF step
vf	virus filtration step
vi	virus inactivation step
Sets	
BER	set of resins in bind-elute mode
CS	set of chromatography steps, = capture, intermediate purification, polishing
FTR	set of resins in flow-through mode
R_s	set of resins suitable to chromatography step s
R_t	set of resins of the resin type t
_	
Parameters	
a, b, c	utilities cost coefficients
aot	annual operating time, day
bcv _r	buffer usage of resin r, CV
bpc	buffer price, £/L
brc	bioreactor cost at given discrete volume for piecewise approximation, \pounds
brf	scale-up factor of bioreactor cost
brn	number of bioreactors

given discrete bioreactor volume for piecewise approximation, L

column cost of size i at chromatography step s, £

product yield of resin r at chromatography step s

dynamic binding capacity of resin r, g/L

volume of column size i at chromatography step s, L

diameter of column size *i* at chromatography step *s*, L

don	number of operators for downstream processing
dvr _s	diafiltration volume ratio of step s
ecv_r	elute volume of resin r, CV
el	equipment lifetime, year
fconc	final concentration of product, g/L
f vr _s	flush volume ratio of step s
gef	general equipment factor
gu	general utility unit cost, £/L
h_{si}	height of column size <i>i</i> at step <i>s</i> , cm
iλ	insurance cost ratio to the fixed capital investment
j _s	maximum number of columns at chromatography step s, maxcn _s
k _s	maximum number of cycles at chromatography step s, maxcyn _s
l_r	life time of resin <i>r</i> , cycle
lang	Lang factor
maxbbv	maximum buffer volume per batch
maxbn	maximum number of batches
maxbrv	maximum bioreactor volume
maxcn _s	maximum number of columns at chromatography step s
$maxcv_s$	maximum column volume at chromatography step s
maxcyn _s	maximum number of cycles at chromatography step s
$maxpv_s$	maximum product volume at step s
maλ	maintenance cost ratio to the fixed capital investment
терс	media price, £/L
πίλ	miscellaneous material cost ratio to chemical reagent and consumable costs
πλ	management cost ratio to direct labour cost
ncy _s	product yield of non-chromatography step s
nvr _s	neutralisation volume ratio of step s
оеλ	other equipment cost ratio to the bioreactor cost
of	overpacking factor of resin
q	maximum digit number in the binary representation of number of batches,
	$[\log_2 maxbn]$
qλ	QCQA cost ratio to direct labour cost
r	interest rate
rpc _r	resin price of resin r , \pounds/L
refbrc	reference cost of a bioreactor, £
refbrv	reference volume of a bioreactor, L
refcc	reference cost of a chromatography column, £
refdm	reference diameter of a chromatography column, cm
sfd	duration per shift, hour
sfn	number of shifts per day
st	seed train bioreaction time, day
sλ	supervisors cost ratio to direct labour cost
titre	upstream product titre, g/L
tλ	tax cost ratio to the fixed capital investment
uon	number of operators per bioreactor in upstream processing
vel _r	linear velocity of flow for resin <i>r</i> , cm/h
W	wage of an operator, £/h
α	bioreactor working volume ratio
θ	media overfill allowance

μ	chromatography resin utilisation factor			
σ	batch success rate			
Continuous V	Variables			
ABV	annual buffer volume, L			
AP	annual product output, g			
AT	annual downstream operating time, day			
BAT_s	time for adding buffer per batch at chromatography step <i>s</i> , min			
BBV	buffer volume added per batch, L			
BC	buffer cost, £			
BRC	bioreactor cost, £			
BT	downstream processing time per batch, day			
BV_s	buffer volume per batch in chromatography step s, L			
CAC	capital cost, £			
СС	consumables cost, £			
COG	annual cost of goods, \pounds			
CRC	chemical reagents cost, £			
DLC	direct labour cost, £			
FCI	fixed capital investment, £			
GUC	general utility cost, £			
IC	insurance cost, £			
LC	labour cost, £			
M_0	initial product mass entering downstream processes per batch, g			
M_s	initial product mass per batch after step s, g			
МАС	maintenance cost, £			
МС	management cost, £			
MEC	media cost, £			
MIC	miscellaneous material cost, £			
OBJ	objective			
<i>01C</i>	other indirect costs, £			
PLT_s	time for loading product per batch at chromatography step <i>s</i> , min			
PV_0	initial product volume entering downstream processes per batch, L			
PV_s	product volume per batch after step <i>s</i> , L			
QC	QCQA cost, £			
<i>RV</i> _s	resin volume required at chromatography step s, L			
SC _	supervisors cost, £			
T_s	processing time per batch of step s, min			
TC	tax cost, £			
TCV_s	total column volume at chromatography step <i>s</i> , L			
UC	utilities cost, £			
VFR _s	volumetric flow rate at chromatography step s, L/min			
Rinam Varia	Dinam Variables			
Dinary varia	1 if racin r is calcoted at abromatography stop of 0 otherwise			
Usr	i n resm 7 is selected at chromatography step 5, 0 otherwise			

- W_{sij} 1 if there are j columns of size i at chromatography step s; 0 otherwise X_{si} 1 if column size i is selected at chromatography step s; 0 otherwise
- Y_{sk} 1 if there are k cycles at chromatography step s; 0 otherwise
- Z_n 1 if the *n*th digit of the binary representation of variable *BN* is equal to 1; 0 otherwise

Integer Variables

BN	number of completed batches
CN _{si}	number of columns of size <i>i</i> at chromatography step <i>s</i>
CYNs	number of cycles at chromatography step s

Auxiliary Variables

$\overline{UM}_{s-1,r}$	$\equiv U_{sr} \cdot M_{s-1}$
$\overline{UV}_{s-1,r}$	$\equiv U_{sr} \cdot PV_{s-1}$
<u>UWT</u> _{srij}	$\equiv U_{sr} \cdot W_{sij} \cdot PLT_s$
\overline{UX}_{sri}	$\equiv U_{sr} \cdot X_{si}$
<u>UXY</u> _{srik}	$\equiv U_{sr} \cdot X_{si} \cdot Y_{sk}$
\overline{UYV}_{srk}	$\equiv U_{sr} \cdot Y_{sk} \cdot TCV_s$
\overline{YV}_{sk}	$\equiv Y_{sk} \cdot TCV_s$
\overline{ZM}_{sn}	$\equiv Z_n \cdot M_s$
$\underline{ZT_n}$	$\equiv Z_n \cdot BT$
ZV_n	$\equiv Z_n \cdot BBV$
ZUYV _{srkn}	$\equiv Z_n \cdot U_{sr} \cdot Y_{sk} \cdot TCV_s$

2. Case study data

More data of the case study are presented in Tables S1 and S2.

Table S1. Data for	Table S1. Data for non-chromatographic unit operations					
Unit operation parameter	Value	Unit operation parameter	Value			
Cell culture		processing time (h)	1.5			
bioreaction time (days)	15	Virus filtration				
seed train bioreaction time (days)	29	yield (%)	95			
bioreactor working volume ratio (%)	75	flush volume ratio	0.3			
media overfill factor	1.2	processing time (h)	4			
media price (£/L)	32	Ultra/Diafiltration				
Harvest		yield (%)	90			
yield (%)	95	processing time (h)	4			
flush volume ratio	0.1	final concentration (g/L)	75			
processing time (h)	4	diafiltration volume	7			
Virus inactivation		Bulk fill				
yield (%)	90	yield (%)	98			
neutralisation volume ratio	1.75	filling time (h)	6			

Parameters	Value	Parameters	Value
aot (day)	340	a (£/L)	14.145
don (day)	15	b (£/L)	4.234
uon (day)	3	c (£/L)	0.071
sfd (hours/shift)	8	sλ	0.2
sfn (shift/day)	1	$q\lambda$	1
w (£/h)	20	$m\lambda$	1
bpc (£/L)	1	miλ	0.1
σ	90%	оеλ	0.8
gef	0.7	$ma\lambda$	0.05
gu (£/L)	90	iλ	0.005
lang	6	tλ	0.01

Table S2. More data for cost and time