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mechanics

by Thomas BOIVEAU

Nitsche’s method is a penalty-based method to enforce weakly the boundary condi-
tions in the finite element method. In this thesis, we consider a penalty-free version of
Nitsche’s method, we prove its stability and convergence in various frameworks. The
idea of the penalty-free method comes from the nonsymmetric version of the Nitsche’s
method where the penalty parameter has been set to zero; it can be seen as a Lagrange
multiplier method, where the Lagrange multiplier has been replaced by the boundary
fluxes of the discrete elliptic operator. The main observation is that although coercivity
fails, inf-sup stability can be proven. The study focuses on compressible and incompress-
ible elasticity. An unfitted framework is considered when the computational mesh does
not fit with the physical domain (fictitious domain method). The penalty-free Nitsche’s
method is also used to enforce the coupling for interface problems when the mesh fits
the interface (nonconforming domain decomposition) or not (unfitted domain decom-
position). Fluid structure interaction is also investigated, a new fully discrete implicit

scheme is introduced.
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Chapter 1

Introduction

1.1 Finite element method

1.1.1 Principle

A large number of physical phenomena are described by differential equations. Unfor-
tunately these equations are not solvable analytically except in some very simple cases.
Over the years, several methods have been developed to approximate solutions of dif-
ferential equations. In this thesis, we focus on the finite element method, but there are
other popular methods, such as the finite difference method, the finite volume method or
the spectral method. The classical finite element method is based on a decomposition of
the physical domain into non-overlapping elements. An approximation of the solution is
constructed from the contributions of each of these elements using piecewise polynomial
expansion functions. As an example, we take €2 a one dimensional domain decomposed
in five elements called respectively K1, ..., K5, the lengths of the elements are not neces-

sarily equal. The set of elements defines a mesh of €. Figure 1.1 represents an example

FIGURE 1.1: One dimensional mesh.

of domain decomposed into discrete elements. The functions ¢y, ..., ¢5 are called nodal

basis functions, each function ¢; is defined such that

oy )=y,
CZ)J("Pm_{o i

13



14 Chapter 1. Introduction

For a first order approximation of the solution, each function ¢; is continuous and piece-

wise linear. Let h; = |Kj|, the function ¢; is defined as

ol e K
J
. _ LTj41—T )
¢J($) = Jh]'+1 HAS Kg—i—l»

0 v ¢ {Kj, Kj1}.

Figure 1.2, represents the basis functions for the first order case on the one dimensional

mesh of 2. The approximated solution of a given problem obtained by the finite element

. %o ®1 ®2 ¢3 ¢4 ®s5
s
) T X2 3 T4 5

FIGURE 1.2: One dimensional domain, first order basis functions.

method is a linear combination of the nodal basis functions, it can be written as

5
up(z) = Zuz@(m) (1.1)
i=0
The approximation of the solution uy is obtained using a finite element formulation.

1.1.2 Finite element formulation

Let us consider the Poisson problem with zero Dirichlet boundary condition as a model

problem
—Au=f inQ,

u=0 on 09,

with Q) the boundary of Q and f € L?(2). Multiplying by a test function v and

integrating over the domain, we obtain
(—Au,v)q = (f,v)a,
where (a,b)q = fQ ab dz. Using integration by parts the problem becomes
(Vu,Vv)g — (Vu-n,v)eq = (f,v)aq,

where n is the outward unit normal vector to the boundary Q and (a,b)aq = [, ab ds.
Let us define the bilinear form a(u,v) = (Vu, Vv)q and let

HY Q) = {v e HY(Q) : v]pg = 0},
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we choose v € H((2), then we obtain the following weak formulation: find u € H} ()
such that
a(u,v) = (f,v)a Vo € HY(Q).

The boundary term vanishes since v|gpn = 0. This abstract problem is discretised using
the Galerkin method. The general principle is to replace the functional spaces by finite
dimensional spaces. Let K denote a generic interval in the partitioning of Q and Py (K)
a polynomial of global degree at most £ on K, then we define the space of piecewise

continuous polynomials
Viko = {vn € HY(Q) 1 vp|k € PR(K) VK} k> 1.
The finite element formulation of the problem can be written as: find uy, € th,o
a(up,vp) = (f,on)a Yo, € Vi (1.2)

1.1.3 The linear system

By substituting the decomposition of wu, (1.1) in the formulation (1.2) and choosing
vy = ¢j for j =1,...,4, the problem becomes

4

=1

Note that ¢; € Vhl,o for j =1,...,4. Let Ajj = (¢}, ¢})a and b; = (f, #;)a. We remark

that A is a symmetric matrix, the system becomes

4
ZAijui:bj jZl,...,4,
1=1

this is equivalent to the linear system

Auh = b, (1.3)
where uy, = (ug,...,us)” and b= (b1,...,bs)". The matrix A is the stiffness matrix,
1 1 -1
Mt R e 0 0
-1 1 1 -1
A-| m mTEm 0w 0
0 -1 11 -
hs hs 1 ha hia
-1 1 1
0 0 Ta ha + ha

Finding the approximation wy, is equivalent to solving the linear system (1.3).
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1.2 Nitsche type methods

Let € be a two dimensional polygonal domain, we consider the following Poisson problem
with Dirichlet boundary condition
—Au=f in €,

1.4
u=g on 0, (14)

with f € L?(Q) and g € H%(OQ) orge H%@Q)

1.2.1 Weak imposition of Dirichlet boundary conditions

The standard method to impose a homogeneous Dirichlet boundary condition in finite
element is to eliminate the degrees of freedom associated with the boundary in the
discrete linear system. The inhomogeneous case is slightly more technical but follows
the same principle introducing a lifting operator at the boundary (see for example [46]).
In other words the boundary condition is imposed in the finite element space as in Section
1.1.2. Another approach is to impose weakly the boundary condition, several techniques

can be used, here we give a brief description of the main methods.

e The penalty method proposed by Babuska [6, 11| considers a penalised version of
the problem (1.4)
—Aue=f in Q,

e Yue—g)+Vuc-n=0 on dQ,

with € > 0. The corresponding formulation is: find u. € H'(2) such that
(Vue, Vo)o + € Hue, v)an = (f,v)a +€ g, v)on Yo e H'(Q).

The weak imposition is done via the terms ¢~ (u¢, v)gqn and € 1{g, v)aq.

e The Lagrange multiplier method also introduced by Babuska [5, 23, 96, 97, 100]
requires the use of Lagrange multipliers in the formulation: find (u, \) € H*(Q) x
Hfé(BQ) such that

(Vu, Vo)a+ (A vhan + (1 wan = (f,0)a+ (1 g)on (o, 1) € H(Q)x HH(09).

(1.5)
Note that the boundary flux Vu - n has been replaced by —A. The terms (i, u)sq
and (u, g)sq are enforcing weakly the boundary condition.

e The method introduced by Barbosa and Hughes [78, 8, 9, 100] that considers an
alternative of (1.5) by introducing the following additional term at the discrete
level

Yh{An + Vup - n, pp, + Vg - n)oq,
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with v the stabilisation parameter and h the parameter associated to the space

discretisation (maximal element diameter).

e Nitsche’s method [92, 4] is a consistent penalty based method. Let Vj, be the
H'-conforming finite element space fitted to € where h is the maximal element
diameter. The corresponding finite element formulation is written as: find u, € Vj,
such that

Ap(un,vn) = Ly(vy)  Yop € Vp, (1.6)

where the linear forms are defined by

Ap(up,vp) = (Vup, Vop)a — (Vup - n,vn)a0 — (Vop - n,up)a0 + v un, vn)aa,

Li(vn) = (f,vn)a — (Von -0, g)aa + (R g, vn)oq,

where v > 0. In the bilinear form Aj the two first terms are classically obtained
by integration by parts, the third term preserves symmetry and the fourth term
ensures the coercivity for v big enough. The corresponding terms are added to the

linear form L, to enforce weakly the boundary condition.

1.2.2 The penalty-free Nitsche method

Pursuing the idea to relax the constraint on + Freund and Stenberg suggested a non-

symmetric version of Nitsche’s method [56]. The formulation (1.6) is modified such that

Ap(up,vp) = (Vup, Vop)a — (Vup - n,on)a0 + (Vg - n,up)ao + v un, vn)aa,

Lin(vn) = (fyvn)a + (Von - 1, g)aq +v(h g, vn) a0

The only difference compared to the classical Nitsche’s method is that the terms (Voy, -
n,up)oo and (Voup - n, g)sq are added instead of being subtracted. In this case the

coercivity is straightforward to show as
Ap(un, up) = (Vup, Vun)o +y(h ™ tup, un)aa > C([Vunlls o + b~ Hunlg o0),

where C' is a positive constant. The advantage of the nonsymmetric version is that
no lower bound has to be respected for the penalty parameter to ensure coercivity, it
only needs to be strictly larger than zero. The symmetric and nonsymmetric versions
of Nitsche’s method were further discussed by Hughes and co-workers in [77] where the
possibility of using the nonsymmetric version with v = 0 was mentioned. Penalty-
free nonsymmetric methods have indeed been advocated for the discontinuous Galerkin
method (93, 81, 63, 40]. In [26], Burman proved that the nonsymmetric Nitsche’s method

is stable without penalty for scalar elliptic problems. The linear forms associated to the
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penalty-free Nitsche’s method are such that

Ap(up,vp) = (Vup, Vop)a — (Vuy, - n,vp)a00 + (Vop, - n, un)o,

Ly(vp) = (f,on)a + (Yo, - n, g)sq-

The main observation for this method is that although coercivity fails when the penalty
parameter is set to zero, the formulation can be proven to be inf-sup stable. It leads
to a method that is stable without any unknown parameter and without introducing
additional degrees of freedom. In terms of solvers, some solvers cannot be employed (ex:
Crout, Cholesky, Conjugate Gradients) due to the nonsymmetry of the method, it is also
known that in the case of inf-sup stable formulations for saddle point systems Krylov-
Schur solver fails to converge [88]. Optimal convergence of the error can be shown in
the H'-norm, however the lack of adjoint-consistency of the nonsymmetric formulation
leads to a suboptimality of order O(h%) for the L?-error. By looking at (1.5) we remark
that the nonsymmetric version of the Nitsche’s method without penalty can be seen as
a Lagrange multiplier method where the Lagrange multiplier has been replaced by the

boundary fluxes of the discrete elliptic operator.

1.2.3 A brief comparison

In this section, we compare the different versions of Nitsche’s method for the Poisson
problem (1.4). Let us consider the following manufactured solution that is used for the
computations

u = sin(7z)sin(27y).

We approximate this solution using the three versions of Nitsche’s method presented in
the previous sections and compare the L? and H!'-errors. First we compare the slopes of
convergence, we choose arbitrarily a penalty parameter for both penalised formulations

and we obtain Figure 1.3. The slopes of convergence of the L2-error shows an optimal

10 J 10
-o Penalty free -0 Penalty free
-G Sym Nitsche -& Sym Nitsche
1 072 | —4+-Nonsym Nitsche .8 ] -+4-Nonsym Nitsche ,’5
0 (hz) ‘,,9 —0 (hl) 7
—
5 107 S
Pt —~
= g all
o 10
o1 —
N 10 s T
&
1075} o
6 L -2 L
10 10
1073 102 107! 107 102 107!
h h

F1GURE 1.3: Comparison of Nitsche’s methods, piecewise affine approx-
imation, error versus the maximal element diameter, v = 10.
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order of convergence O(h?) for the three methods. The formulations that consider a
penalty parameter (symmetric and nonsymmetric) give very similar results, in fact the
difference between the two slopes is negligible. The penalty-free method gives an error
slightly bigger than the penalised methods. The H'-error shows an optimal order of
convergence for each method. The difference of the error between the three methods
is negligible. In Figure 1.3 the penalty parameter is considered high enough to ensure
stability for both penalised versions, it is therefore interesting to study the influence of the

penalty parameter for a fixed mesh (Figure 1.4). The L? and H!-errors of the penalty-

-o Penalty free n -0 Penalty free
-G Sym Nitsche n -0 Sym Nitsche n
—-Nonsym Nitsche [ -+-Nonsym Nitsche n

L? error
H! error

1
1
1
1
1
1
1
1
1
1
1
1
|
|
1

G -G
- ]

10 F Se o o) i
- = b9

10 10 102 10° 10

Y v

F1GURE 1.4: Comparison of Nitsche’s methods, piecewise affine approx-
imation, error versus the penalty term ~.

free scheme show a constant error because there is no penalty parameter involved by
definition. Both L? and H'-errors of the symmetric formulation reach a peak for v = 1
that is due to an eigenvalue of the finite element matrix. For 4 > 10 both penalised
methods gives the same error (case of Figure 1.3). For v € [1073,107!] the L2-error
given by the symmetric scheme is smaller than for the other schemes. The penalised
nonsymmetric scheme converges to the penalty-free scheme as v decreases. For the H'-
error the difference between the penalty-free scheme and the nonsymmetric penalised
scheme is very small. For v > 10 and v € [1072,107!] the H'-error given by the

symmetric scheme is very similar to the other methods.

1.2.4 First proof of stability

In this section we show the inf-sup condition for a formulation that involves the penalty-
free Nitsche’s method for a one dimensional case. We aim to introduce the general
concepts that will be used to prove the stability of the penalty-free schemes that will
be studied in the four following chapters. In what follows, we will consider the usual
Sobolev spaces H*(w) with (s > 0), with norm || - [[s. and semi-norm |- |, details

are provided in Appendix A. Let Q = [0, 1] be a one dimensional domain, the Poisson
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problem with Dirichlet boundary conditions (1.4) can be rewritten as

" =f in][0,1],
u(0) =u(l) =g.

The domain €2 is partitioned into n > 3 intervals Ki,..., K, of length h = |K;| for all

i €1,...,n, we introduce the finite element space
Vit = {vn € H'(Q) : vk, € Pu(K), Vi € [1,n]}.
The penalty-free formulation is written as: find uy € Vh’le such that
(uh, Vo, — [hvnls + [unvplo = (fovn)oa + [9vhls vn € Vilip.
Let us define the bilinear form
Ap(un,vn) = (uh, 1) j0,1) — [Uhvnlo + [unvh]o.

We choose the function vy, such that v, = up+avr and we define vr to be zero everywhere

except for the elements that have one vertex on the boundary. Let

ur(0) = up(0),  wp(0) = —hA" up(0),

(1.7)
vr(l) = up(1), vh(1) = b tuy(1).

By applying the definition of v;, we obtain
Ah(uh, Uh) = Ah(uh, uh) + aAh(uh, ’UF),

clearly we have

Ap(up,up) = ||U/h||3,9~

Also, we can write
Ap(un, vr) = (up, vp)e — up(Lor(1) + up(0)vr (0) + up(1)vp(1) — ua(0)op(0).
Using the Cauchy Schwarz inequality and the definition on vr we obtain

_ _ 1
Up, V)0 > [|UL10,2]10T]10,Q2 > [|UR]0,Q Up Up
(up, o) < luplloellvrllon < lluplloo(h™ un(1)? + h us(0)%)2

_1
< b llooh™2 un

0,00

The trace inequality and the inverse inequality (these two inequalities will be introduced
in the next chapter by Lemmas 2.0.1 and 2.0.2) tell us that

_1
lunllo.oe < 772 luplloo
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using this result, the consistency term becomes
up(Lor (1) = up,(0)vr (0) = wj, (Lup (1) — w, (0)un(0) < [lublloonllunllosn
1
S llubllooh™2 [[unlo.o0-

The antisymmetric Nitsche term can be expressed as
un(1)op(1) = up(0)or(0) = ™ up(1)? + ™ g (0)? = A7 unll§ pe-
Then we obtain the following using the Young’s inequality (ab < ea® + Z—i with € > 0)

ay .,
An(unsvn) 2 (L= Olup 3o+ (1= 2 funlB o 2 sl (18)

note that for o and € well chosen the lower bound of Ay, is in fact positive. The norm
| - |l1,5 is defined as
2 2 -1 2
lwllin = [Vwlga+ k™ lwl§eq, (1.9)

in the one dimensional framework we have Vw = w’. Also, using similar arguments as

previously we obtain

lonlli p < llunli p + allorlg.o + 27 ol o0) < lunllfp + b7 lunlg oo < llunl A

combining this result with (1.8) we get the inf-sup condition

A
Bllupllip < sup An(un, vn)
vn€Viiip th”Lh

For the proof of the two dimensional case, the value of v at the boundary (1.7) is replaced
by an average of uj over patches of boundary elements; this leads to additional terms
that have to be controlled but the principle of the proof remains the same. In this thesis
we consider the two dimensional case in order to reduce the amount of technicalities in

the theoretical proofs.

1.3 Motivations

In the previous sections we have introduced the penalty-free Nitsche’s method as a way to
impose the boundary conditions weakly when the triangulation fits the physical domain,
this case is considered in Chapter 2. Nitsche’s method may also be used in several other

configurations.

1.3.1 Fictitious domain method

Mesh generation is an important challenge in computational mechanics, in fact for com-

plex geometries this can be highly nontrivial. In some cases for time dependent problems,
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such as a solid body embedded in a flow, the geometry of the problem may be modified
for each time step which implies that the mesh must be modified at each time step. The
main idea of the fictitious domain method [59, 60, 67, 3, 74, 36, 37, 29| is to relax the
constraint that imposes the mesh to fit with the physical domain. In fact the principle
of the fictitious domain approach is to embed the physical domain in a mesh that is easy
to generate, the elements do not need to match with the boundary as shown in Figure

1.5. In the early developments of fictitious domain [59], the method was faced with the

FIGURE 1.5: Fictitious domain, 2 is embedded in a background mesh.

choice of either integrating the equations over the whole computational mesh including
the nonphysical part, or only integrate inside the physical domain. In the first case, the
method is robust but inaccurate, the second approach is accurate but can generate bad
conditioning of the system matrix depending on how the boundary crosses the mesh.
The ghost penalty [25] has been introduced to avoid this problem, this simple trick im-
proves robustness without loss of accuracy. The fictitious domain approach is considered
in Chapter 3 for the Poisson problem [37], but also for compressible and incompressible
elasticity [13, 38, 89|.

1.3.2 Domain decomposition

In domain decomposition the physical domain is partitioned into multiple subdomains,
in this thesis we are interested in the coupling at the interface between two subdomains,
we will therefore split the physical domain into exactly two domains €21 and Qo with
a common interface. A first approach is to consider €21 and 29 meshed independently
this case is commonly called nonconforming domain decomposition (see Figure 1.6). To
handle this configuration, iterative procedures can be considered using the standard
Schwarz alternating method [87]. Another approach is to consider Lagrange multiplier
[86, 17, 84] for the coupling at the interface, here we consider the Nitsche’s method
[16, 70]. The Nitsche’s method has been applied to nonconforming domain decomposition
with its symmetric and nonsymmetric version in [16] for the Poisson problem. The
method has been extended using a weighted average of the fluxes at the interface for the

advection-diffusion-reaction problem in [41]. Several difficulties can be handled by taking
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FIGURE 1.6: Nonconforming domain decomposition, €2; and )y are
meshed independently.

the right choice of weights [47, 10, 41]. In Chapter 4 we consider domain decomposition
with discontinuous material parameters for the Poisson problem, the study is extended

to compressible elasticity [57, 61] and incompressible elasticity [14].

1.3.3 Unfitted domain decomposition

The domain decomposition study is extended to the unfitted framework. The physi-
cal domain is decomposed in two subdomains as in the previous section, however the
specificity here is that both subdomains are meshed with one triangulation, the interface
between the two subdomains is not necessarily fitting with the elements of the mesh

(see Figure 1.7). As for nonconforming domain decomposition, the Lagrange multiplier

FiGURE 1.7: Unfitted domain decomposition, €2; and €25 and the com-
putational mesh.

method may be used to handle the coupling at the interface |73, here we are interested
in using the Nitsche’s method [67, 69] as we want to investigate the penalty-free Nitsche’s
method. Using the tools introduced in Chapter 3, the domain decomposition approach
of Chapter 4 is transposed to the unfitted domain decomposition framework of Chap-
ter 5. Compressible elasticity is considered [13, 68] as well as incompressible elasticity
[43, 94, 90, 65, 72|.
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1.3.4 Fluid structure interaction

Nitsche type methods can be used in a fluid-structure interaction framework [71, 91| to
handle the coupling at the fluid-solid interface. In this thesis we consider the special
case of a viscous incompressible fluid and an elastic structure when the fluid and solid
densities are close (i.e. the fluid added-mass acting on the structure is strong) [50, 30].
In such configuration, explicit couplings [48, 83, 42| are known to produce numerical
instabilities. Alternatively, semi-implicit [50, 51, 1| and implicit [104, 58, 53| approaches
can be considered to handle these instabilities. In [30] a stabilised explicit coupling
scheme for fluid-structure interaction based on Nitsche’s method has been introduced,
in order to get optimal accuracy, a defect correction approach is used [101]. An analysis
of this explicit scheme with defect correction is done in [32]. The schemes considered
in these contributions rely on the classical version of the Nitsche’s method. In [33] the
penalty-free Nitsche’s method has been investigated, in this article numerical observa-
tions show that the defect correction is no longer needed to recover optimal accuracy in
the penalty-free case. Figure 1.8 is extracted from [33], it shows the displacement energy
norm error for both classical Nitsche and penalty-free Nitsche without defect correction;

the penalty-free scheme shows optimal convergence which is not the case for the clas-

10°F O-----p

-} Classical Nitsche
=7 Penalty free Nitsche
—O(n')

displacement energy norm error

102 107!

FIGURE 1.8: Extracted from [33], error versus the meshsize, classical
Nitsche compared to penalty-free Nitsche.

sical scheme. In [34] the study has been extended to the unfitted framework, explicit
and implicit strategies are considered including a convergence analysis for the implicit
scheme for the classical Nitsche case. In Chapter 6 we propose a fully discrete implicit
scheme based on the penalty-free Nitsche’s method. Given the convergence properties
observed numerically for the explicit scheme in the Figure 1.8, it is therefore interesting
to study the penalty-free version of the Nitsche based schemes to understand its stability

mechanisms in general.



Chapter 2

Weak imposition of boundary

conditions

In this chapter, we use the penalty-free Nitsche’s method to impose weakly the boundary
conditions when the computational mesh is fitted to the physical domain. The study of
the Poisson problem is used as an extended introduction, in fact this case has already been
considered in [26]. The study is extended to compressible and incompressible elasticity
following [20]. Let Q be a convex bounded polygonal domain in R? with boundary
0Q. Let {I';}; be the sides to the polygonal domain 2 such that 92 = U;I’;. The set
{Tnr}1 defines a family of quasi-uniform and shape regular triangulations fitted to Q. In a
generic sense we define K as the triangles in a triangulation 7;, and hx = diam(K) is the
diameter of K. We define the shape regularity as the existence of a constant ¢, € R for
the family of triangulations such that, with pgx the radius of the largest circle inscribed

in an element K, there holds

h
K <¢, VKeT,. (2.1)
PK
We define h = maxgeT;, hi as the mesh parameter for a given triangulation 7. Py (K)
defines the space of all polynomials of degree less than or equal to k on the element K.

We define th the finite element space of continuous piecewise polynomial functions
ViF = {uv, € HY(Q) : up|g € P(K),VK € T} k> 1.

The vector n denotes the outward unit normal to the boundary 02 and 7 denotes the
tangent unit vector to 9. C is used as a generic positive constant that may change
at each occurrence, C' is independent of the meshsize and physical parameters, it only
depends on the shape regularity of the mesh considered, given the assumptions made
above we have C' = O(1). We will use the notation a < b for a < Cb. The following

results will be useful in the analysis, proofs can be found in [21].

Lemma 2.0.1. There exists Cr € Ry such that for all w € H'(K) and for all K € Ty,
the trace inequality holds

1 1
[wllo.or < Cr(hy [wllo.x + hi[Vwlo,x)-

25
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Lemma 2.0.2. There exists C;r € Ry such that for all wy, € Px(K) and for oll K € Tp,

the inverse inequality holds

IVwillo,x < Crhg llwhllo,x-

2.1 Poisson problem
The Poisson problem with Dirichlet boundary conditions is given by

—Au=f in €,
(2.2)
u=g on Jf.

with f € L?(2) and g € H 3 (02). The weak formulation of the problem can be expressed
as: find u € Hgl(Q) such that

a(u,v) = (f,v)q Yov € H&(Q),

with
a(u,v) = (Vu, Vov)q,

and Hgl(Q) = {v € HYQ) : v|pn = g}. After suitable suitable modifications in order
to handle the inhomogeneous Dirichlet boundary conditions, the well-posedness of this
problem follows from the Lax-Milgram Lemma (see appendix C), we also have the elliptic

regularity estimate [64]
lullze S [1/]

00+ lll3 g0 (2.3)

The finite element formulation obtained using the penalty-free Nitsche’s method reads:
find up, € V}¥ such that

Ah(uh,vh) = Lh(vh) Yoy, € th, (2.4)

where
Ap(up,vp) = a(un, vp) — (Vup, - n,vp)a0 + (Von, - n, up)oq,

Ly(vp) = (f,vn)a + (Vo - n, g)aq-

2.1.1 A useful boundary mortaring

Anticipating the inf-sup analysis we introduce patches of boundary elements as in [26, 20|
for the construction of special functions in the finite element space V,f that will serve for
the proof of stability. We regroup the boundary elements in closed, disjoint patches P;
with boundary 0P, j = 1, ..., N,. N, defines the total number of patches. The boundary
elements are the elements with either a face or a vertex on the boundary. Every boundary
element is a member of exactly one patch P;. The number of elements necessary in each

patch is always at least two and upper bounded by a constant depending only on the
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shape regularity parameter c,. Let F; = 0P;N0S, we assume that every I'; is partitioned
by at least one F;. We assume that each I} has at least one inner node but in some case
they may need up to three inner nodes in the case F; =I';. Let P = U;P;. For each F}

there exists two positive constants ¢y, co such that for all j
C1h S meas(Fj) S Cgh. (25)

Figure 2.1 gives a representation of a patch as defined above with four inner nodes. Let

x;j € V;! be defined for each node z; € Tj, such that for each patch P;

0 for z; € Q\Fj
Xj(z;) = ¢ 0 for z; € K such that K has all its vertices on 9
1 for =z; € I3 s

with ¢ = 1,..., N,. Here N, is the number of nodes in the triangulation 7, and ﬁj

defines the interior of the face Fj.

FIGURE 2.1: Example of a patch P;, the function yx; is equal to 0 on the
nonfilled nodes, 1 on the filled nodes.

Lemma 2.1.1. Assume that, for all P;, OP; meets 02 at an angle smaller than 5. For
any given vector (rj);y:‘jl € RN there exists o, € Vh1 such that for all 1 < j < N, there
holds

meas(Fj)_l/ Vr-nds=ry, (2.6)
Fy

and, if r(z) : 00 — R denotes the function such that r|p, = r;,

Ny i
2
lorln S (3 rlirli.e ) (2.7)
j=1
Proof. Let
Ej = meas(Fj)l/ Vx; - n ds.
Fj

The normalised function ¢; is defined such that

=1l
P == Xj-
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The following lower bound that holds uniformly in j and A tells us that ¢; is well defined
0< CE < Ej h.

The constant Cz depends only on the local geometry of the patches P;. By definition
there holds

meas(F;) ! Vy;-nds=1, 2.8
J J
Fj

using the inverse inequality of Lemma 2.0.2 we obtain

1
IVeillon S P E xllop, S P TE; fmeas(Py)> < Cz'h. (2.9)
Let
Np
©r = er@j’
j=1

then condition (2.6) is verified considering (2.8). The upper bound (2.7) is obtained
using (2.9), (2.5) and

NP NP NP
Wt erliBon =Yk Hreillt e £ 30 =28 s < C22 DRI -
j=1 j=1 j=1

O]

Remark 2.1.1. In the previous Lemma the assumption that every patch meets the do-
main boundary at an angle smaller than /2 is very restrictive, however for larger angles
the Lemma can always be made to hold by making the patches wider. We also note that
under the shape reqularity defined above there is an upper limit on how big this angle can
become. The conclusion of these two points is that the analysis is always valid for fine

enough meshes under the shape reqularity assumptions.

The projection of u on constant functions on the interval [ is defined as
! = meas(I)™! /u ds. (2.10)
I

Lemma 2.1.2. For any function up € V}f the following inequalities are true

F;

hIVun - 7llo.r; 2 lun —@n [lo,r- (2.11)

1 . _1
h=2 [ o, = R 2 lupllo,r, — C'|Vunllo,p,- (2.12)

Proof. The inequality (2.11) can be shown by defining 2o € Fj such that (uy—u,7)(z¢) =
0, then for any x € Fj

(up —zThFj)(x) = / Vuy, - 7 ds,
o
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using the Cauchy-Schwarz inequality it follows that

_ gl < . 216)? < h3 . :
lup, — ay, ||0,Fj < |[Vuy, - 7| ds) ds)” < h2||Vuy THQFj ds|”.
F; ~JF; F

The inequality (2.12) is shown in the following way, the triangle inequality gives

F;

1 1 . N
W2 |Jupllo,r, < B2 |lup — " o,p, + R 2 (@R lo,F

considering the inequality (2.11) the trace inequality and the inverse inequality we can
write

. 1
lun — @™ lo,r, S B2 ||Vurllo,p,-

2.1.2 Inf-sup stability

In this section we prove the inf-sup condition using the boundary mortaring defined in
Section 2.1.1. We follow the same principles as for the one dimensional case of Section
1.2.4.

Theorem 2.1.1. There exists § > 0 such that for all functions up € V,f the following
inequality holds

A
Bllunllin < sup An(un, vn)
onevy lvnlln

with = O(1).
Proof. Let vy, = up + aZévzpl vj, such that v; = v;x;, with v; € R, each v; has the

property
meas(Fj)_l/ Vo;-n ds = h™'a,ti. (2.13)
Fj

Applying Lemma 2.1.1 with ¢, = v; and r; = h=Yats we get
1P
IVvjllo,p, S b2 ||UhFJ||0,Fj' (2.14)

Replacing vy, in the bilinear form

Np

Ap(un,vn) = Ap(up,un) + oY Ap(un, v)).
=1

Clearly we have

An(un,un) = [|Vun§ .

and

Ah(uh,vj) = (Vuh,ij)pj — <Vuh 'n, Uj>Fj + (ij . n,uh>Fj.
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Using (2.13), we can write
(Vvj -n,up)r;, = h_1||1ThFj ||37Fj + (Vv; - n,up — Tth)Fj.

Using (2.11), the Cauchy-Schwarz inequality, the trace inequality of Lemma 2.0.1 and

the inverse inequality of Lemma 2.0.2, we obtain
(Vi -y un = ")y S | Vunllo,p; Vs lo, ;-

Applying the Poincaré inequality on each patch P; we remark that the function v; has
the following property
[vjllo.p; S AlIV;llo.p;, (2.15)

using this result, we obtain

|(Vun, Vvg)p, — (Vup - n,v5) 5| S [[Vurllo,p; | Vusllo,p; -
It allows us to write for every j =1,..., N,

An(un, v5) > W@ |5 p, = Cl[Vunllo,p,l[Vosllo,p,

Using inequality (2.14) it becomes

1—F, Ll
Ap(up,v5) > a5 |§ 5 — ClIVunlloph ™2 @m0, 5
Summing over the patches and using the Young’s inequality
N, Ny
1 F 1R
An(un,vn) = |[Vunl§o + > b w15 5 — Ca Y [ Vunllo.ph” 2 [un" llo.p,
j=1 j=1
Cay
2 o —1—F} 2
> (1-IVunl3g +a(1-=2) Zlh @113 g,
]:
Choosing € = 1 and using (2.12) we obtain
3 Al
2 o -1 2
Antuns ) 2 (7 = Ca)lIVunlf + 51 = 0y Sn~
j:

taking o < min( 42,, %) we can write

Ap(up,vp) 2 Huh”%,h'
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Using that (a + b)? < 2a? + 2b? we can show

Np Np
2 2 - 2
lonll = 1V (un + > v)l§ o+ 2w+ Y vjll5 a0
p= =1
N, N, N, N,
= IVunllg.onp + D IV(un+ Y o) p + 07D lun+ad vill§ r,
j=1 j=1 j=1 j=1
Ny Ny
< IVunll§ onp + 20Vunlld p +20° > (V0516 p, + 207 (lunlig o0 + o > 1105113 £,)
=1 i=1
Np
Slunllf g + o UIVoslle.p, + 2 osll5 )
j=1
Np
Slunlld g+ o Nl 4,
=1
(2.16)

with

1ol 1 = V0513 6, + B 5113 5, -

Using (2.15) and (2.14) we have

WM ville ey < IVslIE 2, < B HIER 115 7y < B s

2
0,Fj7

we obtain ||vg|l1.n S |lunll1,n- -

2.1.3 A priori error estimate

The following consistency relation characterizes the Galerkin orthogonality.

Lemma 2.1.3. Ifu € H*(Q) is the solution of (2.2) and uj, € Vi¥ the solution of (2.4)
then

Ah(u - uh,vh) =0, Yoy, € th.
Proof. Ap(u,vn) = Ly(vp) = Ap(up,vp), Yo, € ViE. O
We introduce an auxiliary norm in order to study the a priori error estimate
2 2
[wlZ = [lwllf 5 + Al Vw - 1§ o,
where | - ||1,, is defined by (1.9).

Lemma 2.1.4. For all w € H%(Q) + V¥ and v, € V}, there exists a positive constant
M such that

Ap(w, vn) < Ml|wll«[lon

|14

Proof. The proof is straightforward using the Cauchy-Schwarz inequality. O



32 Chapter 2. Weak imposition of boundary conditions

Theorem 2.1.2. Let u € H*"1(Q) be the solution of (2.2) and uj, € Vi¥ the solution of
(2.4), then there holds

lu—uplip S inf flu—wpls.
whEVf

Proof. Let wy, € V,f, the triangle inequality gives us

lu—un|lin < lu—whnllin + [Jwn — unll1n-

Using the Galerkin orthogonality of Lemma 2.1.3, the Theorem 2.1.1 and the Lemma

2.1.4 we can write

Ap(u — wy, vy,
Bllun — whllip < sup 2= Wnstn)

< MHU - wh||*.
vpeve  llonllin

Note that ||u — w15 < ||u — wh||«, taking the inf over all wy, we obtain

My .
lu=wnllin < (14 =) inf flu—wpl..
/B thEV}ic

O

Let ﬂ'lﬁ denote the nodal interpolant, we have the following approximation property
for u € HF1(Q)

0.k + hi|V(u— mfu)|

lu — mhu 0.1 + hicl|D*(w — mhu)llo.c S P fulesrie. (217)

Corollary 2.1.1. Let u € H*(Q) be the solution of (2.2) and uy, € V¥ the solution of
(2.4), then there holds

lu —unllipn S Bk 0

Proof. Using (2.17) and the trace inequality of Lemma 2.0.1 we have

0.0 S ¥ lulki0,

_1 _
W2 |u — mhulloon S A lu — mhullog + IV (u — mhu)

and

h2 |V (u — mu) - nllosn S|V (u— i)

lo.0
1
+a( D IPMu—mfu)ld k)" S AFlules
KeT;,
Then we deduce
Ju = mhulle S Aol (2.18)

the claim follows by using Theorem 2.1.2 with wy, = F,’iu. O
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Proposition 2.1.1. Let u € H*"1(Q) be the solution of (2.2) and uy, € V¥ the solution
of (2.4), then there holds

1
lu = unlloq < A2 fulri 0.
Proof. Let z satisfy the adjoint problem

—Az=u—up inQ,

z=0 on 0f).
We also have

lu = upl§ o = (u—un, —Az)0 = (V(u—up), Vz)o — ((u —un), Vz - n)ag

= Ap(u —up, 2) = 2((u — up), Vz - n)og.
By Lemma 2.1.3, using (z — 7} 2)|oq = 0 and the estimate (2.18) we can write

Ap(u —up, z) = Ap(u —up, 2 — W}Lz)
= (V(u—up), V(z — mh2))a + ((u— up), V(z = m42) - n)oq
< Jlu—unllipllz — 7hz|«

S Pl = unlnl2l2.0-
The global trace inequalities |Vz - nlloa0 S ||2]l2,0 leads to
1
[((w = un), Vz-njaqal S h2|lu = unllLnllzl20-

Then we obtain

1
lu = unl§ o < (b + h2)h*|ulks0ll2

2,0-

We conclude by applying the regularity estimate (2.3) (||z]l2,0 S |lu — upllon for the

~

adjoint problem). O

Remark 2.1.2. The convergence of the L?-error suffers of suboptimality of order (’)(h%)

due to the lack of adjoint consistency of the nonsymmetric formulation.

2.2 Compressible elasticity

In this section we extend the method to compressible elasticity, we consider the problem
in two dimensions. The main difficulty is that the problem considers a deformation ten-
sor, a variant of the Korn’s inequality is shown to handle this problem. The compressible

elasticity problem with Dirichlet boundary condition is given by

—V.o(u)=f inQ,

(2.19)
u=g on Jf).
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with f € [L2(Q)]?, g € [H%((?Q)]2 and the stress tensor
a(u) = 2,u€(u) + )\(V . ’LL)]IQXQ,

with 1 and X are the Lamé coefficients and e(u) = 3(Vu + (Vu)T) the deformation
tensor. The weak formulation of this problem gives: find u € [H, gl(Q)]2 such that

a(u,v) = (f,v)o Vo € [Hy(Q),

with
a(u,v) = (2ue(u),e(v))g + (A\V - u, V- v)q.

The well-posedness of this problem follows from the Lax-Milgram Lemma. The following

elliptic regularity estimate holds

plullzo + A+ )V -ullie S [ flloa + 9l a0 (2.20)

this result is shown in [22], the proof involves the use of Korn’s inequality (see Appendix
A). We define the space W} = [V}¥]?, applying the penalty-free Nitsche’s method to the
compressible elasticity problem (2.19), we obtain the following finite element formulation:
find uj, € Wf

Ap(up,vp) = Li(vp) Yo, € WF, (2.21)

where the linear forms A;, and L;, are defined as

Ap(up,vp) = alup, vy) — b(up, vy) + b(vy, uy),
Lp(vp) = (f,vn)a + b(vn, g).

The bilinear form b is defined as
b(up,vy) = (2ue(up) - n,vp)a0 + (AV - up, vp, - n)oq.

2.2.1 A new Korn’s inequality

In order to handle the deformation tensor in the proof of the inf-sup condition, we need a
particular form of Korn’s inequality. First let us split the boundary into Ny > 3 smaller
smooth sections {T;}1<i<n, of the boundary with meas(Y;) 2 h, these smaller sections
can be for example the faces of the polygonal boundary or the faces {Fj}1<j<n, of the
patches. To prove this alternative form of the Korn’s inequality we need to define the

following seminorm

Ny
uld = ﬁTi 2 ds u 1 2, .
uf? Z/T< Pds  Vue [HY(Q) (2.22)

T

Note that w has two components, w ' is the average of u on Y.
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Proposition 2.2.1. For all u € [H(Q))? the seminorm (2.22) is a norm on RM with
RM = {u:u=c+b(xs, —21)T,c € R% b € R}.

Proof. Since |ulp is a seminorm, we only need to show that |ulr = 0= u = 0 Vu € RM.
First note that

|u\p=0:»z/ @) ds=0=a' =0,
We also know that w € RM then
c1 + bxo _, c1 + bag Vi
u= ) u = .
co — by co — bflTi
Considering Ty and Y; with k # [ we obtain

¢+ a3k =0,

co — bTT Tk =0,

e+ b =0,

co — leTl =0.
Observe that we only need 1tk % Z1% or Ty Lk # T3 1! to obtain ¢ = ¢g = b = 0.
There exist k& and [ such that one of these condition is always true since (77,73 '*)

and (Z77¢, 75 11) are respectively the mid-points of the sides T3 and Y;. This implies

Theorem 2.2.1. There exists a positive constant C such that Vu € [H(Q)]?
Ckllulia < [le(w)loq + [ulr.
Proof. This proof is inspired by the proof of the Korn’s inequality in [21]. First we define
[HY(Q)? = {ue [HY(Q))? : /Qu dz = 0,/Qrot u dz =0}.

We know that, [H'(Q)]? = [H*(Q)]? x RM. Therefore, given any u € [H'(Q)]?, there
exists a unique pair (z,w) € [H'(€2)]? x RM such that

u=z-+w.
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By the Open Mapping Theorem (theorem 15, chapter 15 of [82]) there exists a positive
constant C such that
Ci(llzllre + lwllie) < luflo. (2.23)

We establish the theorem by contradiction. If the inequality that we want to show does
not hold for any positive constant Cf, then there exists a sequence {u,} C [H'(Q2)]?
such that

funla =1, (2.24)

and ,
le(wn)llog + funlr < —. (2.25)

For each n, let u, = 2z, + w,, where z, € [Hl(Q)]2 and w, € RM, then

1
le(zn)lloe = lle(un)llon < -

The second Korn’s inequality then implies that 2z, — 0 in [H1(Q)]?. Tt follows from
(2.23) and (2.24) that {w,} is a bounded sequence in [H'(€)]?. But since RM is finite
dimensional, {wy} has a convergent subsequence {w,,} in [H'(Q2)]*>. Then the subse-
quence {u,; = Zn,; + Wy, } converges in [H'(2)]? to some u = limy, ;00 wp; € RM and
we obtain

o =1, (2.26)

and

\u]r = 0.

The Proposition 2.2.1 tells us that | - [ is a norm on RM and therefore
lulp =0< u =0,
which contradicts the equation (2.26). O

2.2.2 Inf-sup stability

In this section we show the inf-sup condition for the formulation (2.21). We introduce

the following two dimensional rotation transformation to reduce the technicalities.
Definition 2.2.1. The rotation transformation in two dimensions can be written as
R:L2QP — 2P
z — z=TR(2)= Az,
with A a rotation matriz and z the rotated quantity of z.

This two-dimensional rotation is used to transform the generic fixed frame (z,y) into
a rotated frame (&, 7) associated to each side I'; of 9€2. This rotated frame has its first
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component tangent to the side I'; of the polygonal boundary and its second component
normal to this same side I';. A function z = (21, 22) expressed in the two-dimensional

rotated frame has the following properties

The hat denotes a value expressed in the rotated frame (£,7n). Figure 2.2 represents

schematically how is defined this frame for a side I';. The function wv; is defined such

FIGURE 2.2: Representation of the rotated frame (£, 7), the first compo-
nent of the frame is tangent to the side I'; and the second component is
normal to the side I';.

that v; = (alvjl,agng)T. For simplicity of notation we will use v, vy respectively
instead of v;1, vj2. We define v1 = vj1x; and va = vjox; with vj1,vj2 € R and x; as
defined in Section 2.1.1. In order to be able to use Lemma 2.1.1, the function v; has the

properties

00 —F; 00 —F;
meas(F;) ! TN 45 = h_lalF], meas(F;) ! 92 45 = h_lfmF], (2.27)
F O F On
with @, = (1, 72)”. Note that the projection defined by (2.10) is used. Using Lemma
2.1.1 it is straightforward to show

SN 1. 2 A 1.
IVorllo,p, S h™2|[wn™ - o, IViallo,p, S h™2|[un™ - nllo,rs,. (2.28)

We first give two technical Lemmas, proofs are provided in appendix D.

Lemma 2.2.1. There exists C' > 0 independent of h, p and X\, but not of the mesh
geometry, Yup, € W,’f, on each patch P; forv; € W,% as defined above and Ve, aq, a0 € R,
such that

Coaa Ca? X

P .
<)\V.vj,uh.n>pj Z a9 (1— I)ﬁ”uh J 'In’H%,Fj —IE "u,h J ‘T”%,Fj —26)\”V'Uxh”g’pj.

Lemma 2.2.2. There exists C' > 0 independent of h, p and X\, but not of the mesh
geometry, Yuy, € W}’f, on each patch P; forv; € W,% as defined above and Ve, oy, ap € R,
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such that
5C
Que(v;) - mun)n, > az(2 = =22 ) ' n
C’a1 o
+on(1- ?)Euuﬁ 7l 5, = 3enl| Vunl .

We introduce the following norms
llw|* = n(IVwllg o + ™ wl§ o0) + AV - wllgq +h ™ w - nllf o),
lwll7 = llwll? + uhl|Vw - 1§ oo + MV - w]F oo
Observe that these are norms by the Poincaré inequality.

Lemma 2.2.3. For uy, vy, € W,f with v, = uy, + Z;V:pl vj, v; defined by (2.27), there
exists positive constants By and hg such that the following inequality holds for h < hg

Bolllwnll®* < Ap(wn, va).

Proof. Decomposing the bilinear form, we can write the following

Np
Ah(uh, ’Uh> = Ah(uh, uh) + ZAh(uh,'Uj).
j=1

Clearly we have

An(un, un) = 2plle(un)lls o + MV - uallf o,

and

An(un,vj) = (2ue(un),e(v)))p; — (2ue(un) - m,v)) F; + (2pe(vj) - 1, un)F
+ (AV - up, V- vj)p; — (AV - up, v -n)p, + (AV - vj,up - n) g,

Using the Cauchy-Schwarz inequality and (2.28), we can write the two terms defined

over P; as
Ca? H Cap,  p
(2pe(un), (), < eplle(n) 8 p, + =25 @' T8 5, + =25 (@' 0l g,
C’a )\ P Ca2 N __
AV - up, V- v))p; < X[V |§ p, + |thJ'TH(2),Fj+ 1 2h| W enld g

Combining the inequality (2.15) with the trace and inverse inequalities, followed by (2.28)

we obtain

Ca? - Ca3 T
(2ue(un) -, v5)F; < eplle(un)l§ p, + — 7 @ 5§ + —2 7w Bin|§ g
C’a Ca3 )\
OV 5w, < NVl gy + S " 7y + S22 -l
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Considering Lemmas 2.2.1 and 2.2.2 we can write

Ah(Uh,'Uh)
Np Np
> 2plle(un)l5.0 + AV - unllso — 26> ulle(un)l§ p, — (Bep +4eX) > [ Vunllg p,
j=1 J=1
9C N 13C
g T— 2 2
+ o (1 - al?ﬁ) ]z; EHuh TeTllo,p + a2 (2 - O@Te) ]z: Al ~nlo,x,
N, Np
30\ =\, g 3C
tar( - ) DIl + as(1-as) 0 Sl

Using the Korn’s inequality of Theorem 2.2.1 with Y; = F} in the definition of the

seminorm | - |p we obtain the following bound

p
WlBa+ S I@ 13 > Cxlwnlla  Van € Wi
leCun)] J
=1

Using this result, we can write

Np
Ap(un,vn) > AV - un§ o + 2Ckpl|Vun|§ g\ p + (2uCk

Jj=1

9C 3C
(1= ) —2m)u-ad )Zh w3 g,
13C
+(<a2<2—a2?>—2h>u+a2<1—a2—) )Zh o orsd nHOF
Considering the inequality (2.12) we obtain
2 2 - 2
An(un, o) 2 M|V - unllf o + 20k pl Vunl§ g\ p + (Ca = Cp = Ce) Y IV ullg p,
N, N,
Chx—,_ Conr,
F S W+ e S e mlR
j=1 j=1

with the constants
C, =2uCx — bep — 4e,

Cy = (a1(1 —a1£> —2h> —Oz%?:lCA

4e
C. = (042 (2 — oq%) — 2h),u + a2(1 — 04210))\.
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First we choose € = 5&16’32/\ so that C, = uCk. Let h < hg such that C and C, are

positive respectively for

4MQCK > a AuCr(2pn 4+ N)
(OCL+3CN)Bu+40) ~ " (13Cu+3CN) (5u + 4))

> Q9.

C, — Cp — C, will be positive for

Ck ,UCK
— > an.
2 T 3epn ™
By looking at the order of the constants, we can see that gy = O(ﬁ) and hy =
O(ﬁ) If X is large compared to u, hg has to be very small. This reflects the locking

phenomena that is well known for finite element method using low order H'-conforming

spaces. ]

Theorem 2.2.2. There exists positive constants [ and hg such that for all u, € W}If
and for h < hg, the following inequality holds

Ap(up, vy
Bllunll < sup Anlen.on)
e Tl

Proof. Considering Lemma 2.2.3, the only remaining thing to show is
llonll < Clllwall- (2.29)

Using the definition of the test function as in the previous proof, similarly as (2.16) using

the linearity of the divergence operator we have

NP
llonll® < Nuwall® + > llv; 1.
j=1

By definition
lv;lI1* = (Vo515 p, + B w115 7,) + AV - 0515 p, + 57 lvj - mlE gy

We observe that [, o7, < [|unllo,r,, using this results and recalling (2.28) it gives

the appropriate upper bounds considering the definition of v;

NP

> ullVoslle.p, < lluall?,

=1

’ (2.30)

Np Np
SOV - villg e <D AIVlle p, S el
j=1 j=1
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Using the trace inequality for the boundary terms and the inequality (2.15) we can write

NP
6., S D rlIVYsIIE py S Hlanll?,
J

Np
> ph v,
j=1

- (2.31)
NP NP
Y oA nld g S D AIVY;IE b, S lluall.
j=1 i=1
Note that 8 = O(54;). O

2.2.3 A priori error estimate

Using the stability proven in the previous section we may deduce the a priori error
estimate in the H'-norm. We first prove the consistency of the method in the form of a

Galerkin orthogonality.

Lemma 2.2.4. If u € [H*(Q)]? is the solution of (2.19) and w;, € W} the solution of
(2.21) the following property holds

Ap(u — up,vp) =0, Yoy, € W}’f

Proof. We observe that Ap(u,vp) = Ly(vy) = Ap(up,vp), Yo, € W,’f O

Lemma 2.2.5. Let w € [H*(Q)]? + W} and v, € WF, there exists a positive constant
M such that
Ap(w, vp) < Mlw]l.[[[on]-

Proof. Using the Cauchy-Schwarz inequality it is straightforward to write
AV - w, V- vp)a + 2pe(w), e(vn))a S [[wl«[vall,
(AV - w, vy - m)ag + (2ue(w) - n,vp)a0 S [wll«[lvnll-
The trace and inverse inequalities allow us to write
1 1.1
AV wp,w-n)ag S A2[[Vorloerzh™2[|w - njjosa S [[wllvall,
1 1.1
(2ue(vn) -n,w)oa S p2||Vouloap>h™2|lwlloee S l[wl«lvnll
O

Theorem 2.2.3. If u € [H*1(Q)]? is the solution of (2.19) and uj, € WF the solution
of (2.21) with h < hg, then there holds

e =l < Cp inf flu—whl,
wpeWy

where Cg is a positive constant that depends on the mesh geometry.
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Proof. Let wy, € W,’f, the triangle inequality gives us
lle = wnlll < fllw — wa| + [llwn — wnll-

Using Theorem 2.2.2, the Galerkin orthogonality of Lemma 2.2.4, and the Lemma 2.2.5

we deduce
Ap(u — wp,vp)

Bllun —wp|| < sup < Mju — wp |«

oo Toall

Note that ||u — wy]| < ||u — wp]|«, taking the inf over all wj, we obtain

MN .
llw—wnll < (1+5) inf flu—wl.,
/8 ’thW}'If

and Cs = O(B71). O

Let i, denote the Scott-Zhang interpolant [99]. The approximation property of the
interpolant may be written for each K € T;, and u € [H**1(Q))?

= ifpullos + hellV (u — i) lo.xe + Wl D — i) o.xc S R utlirrser (2:32)

with Sk = interior(U{K;|K; N K # 0, K; € Tp}).
Corollary 2.2.1. If u € [H*™1(Q)]? is the solution of (2.19) and u, € W} the solution
of (2.21) with h < hg, then there holds

llw — up|| < Conh*|ulks1,0,

where C,y s a positive constant that depends on p, A and the mesh geometry.

Proof. Using the trace inequality of Lemma 2.0.1 and (2.32) we have

1

000 S IV —i&wlloa+h( Y 1D u—iku)ld k) < g,
KeTy

2|V - (u— iu)

using similar arguments as in the proof of Corollary 3.2.1 and noting that

000 S |lu — iszulloa0,

IV - (u — igu)lloo S IV (u — igzu)|oq, [(w — ifzu) - n|
we obtain the estimate
. 1 1
u— igull. < (02 + A2)hF|ulp 0. (2.33)

The claim follows by using Theorem 2.2.3 with wj, = i§,u. The constant in the estimate
satisfies C = O(B~1(\2 + put)). O
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Proposition 2.2.2. Let u € [H*1(Q)]? be the solution of (2.19) and wy, the solution
of (2.21) with h < hg, then

1
lu —upllon < CLAhH? [ufk11,0

where C”A s a positive constant that depends on p, A and the mesh geometry.

Proof. Let z satisfy the adjoint problem

—2uV -e(z) = AV(V-2z)=u—u;, inQ,
z=0 on 0f.

Then we can write

z) = AV(V - 2))q
o+ AV (u—up), V- 2)g
) -

lu — unl§o = (u—up, —2uV - &
= (2ue(u —up), e(z)
— 2u(u —up),e(z) - n)sg — (AMu —up) -n, V- 2)s0

= Ap(u —up, 2) = 2(2pu(u — up), €(2) - m)og — 2{A(u —up) - n, V- 2)o0
By Lemma 2.2.4, using (z — i&,2)|sq = 0 and (2.33) we deduce that

Ap(u—up, z) = Ap(u — up, 2 — i3y2)
— (el — up), (2 — ib2))a + AV - (1 — up), V- (2 — ikg2))a
+ (2u(u — up), e(z —igz2) - n)ag + (M —up) -0,V - (2 — igz2))on

S (2 + p2)hflu = w|2]a.0.

The global trace inequalities |le(z) - n lead to

(20w — un),e(2) - Mgl + [(Mu — up) -1, V- 2)aal S (A2 + 2)h|[u — up|2]]2.0.
Then we obtain
lw = wnllf o S Cun(A2 + 2)(h + h2) M ulsn o]zl
The regularity estimate (2.20) applied to the adjoint problem tells us that
pullzll2.0 S llw —unlloo,

the claim follows, note that C7, = O((1 + %)2) O

2.3 Incompressible elasticity

In this section we study the case of incompressible elasticity, for this problem the inf-sup

condition must be shown to hold simultaneously for the displacment and the pressure.
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We choose to work with equal order interpolation, the pressure is stabilised using a
Galerkin least squares stabilisation. The incompressible elasticity problem with Dirichlet

boundary condition is given by

-V O'(U,,p) = .f in Q?
V-u=0 1in{, (2.34)
u=g on 0.

with f € [L2(Q)]?, g € [H%((?Q)P and the stress tensor
o (1w, p) = 2ue(w) — plass.

To determine uniquely p we assume that pr dxr = 0. We have the following weak
formulation: find (u,p) € [H,(2)]*> x L*(€2) such that

al(u,p), (v,q)] = (f,v)a V(v,q) € [Hy(Q)]* x L* (),
with
al(u,p), (v,q)] = (2ue(u), e(v))o = (, V- v)a + (V- u,q)a.

The well-posedness of this problem follows from the Lax-Milgram Lemma, we also have

the regularity estimate [2]

plullzo +lplle S 1o+ liglls go- (2.35)

Let us define the space Q = {q € L?(Q0), fQ g dz = 0}. In order to introduce the

discrete formulation, we define the finite element space
QF ={qgn € Q: qulx €P(K) YK € Tp,}, k>1.

Applying the penalty-free Nitsche’s method to the incompressible elasticity problem
(2.34), the following finite element formulation is obtained: find u;, € W}’f and pp € QIfL
such that

Ap[(wn, pr), (vn, qn)] = Lu(vn, qn) V(vn, an) € Wi x QF, (2.36)

where the linear forms A; and L; are defined as

Ap[(un, pr), (vn, qn)) = a[(wp, pr), (Vh, qn)] — b(wp, vy, pr) + b(Vh, wh, qn)
+ Sh(uhaph7qh>7
Li(vn,qn) = (£, 0n +9pp ' h*Var)a + b(vn, g, an).-
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The bilinear form b is defined as

b(wn, i, pn) = ((2pe(ur) — prllax2) - n, vh)oq-

Sy, denotes the stabilisation term, different strategies can be used to stabilise the pressure
[18, 24, 79, 80, 35, 15| here we consider a Galerkin least squares stabilisation [89, 12, 55]

5
Shlanspnan) =2 Y | 1207 - e(wn) + Vi) Vay d
H KeT, K
h

This term is necessary as we want to use equal order interpolation. Note that if com-
patible function spaces are chosen this stabilisation term is not needed.

2.3.1 Inf-sup stability

We proceed similarly as the compressible case, we introduce the following norms for any

functions (w, o) € [H(Q)]? x L?(2) as

ll(w, )lI* = u(IVwlfg o + 2~ wl§ ae) + 22p~ [V ellg 0
1w, )12 = ll(w, QI” + phlVew - n§ ag + 17"l

6.0+ 1 hllolg a0 + ph T w|F g
+ R Z IV - e(w) 1§ 1c-
KeTy,

Lemma 2.3.1. For up,v; € W,’f with vy, = up + Zjvzpl v;, v; defined by equations
(2.27), and q;, = pn, there exists positive constants By and hy such that the following
inequality holds for h < hg

Boll (e, pr) I < Anl(wn, pr), (vh, an)]-

Proof. Decomposing the bilinear form, we can write the following

Np

Anl(wn, pr); (vny n)] = Anl(wn; pn), (wns )]+ Anl(un, pp), (v5,0)].
j=1

Using the Cauchy-Schwarz inequality and the inverse inequality we can write

Ap[(un, pr), (wn, pn)]

7
> 2ulle(un)fa — D 20V - e(un)llox bl Vonllo,x + ;thHVthg,Q
KeTs,

7, Cy
> 2(1 = plle(un)lfa+ 7 (1= 37 )W I Vel
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The second part can be written as

Apl(un; pr), (v;,0)] = (2ue(un), e(v;))p; + (Von, vj)p,
— (2ue(un) - n,v;)py + (2ue(v)) - n,up) .-
We want to obtain a lower bound for each term, most of the terms have been studied in

the compressible case. The lower bound of the only remaining term can be found using
(2.28) and the inequality (2.15), we get

2 2
€2 2 Catp, 1, __p, 2 Cogp, 1\ __p, 2
(Vpn,vj)p; < ;h IVonlls,p, + % e - 7lor, + 2% h=[un™ - nllg F,-
Then we get
Apl(un, pn), (vn, qn)]
g/ Cry
> 21 = plle(un)ia + 5L (1= 7 )21 9mlRe
Np Np NP
2 € 2 2 2
- QGZMH“?(Uh)HO,Pj T Zh IVenllo.p, — 3€ZM\WuhH0,Pj
=1 j=1 j=1
N N
O\ HyF 2 150N\ S Hypy 12
ron(1- o) 2l 7l +ag(2- e ) 2 e -l

Similarly as for the compressible case, using the Theorem 2.2.1 and the inequality (2.12)

we obtain

Ap[(un; pr),(vh; qn)]
Np

h2
> Cop|| Vg p + Cb;HVPhH?)\P + (Ce — Ce = Cy) Zﬂﬂvuh”apj
=1
NP Np Np
h2 o X, c; &y
+ Ca Z ;vah o.p, + 76 Z EHuh T3, + ?f Z EHuh -nllf 5,
j=1 j=1 J=1

with the constants

Co=2Ck(1—¢),

i S2).

C. =2Ck(1 —€) — be,

i) -

B 11C ,
Ce—(Xl(l—OélTE) —2h(1—6),
15C ,
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2
We choose € = TTP and € = i. Taking 7, < CL-F&’ Ce and Cy are positive, for h < hg C,
and Cy will be positive respectively for
2 2
p 2%
e~ e~
C. — C, — Cy will be positive for
2CKk Ck Ck
T>')’p, 7>061, T>062.

ho is the biggest value of h that can be considered, we observe that 5y = O(1), hy =
O(1). O

Remark 2.3.1. Contrary to the case of compressible elasticity the conditions on the
constants are independent of the physical parameters, this reflects that the mized method

1s locking free.

Theorem 2.3.1. There exists positive constants $ and hg such that for all functions
(up,pp) € W,’f X QZ and for h < hg, the following inequality holds

Bl (wn, pr) || < sup An[(wn, pn), (vn, q1)]
(Vh,qn)EWEXQE |H('Uh7Qh)|”

Proof. Considering Lemma 2.3.1, we need to show

Il Cwn, gr)lll < Ml Cen, pr) I

Using the definition of the test functions, using similar argument as for (2.16) we have

Np
Il on, @)1 S Ml uns )P+ (w5, 01
j=1

By definition we have

(w5, 001> = 11V 15,0 + 2~ 015 00)-

The claim follows from (2.30) and (2.31). Note that 5 = O(1). O

2.3.2 A priori error estimate

In order to show the a priori error estimate, we state the following Galerkin orthogonality.

Lemma 2.3.2. If (u,p) € [H*(Q)]? x HY(Q) is the solution of (2.34) and (un,pp) €
W,’f X Qlfl the solution of (2.36) the following property holds

Ap[(w —up,p —pp), (Vh,qn)] =0, Y(vn, qn) € WE x QF.
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Lemma 2.3.3. Let (w,0) € ([H*(Q)]? + WF) x (HY(Q) + QF) and (vn,qn) € WF x QF

there exists a positive constant M such that

Apl(w, 0), (vn, an)] < M|[(w, 0)|«/l(vn, an)|ll-

Proof. The proof of the Lemma 2.2.5 gives us the desired upper bound for the terms
(2ue(w), e(vp))a, (2ue(w) - n,vp)a0 and (2ue(vy) - n, w)yo. The integration by parts
gives

(Vo,w)a = (0 n,w)sn — (0,V - w)q.
Using the Cauchy-Schwarz inequality we obtain

(0-m,vn)00 = (0,V - wn)a — (Van, w)a S [[(w, o)« (va, an)ll

<
o N (R(—20V - e(w) + Vo), Van)x S (w, o)l (whs an)ll-
KeTy,

Note that the second line corresponds to the stabilisation term. O

Theorem 2.3.2. If (u,p) € [H*1(Q))2 x H*(Q) is the solution of (2.34) and (up,pr) €
WE x QF the solution of (2.36) with h < hy, then there holds

I (w —wn, p —pp)ll < Cp inf [(w — wpn,p — on)]l+
(wh,0n)EWEXQE

where Cg 1s a positive constant that depends on the mesh geometry.
Proof. Let (wp, on) € W,’f X Qﬁ using the triangle inequality we get
(e —wn, p = p)ll < (v = wn, p — on)ll + [(wn — wn, 0n — pa)|-

Using the Theorem 2.3.1, the Galerkin orthogonality and the Lemma 2.3.3 we obtain

Ah U — Wh,P — On), \Vh,qn
Bll(wn — whopn — on)| < sup [< P — on); (vh, qn)]
(Vh,an) EWEXQF: I(vn, qn) |l

< M|[(w —wp,p — on)||+

Note that ||u — wy]| < ||u — wp]|«, taking the inf over all wj, we obtain

M .
I —wnp=pll < (1+2) b (w—wp,p = o)l
B 7 (wh.on)eWf xQ

We note that Cg = O(1). O

Let i, denote the Scott-Zhang interpolant [99], for each K € T, and p € H*(Q) we

have
Ip — itzpllic + hic ||V (p — i&zp) | e < hiclpl,sic- (2.37)
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Corollary 2.3.1. If (u,p) € [H*1(Q)]?x H*(Q) is the solution of (2.34) and (uy,pp) €
WE x QF the solution of (2.36) with h < hy, then there holds

(e = wn, p = )l < A (Cultelirre + Cpulpli).

where Cyy, and Cy,, are positive constants that depends on p and the mesh geometry.
Proof. Using (2.32) and (2.37) we have
RV (p — igzp)llo.e < B*[plke,

Ip —i&zplloo S h¥[plk.o,

o lu — ifuloe S P lulkio,

1
(D IV e(u - Ew)ld k)’ S Bolulisr o
KeTy,

Using the trace inequality of Lemma 2.0.1 and (2.37) we have
1
1 .k .k .k 2 k
h2||lp —igzpllooa S V(0 — igzp)llon + h( > ID*p - lszp)H%,K) < hFlplr.a-
KeTy,

Using the proof of Corollary 2.2.1 we deduce that
. . 1 _1
1(w — igzu, p —igzp) |l S B (2 [ulkri0 + o2 |plro)-

Then we use Theorem 2.3.2 with w;, = z"s“zu and o = i’sfzp to conclude. The constants
are such that C, = /ﬁ and Cp, = (’)(/f%). m

Remark 2.3.2. The convergence of the L?-error of the displacement with the order

O(h]“'%) may be proven similarly as in Proposition 2.2.2 using the regularity (2.35).

Proposition 2.3.1. Let (u,p) € [HFT1(Q)]?2 x H*(Q) be the solution of (2.34) and
(un,pn) € WF x QF the solution of (2.36) with h < hyg, then

Ip = prllog < WH(Chululkrr0 + C)ulpleg),

where C{W and Czl)u are positive constants that depends on p and the mesh geometry.

Proof. By the surjectivity of the divergence operator V- : [Hg(Q)]? — L3(Q) (see, [62]),
there exists v, € [Hg(Q)]? such that V- v, = p—pj,. Therefore we may write (using the
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Lemma 2.3.2 and observing that (v, — i&,v,)|sq = 0)

= (p—pn,V-v)a + Ap(w — up, p — ), (i, 0)]
= —-pn V- ( Zsz'vp)

+ (2ue(u — up), e(ifvp))a + (2ue(ifv,) - n,u — up)on

)o
)
=—(V(p—pn),v lsz'”p)Q
+ (2pe(u — uh) (Zsz'vp))Q + <2N5(Zszvp) U~ Up)oQ
S 2|V (p = p)llo.oh ™ 12 o, — ivpllo
+ 24|V (u — up)

1
S 12 I(w = un), (p = pa)ll|vp)1.0-

We conclude by applying the stability [|vy[1,0 < Cy,llp — palloe. We observe that
Cyp = O(p) and C},, = O(1). O

UL

2.4 Numerical results

In this section we will present some numerical experiments verifying the above theory.
The package FreeFem-++ [75] was used for the numerical study. In the first two sections
we consider the domain €2 as the unit square [0, 1] x [0, 1]. For compressible and incom-
pressible elasticity we use a manufactured solution to test the precision of the method.
In the third section we study the performance of the penalty-free Nitsche’s method for

the Cook’s membrane problem.

2.4.1 Compressible elasticity

The two dimensional function below is a manufactured solution considered for the tests

(@ =)
“‘Q#—ﬁww—fﬂ'
The nonsymmetric Nitsche’s method given by equation (2.21) is used to compute approx-
imations on a series of structured meshes. We consider first and second order polynomials
and we study the convergence rates of the error in the L? and H'-norms. We choose
=1 and consider several values of A in order to see numerically the locking phenomena
for large values of \. The piecewise affine case (Figure 2.3) shows locking for A = 10°.
When X becomes large, the error does not converge if A is not small enough. When the
piecewise quadratic approximation is used (Figure 2.4), the problem with large values
of A only changes the value of the error constant and has negligible effect on the ob-
served rates of convergence. The numerical results show that for both cases the rate
of convergence of the H'-error corresponds to what has been shown theoretically. For

the L2-error, we observe a convergence of order O (hkﬂ), which is a super convergence
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L? error
H! error

FI1GURE 2.3: Compressible elasticity, Vhlz error versus the maximal ele-
ment diameter h. Left: L2-error, right: H!-error.

L? error
H! error

10°

FIGURE 2.4: Compressible elasticity, Vh2: error versus the maximal ele-
ment diameter h. Left: L2-error, right: H!-error.

of order O(h%) compared to the theoretical result. In spite of numerous numerical ex-
periments not reported here, we have not been able to find an example exhibiting the

suboptimal L2-convergence of Proposition 2.2.2.

2.4.2 Incompressible elasticity

The manufactured solution considered in this part defines the velocity and the pressure

respectively such that

. 4 4
. [ s ﬂ'x)CO‘S( Ty) 7 p = meos(4mx)cos(4my).
—cos(4mz)sin(47y)



52 Chapter 2. Weak imposition of boundary conditions

The nonsymmetric Nitsche’s method without penalty given by equation (2.36) is used
to compute approximations on a series of structured meshes. We take p = 1, a range
of values of «, have been considered in the tests to study numerically the effect of the

stabilisation parameter on the computational error. Figure 2.5 considers piecewise affine

-3, = 1072 d
—o-v, =107} e
)
by = 10° »” g
Tp = 10! o

—O0(h") o

H' error of u
=
L? error of p

107 10°

FIGURE 2.5: Incompressible elasticity, V;! x Q}: errors for a range of
value of y, versus the maximal element diameter h. Left: H'-error of the
velocity, right : L2-error of the pressure.

approximation. It shows that in this case the H'-error of the velocity has an order of
convergence O(h) for all the values of +, tested. The convergence rates for the L%-error
of the pressure are close to (’)(h%) for all the values of 7, considered and for h small

enough.

2.4.3 Cook’s membrane problem

The Cook’s membrane problem is a bending dominated test case. Figure 2.6 represents
the computational domain 2. On the face (C'D) the Dirichlet boundary condition u = 0
is imposed. On the face (AC) the Neumann boundary condition o(u) = (0,100) is
imposed. In this part we compare the results given by the strong and weak imposition of
the Dirichlet boundary condition. The weak imposition is implemented using the non-
symmetric Nitsche’s method without penalty. We use first and second order polynomial
approximations on unstructured meshes. For the first test £ = 10° and v = 0.3333, we
use compressible elasticity, note that O (u) = O (\) (u = 37501, A = 74979) . Figure 2.7
shows the deformed mesh obtained. We compute the vertical displacement of the point
A (top corner) versus the meshsize. Figure 2.8 shows the results for this case, by refining
the mesh the approximation of the displacement of A becomes more accurate. Both weak
and strong imposition of the Dirichlet boundary are displayed. For first and second or-
der approximation the weak imposition case converges faster than the strong imposition.
For the second test we consider F = 250 and v = 0.4999, we expect to observe locking
as O (pu) < O(A) (u =83, A = 416610). Using compressible elasticity we perform the
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FI1GURE 2.6: Cook’s membrane, computational domain.
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FIGURE 2.7: Deformed mesh, with a magnification factor of 10.

same tests as for the first study. Figure 2.9 represents the vertical displacement of the
point A (top corner) versus the meshsize. We observe locking for both methods for first
order approximation. The second order approximation converges without locking even
for the coarse meshes. Similarly as the previous case the convergence is faster for the
weak imposition. In view of the observed locking, we use the nearly incompressible prob-
lem to perform the same computations. The nearly incompressible problem, is obtained
considering (2.34) and replacing V-u = 0 by V- u = p/A. Figure 2.10 displays the

nearly incompressible elasticity for first and second order approximations for the weak
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FIGURE 2.8: Convergence of the vertical displacement, £ = 10° v =
0.3333.
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FIGURE 2.9: Convergence of the vertical displacement, E = 250 v =
0.4999.

and strong imposition but also the compressible elasticity with second order approxima-
tion. It shows that for nearly incompressible elasticity there is no locking for the method
using first order polynomial approximation however for second order approximation the
compressible elasticity converges faster than the nearly incompressible elasticity. Once

again the weak imposition case converges faster than the strong imposition.
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Chapter 3

Fictitious domain

In the previous chapter the computational mesh was fitted to the physical domain, in this
chapter we extend the study to the unfitted case when the physical domain is embedded
in a background mesh. The physical boundary is allowed to cut elements of the mesh,
the ghost penalty [25] is considered to ensure that the condition number is independent
of the cuts.

3.1 Preliminaries

3.1.1 Unfitted framework

Let © be a bounded domain in R? with smooth boundary I'. Let {73}, be a family of
quasi-uniform and shape regular triangulations (in the sense of (2.1)), Q7 is the domain
covered by a mesh 7}, the physical domain is embedded in this mesh, therefore 2 C Q7.
In a generic sense a node of the triangulation is designated by z;, K denotes a triangle of
T, and F' denotes a face of a triangle K. Figure 3.1 shows an example of configuration.
Let us define the computational domain Q* = {K € T, | K N Q # (0}, then we define

FIGURE 3.1: Fictitious domain, €2 is embedded in a background mesh.

ViF = {v, € HY(Q*) : vk € Pu(K),VK € T} k> 1.

o7
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The trace inequality of Lemma 2.0.1 is extended such that for w € H'(K)

1
0.k +hi|Vwllox) VK €ET,. (3.1)

_1
[wllo,xnr < (hy*[lw

this result is shown in [67]. Let E be an H*-extension on Q*, E : H%(Q) — H*(Q*) such
that (Ew)|q = w and

| Ew

5.0 Slwlls,n Vw e H*(Q2),s > 1. (3.2)

For simplicity we will write w instead of Ew for any w € H*(2). Let igz : H*(2*) — th
be the Scott-Zhang interpolant [99], we construct the interpolation operator Z;, such that

Ih’w = iszEw. (33)

Using the approximation property of the Scott-Zhang interpolant, we have the interpo-
lation estimate for 0 <r <s<k+1landwv e Hk“(Q),

lo—iszolloge 0 lolss,e VK € T, (3.4)

with S = interior(U{K;|K; N K # 0, K; € T}). Using the estimate (3.2) with (3.4) we

have

1
(> o =Zwl2x)* S Tl (3.5)

KeQr*
In order to follow the process used in the previous chapter to show the inf-sup condition
in the different cases we need to adapt the structure of patches introduced in the Section
2.1.1. Let G}, be the set of elements that intersect the boundary I'

Gp={KeT,| KNT #0}.

For the sake of precision we make the following assumptions regarding the mesh 7 and
the boundary I :

e The boundary T' intersects each element boundary 0K exactly twice, and each

(open) edge at most once for K € Gy,

o Let ' j, be the straight line segment connecting the points of intersection between

I' and 0K. We assume that I' is a function of length on I' , ; in local coordinates

Lrn=1{(mn):0<&<[Tupl,n=0}

and
P ={(n):0<§<|Trnln=235¢}.

e We assume that for all K € G}, there exists K’ ¢ G, and K N K’ # () and such

that the measures of K and K’ are comparable in the sense that there exists two
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positive constants ¢; and cg such that for hx = diam(K') we have
c1h < hg < coh, ch < hgr < coh
and that the faces F' such that K N F # () and K’ N F # () satisfy
hir < cameas(F),

with c3 a positive constant.

e We assume that in a triangle K intersected by I', the normal ng of the face that

does not intersects I' and the normal n of I' verify
[n(s) - np|#0 Vs € INk. (3.6)

3.1.2 An unfitted boundary mortaring

Let us split G, into N, smaller disjoint sets of elements G with j =1,..., N. Let I,
be the set of nodes belonging to G;. We define the set of nodes I; such that

Ij:{.riEIGj ‘.%'Z'GQ, xi¢IGn Vn;ﬁj},
we define P; for each G; such that
P; =G;U{K €Ty, | 3z; € I; such that z; € K}.

Each patch P; is constructed such that I; # (. T'; = I' N G; is the part of the boundary
included in the patch P;. For all j, the patch P; has the following properties

h <meas(T;) <h and A% < meas(Pj) < b2 (3.7)

Let x; € Vh1 be defined for each node z; € 7}, such that for each patch P;

0 for x; &1,
X (i) :{ ’

1 for z; €1j,
with ¢ = 1,..., N,. Figure 3.2 shows an example of patch with the value of x; at each
node.

Lemma 3.1.1. For every patch P; with 1 < j < N, ; Vr; € R there exists o, € Vh1 such
that

meas(Fj)_l/ Vo, -nds=r;, (3.8)
Lj
and the following property holds

1
IVerllo.p; S P2 mjllor;- (3.9)




60 Chapter 3. Fictitious domain

-
--
-

FIGURE 3.2: Example of P;, the dashed line is I';, x; is equal to 0 in the
nonfilled nodes, 1 in the filled nodes.

Proof. Let
== meas(f‘j)_l/ Vx;-n ds.
Ly
The normalised function ¢, is defined such that
=1
w; = :j X5~

Let Ki,..., K, be the triangles crossed by the boundary within a patch P;, considering

(3.7) the number of triangles is small, then we have

|hZ;| = ’hmeas(l“j)1</ ij-nds+-‘~+/ ij-nds)} > (Cz >0,
FjﬂKl I

jﬂKm

where we used the fact that each integral is negative given by (3.6). This lower bound
that holds uniformly in j and h tells us that ¢; is well defined, the constant Cz depends
only on the local geometry of the patches P;. By definition there holds

meas(Fj)_l/ V- -nds=1, (3.10)
Ly
using the inverse inequality of Lemma 2.0.2 we obtain
- - 1 _
IVeillor, S 1PE xllo,p, S 1h1E;  meas(Py)? < Oz h. (3.11)

Let ¢, = 7;¢;, then condition (3.8) is verified considering (3.10). The upper bound (3.9)
is obtained using (3.11), (3.7) and

1 1 1
IVerllo.r, = IrillIVesllo,p; S meas(I'y)2[rjlh> = h2||rjllor;-
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It is straightforward to observe that (2.11) and (2.12) still hold in this new framework,

h||Vup - T

hE |t

or; 2 llun — 5" lo,r;- (3.12)

1
or; = h2[[upllor, — C'[[Vunllo,p,- (3.13)

3.2 Poisson problem
The Poisson problem with Dirichlet boundary conditions is given by

—Au=f inQ,
(3.14)
u=g¢g onl.

with f € L?(Q) and g € H %(I‘) The weak formulation can be expressed as: find
u € Hj(Q) such that
a(u,v) = (f,v)q Yo € HY(Q),

with
a(u,v) = (Vu, Vv)q.

The Lax-Milgram Lemma gives us the well-posedness of this problem. Under the as-

sumptions on  we have the following regularity estimate [64]

[ullstz.0 SN fllso +llgllegsr Vs> 0. (3.15)

The finite element formulation using the penalty free Nitsche’s method reads: find uy €
Vi
Ap(up,vn) + Jp(up, vn) = Lp(vp) Yoy, € th, (3.16)

the term Jj, is the ghost penalty [25], the linear forms are defined as
Ap(up,vn) = (Vup, Vop)a — (Vup - n, o)1 + (Vg - n, up)r,

k
Tn(un,vn) =7 > Y B HIDL up]e, [Dh,vn]F) e,
FeFg l=1

Lh(vh) = (f: ’Uh)Q + <v1}h : n?.g)Fa

with Fg = {F € Gy | FNQ # 0}, 74 = O(1) the ghost penalty parameter and np
the unit normal to the face F' with fixed but arbitrary orientation. Dle is the partial
derivative of order [ in the direction of the normal np. [w]r = w} — wp, with w% =
lim,_,g+w(z F snp), is the jump of w across the face F'. The ghost penalty provides the
control of the gradient for any function vy, € V,f on {2, it is characterised by the following
property that has been proved in [89]

IVorli§.a- S IVURllga + Jn(vnvn) S [[Vonll§ - (3.17)
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Let us introduce the norms

lwll* = [IVwlig o + b~ [wl§ p + T (w, w),

lwll = llwll® + 2V - 0§ p.

3.2.1 Inf-sup stability

Theorem 3.2.1. There exists § > 0 such that for all functions up € th the following

inequality holds
A
Bllunll < sup AL Vh) + Tn(un, vi)

eyt [Fonl

Proof. Let vy, = up + aZ;.V:pl vj, such that v; = v;x;, with v; € R, each v; has the
property
meas(Fj)_l/ Voj-nds=h"1a" . (3.18)
Ly
Replacing vy, in the bilinear form

Np

(Ap + Jn) (un, vn) = (An + J) (s un) + @ > [Ap(up,v5) + T (un, v5)].
=1

Using the inequality (3.17) we have
(An =+ Jn) (un, un) = [Vunlls o + Jn(un, un) 2 [ Vun|§ ox-
Applying (3.18) we get
a(Vvj - n,up)r, = ah” g Hapj + a(Vvj - n,up — T ),

the second term can be bounded using (3.12), the trace inequality (3.1) and the inverse
inequality of Lemma 2.0.2,
Ca?

lo,P; I Vjllo,p, < 5||Vuh\|3,Pj + ?vajuapf

a(Vv; - n,up — lThFJ)pj S of | Vuy,

Using (3.17) and the Young’s inequality we get

ol

1
a(Vup, Vvj)pina + ady(un, vj) S ol Vupllo,pnell Vojllo,pna + adn(un, un)? Jn(vj, vj)

Ca?
< €| Vunlf§ p, + IHV’UJH(Q),P]-‘

The inequality (2.15) still holds in this context

lvjllo,p; < RlIVvsllo,p; (3.19)
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using this result, the trace inequality (3.1) and the inverse inequality we get

Ca?
(Vun - n,v5)r; S Vunllo.p; [ Vuillop, < el Vunlg p, + —— 1 IV ;1 5,

Then using Lemma 3.1.1

3Ca
Anlunyvn) = (€ =30 [Vunl g +a(1 - =) Zh Tt R
Applying (3.13) and (3.17)

3Ca
(At ) (tny 1) = (C—=€e=C'a) (| Vunl o+ (un, un))+5 (1= =) Zh Yunllr,

By choosing « and € in the right way we obtain
An(un, vn) 2 [lunll®

To complete the proof we need |[|vp]l| < [||lunll|, we know that

NP
ol S Nunll? +a® > loill® - with [lo;ll* = 1V0;13 500 + 2 sl .r, + Ju(vg,05).
j=1

Using the trace and inverse inequalities, (3.19), (3.17) and the Lemma 3.1.1 we have
= HollEr, S IVl e, S IVUIE pae + Ja(viyv) S A @ 13 r, S B Hlunldr,-
As a consequence we get Zﬁv:pl llv;ll? < [lluall? which completes the proof. O

3.2.2 A priori error estimate

The consistency of the scheme is characterised by the following orthogonality relation.

Lemma 3.2.1. Let up, € Vi be the solution of (3.16) and u € H?(2) be the solution of
(3.14), then
Ah(u — uh,vh) — Jh(uh, Uh) =0, VUh S th.

P’I"OOf. Ah(u,vh) = Lh(vh) = Ah(uh, Uh) —+ Jh(uh,vh), Yoy, € th. ]

Lemma 3.2.2. Let w € H*(Q) + th and vy, € th, there exists a positive constant M
such that
Ap(w, vp) < MJwll[lvnll-
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Proof. Using the trace inequality, the inverse inequality and (3.17) we get

(Vw, Vo) — (Vw - n,vp)r + (Vop - n, w)r

1 1
S IVwlloal|Vorllog + [[Vw - nllorllvellor + (IVonllog + Jr(vn, ve)2 )R 2 Jwl|or-

O

Theorem 3.2.2. Let u € H*™1(Q) be the solution of (3.14) and uy, € V}¥ the solution
of (3.16), then there holds

llu —unll < inf flu—wsl.
’whEVh

Proof. Let wy, € V,f, the triangle inequality gives us
e = wnlll < fllw = wnll] 4 [[wn — unll-
The regularity of u gives Jj,(u,vy) = 0 then we have
Jn(wp,vp) < Jp(wp, — u, wp — u)%Jh(vh,vh)%.

Using this result, the orthogonality of Lemma 3.2.1, the Theorem 3.2.1 and the Lemma

3.2.2 we can write

Ap(u — wp, vy) — Jp(wp, vp)

Bllun = wp| < sup < (M + Dju = wplx.

eV Tonl

Note that ||u — wp|| < ||u — wp]|«, using this result we get

M+1N\ .
= wnfl < (1+ ) inf Jlu—w]].

wp eV
O

Corollary 3.2.1. Let u € H*1(Q) be the solution of (3.14) and uj, € V¥ the solution
of (3.16), then there holds
llu = unll S B*ulisr,0-

Proof. The proof follows the arguments used to prove Corollary 2.1.1 using the trace
inequality (3.1) and (3.5). Additionally we extend the ghost penalty term to the full

domain Q* to obtain

k+1

1
Tn(u — Tyu, u— Tyu)? < ( > rID w - IhU)Hg,K) < Wl
KeQ* I=k



Chapter 3. Fictitious domain 65

Then we have the following estimate

lu = Tpulle S h*lulksr0. (3.20)

~

We conclude using the Theorem 3.2.2 with wy, = Zyu. ]

Proposition 3.2.1. Letu € H*1(Q) be the solution of (3.14) and up, € V¥ the solution
of (3.16), then there holds

1
lu = unlla S B*2 ulgr1 0
Proof. Let z satisfy the adjoint problem

—Az=u—wu, in§,

z=0 on I
Using integration by parts we can write

|lu — UhH%,Q = (u—up, —Az)g = (V(u—up),Vz)q — (u—up,Vz-n)p

= Ap(u —up, 2) — 2(u — up, Vz - n)p.
Using the orthogonality proprety of Lemma 3.2.1 we have
Ap(u — up, z) = Ap(u — up, 2 — Ipz) + Jp(up, Ipz).

Note that using the trace inequality (3.1), the estimate (3.5) and the inverse inequality

of Lemma 2.0.2 we have

D=

W2 |V (u—up) - nllor S |V (u—up)

oa +h( D 1D =)l x )

KeQ,
1
S IV = Twlloar +a( Y 1D - T3 x)*
KeQ. (3.21)
1
+ IV = Taw)loar + (D 1D~ Tnw)ll )

< W¥lulkrr,g + llun — Zyul)l-
Using this result, the Cauchy-Schwarz inequality, the Corollary 3.2.1 and (3.5) we obtain

Ap(u — up, 2z — Ipz)
=(V(u—up),V(z—TIhz))a — (z — Ipz,V(u —up) -n)r + (u — up, V(z — Ipz) - n)r
< (= wnll + 52 |V (u — ) -7

lo,0)[12 — Znz||«

< (W |ulksr, + llun — Znull)hz]2.0-



66 Chapter 3. Fictitious domain

The regularity of z gives us Jj(up, 2) = 0, using (3.5) we have

In(un, Inz) < Jp(up, Uh)%Jh(IhZ —2,Ipz — Z)%

(ST

1
< (Nun — Znul| + Jn(Zru, Zpu)2 ) Iy (Znz — 2, Znz — 2)

< (lun — Tnulll + 1F[ulps1,0)hl2

2,0

where we also used Jh(Zhu,Ihu)% = Jo(Zpu — u, Tpu — u)% which follows from the

regularity of u. Using the global trace inequality ||[Vz - n|or < [|2]l2,.0
(u—up, Vz - nir < b2 [lu— ]2l

In the proof of Theorem 3.2.2 we have shown that
lfun = Znull S lu = Znull« S BFfulisr 0.

where the second estimate is (3.20). Using this result and Corollary 3.2.1 once again we

have

1
lu — upl§ o S (h+ h2)hF|ulii1 0|2

2,2

we conclude using ||z]|2.0 < ||u — unllo,o that follows from the regularity estimate (3.15)
applied to the adjoint problem. ]

3.3 Compressible elasticity

The compressible elasticity problem with Dirichlet boundary condition is given by

-V .o(u) = in €,
()= 5 (3.22)
u=g onl.

3
2

with f € [L?(2)])?, g € [H2(I')]? and the stress tensor
o(u) =2pue(u) + A(V - u)laxo,

with g and X\ the Lamé coefficients. The weak formulation of this problem gives: find
u € [Hgl(Q)]2 such that

a(u,v) = (f,v)o Yo € [Hy(Q))%,

with
a(u,v) = 2ue(u),e(v))g + (A\V -,V - v)q.
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The well-posedness of this problem follows from the Lax-Milgram Lemma. The following

elliptic regularity estimate [103] holds

plullsizo + @+ VIV -ulso S lso+ gl r Vs >0 (3.23)

The finite element formulation using the penalty free Nitsche’s method is given by: find
uy € W,lf
Ap(up, vp) + Jn(up, vp) = Li(vp) Vo, € Wy, (3.24)

with W}lf = [th]2, the linear forms Ay, J, and L, are defined as
Ah(uh, ’Uh) = a(uh, vh) — b(uh, ’Uh) + b(vh, uh),

k
Tn(wn,vn) =g Y Y B HD, unlr, [Dh . onlr) Fs
FeFqg l=1

Li(vn) = (f,vn)a + b(vp, g).

The bilinear form b is such that
b(up, vy) = (2ue(uy) - n,vp)r + (AV - up, vy - n)r.

3.3.1 Inf-sup stability

In order to show an inf-sup condition for this case we define the average normal vector
onI';, 7', in the same way 717 is the corresponding average tangent vector. We define
the rotated frame (£,7) the direction of the 7 axis is the same as 7'7and the direction
of the ¢ axis is the same as 717. As in the previous chapter the hat denotes a quantity
expressed in the frame (£,7), a function z = (21, 22) expressed in the two-dimentional
rotated frame has the following properties
élzz-?rj, 22:Z'ﬁrj-
By looking at the proof of Lemma 3.1.1 it is straightforward to observe that the following

Lemma holds true.

Lemma 3.3.1. For every patch P; with 1 < j < N, ; Vr; € R there exists @, € Vh1 such
that
meas(Fj)_l/ Vo, -t ds =1y,
Ly

and the following property holds
1
IVerllp; < b2,

Let v; € Vh1 be the two dimmentional function such that v; = (a1v1, asve) T, we

define v1 = vj1x; and v2 = vjox; with v;1,vj2 € R and x; as defined in Section 3.1.2.



68 Chapter 3. Fictitious domain

Let
_1 01 1=}y -1 ) —17 15
meas(I';) —ds=h""1U 7, meas(I';) —ds=h""ay 7?7, (3.25)
I on Ty on
applying the Lemma 3.3.1 we get
s 1. . o 1. 1. _p.
IVorllop, S b2l -7 illor,,  ([Voallop, S A7z [an's -t or,.  (3.26)

We start by giving two technical Lemmas, proofs are provided in appendix D.

Lemma 3.3.2. There exists C' > 0 independent of h, p and X\, but not of the mesh
geometry, Yuy € W}]f and for h < hg, on each patch P; for v; € W}} as defined above
and Ve, o, 00 € RY, such that

Coa\ A __ 1. _r. Ca? XN, . _p.
AV, unmr, 2 as(1==0 ) S I[s"s 7t 3, —— 2" 7 ], 26\ [V,

Lemma 3.3.3. There exists C' > 0 independent of h, u and X, but not of the mesh
geometry, Yuy, € W;’f and h < hg, on each patch P; for v; € Wﬁ as defined above and
Ve, a1, s € RY, such that

500&2 T T
(2ne(v;) - mun)r, = (2= 222 ) s - nl |
Cai\p 1, _r; 2 2
+aq <1 - Te)ﬁ”uh 77 o, — BenlVunllg p;-

Let us introduce the following norms

llwll? = p(IVewl§ o + b~ lwllg p) + AV - wl o + A7 w2l ) + Ju(w, w),
w2 = lwll® + phlVw - nlf§ p + ARV - w][§ .

Observe that these are norms by the Poincaré inequality.

Theorem 3.3.1. There exists positive constants 3 and hg such that for all functions

up, € W,f and for h < hg, the following inequality holds

Ap(up,vp) + Jp(up, vp)

Bllunll < sup
g lFoall

Proof. Let vy, = up+ Zjvz”l v;, decomposing the bilinear form we can write the following

Np

(Ap + o) (wn,vn) = (Ap + Jn) (wnswn) + Y [Ap(tn, v;) + Jn(un, v;)].
j=1
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Using (3.17) and the Theorem 2.2.1 we have

(An + Jn) (un, un) = 2plle(un)[§ o + MV - unllg o + T (un, un),
> 200 Vun[§ o + MV - unllf o — 2ulunl?.

Using (3.17), the trace inequality, the Young’s inequality and (3.26) we obtain

(2ue(un),e(v;))pina + (AV - up, V- v;) pina + Jn(un, vj)

1 1
S @Qu+ N IVugllo,pnallVosllo.pne + Jn(wn, wn)2 Jp(vg, v;)?

C
< e(2u+ M) Vunllg p, + R MIVvsi3 b,

C _ I . T,
< e(2u+ N[V |§ p, + 2.2+ Ah Hodlar' -7 |5 r, + adllwn' s @G ).

Using the trace inequality once again with (3.26) and (3.19)

(2ue(up) - m,vj)r; + (AV - up,v; - n)r,

< 2ulle(un) - nllor;llvjllor; + AlVurllor;llvj - nllor;

S Cp A+ N[ Vuglo,p; | Vosllo,p;

C _ 7. _T. T
< e(2p+ N[ Vunlld p, + 12+ VA @@ 7R ) + aFfart - ml ).

Using these bounds as well as the Lemmas 3.3.2 and 3.3.3

(Ap + Jn)(un, vp) 2 (2uC — e(Tp+40))[IVur[§ - + AV - unllf o

N,
51+ 3 ~ 4T, T,
o+ (oa(p = Con ™ 22) —2uh) S0t
j=1

N,

9 + 3\ N lnT. _T .

+ (02 A = Caz= =) —2un) 30wt m
j=1

Setting the constants,

C, =20 — A
i

) 3\
C’b:al(l—Cal M4—€'_,U/ >—2h,

9 + 3X >_ 2uh
But+4rN)/)  2u+ N

C, :ag(l —CO@E
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and using (3.13), (3.17) it becomes

Ap(un, vy) + Jp(wn, vy)

> (Ca = C'(Cp + Ce(2+ MmNl Vunllg o + Ja(un, un)) + MV - unlff o
Np NP

_ T C _ I
> b s TG, + {Z(2u+ DN 1 [V DA [ A
j=1 j=1

C

3

By choosing €, a;, a9 in the right way and hg small enough we get

Ap(un,vp) + Jn(wp, i) 2 Bollus |,

we can show ||up|| 2 [|vn|| following the proofs of the Theorems 3.2.1 and 2.2.2, the

claim follows and 3 = O(?Mu)’ ho = O(ﬁ) O

3.3.2 A priori error estimate

Lemma 3.3.4. If u € [H%(Q)]? is the solution of (3.22) and uj, € W} the solution of
(3.24) the following property holds

Ap(uw—up,vp) — Jy(up,vp) =0, Yo, € W

Lemma 3.3.5. Let w € [H*(Q))? + W} and v, € WE, there exists a positive constant
M such that
Ap(w, vp) < Mlw].[on]]

Proof. See proof of Lemma 2.2.5. The ghost penalty term can be handled using (3.17)
as in the proof of Lemma 3.2.2. O

Theorem 3.3.2. Ifu € [H*1(Q))? is the solution of (3.22) and wj, € W the solution
of (3.24) with h < hyg, then there holds

llw—wnll < Cs inf_Jfu—wyl.
whrEW Y

where Cg 1s a positive constant that depends on the mesh geometry.

Proof. Same proof as Theorem 3.2.2 using Lemma 3.3.4, Theorem 3.3.1 and Lemma
3.3.5, Cg = O(B7Y). O

Corollary 3.3.1. If u € [H*T1(Q)]? is the solution of (3.22) and uy, € WF the solution
of (3.24) with h < hyg, then there holds

Il = wnlll < Curh*lulis10,

with Cpy = O(AHL(AZ + i)
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Proof. Using the same arguments as in the proof of Corollary 2.2.1 with the trace in-
equality (3.1) and (3.5) and the estimate of the ghost penalty term from the proof of

Corollary 3.2.1 we obtain the estimate
lu— Tyl S A2 + p2)hF|uly,0 (3.27)

We conclude using Theorem 3.3.2 with w;, = Z,u. O

Proposition 3.3.1. Let w € [H*T1(Q)]2 be the solution of (3.22) and uy, the solution
of (3.24) with h < hg, then

1
lu —unllog < Cpph 2l 0.
: A
with €], = O((1 + p)z).
Proof. Let z satisfy the adjoint problem

—2uV -e(z) = AV(V-2z)=u—u;, inQ,

z=0 on I
Then we can write using integration by parts

I — unllf @ = (u = up, —2uV - e(2) = AV(V - 2))a
= (2ue(u — up), €(2))a + (AV - (u —up), V- 2)o
— Q2u(u —up),e(z) - n)r — (AMu—up) -n,V-2)r
= Ap(u —up, z) —2Q2u(u — up),e(z) - n)r —2(AN(u —uyp) -n,V- 2)p.

The consistency relation of Lemma 3.3.4 allows us to write
Ap(u —up, z) = Ap(u — up, 2 — Ipz) + Jp(up, I z).

Note that using the trace inequality (3.1), the estimate (3.5), the stability of the extension

operator (3.2) and the inverse inequality of Lemma 2.0.2 we have

1 1 1
h2(pzlle(u—up) - nllor + A2(|V - (u —up)llor)

=

< it + 20 (19 ~ T oor +h( 3 102w~ Tyw) | )
KeQ,

+ I = Twllo.or + (Y 1D~ Tl « )
KeQ,
1

< (2 + A3 Pl 0 + (14 A2 2) luy — Tyl

S
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Using this result, the Cauchy-Schwarz inequality, the Corollary 3.3.1 and (3.5) we obtain

Ap(u—up, z — Ipz)
= (2ue(u —up),e(z —Inz))a+ AV - (u—up), V- (2 —Ip2))a
— 2u(z —Ipz),e(u —up) -n)r + (AN(z —Zpz) -n, V- (u—up))r
+ 2u(u —up), e(z — Tnz) - n)r + (Mu —up) - n, V- (2 — Lpz))r
lox + 221V - (u—wn)or) 1= — Zuzl.

1 1
S (e —wnll + h>(p2le(u —un) - n
<

1 1 11
(2 + A2)2 (W ulper,0 + A2 072 lug — Tyull)h|z)20.

Using similar arguments as in the proof of Proposition 3.2.1 we get

SIS

1
(lun — Zpul| + Jn(Zpw, Zyw)2) Jp (Znz — 2, Ipz — 2)

1 1
Jh(uh,Ihz) < Jh(uh,uh)ﬁJh(Ihz —z,Ihz — Z)§
1

2

<
1
< w2 (un — Zpull| + p2 ¥ ulki0)h|2)20-

The global trace inequalities ||e(z) - n|jor S [|2]]2,0 and ||V - z|jor S ||2]]2,0, lead to
20w —un),e(z) - m)r| + [A(u — up) -0, V- 2)r) S A2 + p2)h2lu — up ]| 2])2.0.
In the proof of Theorem 3.3.2 we have shown that
lfun = Znul| < lw = Tnulle S (2 +A2)hFfulp g,
where the second estimate is (3.27). Using this result and Corollary 3.3.1

1 1 1 _1 1 1 1
lu —unllg0 S (A7 +p2)2(1+ X207 2)h 4+ (A2 + p2)°h2)BF [uler 0 2]l 2.0-

Using (3.23) we obtain pf/z|l2.0 S ||u — upllo,0, the claim follows. O

3.4 Incompressible elasticity
The incompressible elasticity problem with Dirichlet boundary condition is given by

-V U(U,p) = .f in Q:
Vou=0 inQ, (3.28)

u=g onl.

3
2

with f € [L2(2)]?, g € [H2(T')]?, the stress tensor is given by

O'(U,p) = 2M5(U) _pH2><27
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and [, p dz = 0. We have the following weak formulation: find (u, p) € [Hgl(Q)]2 x L2(€2)
such that

al(u,p), (v,q)] = (f,v)a V(v,q) € [Hy(Q)]* x L*(),
with
al(w,p), (v, q)] = (2pe(u),e(v))o — (p, V- v)a + (V- u, q)o.

The well-posedness of this problem follows from the Lax-Milgram Lemma, we also have

the regularity estimate 2]

plullsizo + Iplste ST lso +lgllyzp 520 (3.29)
Let Q* = {q € L*(Q¥) ), Joq dz = 0}, then we define the finite element space
Qr={an € Q" : anlx €Pr(K) VK € Tp}, k>1.

The penalty free Nitsche’s method leads to the following finite element formulation: find
up, € W,]f and pp, € Qﬁ such that

Ap[(wn, 1), (Vhs an)] + Jn[(wh, p1)s (Vhy @n)] = Lu(vh,qn)  Y(vn,qn) € WE x QF,
(3.30)

where the linear forms Ay, J, and L;, are defined as

Ap[(wn, pr); (vny an)] = al(wn, pr); (Vh, an)] — b(Wn, Vh, PR) + b(VRs U, qn)
+ Sh(wh; P, qn),
Inl(wns o), (Vn, an)] = Jn(wn, vn) + In(phs an),
Lp(vn,qn) = (f,vn)a + b(vn, g, qn) + An(f, an).

The bilinear form b is defined as

b(wn, i, pn) = ((2pe(un) — prlaxa) - n, vp)r.

The ghost penalty terms and the stabilisation terms are written as

Tn(wn, vn) = gpt Y th N[DL un]p, [DL,vilr)F,

FG.FGZ 1
In(pn, an) Z thlﬂ [D},,.pnlF, [Dhan] ) e,
FE]'—GI 1
2
Sh(Wh, Ph, qn) = Z / h*(=2uV - e(up) + Vpr)Vay da,
KeT

n(f.an) Z / h?fVq, dz,

KeT
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the terms Jp and I are the ghost penalty terms, the pressure stabilisation term is
necessary as we want to work with equal order interpolation. The following inequality

has been shown in [89] for g, € QF
w2V anllg 0 S 2T IVaR G0 + In(an an) S 17 B2V anll§ oo (3.31)

3.4.1 Inf-sup stability

Let us define the following norms

fo+h T w

I(w, )II* = u(lIVw o) + 12 Velg o + Jhl(w, o), (w, o)),
l(w, )17 = ll(w, DII” + phlVew - nl§ p + 1~ ollg o + 1" hllells r + nh™?[wlif o

+ R Volgo- + %0 Y IV - e(w)lf &
KeQ*

Theorem 3.4.1. There exists positive constants B and hg such that for all functions
(up,ppn) € W,’f X Qﬁ and for h < hg, the following inequality holds

Bl (wn, pr)||| < sup Apl(un, pr)s (Vn, qn)] + Jn[(wn, pn), (Vn, qn)]
7 T (onan)EWExQE Il (wr, an)l

Proof. Let q5, = pp, and vy, = up, + Ejvzpl v; with v; as defined as in Section 3.3.1, then

we have

(A + Jn)[(wn, pn)s (Vn, qn)] = (An + Jn)[(wn, pr), (Wn; pr)]
Np

+ Z [An[(wn, pr), (vj, 0)] + Ju[(wn, pr), (vj,0)]].

Note that most of the terms have been bounded in the compressible case. Using the

inverse inequality of Lemma 2.0.2, (3.17) and the Theorem 2.2.1 we have

(An + Jn)[(wn, pr), (un, pr)
= (2ue(un), e(up))a + Sh(wn, ph, an) + Jn[(wn, o), (wn, pn))

~
Z 20| Vun|§ or — 2plunft — ;”hQ (2u > IV - e(un)llo.x I Vonllox) = I Von
KeQ,

2
0,0+

7, 7,
2 20 Vg [[§ o — 2ulunlf — QMHE(Uh)Ho,Q*thVPh 0.0 + thHVPhH%,Q*

7 7
2 21 = )l VunlB e — 2plunlp+ 22 (1= 35 )1 9pl -

Using (3.26) and (3.19) we have the bound

(Von,vi)pna < IVonllo,pnallvgllo,pine < IVpsllop; llvillo,r; S RIIVPRllo,p; IVY;llo,p

L;

- c I T, o
< en” W \IVpnlli e, + ok dlwR T, + adllmnt R G r,)-
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Then we obtain the bound

C €
Anl(unspn), (un, i) = (2= 26 = Tu Vun | o + 22 (1= 222 = =)0 Vpalf} o
2 € Tp
3 all
n (a1 (1 - Ca12—6) - 2h> S bt
j=1
5 ol
n (a2 (2 - Ca2£> - 2h) S uh Rty w2y
j=1

Let the constants
Co = (2 —2¢ —Te),

G=np(1- 22 - 2,

4
C,. = <a1 (1 - Cali) — Qh),
Cy= (ag (2 - C()zg;) - 2h),

and using (3.13), (3.17), (3.31) it becomes

(A + J)(wn, pn), (W, pr)] = (Ca — C'Ce = C'Ca) (]| Vunl§ o + Jn(wn, un))
+ Co(w P2 Vpnllg.q + Tn(pn. pn))

C. Ca -
+TC§ :Nh 1Huh-TFJH§,rj+7ZMh 1Huh'nF]H3rj-
=1 e

By choosing ¢, €/, a; and as in the right way and hg small enough we get

Anl(wn, p), (wn, pu)] + Jul(un, pr), (wn, pu)] 2 sl

We conclude using |[|(vn, gn) |l < |l (2, pr)|| which is shown following the proofs of the
Theorems 3.2.1 and 2.3.1. Note that 5 = O(1), hg = O(1). O

3.4.2 A priori error estimate

Lemma 3.4.1. If (u,p) € [H3(Q)]? x HY(Q) is the solution of (3.28) and (un,pp) €
W}]f X Qi the solution of (3.30) the following property holds

Apl(w —up,p — 1), (Vh, qn)] — Jn[(wn, pr), (Vh, qn)] = 0, Y(vn, an) € Wi x QF.

Lemma 3.4.2. Let (w, ) € ([H*(Q))? + WF) x (HY(Q) + QF) and (vn, qn) € WF x QF

there exists a positive constant M such that

Ap[(w. 0), (vn, an)] < M|[(w, o)l [l (vr, an )l
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Proof. We have

Apl(w, 0), (Vh, qn)] = 2ue(w),e(vi))o — (0, V - vp)a + (Van, w)q + Sp(un, pn, qn)
— (2ue(w) - m,vp)r + (2pe(vp) - n,w)r + (0, vn - Mr,

using the Cauchy Schwarz inequality we have

(2ue(w), e(vn))a — 2ue(w) - n,vp)r < |[(w, o) [[«[l[(vn, an)ll
(Van, w)a = (0, V- vn)a + (0, vn - m)r S [[(w, o)l (vn, ga)ll-

Using the trace inequality and (3.17)

(2ue(vn) - m, w)r < 2ple(vn) - nllor|wlor

_1
S 2ullVollooh 2 lwlor S [[(w, o) ||+l (va, gn)lll-

Using (3.31) the stabilisation term can be bounded

1
., ,
S(w, 0.00) < “20u( 3 IV - e@)lx)” + IVeloo I Vanlo:

KeQ,
1
S Pun( 32 IV @)l ) +hlVeloa)( (a1, a0)*)
KeQ,
< 1@, o)l ll(wn, au)ll
O

Theorem 3.4.2. If (u,p) € [H*1(Q))2 x H*(Q) is the solution of (3.28) and (un,pr) €
WE x QF the solution of (3.30) with h < hy, then there holds

e —wnp—sll S inf [l wnp - on)l
(wh,Qh)GWhXQh

Proof. Let (wp, 0p) € W,f X Qﬁ using the triangle inequality we get
(e — wn, p = p)ll < (v = wn, p — on)ll + [(wr — wn, on — pa)|-
Using the regularities of w and p we have Jj,(u,vy) = 0 and I(p,qn) =0

Tnl(wh, 1), (W, a)] < (Jn(wp, — w,wy, —u)2 + Iy(on — pyon — )2l (vn. an)ll.
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Using the orthogonality of Lemma 3.4.1, the Theorem 3.4.1 and the Lemma 3.4.2 we can

write

Bl (wn — wh, pr, — on) |l

< sup Ap[(w —wn,p — on), (Va, qn)] — Jnl(wn, 0n), (Vn, qn)]
T (whoen)EWEXQL Il (vns an)l

< (M +1)[[(w = wh, p — on) |+

Using that || (u — wh, p — on)l| < |(u — wp, p — 04)]| we obtain

inf [(w —wp, p— on) ]|«

M+1
(= wnp = p)ll < (14 =—5—)
(wh,0n)EWEXQY

O

Corollary 3.4.1. If (u,p) € [H*(Q)]?x H*(Q) is the solution of (3.28) and (uy,pp) €
WE x QF the solution of (3.30) with h < hy, then there holds

1 _1
I(w — wn,p =)l S B* (12 [ulkir0 + 072 pleg).

Proof. We the same arguments as for the proof of Corollary 2.3.1 with (3.1) and (3.5).
Also, the ghost penalty parameter Jj is handled as it is done in the proof of Corollary
2.1.1. Extending the ghost penalty term Iy to the full domain 2* we obtain
. k+1 1
Y 2
In(p — Tnp.p — Tnp)? < ( > D (p - Thp) H(2),K) < W pleo-

KeQ* I=k

Then we obtain

1 1
1w — Zyu,p = Tpp) | S B* (0 [ulksro + 172 [plig).

We conclude using Theorem 3.4.2 with w, = Zpu and o5, = Zyp. ]

3.5 Numerical results

In this section, for each computation a structured background mesh is defined such that
Q7 =[0,1] x [0,1] and the physical domain is the disc:

Q= {(z,y) € Q7| (0.5,0.5) — (z,y)| < 0.3}

We want to verify numerically the convergence properties shown theoretically. In each
case we use a manufactured solution and compute the convergence of the errors. The
computations are done using the package FEniCS [88] together with the library CutFEM

[28]. We consider piecewise affine approximations.



78 Chapter 3. Fictitious domain

3.5.1 Poisson problem

For the Poisson case the manufactured solution used is defined as
u=[(z —0.5)%*+ (y — 0.5)%*

The penalty free Nitsche’s method is tested for a range of values for the ghost penalty

parameter ;. Figure 3.3 shows the L? and H'-convergence slopes for each value of

-7, = 10°
-0 vy = IO’i ,-f:g
100 -y, = 1077 ‘,ﬁigi"
- Yy = 1073 ,@/
1071 4 'A"'Yy :11074 /",
510" 8 —o®
= =
[«P] [<5]
(o] — P
q 10-2 L
T ¢
107 ¢
_4 L . -3 L L
10 10
10° 1072 107! 10° 107 102 107! 10°
h h

F1GURE 3.3: Poisson problem, Vhl: error versus the maximal element
diameter h. Left: L?-error, right: H'-error.

g considered. The convergence of the L?-error is half an order better than what has
been shown theoretically. Also, we observe that the constant involved in the convergence
result of Proposition 3.2.1 grows as the v, becomes bigger. The convergence observed

for the H'-error is optimal as shown theoretically.

3.5.2 Compressible elasticity

The two dimentional manufactured solution used for compressible elasticity is defined as

(2° = 2%)(y* — y?)
W=\ a_ 3y,6_.5]"
(@ —2°)(y” —v°)
The penalty free Nitsche’s method is tested for a range of values for the ghost penalty
parameter 7,. Figure 3.4 shows the L? and H'-convergence slopes. The same observa-
tions as for the Poisson problem can be seen. In order to observe locking, we set the
ghost penalty parameter to 74 = 0.001 and we consider a range of values for A\. Figure

3.5 shows that as A becomes large the convergence is lost if the mesh if not fine enough,

it characterises locking as observed in the previous chapter.
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10° 10°
-0 7, = 10° -o 7y = 10°
-, = 1071 -y, =107!
| oy, =102 ] - 7, = 1072 g
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FI1GURE 3.4: Compressible elasticity, Vhlz error versus the maximal ele-
ment diameter h. Left: L2-error, right: H'-error. u = X\ = 1.0.

10° 10°
107 ¢
-1 L
10
[
5 10? S)
= =
z 5}
™~ 3 —
=107 O U X =10°
-\ =10 107 -\ =10" 1
& A =102 & A =102
_4 . .
10 —A = 10° —A=10°
- A=10* - A=10*
— 0 (h?) —O (1)
107 10°

107 10° 10°

Fi1GURE 3.5: Compressible elasticity, Vh1: error versus the maximal ele-
ment diameter h. Left: L2-error, right: H!'-error. v, = 0.001, p = 1.0.

3.5.3 Inompressible elasticity

The manufactured solution used for incompressible elasticity is defined as

—cos(mz)sin(my) .
) , p = 2ucos(mz)sin(my).
sin(mz)cos(my)

The H'-convergence of u and L?-convergence of p are obtained for a range of vg- Figure
3.6 shows that the convergence of the H'-error of u is optimal as shown theoretically.
The L2-error of p shows a convergence of order (’)(h%) the same behaviour has been
observed for the weak imposition case in the previous chapter. The constant related
to the L2-convergence of the pressure becomes larger as the ghost penalty parameter

becomes bigger.
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H! error of u

10 10
Ay, = 10°
-, = 107!
- 7, = 1072 A
A 103 e 1
—+-, = 10 P 10
104 N
10t -G vy = VAL

L? error of p
=

FIGURE 3.6: Incompressible elasticity, V,': error versus the maximal
element diameter h. Left: H'-error of u, right: L2-error of p, u = 1,
¥ = 0.1.



Chapter 4

Domain decomposition

This chapter presents a study of the penalty-free Nitsche’s method in the framework of
nonconforming domain decomposition. We consider one computational domain divided
into two subdomains, both subdomains are meshed independently, the coupling at the
interface is done using the penalty-free Nitsche’s method, each subdomain has its own

material parameters.

4.1 Preliminaries

Let ©; and Q9 be two convex bounded domain in R? with polygonal boundary, these two
domains share an interface I' = ; Ny, for simplicity I is considered as plane. We define
the domain Q = €Uy with boundary 952, an example of 2 is represented in Figure 4.1.
The vector n; is the exterior unit normal to the boundary 9¢2;. The set {7;;} , defines the

FIGURE 4.1: Example of computational domain 2.

family of quasi-uniform and shape regular triangulations fitted to €2;. A generic triangle
is denoted as K and hx = diam(K). The mesh parameter for a given triangulation 7}’
is hy = maxKeThihK and we set h = max(hy, he). Figure 4.2 gives an example of two
subdomains of 2 meshed independently. Let V; = {v € H'(;) : v|gq = 0} for i = 1,2.

On each domain €2; we define the space of continuous piecewise polynomial functions

VFE ={v, € Viiuplg € Pi(K) VK € T}, k>1,

81
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FIGURE 4.2: Example of meshes in ().

ViF = VFx V§, every function in V;* has two components, v, = (v},v?) such that v} € V{¥

and v? € V¥, At the interface I' we use the notations

[w] = w' — w?,

for the jump, and

{w} = wiw® + wow?, (w) = wow! + wiw?,
for the weighted averages with wy and wo the weights that will be specified later. At the

interface I' let n = ny = —n9, then we define
_ 1 2
{w-n} =ww - n+ ww - n.

We now introduce a structure of patches that will be used in the upcoming inf-sup
analysis similarly as in Chapter 2. Let the interface elements be the triangles with either
a face or a vertex on the interface I'. We regroup the interface elements of €); in closed
disjoint patches PJZ with boundary 8PJ?, j=1.. N;'. NI’; defines the total number of
patches in ;. Let F; = 8P; NT, each F} has the property

hi < meas(F;) < hi,

forj=1,... ,Ng. Let us focus on the patches {le}lgjgN,} attached to the domain 2.
Each patch le is associated with a function x; € Vj' defined such that for each node
T; € 7;} we have

0 for z; ¢ Ql\ﬁ'jl
() = . 4.1
Xi(@i) { 1 for x; € Fjl, (1)

with ¢ =1,..., N,. N, is the number of nodes in the triangulation 7;11 .
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r

FIGURE 4.3: Example of le, the function x; is equal to 0 in the nonfilled
nodes, 1 in the filled nodes.

We define the broken norm and semi-norm on (2 for any v = (v!,v?) € V4 x V3 such

that H”Hg,ﬂ = Hlei,gl + HU2H§,92 and [v gﬂ = |v? g,ﬂl + [v? ?,92-
4.2 Poisson problem

We consider the Poisson problem with discontinuous material parameters as

At =f  inQy, i=1,2,
wW=0 ondQNQ;, i=1,2,
[ul] =0 onT,
[uVu-n]=0 onT,

(4.2)

with g; the diffusivity of the domain €2; and f € L?(€), let u = (u!,u?). The following
regularity estimate holds [44]

|| D*ut o, + pa| D>

09 S [l flloq:

We consider the following weights

hpio hapy

=, wo = ) 43
hipio + hopy 27 hipg + hap (4.3)

w1
we note that w; + we = 1. Considering the above problem we have

{uVu-n} = wmVul - ng = —paVu? - no.

To simplify the notations in the analysis we set

_ M2
hypg + hopr
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In this chapter we assume that pshy > pihs.

4.2.1 Finite element formulation

Classically for the problem (4.2) we obtain by integration by parts on each domain ;
(iVu', Vo')o, — (V' -ni, v')p = (f,0')e,, V'€V,

for i = 1,2. By taking the sum of the interface terms and applying the identity [ab] =
{a}[b] + [a](b), we obtain

2
> st s = [ 100 wpelds = (V- [lhe + 16V al. @),
i=1
the problem (4.2) tells us that [uVu - n] = 0, then we obtain
2 . . 2 . .
DV, Voo, = ({uVu-n} [ohr = 3 (Fv)e, VeV (44)
i=1 i=1

Adding the corresponding antisymmetric Nitsche term, it leads to the following finite

element formulation: find u;, € th such that

Ah(uh, Q)h) = Lh(vh) V’Uh € V}f, (4.5)
where
2
Ap(un,vn) =Y (1 Vg, Vop)a, = ({uVun -0}, [oa])r + {uVon - 0}, [un])r,
=1
2
Ln(va) =Y (f,v})e-
=1

4.2.2 Inf-sup stability

This section leads to the inf-sup stability of the penalty-free scheme previously intro-
duced, we first prove an auxiliary Lemma that extends inequality (2.12) to the new

framework.

Lemma 4.2.1. Considering the patches {P;}lﬁjSN;; as defined above Yup, € V¥ the
following inequality holds

1 2
NP NP

N} . N}
> Ml 5.1 = D2 S lunlllf = Coon D Vug[l§ pr = Coz D pa | Vi1 -
J=1 J=1 J=1 J=1
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Proof. Considering the triangle inequality and the definition of the jump we can write

gl 2 2 2
INnbl s < AN Tend ™ 1+ 2] = T ™ 12 s
T2 12 o7F e
< Tl ™ 13 g+ k= = G =) g
Taking the sum over the whole interface and using the triangle inequality once again fol-
lowed by inequality (2.11), the trace inequality of Lemma 2.0.1 and the inverse inequality

of Lemma 2.0.2 we obtain

N1 N, i
P Y 2 - —=F 9 1 TF} 2 . 2 TFJ'Q 2
Z 5”[[%]]”0%1 < VZ (H[[uh]] H07F7_1 + |lup, — uy, Ho,Fjl) + ’YZ |lug, — us Ho,Fj2
j=1 J=1 | | = |
N} L N
"
<7 (Ilfunl ™ ||3,Fjl + Ch%Hvu’ll”ng}) TOME) HVU%HS’FJ?
j=1 !
N 1 o
<2 Ol 7 18y + Conmll VUl py) + Cuz 3 | Vi -
j=1 !
(4.6)
O

We define the norms

2
lwll> = pal Vo'

i=1

lwllZ = llwll® + pha|Vew! - nllg o + pohe|| Ve? - nl§ p.

6.0, +I[w]l3r,

Theorem 4.2.1. There exists § > 0 such that for all functions up, € th the following
inequality holds
Ap(un,vn)
Bllunll < sup W
’L)hGV}{c Uh
1
Proof. Let vy, = up + aZj.V:pl(v]l-, 0), such that vjl = v;X;, with v; € R, each v} has the
property
——F}
meas(Fjl)_1 VUJI» nds=hyun] 7. (4.7)
F!
J
7F-1
Using Lemma 2.1.1 with ¢, = vjl- and r; = hy '[up] 7 we obtain the inequality

1

I -
1Yol lo.pr S By 1Tl o, (4.8)

Using the definition of v, we can write the following

1
NP

Ap(tn,vp) = Ap(up,un) + oY Ap(un, v)).
j=1
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Clearly we have

An(un, un) = [ Vun|§ o, + m2llVez |6 o,

and
ozAh(uh,vjl») = a(u Vu;, V'U]l‘)le —a{{uVuy, - n},v}}Fjg + awy <,U1VUJ1~ -, [[uh]]>Fj1.
Using Cauchy-Schwarz inequality, inequality (4.8) and the Young’s inequality we obtain

1 1
(1 Vb, 0V} pr < 17 [V}l pr0ss} [0}l oo

Ca? hop\ | =—=F}
< el Vuly gy + = (14 2 Tmd 1 -

Using the trace inequality of Lemma 2.0.1, the inverse inequality of Lemma 2.0.2, in-
equality (2.15) and (4.8) we can write
{uVuyp, -n}, avjl->Fj1 = (w11 Vuj, - 1+ wopaVus - n, avjl->Fj1
= ((wipnh1) 2 Vb -+ (wapizhe) 2V -, OZ’Y%Uijl
< ((wrrh)2 1V - mllg 1 + (wapizha) 2 [V - mllg g1 )ay2 [0 o
< (@) | Vuh -l g + (wap2ha) [V - llg )y [Teanl ™ -
Taking the sum over the whole interface I' and using the Young’s inequality, the trace

inequality and the inverse inequality we obtain

Np
> {uVuy - n}, 0411}>F].1
i=1
N} N} N2
< SO T2 S [Vl -l m)S 94 - nl2
< 5 Y ATl 1§ o + e(wrpnhn) Y 1Vug - nll§ o + e(wapzha) Y [V, - nlff g
i=1 ’ =1 ’ =1 ’
o Ny ) Ny Ny
a ——F
< e Z’YH[[Uh]] ! HaFjl + ewi Z ||VU/11H3,pj1 + €W2MQZ HVUI%HS,PJ?'
j=1 j=1 J=1

Using the property (4.7) of vjl- we can write for each face Fj1

E— ——F1
aw (Vo - n, [l py = aylfn]” 13 s + awr (90} -, funll = Ten] .
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Using the trace inequality and (4.8) we get

—F!
wi{p Vo - n, [up] = [unl *) g1 < wrpa Vo) - nllo g2 | Tun] - Tanl " o, F!

-3 —F!
S winhy * | Vojllo prllup, — iy = (uh, 7 = )Ho F}

— —F} !
S llus] Ho,Fj1 (HU%L - “}L ’ HO,F].l + HU% - “%L & HO,F})-

Taking the sum over the whole interface I', using the Young’s inequality and similar

arguments as in (4.6) we get

p F1
> awi{pmVvj - n, [un] = ] ) g
j=1

Al Co?
< S (ST B g+ exllsh =l 12 g+ ol =2 2 )
j=1
N} N} N2
C'a i
Z’YHﬂuhﬂ Ho F} + ewr Z,Ul ‘vuhHO F} + GWQZMQ |vuhH0 F2
j=1 Jj=1
It allows us to write
Np
Zaw1<u1Vv} s [un]) i > 04<1 - 7) Z’Y”[[uhﬂ / Ho F}
j=1
N,} Ny
— €Wl U1 Z ||Vu;1l||g7pjl — €W U2 Z ”vu%”apf'
j=1 J=1

The full bilinear form Aj now has the following lower bound

Nl
Ap(un,vn) = Capr|[Vup 1§ o, + Conal| Vi 1§ o, + Ce ZVH[[WL]] ||0 b
7j=1
with the constants
C h
Co=1—¢€2w; +1), Cp=1—2ewo, Ccza(l—a—(5—|— 2,111))'
de hypo

Using Lemma 4.2.1 it becomes
An(un, vn) > (Ca = w1CC)m|[Vup g q, + (Co — w2CCo)pal| Vuij 15 0, + Cc%IIHUh]]H%,r-

First let € = %. The constant C,. will be positive for

1
¢S o0
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The terms (C, — w1 CC,) and (C, — waCC,) will be both positive for

- 1
a< —.
2C

Then we get
Ap(un, on) > Bolllunll®.

with fo = O(1). To complete the proof we show |||vs]| < [||unl]|, using similar arguments
as (2.16) we obtain

vy
llonll? < T lI? + 0> 3 1o} P,
j=1
with
o312 = I 9} oy + 21013 -
Using (4.8) and
1T o < Nlundllo e

it gives the appropriate upper bound

h2#1 2 2
Zm Vol e S (1 g Jlunll®

Using the trace inequality of Lemma 2.0.1 and the inequality (2.15)

N} N}

ZVHUlllo P S WL ZMHV’U 15,p1 < .
Note that 8 = O(1). O

4.2.3 A priori error estimate

The proof of the stability done in the previous part leads to the study of the a priori
error estimates. Let HE(Q;) = {v € H¥(Q;) : v|gq = 0}, the Galerkin orthogonality

characterises the following consistency relation.

Lemma 4.2.2. Ifu € H3()x H3(Q2) is the solution of (4.2) and uy, € V}¥ the solution
of (4.5) the following property holds

Ap(u — up,vp) =0 Yoy, € th.

Proof. Considering (4.4) and adding the consistent antisymmetric Nitsche term we have

2 2
S Ve, Voo, ((nVun}, o) o+ ({uVon-n, e = S (Fob)a,  Von € Vi

i=1 =1
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Then Ap(u,vp) = S0 (f, vi)a, = Lp(vp), owing the properties of the jump [] and

average {-} we have

Ah(u — uh,vh) = Ah(u,vh) — Ah(uh,vh) = Lh(vh) — Lh(’l)h) =0 V’Uh S th.
O

Lemma 4.2.3. Let w € H3() x H3(Q2) + Vi¥ and v, € V¥, there exists a positive

constant M such that
Ap(w,vp) < MlJwll||vl-

Proof. Using the Cauchy Schwarz inequality we have

({uVw - n}, [onl)r = ((wipmh)2 Ve - n+ (wapzhs) 2V - n, 52 [on])r
lo,r-

1 1 1
< ((wipah) 2| Vw' - nllor + (wapzhs) 2 [|[Vw? - nflor)v2 [|[va]

The trace inequality of Lemma 2.0.1 gives us
1 1 1
{uVun - n}, [wl)r < (Wipahr)2 |V, - nllor + (wapzhe) 2 [ Voi - nllor)y2 | [w]llor
1 1 1
< (W) 2| Vupllog, + (wap2) 2] Vi o)y 2 I Tw] flo,r-

Using these two upper bounds it is straightforward to show that

2
> (V' Ve, — ({uVw - n}, [on])r + {uVon - nd, [wl)re S Jwlllvall.
i=1
1 1
Note that M = O(w{ + w3 ) = O(1). O
Theorem 4.2.2. Ifu € H§+1(Ql) X H§+1(Q2) is the solution of (4.2) and uy, € Vi¥ the
solution of (4.5), then there holds

llu = unll < Cp inf [lu—wpl,
wp eV

with Cg a positive constant that depends on the mesh geometry.

Proof. The triangle inequality provides

e = unll < fllw = wn | + lfwn = unl-

Using the Galerkin orthogonality of Lemma 4.2.2, the Theorem 4.2.1 and the Lemma

4.2.3 we can write
A _

Bllup, — wp| < sup
heVE [llonll
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Note that ||u — wp|| < ||u — wp||«, taking the inf over all wy, we obtain

My .
llu = unll < (1+5) inf Jlu—wil.,
B whth’“
O

and Cg = O(1).
Corollary 4.2.1. Ifu € Hg“(Ql) X H§+1(92) is the solution of (4.2) and uj, € Vi¥ the

solution of (4.5), then there holds

llu = unll < Cub*lulis1,0.
with C,, a positive constant that depends on p and the mesh geometry.

Proof. The triangle inequality gives us

1 1 -1 1 -1
v2 [[u = mhulllor < (wipn)2hy ? ut = miut o + (wapz) 2 hy * u? — mhu? o
Using the trace inequality and the approximation property of the nodal interpolant (2.17)

we have

or < hi ' = miutlloe, + V(U = mhu)log,  AElU k10,

ET ,
h; 2 ||ut — whu

and

1 4 . 4 ,

B2V — ) - nlor SV (6l — 7fu)loo,
1

i 301D ) B ) S Al

KeT)

Then we deduce that
(4.9)

1 1
lu — mhulle S pd WYt err0, + 15 hE U2 k1.0,

11
Applying the Theorem 4.2.2 with wy, = mfu the result follows and C), = O(uf +p3). O

Proposition 4.2.1. Letu € H§+1(Ql) X H§+1(Qg) be the solution of (4.2) and uy, € ViF
the solution of (4.5), then there holds

1
[ — uplle < ClLR* 2 ulpi1 0,

with CL 1S a positive constant that depends on p and the mesh geometry.
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Proof. Let z satisfy the adjoint problem

—uiAzi:ui—uf'l inQ;, i=1,2,
2=0 on NN, i=1,2,

(4.10)
[2] =0 on T,
[uVz-n] =0 onT.
We assume the following regularity estimate
pillzt 2.0 + pell2? 2,0, S llu—unlog- (4.11)

By integration by parts and using that (u — up)|oq = 0 we obtain

' =i, = (u' =g, =iz, = (V(u' = uj), V2o, — (Ve ni,u' — uj)r.

Using [#Vz-n] = 0 and [2] = 0 on the interface, the L?-error can be upper bounded by

lu = unll o = llu' = upllé .o, + lu* — uzlli o,
=D (V' —u}), 1V2")a, = {pVz -0}, [u—up])r
= Ap(u—up, z) = 2({uVz-n}, [u—un])r.

Using the global trace inequality || V2% - nllor < [|2%]|2.0; for i = 1,2, we can write

|{uVz-n},[u—up])r|
1 1 1
< (wipah) 2| V2" - nllor + (waphe)2[|V22 - nllor)y2||[u — un]flor

1 1
S (@ipmhy) 2|2 2.0, + (wap2ha)? e = ]l

Using Lemma 4.2.2 we get
Ap(u —up, 2) = Ap(u — up, 2z — m},2)

2
Z (u' —ub), iV (' — 7 2))a,

7

i=1
<{/N(u —up) - n}, [z = mpzl)r + ({uV (2 = mp2) -0}, [u — un])r

< ZmHV u' =)o, IV (2" = m,2")
i=1

2
1
+ 3 ((@iphi) 2|V (' = uf) - nllor) 72 [z = mh=Dllox
i=1
2 1
+ > ((@imhi) 2|V (=" = mh2") - nllo,r) 2l [u = unlllor-
i=1
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Similarly as (3.21) using the trace inequality of Lemma 2.0.1 and the approximation

property of the nodal interpolant we have
1 . . . . .
hE IV (u" = up) - nllor S Bl k0, + IV (uf, = 7))o,

Then using that [[up — 7hul| < |lu — 7Ful|., estimate (4.9), Corollary 4.2.1 and the

approximation property of the nodal interpolant we obtain

2

l .
An(u = un, 2) N1z = mhelle (lhe = wnll + lun = mhull + S (wspe) 0¥l 1.0,
=1

1 1
S lle = mzlls(nf + p3)h* ulkire
1

1 1 1 1
S (ufhal2t a0, + w3 hal2®)2.0,) (03 + 3 )hF|ulii1 0

Then using Corollary 4.2.1 once again we get

;o1
lu = unllgy S ((ha + (wiha) )i |12 2,0,

1 1 1 1
+ (ha + (w2ha) 2)pd |22 |2,0.) (1 + 13 )BF |ulksr,0

Ll VI

N 1 1
< (uf + p3)hE (i) 3|2 .0, + (wop2) 12220, h¥ [l 41 0

We conclude by applying the regularity estimate (4.11), C), = O(1). O

4.3 Compressible elasticity

We consider the compressible elasticity problem with discontinuous material parameters

as A
—V.ou)=f inQ, i=12,

u'=0 ondQNQ;, i=1,2,
[ul=0 onT,
[o(u) n]=0 onTl,

(4.12)

with f € [L?(2)]?, the stress tensor is expressed as
o(u) =2ue(u) + AV - u)layo.

In a subdomain €2; the Lamé coeflicients are denoted as u; and A;. Since the displacement
u is equal to zero on the boundary of Q the following Korn inequality holds (|45] Theorem
4.2.4) for all u' € [HY(Q;)]? and u'|sq = 0, then

Crllu'lle, < lle(u)og,- (4.13)
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4.3.1 Finite element formulation

Classically by using integration by parts we have for each domain
(2uie(u’),e(v))q, + NV -4,V - v')q, — (a(u') - ni, v = (f,v)a, Yo' € W;

for i = 1,2 with W; = [V;]2. By summing the interface terms we obtain

2
Z< (u') - i, v r—/[[ n)vlds = ({o(u) - n}, [v])r + (o () - n], ())r,

the problem (4.12) tells us that [o(u) - n] = 0, so we obtain

2

2
Z (2uie(u’), e(v))e, + (N V-u', V-v')g,) = ({o(w)-n}, [ol)r = Y _(f,v)g,. (4.14)

i=1

By adding the corresponding Nitsche term we get the following penalty-free finite element
formulation: find uy, € W}’f such that

Ah(uh,vh) = Lh(vh) Yoy, € W/f, (4.15)
with W = [V}¥]2, and the linear forms

Ap(un, vi) = a(up, vp) — b(up, vy) + b(vh, up),

Lh(vh) = Z(f7'vl)91

a(up,vp) Z (2ue( v, + (V- V- v))a,],

b(un, vi) = ({2ue(up) - n}, [vp])r + {AV - upt, [vn - n])r.

As for the Poisson case we choose pshi > p1hs.

4.3.2 Inf-sup stability

As specified at the beginning of this chapter the interface I' is considered as plane. Any
function z = (z1, 22) € W} is expressed in the two dimensional generic frame (z,y) and
21,29 € VF. The function z can also be decomposed such that z! € W and 22 € W¥
with W§ = [V}]? and W¥ = [Vf]2. The interface T is parallel to the x-axis then for 7
and n respectively the tangent and normal unit vectors to the plane interface I' we have
z1 = z -7 and z9 = z -n. We introduce the function U} such that 'vjl. = (alv%, agv%)T.

We define v% =vx; and v% = 1pX; with v1,15 € R and x; as defined in (4.1). In order
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to be able to use Lemma 2.1.1, the function 'vjl- has the properties

meas(Fl)_l/ —ldS:hfl[[u ]]Fj1 meas(F-l)_l/ 8U2 ds = hy'u ]]Fj1 (4.16)
! 1 Oy LA J F! dy R

with u} = (uf,u})”. Using Lemma 2.1.1 it is straightforward to show

-1 _pl! S G— )
HVU%HO,P; S hy 2| [un] 'THO,FJ.l’ HVU%HO,P; S hy 2 [[un] '"||0,Fj1~ (4.17)

Let the norms

2

lewl® = [l Vel

=1

6., +I[wllEr
2 . .
lwlfZ = lwll* + ) [k V' - nl§ r + il V - w'[F ]
i=1
First we give two technical Lemmas, proofs are provided in appendix D.

Lemma 4.3.1. There exists C > 0 independent of h, p; and \; (i = 1,2), but not of
the mesh geometry, Yuy, € W}If, for v} € Wi as defined above and Ve, aq,an € R%, the
following inequality holds

1
Np

Cag\ A
>NV vl fun] - mhy 2 0y(1- 522 1Z||[[u]1] -l

j=1

Ca A
— =L 12||[[ AR Tl

26 w1
N1 Ng
A
— e M Z IVu} 3 o1 = 26w Mi’” A Z V435 po-
7j=1

Lemma 4.3.2. There exists C > 0 independent of h, p; and X\; (i = 1,2), but not of
the mesh geometry, Yuy € W}]f, for 'v} € VVl1 as defined above and Ve, aq,as € R, the
following inequality holds

N1

> (wime(v;) - n, [un]) g > 0427(2 - 3(]@2) Z Fun]” nHOF1

Jj=1

+ary(1- )Z Tl - 712
Np Ny

— 3ew1 i1 Z HVu,lZHg’P]; — 3ews o Z ||VU%L||(2),PJ_2.
j=1 =
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1
Lemma 4.3.3. For up,v, € WF with v, = uy, + Z;yjl(v]l-,O), 'vjl- defined by (4.16),

there exist a positive constant By such that the following inequality holds

Bollwnll® < Ap(wn, va).

Proof. Applying the definition of vy we get

Ap(up, vp) = Ap(un, up) ZAh up, v;)

with

Ap(up,vj) = (2M1€(Ui)’€(v}))p; — ({2pe(up) - n},vbpjl + (2w e (vj) - m, [unl) r2
+ MV -up, V- Ugl‘)le — ({A\V - uyp}, vjl : n)Fjl + (WA V- vjl-, [up, - n]])Fj1,

Classically we get

2

n(wn, wn) = (2uille(u) I, + XlIV - uwhll6.0,)-
=1

Using the Cauchy-Schwarz inequality, (4.17) and the Young’s inequality we get

(), (v})),p1

1 1
< 2M1H5<Uh)Ho,Pj1 HVUJ‘HU,P;

1 3 it
= 2M1||€(Uh)||o,le(a1h1 [Tun] 7 - 7llo, F T ashy [[un] 7 - nll, Fl)

hopr\ [ Cod Fl Ca?
< el py +v(1+ 5220 ) (ST 7l + =2l iy ).

Similarly we have
(MV-up,, V- v})le

Ca?
2e

hop1\ A1 — Co2 ——F!
< NIV b+ (14 520 ) (G MTd ™ 7l g+ 5 2Tl el )

Using the Cauchy-Schwarz inequality, the trace inequality and inequality (2.15) we have

({2ne(un) - n},v}) p
< 2(wine(u) - n+ wopne(uy) 1, v5) o
< 2(wiphi)2e(uf) - n+ (wapizhs)2e(uf) - 1,770}
< 2(wynh)?|le(uh) - nlly g1 + (@onzha)? le(w?) - nllo p1)72 0] o,

1 1 11
< 2(wimnhn) 2|Vl o g + (wopahs) 2 [Ved -l )73 b Vo)l o1
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taking the sum over the whole interface and using (4.17) we have

N} Ny Ny
Z<{2M€(uh) . n},v%)F; < ewlulhl Z ||Vu,1l . ’I’LHg,F_l + €W2N2h2 Z ”V’u’i% ' In’Hg,F.2
j=1 =1 ’ i=1 ’
Nl
| Cad (O P —
WZuﬂuhu Pl g+ 20 el il
i=1 ’
Npl N2
< ewip Y [Vuhlg oo+ cwnpn Y VR s
=1 j=1 '

1 1

Ca L
WZH[[uh]] / TH(]Fl +i’72||[[uh]] ] n”0F1

Similarly we have

({AV - up}, v) - n)p
J
< <w1)\1V . ’U,}ll + waAaV - ’U,}%,'U} . ’I’L>F1

A2pi1 2 1 A1 % 1
< ((WiAih1)EV -} + (wadoha)? <M2)\1> V'uhﬁ?(Z) vj - m)p,

Aofi1\ 3 1/A1\3,
< 2
< (@ Ah)F ]V - o + (@2h0he)? (Wl) ,j)w(m) B3 Vo) o,pr

taking the sum over the whole interface and using (4.17) we have

Ny
> (Y -up},v) - n)p
j=1
N1 N2
2M1
gewl)\lhleV uh||OF1+ew2)\2h2M2u va A
Jj=1 j=1

C’a2 )\1 C’a )\1
+ 5 Zuﬂuhﬂf T8 e + 500 Zuuuhﬂ g p

N} N
Aafiq
< ewi g Z HvuhHopl + ewg)\Qu £ Z Vu h”o P2
7j=1

COé )\1 Ca3 A1 1
Gl Zn[[uh]w T+ 2y Zu[[uhﬂ g

)
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Considering Lemmas 4.3.1, 4.3.2 all the terms are bounded, collecting the bounds we get
Ap(up, Uh)

>Z 2uille(ui)[§ o, + XllV - uhllg o]

P
= lemlle(uh) 1§ pr + NIV - u} 1§ o]

N,
—ewr (4p +3\1) Z ||v“i11||3,13j1
j=1
A2 /\2,U1
)
sz( Ha A2 H1A2 /\1,U2 ZHvuhHOP2

(1 S (B () S i

+a2(2+m—7(§+ﬂ+ (HL)M‘“)) ZH[[UIJ] : g e

Using the Korn inequality (4.13) we get

Ah(ufh ,Uh)

> (20 — e(pn + wi (4 + 3M))Vurllg o, + M (L = lIV - w36 o,

Atp2 Ao 919 -
20k s — (4 A (2 ))) il
~I—( KMo — €wa| 4o + Ao g + i ||Vuh||0792—|- S NARTA S
== (Gt g+ (1 ) ) 2 el
~I—a1< —(5+ 2 +(1+ o Z I Twn] T”OFl

A1 Cag 7 3)X A1\ hapy Al ——F! 9
+04(2+f— ( +—+(1+—) )) wpl? -nl? .
2 [ 2 2,“/1 2,“/1 hlﬂQ 7]2 H[[ h]] HO,Fjl

Let us define the constants

Co =2CKkp — €(p1 + wi(4pr + 3XA1)),

Cp = 2CK o — €wo (4#2 + Ao <2)\1M2 + )\2/“)),

12 A1fh2
c 3\ A1\ h
Coman(1- 52 (G g+ (5
Cd—a2(2+21i%(;+;321+<1+2):1>2j52>>
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using Lemma 4.2.1 we get
Ap(up,vp) > (Co — C(Ce + Ca)wrpn) [ Vupll§ o, + Al — eIV - ui |15 0,

+ (Cp = C(Ce + Ca)wap2)|IVuz 5.0, + A2V - ui]|§ 0,
+ Cogllun] -7

v
\%,F + Cd§||[[uh]] : "||3,F-

The constants C, and Cj, are positive by choosing € such that

: Ck Ck 2
€ < min 5u1 4+ 3\ A1p2 Aap1y ) °
3} U dpg + A (5552 + 520
The constants C. and Cy are positive for
2411€ (4pg + 21 )e

> oq,

C(Tpu +4X\) C(9u1 +4A1)

The terms (C, — C(Ce + Cg)wipr) and (C, — C(C. + Cq)wapz) are positive respectively

for
Cr Ck

. a/ Y. N N\ o~y > ) *
m1n<20(2ul + )\1) 60) @1: 42
We note that the method is not robust for A; or Ay too large, this corresponds to the
locking phenomena. Observe that if p1 = A1 and pe = Ao, the method is robust and

~ ~

By = O(1). 0

Theorem 4.3.1. There exists a positive constant B such that for all functions uy, € W}If
the following inequality holds

A (uy,. v
Bllun|l < sup M
v EWE sl

Proof. Considering the definition of the test function used in the previous Lemma we

have
Ny
ol < el + D ol
j=1
with
lloilII* = MlllVU}Hg,P} + M|V U}H(Z),le + ’Y\\vjl\\g,F];.

——F1
Using (4.17) and [[fun]” llo p1. < [l funlllo s we obtain
=g =g

N1
p h2

M1 2
Vol ., < (1 7) .
> o3y (14 7200
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Also, using this result we deduce

N} N}

A h
ZW SIS ZA11|Vv1||OP1 < () (e 22 ) ™

Then using the trace inequality, and inequality (2.15) we obtain

N} N
S bE S wr S mlI VO pr S llanll?
i=1 j=1

then we get [|vpl| < [|unl|- We conclude using the Lemma 4.3.3. Also, 5 = O(1) for
u1 = A1 and po 2 Ao. O

4.3.3 A priori error estimate
Lemma 4.3.4. If u € [H3(1)]? x [H3(22))? is the solution of (4.12) and wj, € W} the
solution of (4.15) the following property holds

Ah(u — uh,’uh) =0, Yoy, € W;’f

Proof. Considering (4.14) we have Yv), € WF

2

2
> (Cuie(’), e(wp))o, + ANV -u', V- v})0,) = ({o(w) -n}, [val)r = Y (£, v},
=1

i=1

Adding the consistent antisymmetric Nitsche term ({o(vy) - n}, [u])r on the left hand

side we get
2

An(u,v) = (f,v})a, = Ln(vn).

=1

Then we obtain Ay (w,vy) = Li(vy) = Ap(up, vp), Yoy € W,’f O

Lemma 4.3.5. Let w € [H3()]? x [H3()]2 + W} and v, € WF, there exists a

positive constant M such that
Ap(w,vp) < M|w|[[vn]]-

Proof. Using Cauchy-Schwarz inequality we show

2
> [Cuie(w'), e())o, + AV - w', V- v})o,] S [[w]l.][vn]]-
=1
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and

({2pe(w) - n}, [oal)r < 2((wipahy)2 [ Vw' - njor
+ (waptnh2) 7 [|Vw? - mllo.r)72 || [oalllors

(Y - wh, [og - nl)r < (A2 %wlhl)

1
+ /\2 [y (w2/\2h2) IV - w?(lo.r)v2 || [vr, - n]]lo,r-

Using the trace inequality we also have

({2ne(on) - n}. [wlr = 2{(@imh) 2e(v]) - n+ (@apzhs)2e(0}) - n, 72 [w])r
< 2((wipm)2[Vohllog, + (@2112)2 [V .0 )72 [ [w] o r-

{AV - onb, [w - ml)r = (A2 2 (@idha) $V - ob + Ad gy 2 (wadah2) 3V - w3, [w - ml)r
< OBy (@) 3 [Vl o
A iy 2 (@222)E [ VoRllo0)7 1w - mlor
The claim follows and M = O(1) if p1 2 A\ and g 2 Ao. O

Theorem 4.3.2. Ifu € [1[[(];“(91)]2 X [H§+1(Qg)]2 is the solution of (4.12) and uy, €
WF the solution of (4.15), then there holds

llw =l < Cp inf flu—whl,
wpeWy

where Cg 1s a positive constant that depends on the mesh geometry.

Proof. Same proof as Theorem 4.2.2 using the Galerkin orthogonality of Lemma 4.3.4,
the Theorem 4.3.1 and the Lemma 4.3.5, Cg = O(MB71). O

Corollary 4.3.1. Ifu € [H§+1(Q1)]2 X [Hg—H(Qg)]Q is the solution of (4.12) and uy, €
Wk the solution of (4.15), then there holds

Il = wnll < Curh*lulis10,

where Cy is a positive constant that depends on p, A and the mesh geometry.

Proof. Combining arguments from the proofs of Corollaries 4.2.1 and 2.2.1 we obtain
" 1 1 1 1
lu —igzulls S (0 + ADRE [ k1,0, + (13 + 23RS [? [i1,0, - (4.18)

1
Applylng the Theorem 4.3.2 with wj, = zszu the result follows and C),\ = O(Cg(pf +
)\2 + ug + /\2 ))- O
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Proposition 4.3.1. Let u € [Hé"drl(Ql)]2 X [H§+1(Qg)]2 be the solution of (4.12) and
uy, the solution of (4.15), then

1
lu —upllog < CopnhP 2 |ufiy1,0,

where C;/M s a positive constant that depends on p, A and the mesh geometry.

Proof. We follows the same arguments as the proof of Proposition 4.2.1. Let z satisfy

the adjoint problem

—2u,V - e(2") = N V(V - 2) = ul — ul) inQ;, i=1,2,
2'=0 on NN, i=1,2,
[z] =0 on T,
[o(z) - n]=0 on T,

We assume the following elliptic regularity [85] for this problem
(4.19)

)|z 2,0, + p2llZ?ll2.0, S llu— usllog-

By integration by parts we obtain
lu —unlf o, = (u' —uj, 26V - e(2') = XNV(V - 2))q,
= (2uie(u’ — up),e(z")o, + NV - (u' —u},), V- 2)q,

— (2pi(u’ = uj),e(z:) - nahr — Na(u’ —up) -1, V-2

Then the L2-error can be written as

lu —unllgo = llu' —upl o, + llu* — uilld o,
= Ap(u —up, 2) = 2{{2pe(2) - n}, [u — un])r
—2({AV -z}, [(w — up) - n])r.
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By Lemma 4.3.4 and similar arguments as in the proof of Lemma 4.3.5 we deduce that

Ap(u —up, z) = Ap(u — up, z — Z'ézz)

[(2pie(u’ — ;). e(2" —igzz"))a, + NV - (u' — ), V- (2" —igz2"))o,]

I
iy
[\
o~ o~ =

-
Il

—({AV - (u —un)}, [z — igz2] - m)r

2{pe(u —up) - n}, [z —ig2])r
+({AV - (2 —igz2)}, [u — wp] - m)r

+ (2{pe(z —igz2) - n}, [u — up])r

2
<3 (2 +AD V(W — wh) oo, V(= — iz oo,

i=1

1 .
+Z szz i) ||V(u _uh) nHO,F)'YQH[[z_ZéZzMOT

)\% f% ./\.h.%v_ i i 1 o
+Z(mz (wirih) 2|V - (u' —ud) o) v |2 — igzz]llor

i=1

1
+Z (wipihi) HV(Z _Zézz) nHO,F)VQH[[u_uh]]”O,F

1

5 1 i . i 1
+ Z N % (widih) BV - (2 — iy llor) 73 | — unllor

and using the approximation property of the Scott-Zhang interpolant
1 . .
hE V(' —up) - nllor S BE k1,0, + IV (u), — igzu’) g,
1 : . 4 . ,
hE IV - (u' =)o S AE [0, + |V (uh, — igzu’)lo.o:-
then using Corollary 4.3.1 we have

Ah(u—’U,h,Z)
1 _1
Sz - iézzH*CM(l + >‘12H1 + >‘2 Ho 2)hk|u‘k+1 Q
+(M2 +)\2)h2\z2]292) ;M(1+/\1M1 +)\2N2 )hk‘U’kH,Q-

11
< (6 + APzt

The global trace inequalities |le(2?) - nllor < [|2%2,0, and |V - 2 or < [|2¢]|2.0;, lead to

[(2{ne(z) -}, [u —wnl)r[ + [({AV - 2}, [u — up] - n)r|

11 1

< ((wih1)2(p + A7) |12 2.0,
. 1
+(W2h2)§(u2 +>\2)HZ2II292)(1+)\1M1 + A3 o

w\»—-

2 2 )llw — .

Collecting the estimates and applying Corollary 4.3.1 the proof follows by using the
regularity estimate (4.19). Note that C},y = O(1) if u1 2 A1 and po 2 Ao O
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4.4 Incompressible elasticity

The incompressible elasticity problem with discontinuous parameters considered is ex-

pressed as
—V-o@,p)=f inQ, i=1,2,

—V-u'=0 inQ, i=12,
u=0 ondQNQ;, i=1,2, (4.20)
[ul =0 onT,
[o(u,p) - n] =0 onT,

with f € [L?(92)]? and sz p' dz = 0 for i = 1,2. The stress tensor is expressed as
o(u,p) = 2ue(u) — plaxa.

In a subdomain €2; the viscosity is denoted as p;. We note that the inequality (4.13) still
holds for this problem.

4.4.1 Finite element formulation

Let the pressure space Q; = {q € L*(£), fQ1 g dz = 0}. For each domain 2; we obtain

using integration by parts

(2Mi€(ui)ﬂ€(vi))9i - (pivv : 'Ui)Qi + (V : uiaqi)ﬂi - <U(uiapi) : ni,’lji>1“ = (fvvi)Qi
V(v' x ¢') € W; x Q.

Summing the interface terms we obtain

2

Y (o(u',p')mi o) = /F[[(U(uvp)'n)v]]ds = ({o(u,p)-n}, [v])r+(lo(u,p)-n], (v)r,

i=1
knowing that on the interface [o(u,p) - n] = 0 from (4.20), it leads to

2 2

Z [(2#’25('“’1)’ E(’UZ))QZ _(pz’ V’UZ)QZ—{—(V’U,Z, qz)Qz] _<{0-(u>p)n}v [[’U]]>1" = Z(fa vl)Qz
i=1 =1
(4.21)

In order to obtain the control of the terms related to the pressure in the analysis we

choose a master/slave configuration, then the weights are chosen such that

w1 = 1, w9y = 0. (4.22)
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Note that we still consider that pohi > pihg. Inserting these new weights in (4.21) we

obtain
> [uieu), e(v))o,— (p', Voo, +(V-ul,¢')a, ] — (o (u',p') n, [v])r =) (£, 0)a,.
i=1 =1

Let the discrete pressure space be QZ = Q’f X Q’S such that
QF ={an € Qi : qnlx €Pr(K) VK € T}, k>1

Adding the Nitsche term, the penalty-free finite element formulation is written as: find
uyp € W,f and pp € Qz such that

Apl(un,pr); (n, qn)] = Lu(vn,qn) — Yon € Wi x Qf. (4.24)
The linear forms A; and Lj are expressed as

Apl(un; pr), (vn, an)] = al(wn, pr), (Vh, qn)] — 0(wn, v, pR) + b(Vh, wn, qn)

+ Sh(uhuph) Qh)a
2

Li(vn) =Y _(f,v")a, + Au(f, an),

=1

with a, b, Sy and Aj such that

2
[(uhaph ’Uh, Qh Z 2:“1 U’;L)>Q’L - (p;'w V- 'U%,)Qz + (V : u;w qz)Qi]v
=1
b(wn, vn, pr) = (2pe(uy,) - n, [op])r — (pj, [vs - n))r,

Sh(®h, ph, qn) = Z;p > / hi (=2 V - e(uj,) + Vp,) Ve, da,
=1 KeT}

W(Fran) Z 3 / h2fVq, da,

KT’

the stabilisation (Sp, and Aj) allows us to work with equal order interpolation.

4.4.2 Inf-sup stability

Let the norm

2

l(w, I* = > (il Vo'llg o, + hiu; IV N5 ) + sy M [w] I -
i=1
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Nl
Lemma 4.4.1. For uy, v, € W}’f with vy, = uh+zj:”1(v},0), v} defined by (4.16), and
qn = pn, there exist a positive constant By such that

Boll(un, pr) I < Anl(un, pr), (vh, an)]-

Proof. Applying the definition of v; we obtain

Ap[(wn,pn); (Vn, an)] = Anl(wn, pr), (wn, )] ZAh up, pr), (v},0)],

with

Anl(un pn), (03,0)] = (2pie(w}), €(w}) pr + (Vph, 0}) s
— Cure(uh) - n, 0} + Guie(el) n, fun]) g

Similarly as in the proof of Lemma 2.3.1 we get

Mw

g/ Cy
Anl(un, pn), (s pn)] = D7 200 = pulle(ui) B, + 22 (1= =22 )02 9wh13 0],

=1 Hi 4¢

Using similar arguments as in the proofs of Lemmas 2.2.3 and 2.3.1 we get the following

bounds

H1
(Vi j)p1<*h2HVthop1+ Cai H[[]] THS,F;

Caj F}
+ G ual ™ -l .
Cai Ml
(2me(up),€())o pr <6M1IIVUh||0p1+ — II[[ AR TIISF,I
Caj Fy
+ 2B ] -l .
1 Coﬁ Ml 2
(2pme(uy) - 1, v5) e < e[ Vg g pr + II[[ i 7o, 2
Caj F}
+ S ual ™

From Lemma 4.3.2 considering the weights (4.22) and the fact that pshy > p1hs

3C a9\ p1 , —=F}
1 2
ue(w}) -n. D) p > oo (1= =22 ) P Tuad -l

1 COq

var (b= SO Iy 2 L~ e Va2 .
2 de ) hy 0,F; 0.F;
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Collecting the bounds for each term

2
Anl(u, o), onoa)] 2 - 201 = il + 0 (1- Z%)hﬂrmum

=1
N} Ny
-1
e Y|Vl pr = en; hQZHVphllopl
j=1 J=1
1 110&1
ta5 - )th unl” 72

13Ca
+as(1- ) thllu[[uh]] T

Using the Korn inequality (4.13) we obtain

Ap[(wn, pr)s (v, qn))

g/ Cw ¢
> (2Ck(1 = ¢) =5 IVl + 22 (1 2 = = )rIVphIR g,
H1 € Yp
N} o N}
7, 7
201 =) Yl Vauliba, + 2 (1= 1) Zh?ﬂwhnm
=1
1 11Cxy
+ai(5- )me ITanl™ 712 1y

+aa(1- 1300‘2)th [CARELI

Let us define the constants
C, =20k (1 —€) — be,
C
Cb:’7p<1_ ’Yp_i>’

4
C.=2Ck(1-¢€),
i1~ %)
i} - ),
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using Lemma 4.2.1 we get

Apl(wn, pr), (0, an)] = (Ca — C(Ce + Cp)a||Vup 5.0, + Cohini M| VoLl o,

p1ho _
+(Ce — mc(c«e + Cf))MHVUiQLH%,m + Cyh3pi; 1HVPf21H(2),QQ
o N} c N
w7+ 58 D7 bl - G -
j=1 j=1

)
are positive, C, and Cy are positive for

2
By taking e = 22, ¢ = % and 7, < min(%ﬂ, \/QCTK), the constants C,, Cy, C. and Cy

2 2
_'p_ _'P_
220 ~ 3¢~
The terms (C, — C(Ce + Cy)) and (C. — 5;2?0(06 + Cy)) are positive for
C C
?K > o, % > (9.
Note that 5y = O(1). O

Theorem 4.4.1. There exist a positive constant 8 such that for all functions (wp,pp) €
W/f X Qﬁ, the following inequality holds

A u s , v ,
Bl (wn, pr)|l < sup nl(wh, pn), (Vn, n)]
(0h,an) EWE X QE I (vn, an)ll

Proof. Using the definitions of v;, and ¢, from the previous proof we have
Np
I (wns a)I* < MG, ) 17+ N0}, 0],

Jj=1

with
(v}, O = palIVoilg.a, + by lvillo -

Using the same arguments as in the proof of Lemma 4.3.1 we get
lCvns ar)lll < [l (en, pa)l-

We conclude by combining this result and Lemma 4.4.1, 8 = O(1). O
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4.4.3 A priori error estimate

Lemma 4.4.2. If (u,p) € ([H3(1)]? x [H3(Q2)]?) x (H' (1) x H'(Q2)) is the solution
of (4.20) and (up,pn) € WF x QF the solution of (4.24) the following property holds

Ap[(w —up,p — pp), (Vn,qn)] =0, V(v qn) € WE x QF.

Proof. Considering (4.23), V(vp, qn) € WE x QF

[(QME(Ui)a E(v%))Qz - (pia V- v}z)QZ"F(V : ui7 q;l)Qz]

2
=1

7
2

- <0'(u1,p1) n, [vp])r = Z(fﬂ’z)ﬂz
i=1
Adding Sy, Aj, and the antisymmetric Nitsche term (o (v!, ¢') - m, [u])r on the left hand

side we obtain

Apl(u, p), (vn, qn)] = Ly (v, qn)-
Then we get An[(w, p), (vh,qn)] = Ln(vn, qn) = An[(wn, pr), (vn, )], V(vn, qn) € Wi x
Qr. O
We introduce an interpolation operator that will be useful for the convergence anal-
2
ysis. Let Z§ such that Zkv = (igzv!, Z5v?) and Zhv? = if,0? + Z;V:pl ﬁjxg, with J; € R
and X? = (XJQ', X?)T € W3 such that for each node z; € 7,2 we have

0 for x; € Q\F?
20\ _ i J
2 () = . 4.25
Xj(z) {1 for xiEsz. ( )
95 is chosen such that
/ (u? — TEu?) - n ds = 0. (4.26)
F?
forj=1,.. .,NPQ. Then we can write

fF? (u2 - Z']sczuz) - ds
V= —2

2
“.n ds
fF]?Xj
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We note that hy < | [5e X? ds|, then using the trace inequality and the approximation
J
property (2.32) of the Scott-Zhang interpolant we obtain

2

2 p
/Fz(u2 — ik u?) n ds‘ Shy' D (u? —igu®) n
J

Ny Ny
2 —2

YW Sy

i=1 j=1

j=1

Np (4.27)
S D (057 |u? — iggu? [ o + [V (u? — igzu®)[[F p2)

j=1

2k),.212
Shylu |1<;+1,S22'

Then we deduce

N2 1
k ik 2
o = T, < u? ~ ifgu®oe, + (3 1917 r2)
j=1

N2 .
< byt P g0, + <h§ > |19J'|2) g

Jj=1

Using a discrete inverse inequality and similar arguments as above we can show the
estimates

IV (u? — Z5u?) o0, < hS1w? k1,00,

1
(> ID%? =)l )" < B ks 0
KeT?

then we obtain
lu? = Z5u? 0.0, +h2 ||V (u? — Z5u?) |00,

1
+ h%( Z ”DQ(u? _ I§u2)|’3,K) 2 g h]2€+1‘u2’k+1,§22-
KeT?

(4.28)

Theorem 4.4.2. If (u,p) € ([HETH()]? x [HETH(Q2)]?) x (H*(Q1) x HF(Qw)) s the
solution of (4.20) and (up,pr) € WE x QF the solution of (4.24), then there holds

(e = wn, p = pu)lll < B*(Cunlutlrire + Coulplig),

where Cy,, and Cy,, are positive constants that depends on p and the mesh geometry.

Proof. Let If;’ the interpolant as defined above and i, the Scott-Zhang interpolant, the

triangle inequality gives us

(w — wn,p = ) Il < 1w = T, p — i) | + (T — un, iszp — pn)l|
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Using Theorem 4.4.1 and Lemma 4.4.2 we obtain

Ah[(Igu’ —u, Zézp - p)7 (Uhv qh)]

I(Zu — wn, igzp — pa)lll < sup (4.29)
(v.an) EWE X QE Il (vns )l
We want to show
) " 201 o BRI
A[(Z5u—u,igzp—p), (vn, g)] S l(on an)1 D (12 b1 lkesn.0,+ 15 205D r0;) (4:30)
i=1
Using the identity [ab] = {a}[b] + [a](b) we have
2 . . .
D (V- (Thu' —u'), g o —(ah, [(Tiu —u) - n])r
i=1
2 . . .
= ([an]; (Thw® —w?) -m)r = > (Vaj, Tiu' —u')o,.
i=1

Due to the orthogonality property (4.26), the Poincaré type inequality ||V} |lo g =
g

lla}, — 4}, o i, the approximation property (4.28) and the trace inequality we can write
g

2
NP

(0], (T2 — w?) - e = 3 (o] - (] (Th? — w?) ) o
j=1

Ny
— 2
<3 o] ~ Tl a2 | (@hs? — u?) -
7j=1

Np 2 N 1
e ;
< (D0 Manl = Tand ™ 132 ) * (D I(Zhu? = w?) - w3 )
j=1 j=1

N} N2
1T \E o 3 e N3 ko2 2y

< 7z

S (D llah —ah lo,m2 )" + > llai; — a I6,p2) " ) I(Z5u” = w7) - nllor
= j=1

v .M 1
2 2 ke
< (S mIvaiz ) + (3 mlIVal2 ) ) I@hu? - u?) - nlor
= J = J
1 1,1 1 1 9 1,
< iy 203 (2 [Vahlo.cu + 13 VR lo.co ) 13 B[ lis1.0,
1
< v an)les b |u?ler .0,
Where we also used pshy > pihe. Using Cauchy-Schwarz inequality and (2.37) we get
. . . 1 .
(2pie(Ziu' —u'),e(vy)e, S Il(vn, an)lln? b w00,
. . : _1 .
(iszp" = ',V - v)a, S l(ons an)llsg * RE 190

. . _1 .
(Vi w)a, S [1(wns an)llig 2 BE D k-
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Similarly using the trace inequality of Lemma 2.0.1
_1
(igzp' — ', [on - nl)r < |ligzp" = p'llo.xll[on - nlllor S ll(wns an) iy 2 hilprlk0ss
(2pe(igzu’ —u') - n, [oa])r < 2|V (iszu' —ub)lor|[oa]llor
1
21k
< Il wns an) s P [ s 0, -
Using pahi1 > pihe, (2.32) and (4.28) one more time
_1
(2pe(v}) - n, [T — u])r < 2mby 2| Vop oo, [[Z5u — ulllor
1 1
2173 (ka1 k, 2 2
S M ons a)llug by ? (liszu' —utflor + 1 Z5u® — u?for)
1 1
21k 21k
S M ons an)ll (w7 hY [ [0, + 13 B3| [1p10,)-

Finally the pressure stabilisation can be bounded using similar arguments as in the proofs
of Lemma 2.3.3 and Corollary 2.3.1 such that

Sh(Igu - u, @Igzp - D Qh)

1 1 1 1
S M@y an) P (1 [ k1,00 + 1 2 1P kn) + RS (03 102 k1,05 + B 2 [D%[10))-

Then (4.30) is shown, getting back to (4.29) we can write

1 _1 1 _1
I Z5w—wn, ibzp—pr)ll S A (1f (w6 ks1,.00+11 2 [P r,00)HRS (13 [0 kr1,00 1 2 PP k00)-

Combining arguments from the proofs of corollaries 4.2.1 and 2.3.1 we obtain

1 1 1 1
k k ki, 2 —3 k(2 —3
(w — T, p—igzp)ll < 1 (f [ lirn,0 + 11y 2 [P o20) 5 (03 [0 |00, + pig 2 971,520

11 1 1
The claim is shown and Cy, = O(pf + 15 ) and Cp, = O(py > + pg ). O

4.5 Numerical results

The aim of this section is to verify numerically the convergence results proved in this
chapter. The package FreeFem++ [75] is used for the computations, structured meshes
are considered. The computational domain €2 is the unit square separated in two sub-
domains [0,0.5] x [0, 1] and [0.5,1] x [0, 1] meshed independently. For each case we use
a manufactured solution to test the precision of the penalty-free Nitsche’s method for

nonconforming domain decomposition.

4.5.1 Poisson problem

The L? and H'-errors are investigated for various values of the ratio hy/hg, for each

case we choose p; = 1, and, a range of values for us is investigated. Piecewise affine



112

Chapter 4. Domain decomposition

approximation is used. We consider the following manufactured solution

u = exp(zy)sin(mx)sin(my).

Figures 4.4 and 4.5 display the convergence of the L?-error for a range of values of the

ratio hy/hg. For each case the convergence rate is slightly bigger than what has been

proved in the theory. We also see that, as the ratio hj/he becomes smaller, the constant

C’L from Proposition 4.2.1 becomes very slightly bigger as po grows.

10”2

L? error

-G pp =1

—c- 11y = 10!

-3y = 102 P
b -y = 10° /

— o (1) /

FIGURE 4.4: Py, pp =1, left

107

L? error
=

10°
h

L? error

L? error

FIGURE 4.5: Py, p1 = 1, left Z—;

hi 1

— 3 i hy
= 15, right s = 5

Figures 4.6 and 4.7 display the convergence of the H'-error. For each case, the

convergence rate observed corresponds to the convergence rate that has been shown

theoretically. For each value of hq/hgy the constant C,, from Corollary 4.2.1 is the same
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for any value of ug considered. As the ratio hj/hy becomes smaller the

become slightly smaller.

constant C),

10 10
— —
S) S)
- —
T ollh g0t
10 10
S s
5] L -2 L
10 10
10”2 107! 1072 107!
h h
FIGURE 4.6: P =1, left 20 =1, right 0 = 2
00 I, ’ ha , 118 ha 5
10° 10°
-G pp =1 -6 =1
—A- g1y = 10! —e- 1y = 10"
-G p1p = 10? -3y = 10%
- g = 10° - iy = 10°
&
—O0(h) o —O(nY) P
= o g
5) o
g 5
@ 0! @ qolt
) . -2 L
10 10
102 107! 10”2 107!
h h
. _ hi 3 hy _ 1
FIGURE 4.7: Py, p1 =1, left =17 right =3

4.5.2 Compressible elasticity

The L? and H'-errors are investigated for hy/he = 1/5 and p; = Ay = 1, for ranges
of values for pue and Ay. First and second order approximations are investigated. We

consider the following manufactured solution

Figure 4.8 shows the convergence slopes of the L?-error for first order approximation, it

shows a convergence rate slightly bigger than in the theory as observed for the Poisson
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case. As po grows the constant C;L from Proposition 4.3.1 becomes very slightly bigger.

As \g grows the constant CI’M grows this characterises locking.

107 ‘ 10”2
-G o = 1 .
~&- 19 = 10 /;f’fg
-3y = 10% /‘g
-y = 1-05 ’f:; i 1073
ot 9 (1) § tf’B{
- o
o S)
b =
= oAl
5 D 10
(o] [a\]
~ ~
10—5 L
10—5 L
-6 L 6 L
10 10
102 107" 102 107!
h h

FIGURE 4.8: L2-error, Py, pu; = Ay = 1, left Ay = 1, right puy = 1.

Figure 4.9 shows the convergence slopes of the H'-error for first order approxima-
tion, the slopes observed corresponds to the rate of convergence that has been shown
theoretically. We see that the influence of ps on the error is negligible. However as Ag
grows the mesh needs to be fine enough to recover the expected convergence rate, this

is due to locking.

-G g =1
—A- iy = 10!
-B py = 102
- pz = 10°
—0 (}Ll) DL
. 10
o S
— —
P o
Q101 5]
i s
10—3 L
3 . 4 .
10 10
107 10" 102 107!
h h

FIGURE 4.9: H'-error, Py, u; = Ay = 1, left Ay = 1, right puy = 1.

Figure 4.10 shows the convergence slopes of the L2-error for second order approxi-
mation. The slopes of convergence are once again slightly bigger than what has been
shown theoretically. We see that us has a very small impact on the slope of convergence

whereas for Ao large enough we observe once again locking.
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104 ‘ 107
-G =1 -G Ay =1 4
~A- iy = 10! -A- )y = 10 7
-& py =107 B -o Ay =107 A A
105 = = 10° ;;" 1 107 F <7 de = er3 V"/ e
— 0 (n9) & — 0 (n9) A
o 3 o ) b4 ke
o S)
g =
D 100 S 100
(o] [a\]
~ ~
107 107
-8 L -8
10 10
107 10" 102 107!
h h

FIGURE 4.10: L2-error, Py, pu; = Ay = 1, left Ao = 1, right puo = 1.

Figure 4.11 shows the convergence slopes of the H'-error for second order approxima-
tion. The slopes corresponds to what has been shown theoretically, po has a negligible
impact on the convergence. For Ay < 102 locking is not observed, for Ay = 103 locking

generates a small rise of the constant C,) of Corollary 4.3.1.

10 10
-G Uy = 1 ] -G Ay = | R4
S — 102 P A= )\y = 102 // a
O [y = 10r '/ -G \y = 10_ ~ /.'
- pip = 10° o Ao = 103 s
10} ’ 4l —©9 (n?) "
— o /
o o
= —
= —
) )
105} 10 v
n/
10° 5 - 10° :
10 107 10 10
h h

FIGURE 4.11: H'-error, Po, 1 = A1 = 1, left Ao = 1, right up = 1.

4.5.3 Incompressible elasticity

The H'-error of w and L?-error of p are investigated for hy/hy = 3/5, and 1 = 1 for
a range of values for us. First and second order approximations are considered. We

consider the following manufactured solution

= mcos(4mwx)cos(4my).
—cos(4mx)sin(4my) p (4mz)cos(4my)

w— ( sin(4mx)cos(4my) )
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Figure 4.12 shows the convergence slopes of the H'-error of the displacment and L?-error
of the pressure for first order approximation. The slopes of convergence observed for the
H'-error of u corresponds to the theoretical result, the influence of ps is negligible. The
slopes of convergence observed for the L?-error of p is of order O(h!?), the constant is

multiplied by a factor ,/ms as pus becomes bigger. Figure 4.13 shows the convergence

10° ‘ 108F ‘
-G =1 -G a2 =1
—c- 11y = 10! —de- 1y = 10!
-y = 10 -y = 107 i
_v_u =10° o 1071 - -#. =10 T v
2 L v =100
3 —O0 (1) e 8, e () I v
(e o A VIV e
o = v
— - 102 L
S o't 8 __-|
— = .
<) (B} _-B- _A
— ~ 0 _ - - b _o
r o~ AT PRs
sl N N &
10”2
-2 L L L L
10
10”2 107! 10”2 107!
h h

FIGURE 4.12: Py, pg =1, v, = 1071, left H'-error of w, right, L?-error
of p.

slopes of the H'-error of the displacement and L?-error of the pressure for second order
approximation. The slopes of convergence observed for the H'-error of u show optimal
convergence which corresponds to the theoretical result, once again the influence of o
is negligible. The slopes of convergence observed for the L?-error of p are slightly bigger
than O(h?5) for ps < 102, for us = 10° the convergence is of order O(h?).

6

10

-G pupy=1
—Ae- 1y = 10!
-y = 107

104 F ~vpe = 10°
—0 (hQ) ¥

e
-

H! error of u
=

FIGURE 4.13: Py, p1 = 1, v, = 1074, left H'-error of u, right L?-error
of p.



Chapter 5

Unfitted domain decomposition

In this chapter, we consider unfitted domain decomposition with the penalty-free Nitsche’s
method as a coupling tool. The computational domain is divided into two subdo-
mains that can have different material parameters, however the computational domain
is meshed with only one triangulation. A consequence is that the interface between the
two subdomains does not fit with the triangulation i.e. some simplices are crossed by

the interface.

5.1 Preliminaries

Let €; and Qs be two convex bounded domain in R? with polygonal boundary, these
two domains share an interface I' = Qq N Qy, for simplicity I' is considered as plane.
We define the domain 2 = 7 U s with boundary 0f2, an example of §2 is represented

in Figure 5.1. Let {75}, be a family of quasi-uniform and shape regular triangulation

FIGURE 5.1: Example of computational domain €.

fitted to €2, the mesh size is defined as h = maxgc7, hix. Figure 5.2 shows an example

of configuration, the mesh do not fit with the interface I'. For i = 1,2, let

U ={KeT | KnQ #0},

117
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FIGURE 5.2: Example of mesh in €.

we note that Qf N Q5 # (. Let us define the spaces

Vi ={ve HY Q) : v|sq = 0},

VE={v, eV :uplg € Pp(K) VK €T} Vk>1,
then = X , Tor any wy € we have wp = (w;,w;) with w; € an
hen V¥ = VI x Vf, f V' we h pwh) with wy € VI and

w,% € V. Similarly as in Section 3.1.1 we introduce an extension operator. Let E; be an
Hé-extension on QF, E; : H5(Q;) — H*(Q}) such that (E;w’)|g, = w' and

|E;w’| s Yw' e H5(),s > 0. (5.1)

o~

For simplicity we will write w’ instead of E;w'. Let igz : H*(Q) — Vlk be the
Scott-Zhang interpolant, we construct the interpolation operator Z, such that Zpw =
(Ziw', TAw?) with

Tiw' = igzEw'. (5.2)
Using the estimate (5.1) together with (3.4), then for v’ € HF1(Q) and 0 <7 < s <
k + 1 we have

1
(> I =TIk )" S BT (5.3)
KeQr

We define the set of elements that intersect the interface
Ghn={KeT,| KNnT #0}.

Let us split the set G into N, smaller disjoint sets of elements {Gj}1<j<n,. Let Ig; be
the set of nodes belonging to Gj, we define the sets of nodes I ]1 and Ij2 such that

I}Z{l’z‘GIGj |z €M, i ¢ Ig, Vn#j},
IJZZ{IL‘Z'EIG]. ’.’L'iGQQ, :L‘i¢IGnVn§£j},
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now we define le and Pj2 for each Gj such that

leszU{Ke’ﬁl|E|xiel}suchthatxi€K},
P} =GjU{K €Ty | 3x; € I] such that z; € K} .

Each patch P; is constructed such that I]Z: # () for i = 1,2. Figure 5.3 shows an example
of two patches le and sz. I'; = I'NGj is the part of the boundary included in the
patches le and Pj2. For all j and ¢ = 1, 2, the patch PJ? has the following properties

h < meas(I';) S h, h* < meas(P?) < b2 (5.4)

~ J ~

The function y; € Vi attached to le is such that

0 for z; ¢ I}
Xi(wi) { 1 for x; € Ijl, (5:5)

with ¢ = 1,..., N,. N, is the number of nodes in the triangulation 7,. The broken

——o

r r

FIGURE 5.3: Left : example of le, the function x; is equal to 0 in the
nonfilled nodes, 1 in the filled nodes ; right : example of Pj2.

norms are defined in the same way as in Section 4.1.

5.2 Poisson problem
We consider the Poisson problem with discontinuous material parameters as
At =f inQy, i=1,2,
wW=0 ondQNQ;, i=1,2,

[ul=0 onT,
[uVu-n] =0 onT,

(5.6)
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with p; the diffusivity of the domain €2; and f € L?(2), we have u = (u!,u?). Similarly

as in the previous chapter, the following regularity estimate holds [44]
il D*ulllo,0y + pall D*u? o0, S I1fllo0-
We consider the following weights

w1 = 12 5 w9 = m 5 (57)
1+ p2 M1+ 2

also, in order to simplify the notations

12
R(py + po)

We assume that p1 < ps. The formulation is obtained similarly as for the fitted domain
decomposition case (see Section 4.2.1). Using the penalty free Nitsche’s method, the

finite element formulation for the problem (5.6) is written as: find uy, € V}¥ such that

Ah(uh, Uh) + Jh(uh,vh) = Lh(vh) V’Uh S th, (5.8)
where
2 . .
An(un,vn) =Y (1iVuy, Vop)a, = {pVup - n} [on])r + {pVor - n}, [un])r,
i=1

2
Li(vn) = >_(f,vh)es-
=1
The operator Jj, is the ghost penalty [25], defined such that J,(up,v) = Ji(ui,vi) +
J?(u?, v?) with

k
Th(up,vh) =9 > > (™ D) bl e, (D, 0] F) e
FeFl =1

This penalisation ensures that the condition number is independent of how the interface
cut the elements of the mesh. We recall that in a generic sense F' is a face of a triangle
K € 7Ty,. The sets fé for i = 1,2 are defined as

FL={FeGy | FN #0}, Fi={FeG,|FnQ+0}.

D%F is the partial derivative of order [ in the direction ngp. The estimate (3.17) still
holds in this framework for v;, € th

il Voplls or S will Voulg o, + Ji(vh, vh) S mill VORlIG or (5.9)
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here we assume that v, = O(1). Also, the following inequality is true for any w, € V}f

NP r NP NP NP

Tl i
S Twd e, = 30 2kl — Con Y il Vbl pr = Cun Y pall Vi 2 e
j=1 j=1 j=1 j=1

(5.10)

this result can be shown using similar arguments as in the proof of Lemma 4.2.1.

5.2.1 Inf-sup stability

We define the norms

2

lwll® =~ wil Vo' 1§ o, + ATl + Ja(w, w),
i=1

lwll? = llwll® + pah | Vw' - nll§ p + phl| Vw? - nlfg .

Theorem 5.2.1. There exists § > 0 such that for all functions up € V,f the following
mequality holds

Bllunll < sup AL Vr) & Tnun, v)
" uevp lvall

Proof. Let vy, = up +« Zjvzpl (vjl, 0), such that vjl- = vjX;j, with v; € R and x; defined by
(5.5), each v]l has the property

meas(I’j)_l/F ijl- ‘nds= h_l[[uh]]rj. (5.11)
i

Then using Lemma 3.1.1 with ¢, = vjl. and r; = h™'up] ’ we obtain the inequality

EE—
HVU}HO,P; S h72|[[un] Mo, (5.12)
We can write the following
Np
(Ap + Jn) (unsvn) = (Ap + Jp) (s un) + @ > [Ap(up, vf) + Jn(us, v))].
j=1

with
a(Ap + Jn) (un, vj) = ol Vg, Vv})leml — a({{uVuy - n},vj)r,

+ aw; <,u1Vv]1- “n, [un])r; + adn(un, vjl)
Using inequality (5.9) we have

2

(An + Jn) (wn, un) = Y (Vg Vg )o, + Jn(un,un) 2 i Vugl[5ar + sell Vi[5 o
=1
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Using inequality (3.1), Lemma 2.0.2 and (5.12)

(11 Vuy, aVv})lele +oudy (up, ;)

1 1 1
12||VUh||0 leﬂlalh ||VUJ llo Plno; T In(un, un)2a Jh(vjl" 0]1')2

02
4e

Ca?
4e

1 lIVoilG pr

(14 20 )Tl 1

S emlIVuh 2 i +

Sem|Vurliop + =

Similarly as in the proof of Theorem 4.2.1, using the trace and inverse inequalities, (3.12),
(3.19), (5.11) and (5.12) we have
1 Ca® T 12 212
{pVup - n}, ovjir; < = =lllunl " [lo.r; + ewrmllVunly pr + ewapiz|[Vullg p2,

Ca
aw (o} - m, funl)r; = (1= 22 ) 1Tl IR, = cwrpn Vb I p

- EwwzHVU%Hap;-
Collecting the bounds and using (5.10), we have the lower bound
An(un,vn) > (Ca = 1CCm|IVuy|[§ o + (Cb — waCCo)pz || Vi Ig o5 + CC%H[[Uh]] I3,

with the constants

Cyp=C — (2w + 1), Cp = C — 2¢ews, C. —a(l—ai(5+ﬂ2)>

Let € = %, C, is positive for a < ﬁ The terms (Cy, — w1 CC,) and (Cp — waCC,) are
positive for a < §. Using (5.9) we get

Bollunll* < Ap(un,vn) + Jn(up, vp).

Similarly as (2.16) we have

Np
llonll® < Ml +a® > llvjll® - with (lvjll* = Vo315 p1rg, 10 I3, + I (05, v))-
j=1

Using (5.12), (5.9) and H[[uh}]FjHrj S I[un]lr; it gives the upper bound

Np

> [V prco, + (@) o)) S (14 50 )P
j=1
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Using the trace inequality and the inequality (3.19) we get

N, N,
¥ oller, S wrm Y IVl pr S sl
j=1 j=1 !
Then we get [[on[[ S [llunll O

5.2.2 A priori error estimate

Lemma 5.2.1. Ifu € H3() x H3(Q2) is the solution of (5.6) and up, € Vi¥ the solution
of (5.8) the following property holds

Ah(u — Up, Uh) — Jh(uh,vh) =0, Yup, € th.
Proof. The proof is done using similar arguments as for Lemma 4.2.2 and using that
Ap(un,vn) + Jn(un, vn) = Ly (o), You € ViF. =

Lemma 5.2.2. Let w € H3() x H3(Q2) + Vi¥ and v, € V¥, there ezists a positive
constant M such that
Ap(w, vn) < Mljw]l[lJon]l-

Proof. Using the trace inequality (3.1) and the Cauchy Schwarz inequality we have

{uvw - n}, [on)r < b2 ((Wim) 2 |V - nllor + (wap2) 2| Vw? - nllor)y | [va]llor,

({uVon -0}, [wl)r S (wim) 2|V}

1 1
0.0 + (w2r12) 2| Voillo.,)v2 Twlflor-

Using these two upper bound it is straightforward to conclude that

2
Y (V' Vo), — ({uVw - n}, [on])r + {uVop - nd, [wl)re S Jwlllvall.

i=1
O

Theorem 5.2.2. [fu € Hg“(Ql) X H§+1(Qg) is the solution of (5.6) and uj, € Vi¥ the
solution of (5.8), then there holds

llu —unll < nf flu—wsl.
wp eV

Proof. Same as Theorem 3.2.2 using Lemma 5.2.1, Theorem 5.2.1 and Lemma 5.2.2. [

Corollary 5.2.1. Ifu € Hg“(Ql) X H§+1(92) is the solution of (5.6) and uj, € Vi¥ the
solution of (5.8), then there holds

Il — un|ll < Cuh*lulisr0,

Ll MY
Nrol—
N

and C, = O(pi + 1
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Proof. Combining arguments from the proofs of corollaries 3.2.1, 4.2.1 and using (5.1),

(5.3) we obtain the estimate
31k, 1 31k, 2
lu = Zhull« S pf ¥ [u k1,0, + 13 DU |kt1,0,- (5.13)

We conclude by applying Theorem 5.2.2 with w, = Zpu. ]

Proposition 5.2.1. Letu € Hg“(Ql) X Hg“(Qg) be the solution of (5.6) and uj, € V;¥
the solution of (5.8), then there holds

1
[ — unllo < CLR* 2 ufpi1 0,
with C}, = O(1).
Proof. Let z satisfy the adjoint problem

— A =u' —wuy, inQ;, i=1,2,

2 =0 on NN, i=1,2,
(5.14)
[z] =0 on T,
[uVz-n] =0 onT.
We assume the following regularity estimate
pillet 20 + p2ll2? 2,0, S v —unllog- (5.15)

Similarly as in the proof of Proposition 4.2.1, the L?-error can be written as
lu = unl§ o = An(u = up, 2) = 2({uVz -0}, [u — up])r.
Using the global trace inequality |[V2" - nllor < [|2%]|2.0; for i = 1,2, we can write

[({uVz - n}, [u — unl)r|
< (w1p1)2 [ V2" nllor + (wop2)? V22 - nllor)h2 72 |[u — un]lor

1
2,0,) 02 [[u — ual|.

1 1
S (wip)z |2 2.0, + (wapz)?||2”

The consistency of Lemma 5.2.1 gives

Ap(u — up, z) = Ap(u — up, 2 — Ipz) + Jp(up, Ipz).
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As a consequence from z!|r = 22|r we have T,z |r = Tp,2%|r then [z — Z;2]|r = 0. Using
this result and (5.3), we obtain

Ap(u — up, z — Ipz)

2
D (V' =), V(2 = T2, + {1V (2 = Tnz) -0}, [u — un])r
1

)
1 1
S (A +w)um)? ]z 20, + (1 +w2)p2)2 2% 200)hllu — unll.

Similarly as in the proof of Proposition 3.2.1 and using the proof of Theorem 5.2.2 we
have ) )
Tn(un, Tnz) < llu = Tnullh(pg |2 20, + 3 |27

2,002 )

Then using Corollary 5.2.1, (5.13) and (5.3) we obtain

1
|2.00) (7 + h2)lu = unll + hllu = Znull+)

1 1
lu = unlf o < (uill 20, + 03 122

1 1
< Culpf |l httz

1
20 + 13 112212000 2 ul k1,0

We conclude by applying the regularity estimate (5.15). O

5.3 Compressible elasticity

The compressible elasticity problem with discontinuous material parameters is considered

as

—V-ou)=Ff mnQ, i=1,2,
u'=0 ondQNQ;, i=1,2,
[ul =0 onT,

[o(u) - n]=0 onT,

(5.16)

with f € [L?(2)]?, the stress tensor is expressed as
o(u) =2pe(u) + A(V - u)laxo.

In a subdomain €); the Lamé coefficients are denoted as u; and A;, we assume that
1 < p2. The finite element formulation of this problem is obtained similarly as in
Section 4.3.1: find uy € W}lf such that

Ah(uh,vh) + Jh(uh,vh) = Lh(Uh) Yvy, € W]f, (5.17)
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with W = [V}¥]2. The linear forms A, and Lj, are defined as

Ap(up,vp) = alup, vp) — b(up, vy) + b(vn, up),

2
= Z(f? 'Ui)Q

i=1

The term Jp(up, vp) = Ji(up, v}) + J?(ui, v?) is the ghost penalty

k
T(ui,vh) =g D Y (b D uilp, (D, vh]r)F
FeFl =1

The bilinear forms a and b are defined as

uhv vh Z 2:“@ (’U;z))ﬂz + ()‘iv : u;‘n V- UZ)QJ?
b(un, vi) = ({2ue(un) - n}, [vp])r + {AV - upt, [vn - n])r.

5.3.1 Inf-sup stability

As specified at the beginning of this chapter the interface I' is considered as plane. Any
function z = (z1, 22) € W} is expressed in the two dimensional generic frame (z,y) and
21,29 € VF. The function z can also be decomposed such that z! € W and 22 € W¥
with W§ = [V}]? and W¥ = [V]2. The interface T is parallel to the x-axis then for 7
and m respectively the tangent and normal unit vectors to the plane interface I' we have
z1 = z-7 and z9 = z -n. We introduce the function ’U} such that vjl- = (alv%, agv%)T.
We define v% = v1x; and v% = 1), with v1,10 € R and x; as defined in (5.5). In order

to be able to use Lemma 3.1.1, the function 'vjl has the properties
o1 [ O 1l 1 [ 0v 17, Tt
meas(I';) — ds=h""[w] 7, meas(I';) —=ds=h""Jua] 7, (5.18)
r, 9y r, 0y
J J
with u} = (u},u})”. Using Lemma 3.1.1 it is straightforward to show

[ pp— [ pp—
||VU%||o,pj1 Sh72||[un] - Tllor;, ||VU%||0,PJ,1 Sh72||[un] - nllor;- (5.19)

Let the norms

2

llwll® =D [l Vo'llg o, + NillV - w'l[5 o, ] + I [w]lIE - + Jn(w, w),
i=1

2
lwlZ = llwll® + ) [mhll Ve’ -l r + bl V - w5 ).
i=1

First we give two technical Lemmas, proof are provided in appendix D.
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Lemma 5.3.1. There exists C > 0 independent of h, p; and \; (i = 1,2), but not of
the mesh geometry, Yuy € W,’f, for ’U} € Wi as defined above and Ve, a1, s € R, the
following inequality holds

CO[Q

(Wi V- ”Jl" [un] - m)r; 2 0427(1 - 7>7||[[ h]] Cot M

or; *vi*H[[ J7 Tl

A1p2
— 2ewi A1 ||Vu — 2ews ——N\s||Vu .
ewy At | h”o,le wr 2| h”o,P]?

Lemma 5.3.2. There exists C > 0 independent of h, p; and A\; (i = 1,2), but not of
the mesh geometry, Yup € W,’f, for 'u} € Wi as defined above and Ve, a1, a9 € R, the
following inequality holds

300&2

@urme(v]) -, [unllr, > azy(2 = 22 ) Tunl - nllr, = ewnpnn [Veh |

C
tory (1= ) Tunl - 7R, — Sewarsa| Ve o

Lemma 5.3.3. For up, v, € WF with v, = uy, + Z;yzpl(v]l,O), vjl- defined by (5.18),

there exist a positive constant By such that

Bollunll? < An(un, o) + Jn(un, vp).

Proof. Substituting the function vy we get

Np

(A + Jn) (uwn,vn) = (Ap + o) (wn,wn) + Y [An(un, v}) + Jy(un, v})],
j=1

with
An(un, vj) = 2ue(up),e(v))) prag, + MV w3, V- 0)) ping,
— ({2ue(uy,) - n},v r; — ({AV - uh},'v n)r,
+ 2wipie(v ) Junl)r; + (@A V- Ujv[[uh n])r;

Using the estimate (5.9) and Korn inequality (4.13) we obtain

M-

(An+ T (o) = 3 [2pille (i)l 0, + NIV - w0, ] + Jn(an, )

=1

Mw

[20M2HVUhH0 o + AV UhHosz ]

=1
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Using the Cauchy-Schwarz inequality, (5.9) and (5.19) we get

(2p18(uy), E(v}))o,P;le + Jn(un, v;)
M1
< €M1||Vuf11||g,pj1 + ?val\lﬁ P!

O3\ an

p1y (Ca?
< Vel g+ (140 ) (STl -l + = 2Tl ).

Similarly we have

()\1V ) u’flw V- U})leﬂﬁl

Ca? Ca
L fun] S ud - mldr, ).

< eN||V- u}l”?LPJlﬂQl T (1 + %) ( hﬂ ’

Using the Cauchy-Schwarz inequality, (3.19) and (5.19) we have

({2pe(up) -}, vj)r; < €w1#1HVU111H(2),pj1 + €w2#2HVU%Hg,p]2

Ca?  —1, Cad —,
+ =kl 7 Tl + =2 und -l

Similarly we have

A
({A\V - uh},v} . ’I’L>]_“j < ewl)\lHVu,llHaP; + EwQ)\QquHl ”Vuh”o,P?
Ca? Ca?
+ S ] 7B, + STl il

Using Lemmas 5.3.1, 5.3.2 and collecting all the terms we get

2
Ap(up,vp) > Z [QCMHVU;LH%,Q; + AV w16 6]

i:le
- Z [EHIHVU}LH(ZLPJJ + e[|V uileg,P].lrml]

J=1 .

12
ewr (4p1 + 3\1) ; IV, pr
A A

— €Wy (4/@ + Ao <2uil/<z )\TZD) Z HvuhHo P?

(1= S G e () S i

+a2<2+:1—0?2(;+221+<1+) )) ZH[uh]] .
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Let us define the constants

Co =2Cpu1 — €(p1 + wi(4pr + 3XA1)),

Cp =2Cpg — ews <4M2 + A2 <2M + )\2/“))7

H1A2  Aqpe
C 5 3\ A
Coman(1==2 (G0 (14 50) )
€ \2 2 2u1/ po
A C 7 3\ A
Cd=a2(2+—1— 0‘2<7+—1+(1+—1)ﬂ)).
K1 € \2  2m 2p17 pi2

Using (5.10) and (5.9) we obtain

Ap(up,vp) > (Co — C(Ce + C)wrp) (| Vuplig o, + Ja(un, up)) + Al — )|V - uy 1§ 0,
+ (Cy — C(Ce + Ca)wap2) (IVuZ 5.0, + i (uh, i) + X2V - 4 I3 0

Oy & Oy

Y a7

+ ; Z I[wn] - 7 ‘%,Fj + TN Z [ [wn] 'n”g,rj-
=1 =1

Following the proof of Lemma 4.3.3 with h; = ho = h, the parameters €, a; and a9 can

be chosen in such a way that all the terms of this expression are positive. O

Theorem 5.3.1. There exists a positive constant B such that for all functions uy, € W}]f
and for h < hg, the following inequality holds

Ap(un, vy) 4+ Jp(up, vy)

Blluall < sup
o lFonl

Proof. The proof is obtained by using similar arguments as in the proofs of Theorems
4.3.1 and 5.2.1. O

5.3.2 A priori error estimate

Lemma 5.3.4. If u € [H3(1))? x [H3(22)]? is the solution of (5.16) and uj, € W) the
solution of (5.17) the following property holds

Ap(u — up,vp) — J(up,vp) =0, Yoy, € Wf’f

Proof. The proof is done using similar arguments as for Lemma 4.3.4 and using that
Ah(uh,vh) + Jh(uh,vh) = Lh(vh),wh S W}]f ]

Lemma 5.3.5. Let w € [H3(1)]? x [H3()]? + WF and v, € W[, there exists a

positive constant M such that

Ap(w,vp) < Mw|l[[[vnl]-
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Proof. The proof follows the same arguments as the proof of Lemma 4.3.5 with h; =
ha = h and (5.9) to handle the terms over Q] and 3. O

Theorem 5.3.2. Ifu € [H§+1(Ql)]2 X [H§+1(Qg)]2 is the solution of (5.16) and uy €
W,’f the solution of (5.17) then there holds

llw —wnll < inf flu—wpl..
’thW}]f

Proof. Same as Theorem 3.3.2 using Lemma 5.3.4, Theorem 5.3.1 and Lemma 5.3.5. [

Corollary 5.3.1. If u € [HyTH(Q1)]2 x [HETH(Q2))? is the solution of (5.16) and uy, €
Wk the solution of (5.17), then there holds

Il = wnlll < Curh*lulis10,

where C,y s a positive constant that depends on pu, X\ and the mesh geometry.

Proof. Combining arguments from the proofs of corollaries 3.3.1, 4.3.1 and using (5.1),

(5.3) we obtain the estimate
S S
lw = Znulle < (0 + AD)R W (k.0 + (13 + A3)RT|[u]kp1,0,- (5.20)

Then we use Theorem 5.3.2 with wy = Zpu to conclude. ]

Proposition 5.3.1. Let u € [H§+1(Ql)]2 X [H§+1<Qg)]2 be the solution of (5.16) and
uy, the solution of (5.17), then

1
lu —unllo < Cpah* 2 ulii 0,

where C;IM s a positive constant that depends on p, A and the mesh geometry.

Proof. Let z satisfy the adjoint problem

—21,V - e(2") = N V(V - 2) = ul — ul) inQ;, i=1,2,

2'=0 on NN, i=1,2,
[z] =0 onT,
[o(z) - n]=0 on T

We assume the following elliptic regularity [85] for this problem

pllzllz0, + p2ll2? (20, < lu — unlloo- (5.21)

Similarly as in the proof of Proposition 4.3.1, the L?-error can be written as

lu—unllp g = An(uw — up, z) — 2({2ue(z) - n}, [u — up])r
—2({A\V -z}, [(w — up) - n])r.
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The orthogonality relation of Lemma 5.3.4 gives
Ap(u —up, z) = Ap(u — up, 2 — Ipz) + Jy(up, I z).
Similarly as in the proof of Proposition 5.2.1
I 1,
In(un, Inz) S |l — Ipullh(pf |27 20, + 13 127]2,0,)-
Using [z — Zpz]|r = 0 we deduce that

Ap(u —up, z — iézz)

2
=N [uis(ul — uh),e(2' — iz, + (MY - (Ul — u), V- (2 — iky2"))a,]
=1
+(2{pe(z — ibz) - n} [u — wpl)r + AV - (2 — i&z}, [u — up] - n)r
1 1
S (14 w)2(uf + A2)h|2" o0,

1

1 S N
(3 +A3)12212,0,) (1 + A gy ? + A3 g %) lw — |-

N

+ (1 +LU2)

The global trace inequalities ||e(2?) - n|lor < ||2%2.0, and ||V - 2o < [[2%]2.0., lead to
g q. ) ~Y Nl ’ ~Y bk}

|(2{pe(2) - n}, [u —wnl)r| + [({AV - 2}, [u — us] - n)r|

W7 (1nf + A7)z 20,

N|=

Sh

_1 _1
2 2

11 1 1 1
+wy (13 + A3 12 l2.0,) (1 + A7 1y + A3 )l — .

Collecting the estimates and applying Corollary 5.3.1 and (5.20) the proof follows by
using the regularity estimates (5.21). O

Remark 5.3.1. The order of the constants C,\ and C;M\ are the same as in the previous

chapter for the fitted domain decomposition case.

5.4 Incompressible elasticity

The incompressible elasticity problem with discontinuous parameters considered is ex-

pressed as

—V-o@,p)=f inQ, i=1,2,
—V-u'=0 inQ, i=12,
u'=0 ondQNQ;, i=1,2, (5.22)
[ul =0 onT,
[o(u,p) - n] =0 onT,
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with f € [L*(Q)]? and [, p’ dz =0 for i = 1,2, the stress tensor is expressed as

o(u,p) = 2pe(u) — plaxa.

In a subdomain §2; the viscosity is denoted as p; (and p; < pe2). The finite element
formulation of this problem is obtained similarly as in Section 4.4.1: find u; € W/f and
Dh € Q’fL such that

Ap[(wn, pn), (Vn, qn)] + Jnl(whs pr)s (Vn, an)] = La(vp,qn) Yo, € W x QF, (5.23)
with QZ = Q’f X Q’g such that
Q?:{QhGQzZQMKGPk(K) VKGE}a kzla

and QF ={q € L2 Q) fQ g dz = 0}. The linear forms Ay and Lj, are expressed as

Ah[(uh,ph), (’Uh, Qh)] = a[(uh,ph), (vn, Qh)] - b(uh,vmph) + b(vn, up, Qh)

+ Sh(wh, Py qn),
2

Lh(vh) = Z(fv'vl)ﬂz + Ah(fv Qh)‘

i=1

The bilinear forms a, b are such that

al(wn; pr); (Vh, qn)] =

s

[(2uie(up,), e(v],))a, — (Ph, V - i), + (V- uh, gh)e]

1

b(wn, vh,pr) = (2p1e(up) - n, [op])r — (ph, [vn - n])r.

As we work with equal order interpolation we stabilise the problem with S;, and Ay,

Sh(h, Phy qn) = Z > / h?(=2V - e(uf,) + Vp,)Vaj, de,

i= 1 KGQ*
W(F.an) Z 3 / K2V da.
KEQ*

The ghost penalty term Jj is defined such that Jy[(wp,pr), (Vn,qn)] = Jn(up,vp) +
In(pn,qn) with Jy(up,vp) = J&(u}t,v}l) + J}%(u%,v%) and Ip(pp,qn) = I,ll(p}“q,lz) +
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I}(p?,¢?) and

Jj (uha'vh = Vgl Z thz 1 [[D u’ﬁl]]F7[[D£LFU2]]F>F’
FeF} 1=

(v}, 4}) = " Tg §~ th“ [D,pi]F. DL, ai]F)F.
FG]‘VL =

Note that as in Section 4.4 the weights are considered as
w1 = 1, w9y = 0. (5.24)

The following estimate is proven in [89]

i B2V G ar S PPy h(Ghs @) S 17 RPNV or - (5.25)
5.4.1 Inf-sup stability
Let the norm
2 . .
l(w, o)II* = (il Ve'[I§ 0, + B2 IV 1§ ,) + b~ [[w]lfg r + Jal(w, 0), (w, 0)].
i=1

Lemma 5.4.1. For uy, vy € W}’f with vy, = uh—l—Z;V:pl(v},O), 'vjl- defined by (5.18), and
qn = pn, there exist a positive constant By such that the following inequality holds

Bolll(wn, pr) I < Anl(wn, pn), (Wn, qn)] + Jul(wn, o), (Vh, an)].

Proof. Applying the definition of v; we obtain

(An + Jn)[(wn, pn)s (Vs gn)] = (A + Jn)[(wn, pr), (wn, pr)
Np

+ > [Anl(wn, pr) (v5,0)] + Jul(wn, pn), (v}, 0)]]
=1

with
Al pn). (01.0)] = (2pie(ub).e(w})ping, + (Voh o)) pire,
— (2pe(up) -, v))r, + (2u1e(v)) - m, [un])r,-

Combining the proofs of Lemma 4.3.3 and Theorem 3.3.1 we obtain the following bounds

[\

’Y Cy i
(A + Jn)[(wn, pn), (wn, )] > D [20(1 = )i Vi[5 o ;(1 - 46,)h2”Vth(2),Q;‘]>
=1 v
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2
O,Fj )

(Vohs )1y < VDI gy + ™ (G Tl 7l + G el -
(2 (us), €(v5))o prrg, + Jn(un, v;)
< Vb2 + ™ (Sl -1, + SOl ).
metud) - nvdr, < | Vubl
s (S8 Rl i, + S ] i ).

From Lemma 5.3.2 considering the new weights (5.24) and using the assumption pg > g

3Cas RN Y
@urpne(v]) - n funlr, = az (1= =22 )b~ fual * - ml,
1 COél 17— =1
+oz1<§ - )mh WTunl - 7llor, - 36M1HVu11J|3,pj1‘

Collecting all the terms, using (5.10), (5.25) and (5.9) we get

Apl(wn, pr), (Vn, an)] = (Ca — C(Ce + Cp)) (|| Vuy 5.0, + Jh (uf, up))
+ Cob®* (1 M IVeR g0, + In(0h, D1))
o
+(Ce + H—;C(ce + Cp) (w2l VUi 5., + T (uh, up))

+ Cabh?(uy V036 0, + Ti (07, 1))

C Np C Np
b 2o mh ]l + 5 S mh el wld
j=1 i=1

with the constants

Co=2C(1—¢€) — be,

Cb:')/(l @—E),

4€ v
C.=2C(1-¢€),
(-0
Cr = 042(1 - 132@2)'

Following the proof of Lemma 4.3.3 with h; = hy = h, the parameters €, a; and as can

be chosen in such a way that all the terms of this expression are positive. O

Theorem 5.4.1. There exists a positive constant B such that for all functions (up, pp) €
W/f X Qﬁ, the following inequality holds

Blll (e, pi) | < sup Apl(un, pn), (vn, an)] + Jul(wn, pr), (Vn, n))]
7 T (onan)EWEXQE l (wn, an)ll
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Proof. Using the definitions of vy, and ¢, from in the previous proof we have

Np

(wns an)l* < MGy ) 1+ (0}, O],
j=1

with
15, 0)I* = pal[ V05115 prng, + mahHlwjl5r, + Jn(v),v;)

we get [[(vn, an)lll < |I[(wn, pr)|| using similar arguments as in the proof of Theorem
5.3.1. O

5.4.2 A priori error estimate

Lemma 5.4.2. If (u,p) € ([H3(21)]% x [H3(Q2)]%) x HY(Q) is the solution of (5.22)
and (up,pp) € W;’f x QP! the solution of (5.23) the following property holds

Apl(w —up,p — 1), (Vh, qn)] — Jn[(wh, pr), (Vh, qn)] = 0, V(vp, an) € Wi x Q.

Proof. The proof is done using similar arguments as for Lemma 4.4.2 and using that
Apl(wn, pr); (Vn, an)] + Jnl(wn, pa), (Vn, @n)] = Lu(va), Yor, € W O

Similarly as in Section 4.4.3 we introduce an interpolant such that Zyv = (Z}v!, ZT3v?)

and Z3v? = ZPv? + Z;V:Pl 19jx§, with ¥; € R and ij = (X?aX?)T € W3 such that for

each node x; € T;, we have

0 for xz; ¢ I?
20, — g J
(1) = 5.26
X]( 2 { 1 for xiEI]z, ( )
¥, is chosen such that
/ (u? = T3u?) -n ds =0, (5.27)
Ly
for j =1,...,N,. Then we can write

[ (u? = T2u?) -n ds
9, = 20 h

frj X? -n ds

We note that h < | frj x? ds|, then using the trace inequality (3.1) and the approximation

property (5.3), we obtain Zﬁvzpl 19512 < h2k\u2|i+1792 where we used similar arguments
as in (4.27). Then we deduce

lu? — Ziu?|lo.0, +h ||V (u® — Zju?)

0,02

1 5.28
e (3 D T ) S g,

KeTy,

where we used the same arguments as in Section 4.4.3.
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Theorem 5.4.2. If (u,p) € ([H§+1(Ql)]2 X [H§+1(Qg)]2) x H*(Q) is the solution of
(5.22) and (up,pn) € WF x QF the solution of (5.23), then there holds

(e = wn, p = )l < A (Cultelirre + Cpulpli),

where Cy,y, and Cy,, are positive constants that depends on p and the mesh geometry.

Proof. Let Zy, and Z, be the interpolation operators as defined previously in this chapter,

the triangle inequality provides
(e —wn, p = pr)ll < (e = Zyw, p — Zup)|l| + | (Zow — wn, Znp — pa) |-
Using Theorem 5.4.1 and Lemma 5.4.2 we obtain

[|(wn, — Zyw, p, — Inp)||

< sup Apl(w — Tyu, p — Tip), (vi, qn)] — Jn[(Zow, Tip), (vi, qn)]
T (wnaan)EWExQE 1(vn, )l

(5.29)

Using similar arguments as in the proof of Theorem 4.4.2, with the approximations
properties (5.3), (5.28) we obtain

2 1 , 1
Anl(w = Tow, p — Tnp), (0, an)] S [ (vn, an) 15 (02 [0 ka0, + 17 2107 |k0)-

i=1
Using arguments from Theorem 3.4.2 and Corollary 3.4.1 we have

2

1 1
Tnl(Zow, Tp), (vn, an)] < W (wns an) 10" Y (1 [ sr,0, + 15 2 0 1.0,)-
i=1

Using these two results we obtain

1 _1 1 _1
1(Zow — wn, Tnp — o) Il S BF (03 | ksn,00 + 10 2 [P k0 + 13 10 |kt1,00 + Ko 2 PP k00)-

Combining arguments from the proofs of corollaries 5.2.1 and 3.4.1 we obtain
ki, 5,1 3.1 30,02 ~30,2
(e = Zyw,p — Zpp)|l < b" (7 [ (k1,00 + 11 2 [P k00 + 13 [0 k1,00 + 19 % D7 |k00)-

O]

Remark 5.4.1. The order of the constants C.,, and C]’W are the same as in the previous

chapter for the fitted domain decomposition case.
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5.5 Numerical results

In this section we verify numerically the results that has been proven theoretically in
this chapter. The computations are done using the package FEniCS [88] together with
the library CutFEM [28]. The computational domain considered is the unit square
Q =10,1] x [0, 1], the subdomain £ is defined as

O = {(z,y) € Q[|(05,0.5) — (z,y)| < 0.3},

and Qo = Q\Qy. For each configuration we test the precision of the penalty-free Nitsche’s
method for unfitted domain decomposition. For each case we consider a manufactured

solution to perform the computations, we consider piecewise affine approximations.

5.5.1 Poisson problem

For this problem the manufactured solution is considered as
u=[(x—0.5)%+ (y —0.5)%2

The L? and H'-errors are investigated, we set p; = 1 and we consider a range of

values for po. Figure 5.4 shows that the slope of the L?-error corresponds to the theory

107! 10
10”2
-1
~ ., 10
@) o
o —
— 3l =
O 107 v
o~ —
~ =
10-2,
104}
-5 L L -3 L L
10 10
107 10”2 107 10° 107 102 107 10°
h h

FIGURE 5.4: Poisson problem, Py, uy = 1.

(Proposition 5.2.1) for the cases pu1 # ug as we observe a rate of convergence of order
O(h'3). For p; = po a super convergence of order O(h%?) is observed. The H!-error

shows optimal convergence, no difference is observed as p2 becomes bigger.
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5.5.2 Compressible elasticity

For this problem the manufactured solution is considered as

z° —a)(y’ —v?)
u —=
(a* = 2%)(y° —9°)
The L? and H'-errors are investigated, we set p; = Ay = 1 and we consider ranges

of values for pus and MAg. Figure 5.5 shows that the L?-error converges with a rate

-G pp =1

—Ae 1y = 10! 100
102 F = 10%
- g = 10° B
—O (n'?) e
—~ _3 ; —
o 10 g O 102t
= =
5} )
o~ 4 ™
~ 107 ~
10-4 L
10-5 L
-6 L L -6 L L
10 10
102 107! 102 107!
h h

FIGURE 5.5: Compressible elasticity, L?-error, Py, 1 = A\ = 1.

slightly larger than O(h'%). The parameter us has a very small influence on the rate

of convergence whereas if A9 is too large we observe locking. Figure 5.6 shows that the

10 i T 10 T
-G =1 - A =1
—A- iy = 10! 1 A )y = 10!
-& pp = 10 B 10'F @ Ay = 102
—-ptg = 10° /’ Ay = 10° — 4
107 00 O g .
= . v
o 3 m
g 5 -
0 O 10t ——
107 102 i
10-3 L
_4 L . -4 L L
10 10
102 107 102 107
h h

FIGURE 5.6: Compressible elasticity, H'-error, Py, u; = Ay = 1.

H'-error converges optimally. The parameter o has a negligible influence on the rate

of convergence, as for the L-error, for Ao too large locking is observed.
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5.5.3 Incompressible elasticity
For this problem the manufactured solution is considered as

- ( sin(7x)cos(my)

—COS(WSL')Sin(ﬂy)> ) p = meos(mz)sin(my).

The H'-error of w and the L?-error of p are investigated, we set p; = 1 and we consider

a range of values for . Figure 5.7 shows optimal convergence for the H'-error of u.
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FIGURE 5.7: Incompressible elasticity, Py, pp = 1.

The slopes of convergence observed for the L2-error of p is of order O(h!'-), the error is

multiplied by a factor /i as ps becomes bigger.






Chapter 6

Fluid-structure interaction

In this chapter we propose a Nitsche based implicit time dependent scheme for fluid
structure interaction. The penalty-free Nitsche’s method is used at the interface to
implement the coupling between the solid domain and the fluid domain. As done for
incompressible elasticity in Chapters 4 and 5 we consider a master/slave configuration.
The fluid domain is considered as the master and the solid domain the slave, as a

consequence the Nitsche mortaring is taken only from the fluid side.

6.1 Linear model problem

The physical domain consists of 2 = Q; UQ, UX € R?, Qf and Q; are respectively
the fluid and solid subdomains and ¥ = (Tf N Qs € R is the interface between the fluid
and the solid considered as plane. Let 02y and 05 be the boundaries of the domains
Q and Qs then I'Y = 9Q,\Y and I'* = 9Q,\X. The exterior unit normal to 9
and 0, are denoted n and n,. The fluid is described by the Stokes equations in the
polyhedral domain Q € R2. The solid is described by the elastodynamics equations in
the polyhedral domain €, € R?. Figure 6.1 shows an example of configuration. The

) 2

§2y

FIGURE 6.1: Example of computational domain 0 = Q¢ U Qg U 3.

coupled problem is considered as follows: find the fluid velocity w : Qf x RT — R? and
the fluid pressure p : Qf x RT — R, the solid displacement d : Qg x Rt — R? and the
solid velocity d : Q5 x Rt — R? such that

proiu —V -o(u,p) =0 in Qy,
Vou=0 inQy, (6.1)
u=0 on I‘f,

141
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d=0,d inQ,
psOd—V -os(d)=0  inQ,, (6.2)
d=0 on I'?,

(6.3)

o(u,p) - n=—-0os(d)-ns; on X,
u=d on X.

Where py and p,s denote the fluid and solid densities. The fluid and solid stress tensors

are respectively defined as
o(u,p) = 2pe(u) — plaxs, os(d) = 2L1e(d) + Lo(V - d)lax2,

where p denotes the dynamic viscosity of the fluid and Ly, Lo the Lamé coefficients of

the solid, we assume L; = L to avoid locking. We set the following initial conditions

~

w(0) = ug, d(0) = dy and d(0) = dy.

6.2 Spatial semi-discrete formulation

Let {7} be a family of quasi-uniform and shape regular triangulations fitted to €2, with
mesh parameter h = maxge7, hix. We define K as a generic triangle in a triangulation
T, and h = diam(K) the diameter of K. The set F}, denotes the faces of a triangulation
Tr and np is the unit normal to the face F' with fixed but arbitrary orientation. Jw]r =
w},t — wp, with wf = lim,_,g+w(z F snp), is the jump of w across the face F. A
triangulation 7} covers Q; and 2, and is fitted to the Dirichlet boundaries I'y and I',.
In the upcoming analysis the interface ¥ between the fluid and the solid is fitted to the
mesh i.e. the plane interface 3 coincides exactly with faces of the triangulation 7. We

introduce the following spaces of admissible displacements for the solid problem (6.2)
W* = [Hp, ()],

with Hf (Qs) = {w € H(Qs) : w|p, = 0}. For the fluid problem (6.1), the velocity

and pressure spaces are defined as
W/ = [HE (Q), Qf = 12(9y),

with H%f(QS) = {ve HY(Qy) : vlr, = 0}. We introduce the corresponding spaces of

continuous piecewise affine functions,
ij = {’wh e W*: wh|K S [Pl(K)]2 VK € 7;1},

W = {v, e W wpli € [PU(K)]? VK € Ta),
Qf = {an € Q" - aulx € P1(K) VK € T}
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Since the choice of velocity and pressure spaces does not satisfy the inf-sup condition, we
consider a pressure stabilisation. As we use piecewise affine approximations we consider

the following Brezzi-Pitkéranta pressure stabilisation [24]

h2
Sh(Phsan) = ’Yp/ —VprVap dx. (6.4)
Qp M

Alternatively the interior penalty stabilisation 35| could be used

Sh(pnan) =1 Y /[[Vph nplr[Van - nrelr ds, (6.5)
FeF]

with .7-",{ ={FeF, | Fn folf # (}. The spatial semi-discrete formulation of the system
(6.1)-(6.3) is considered such that: for ¢ > 0, find

(wn(t), pa(t), dn(t), dn(t) € Wi x Q] x Wi x W,

such that dj,(t) = d,dy,(t) and

{ pr(Oun, vi)a, + A((wn, h), (Vh, an)) + ps(Bedn, wi)a, + a*(dp, wy) (6.6)

— (o (wn, ) - 1, vp — wi)s + (wp — di, 0(V, ) - )5 + Sh(phs ) =0
for all (vp, qn, wp) € W}{ X Q{ x Wy. Where we have

((uhvph)v (Uh7 Qh)) = 2/’6(5(”/1)7 E(”h))ﬂf - (phv V- ’Uh)Qf + (th % Uh)Qf,
a (dh,wh) = 2L1(€(dh), s(wh))gs + LQ(V -dp,V - ’wh)Qé

The elastic bilinear form a? is associated with the elastic energy norm ||w||s = a*(w, w)%

Remark 6.2.1. The semi-discrete formulation (6.6) is penalty-free in the sense that the
coupling at the interface is done using the Nitsche term (uh—dh, o(vn, qn) M)y, therefore
no Nitsche penalisation in involved. The penalised version of this scheme is proposed in

[34] where an additional penalty term 3 ((up — dy), (v, —wy))s is considered.

6.3 Fully discrete scheme

In this section we introduce a fully discrete formulation of the spatial semi discrete
scheme introduced in the previous section. The spatial semi-discrete formulation (6.6)
is discretised in time using the first order backward difference. In what follows, 7 > 0

denotes the time-step, at step n € N we have t,, = n7 and
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Considering the semi-discrete scheme (6.6) and replacing the time derivatives d; by the
backward difference 9;, it yields to the following time-advancing formulation: for n > 1,
find (wp(t), py(t), di(t),dp(t)) € Wi x Q x W x W, such that dff = d,d}} and

{ pr(Orufl, vn)a, + A(ul, pR), (v, an)) + ps(0-di, wi)o, + a®(df, wp) 6.7)

— (o (up,p}) - v — w)s + (uf} — dft o (vn, an) - n)s + Sh(ph, af) = 0
for all (vp, qn, wp) € W}{ X Q£ x Wi, In order to study the consistency of the scheme

(6.7), we multiply (6.1) by v, qp € W,{ X Q{l and (6.2) by wy, € W}, integrate by parts

both systems and use that o(u,p) - n = —o4(d) - ns on X, then we obtain

(O, vp), + A((w, p), (v, ) + ps(Oid, wp)a, + a*(d, wy)

— (o (u,p) - n, vy — wp)s =0.
Using the condition u = d on Y, for all (vp, qn, wp) € W,f X Q{l x Wi we may write

pf(Ou, vi)a, + A((u,p), (va, qn)) + ps(Brd, wp ), + a*(d, wp,)

— (o(u,p) - n, v, —wp)x + (u — d, o(vp,qn) -n)y =0.
(6.8)

Subtracting (6.7) and (6.8) we get the following consistency relation.

Lemma 6.3.1. Let (u,p,d,d) be the solution of (6.1), (6.2), (6.3) and (uy, oy, nodr)
the solution of (6.7), at time t = t,, the following Galerkin orthogonality holds

pr(0-(u” — up), vn)a, + A((W” — uf,pp — pt), (v, an)) + ps (O (d" — df}), w)aq,
+a’(d" —dp,wp) — (o (u" —up, p" —pp) -1, v, — wp)s
+((u" —up) — (d" = d}}), o (vh, qn) - n)x
= —ps((0r — O )u", vp)q, — ps((0y — 0-)d", wp)q, + Sh(p}. an)

for all (vp, qn, wp) € W,{ X Qi x Wj.

6.4 Stability analysis
At time ¢,,, we introduce the total discrete energy E}' and dissipation D} such that
B = prllunlia, + pslldils o, + i3,

h= o uh —up T G, + s dy — dy T G, + T Iy — dy T

Vg2, + kM — @) s+ k2 VPR IR,

Remark 6.4.1. If Qf and Qs are meshed with two nonconforming triangulations the

interface term becomes ph™'||(u} — Zdy) - nHaZ with T an interpolant.
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Theorem 6.4.1. Let {(uﬁ,pﬁ,dﬁ,dﬁ)}lgnSN be the solution of (6.7) at time t, and
(uf, p?, d), d%) the nitial state, the following stability holds for N > 0

N
EY +7) Dp S EJ.
n=1

Proof. Let us choose vy, = Tu}, q, = 7p) + Kkj, and wy, = sz, then (6.7) becomes

Tpp(Orup, up)o, +7(2pe(up), e(up))o, + 7ps(0-df, di)a, + Ta’(dy, df)
+ 7Sh (k. p) — ((up — dpt) - kp)s + (5, Vo ui), + Skl k) = 0.

Observe that

75 (Oruh, up oy

P _ _ _ _ _

= 2T — o, + (uf — w uf — w o, + (uf — w up o]
Py - -

= Mgl o, - lup B, + luf — w1, ],

similarly we have
. . p . . o
75Oy, di)o, = T [rO- i [G.0, + dh — ) 50.],

ra®(dy, dy) = = (70, ||dP||? + ||d — drY|?).

1
2
Now we define the perturbation xj, € Q{w let Po ={K €T, | KNY#0and K € Qy},
and for any node x; € T, we have xp € Q{l such that

() 0 for z; € Q\2
xTr;) — °
Xh 1 for z; € X,

then xp(x;) = v(x;)xn(x;) with v(x;) € R such that ky|y = a%(dz —ujp) -n. Using

this and the Korn’s inequality we obtain

P - p : e
o (O30, + k= ui 5.0,) + 5 (70| dR G o, + 1dp — d !

2
0.9,)
1 _ -
+ 20k 7| Vublig e, + 5 (o lIdRlls + Idi — diy[15) + 70h*u = IVPR G0,

T .
o up — ) - ml + (5 V- ufda, + Sl mn) <0
For piecewise affine approximations we have the estimate

_1 .
l5nllo,pe S aTph™2||(uy — djy) - nllos, (6.9)
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using this result, the Cauchy-Schwarz and the Young’s inequality we obtain
n n n||2 2~ TH n ‘m 2
(5, V -up)a, < [IVuglloo)llsnllo,ps < erpl|Vuylgo, + o C@H(“h —dy) - nllg s
Using the inverse inequality of Lemma 2.0.2 and (6.9) we have

Sh(p #n) < Sh(pps o) Sh(kn, in) 2

_ T :
< eryh’nIVPhlGg, +0*Crpyll(uh — di) - nllix.

Then we obtain

P _ P . . .
0L (e, [, + s — )~ [B,) + 20|, + 1 — 8 )
1 _
+7u(2CK — O)|IVupl§ o, + 5(787\|d2\|§ + ||y — i t12)
C(1+p)

_ T .
+ (1= VBRI o, + a1 — a2 ) ZE | (uf — &) -3 < 0.

We choose € and « such that all the terms are positive, then taking the sum from t; to

tn we obtain

N
. p _ Ps - S
ool B, + ol B, + 1N 12 +7 37 (2Ll — R g, + 221 — VR,

n=1

1 _ _
+2u(2Ck — €)l|Vuhll o, + —lldy — dj, HE 201 = yph®u VDRI o,

h

C(1+vp)\p .
e I [ 3o, + Pl 0, + I1df 1%

+2a(1-a " uj — d7) -l | < oyl

O]

6.5 Convergence analysis

We introduce the following result from [76] (Lemma 5.1), this Lemma is a discrete version

of the well known Gronwall inequality.

Lemma 6.5.1. Let 7, B and ay, by, cp, Mn (for integers n > 1) be nonnegative numbers
such that

N N N
GN+Tan STznnan+Tch+B
n=1 n=1 n=1

for N > 1. Suppose that Tn, <1 for alln > 1. Then there holds

N N N
in
b, < + B
RNV (T;l—mn> (Z )

n=1

forn > 1.
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Similarly as in Chapter 2 and 4 we introduce a structure of patch at the interface X.
We split the set of elements Py, into pr smaller disjoint patches ij with ij = 8ij n,

we consider that ij has at least one inner node and
f 2 f 2
h < meas(F)) < h, h* < meas(Py ) < h°.
For any node x; € T, we have

0 for x; € Q\F/
XZ(%) = e f !
1 for z; € Fj .

Let PE ={K € T, | KNY # 0 and K € Q}, we define similarly the patches P§ by
splitting P%} into IV, smaller disjoint patches with F’ y = (9PJ‘-g N 3 such that

h < meas(FF) < h, h? < meas(P;) S h2,

and we assume that FJS has at least one inner node. For any node x; € T;, we have

X (i) = 0 for € O\F}
1 for wiEFjS.

We introduce the following quantities relative to the errors of the fluid velocity and

pressure
0, = up — Lyu,

0, =u—7,u,

Yn = pn — Lpp,

Yr =p — Lgp.
The interpolants Z, and Zg are such that

N} Nj
Touw = igzu + Z aj¢j7 I,Bp =igzp + Zﬁj¢jv
Jj=1 g=1

with isz the Scott-Zhang interpolant and ¢; = (Xf, Xf)T

and 3; € R are chosen such that

Y = X;, the scalars a; € R

/ e(u—Zyu) -n =0, / (p —Igp)laxa -m =0,
Ff rf

J j
as a consequence we have

/Ff 0(0r,y:) -n=0. (6.10)

J
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We introduce the following quantities relative to the errors of the solid displacement and

velocity
& =dp —mpd,
£, =d—mid,
£, =dn—1,d,
E—d-1,d

where 77 denotes the elastic Ritz-projection of the solid [102, 31]. The interpolant Z, is

defined as
Ny

Ld=md+ Y e
j=1

with ¢; = (x], X]"’T)T and ~y; € R chosen such that
& -n=0. (6.11)
Fy

Note that & n # 0-&), therefore we define z;, = 770-d — I,yc'i, and we have
& = 0:&, + 2. (6.12)

Lemma 6.5.2. Let u € [H*(Q)]%, p € H'(Qy), d € [H*(Q))? and d € [H?(Qy)]? the

following approzimation estimates holds

lu — Zoulloq, + bV (w - Zou)
Ip — Zsplloa, + hIIV(p — Zsp)
|d — mhdloq, + h|V(d—T}d
ld - Z,dlo.0, +h|V(d - I,d

lo.; S P?[ulag;,

0,9 S h’p|1,Q,-7
)HO:QS S h2‘d|27957
)HOaQS S./ h2‘d’2795
Proof. The third estimate follows directly from the approximation property of the Ritz-

projection. Using the construction of Z, and Zg we have

fF_f e(u —iszu) - n fF_f (p —iszp)laxa - m
— J — J

e fFJf€(¢j)-n ’ b= fF]f%Hzxz‘n

Since 1 < |fij e(¢;) - n| and meas(ij) = O(h), using the standard approximation
property of the Scott-Zhang interpolant we have

NS

pr N, 2 P
[ etu sz nf ShS IV w2 < Wb,
F . g
J =1

f
P
=1

Sl <>
i=1 i=
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Also h S| [or illaxa - mf, then we have
J

N{ N} 5 Ny
YIS h‘ZZ‘/Ff(p—iszp)Hzxmn‘ Sl —isapl} s Slelia,-
j=1 j=1 J j=1 J

Then we obtain using the approximation property of the Scott-Zhang interpolant

Ny 1 N 1
lu— Zoullo.o, < u (D lesail2 r)* S P2 lula + (B2 loyl2) ",
j=1 ! j=1

N

lp = Zsplloo, <llp

Nj 1 Nf
+ (D IBIE s )* S Blpla, + (B3 182)
j=1 ! j=1

Using the construction of Z, we have

fFS th
fFjS P; -

Vi =

Since h S| P pj n| and using the standard approximation property of the Ritz pro-

jection we have

N: N3 ) N:
Sl sn Y| [ @-mid)ynl S0S0a- mdlf SRR, (613
=1 j=1 "I =1

Then using once again the approximation property of the Ritz projection

o=

P 1 P
ld = Zdlog, < ld=midlon, + (D Il er)” S Wldla, + (3 hl?)

The estimates for [|[V(u — Zau)llo.q,, V(p — Zgp)llon, and IV(d — Z,d)|o.q. follow

similarly using a discrete inverse inequality on ij or P?. O

For further use we show the following stability of the interpolant Zg using similar

arguments as in the previous proof and the stability of the Scott-Zhang interpolant

Nf

Jj=1

We define the two quantities

5h = psllOx 15 Q; + psl|€nllo . + I€RIIZ,
= ulVOL I3, + 2 IVyillo, + rh~ (6 — &) - nllf s
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We assume that the exact solution of (6.1)-(6.3) has the following regularity for a given

final time T > 0
w e [H'(0,T; H* ()],

)
Ouu € [L*(0,T; L*(Q))]%,
p € C0,T; H' (),

d € [H'(0,T; H*(%))]%,
Oud € [L*(0,T; L*(2))].

(6.15)

Theorem 6.5.1. Let (u,p,d, d) be the solution of the coupled problem (6.1)-(6.3), let
{(up,pt, di}, d) }1<n<n be the solution of (6.7) at time t,, with initialisation (u), dY, d3)) =
(Zauo,ﬂ'ido,lvc.lo). Suppose that (u,p,d, d) has the regularity (6.15), then the following
error estimate holds for N > 0

N
EN+) D SE +ar’ + e’
n=1

where c1,cy denote positive constants that depends on the physical parameters and the

reqularity of (u,p,d, d) but are independent of h and T.

Proof. Considering the Galerkin orthogonality of Lemma 6.3.1 and introducing the dis-

n n 30
crete errors 0y, vy, &) and &)

pr(0-07, v)a, + AR, Y1), (W, an)) + ps(0-ER, wh)a, + a® (€R, wp)
—(a(6}, 41 - myvn — wh)s + (OF — &7 0 (vh, gn) - s + Sh(vi an)
= ps((0r — O )u™, vp)q, + ps((0¢ — O-)d™, wh)a, + pr(0:0%, v1)a,
+ A0, ), (Vn, an)) + ps(0:€2, wh)a, + a® (&2, wy) — Sh(Zsp™, an)

—(a(02,y") -, vp — wp)s + (07 — €2, 0(vh, qn) - )

We choose the test functions such that v, = 70y, qn = 7Y + Cp, wh = TéZ, with
Crly = g%(éz —-07)-n (¢ € Q£ is constructed in the same way as xp in the proof
of Theorem 6.4.1). By definition of the Ritz-projection we have a®(&r, wy) = 0, then
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rearranging similarly as in the proof of Theorem 6.4.1 and using (6.12) we obtain

L (70,1167 13 0, + 1105 — 037 13 0,) + 20k VORIZ o, + 77ph%1 V5313 0,
p n n n n—
+ 5 (0, €715 0. + 1€r — &2 15.0.) + i(TaTHEhHg +gn - &)
p
1187 = &R) - il + (G, V- 8)a, + Sa(yh 1)
< pr((at - 8T)un7 OZ)Qf + pr(aTezv OZ)QJE
T
+ps7(0:€2, 1), + psT((0r — 0-)d", €7, —Ta® (€], 1)
Ty T3
Ty
TR n 30 n 30 n
+§7<(07r - €7r) "n, (ah - €h) ’ n>2 +(Chv V- HTF)Qf
—_—
Ts Ts
—7(o (0%, y2) - m, O — €1)s —7Sp(Zep"™, yh) —Sh(Zap™, Cn) -
T Ty Ty

First we consider the last two terms of the left hand side. The terms ((s,V - 0} )q and
Sh(yy,Cn) are handled in the same way as in the proof of stability

n TH
(G V- O)a < erp| VORI .0, +<*C 1€k — O7) il 5,

Su(yi, Cn) < erh®u VYR lG o, + CQCmeH( h=&n) - nld s

In order to handle the term 77 we need the following result. Considering a second order

Taylor expansion and its remainder we see that

tn
o u" = T_l(un - un_l) = O — ! uu(t)(t — (tn — 7))dt,
T tn—1

then using Cauchy-Schwarz inequality we get

1 [t tn tn
(@ — Bun)? < & / (t— (tn — 7))2dt / (Breut))2dt = / (Breult))2dt.
T tn—1 tn—1 3 tn—1
(6.16)
Using this result, a first order Taylor expansion, the Young’s inequality and Lemma 6.5.2

we get

T < pyr([0cu” = Orullo0, + [[0-0%lo.9,)[|Ohlo, Qf
< pyT(r]0pu™ — 0-u ([ o, + 7110-6715 ) +

(
pFT

S efT(r 2HattuHLQ(tn_l,tn;LQ(Qf))+ HateﬂHLQ(tn_l,tn;LQ(Qf))) f HG 5 Qf

(r ”fT

SefT(r

N0wuliag, bz TR0 Lo, g o)) +
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with ‘|U|’%2(tn,1,tn;L2( ftn oll§ .dt, HU”L2 b s HO () ftn vl|2 ,dt, and ty =
T the final time. Usmg similar arguments the term 75 can be bounded in the following

way
Ty < ps7(|0ed™ — 3rd™[[0.02, + [10-€™]l0.0.) 1EM 0,020
. . . T

< p T 00" = 0,0 [} 0, + 7110:€213 0,) + 5o

HﬁhHog
< psT (72| 0w d)7 2 (tno1,tn;L2(2)) T 10,1172 (a1 tnsL2(20))) T 78“52”395

Tp
S osT( P 10udl 32,y nirziany + P10 2 1)) + 5 HEhHOQ :
Using that a®(&}, &%) = 0, a triangle inequality, Lemma 6.5.2 and (6.16) we obtain

Ty = 7a (&), T, d" — 0-d") < 7€ ||| Z,d" — 0-d"

< TR (L2 + LE)IV(Z,d" — 0:d™) o,

< 7€ (L + L IVT,A" — d) o, + IV - 8:d") o)
< IELE + 7T (L + L)V (T — d) B, + IV @d" — 0,d")]3 0,
< SlIERIZ + T(Ly + L) (R B, + 7200l ags, 1100

Using integration by parts, the term 7T can be written as

Ty = 7(21e(60), (8] ), + (87 — €0 211e(6]) - m)s
Tu
77(3/7?7 & O;Ll)Qf —T(Vy,’f, OZ)Qf +T<€Z "n, y2>27
—_—————

Tyo Tys3 Ta

using the trace and inverse inequalities and Lemma 6.5.2 we can write

T < 2p7(([€(07)llo.gy le(h) 0.0 + H9'§i —&rloxle(87) - nllox)
S 207 V00,0, (V02 0.0, + h~= (102 ]l0,5 + €2 ]02)

24 i .
< 20TV} R g, + L u B, + Erh? | B g,
also using Lemma 6.5.2

Ty < 7llyy

IV - 65llogo, < T R |p" 3. + Cerul| VO, 6.0,

Tus < 7|Vyglloo, 1607 Th2||u”\|§,gf~

<oSm2|v =
< uT | yh”O,Qf t
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Let y! 7 is the average of y’ on the face F7, then [[yy —y; 0,F¢ S hHVy}’fHo,F;’ using

this property and (6.11) we can write

Np b
. Fs .
Tu=Y & nyf i )r < 2 1R - mlo T o
i=1 ‘

< 7h?(|d" |20, ThQIId”Hm +C— ThQHVthogf

The term T5 is controlled using Lemma 6.5.2 such that

Ts < C*H(G” &) -nllox)|(6} — &) - nlos

. T ;
< erph®([u”[3q, + ld"3.0,) +<*Cop (65 — &) - mlix.

< he (07 — ) - nllox; we have

T <

IVOZlo.q;

T n 0 n
20 5, 100 — &) -nlf s +eru| VoL

; 2 2 2
<¢? 4€hu<ez — &) nlld s + erph® g,
The term 77 can be expressed such that

Tr = —(o (03, y7) - 1, 07 +7(0 (07, y7) - 1, O,£7) 5

_T<o-(0;’l7y7?) : ’n,ﬂ'i(dn - 87'dn)>2 _T< 7y7r ' ZV]@]

Trs

Try

— S
Let OZFJ is the average of 8} on the interval ij, then [0} — 0" / Ho S < h||VOy HO Fl>
using this property and (6.10) we get

N} N}
Tn =-— ZT<U(6n7y7r> n, en en J Ff < ZTHG 7y7r) nHO th”ve ”0 Ff
Jj=1 j=1

< CR(ulutBa, + p M "R a,) + Cernl VORI g,

[\

The term 779 is handled using a summation by parts

N

N
ZT'? < (07r y Yr ) n)EhN>E - (0'<0}m971r) : n7£2>2 - ZT<67-0'(02,y;L) : n752_1>2‘
n=1

n=2
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Using (6.10) and the average on F' jf once again and using Korn’s inequality we have

Nf
—
<(@4M>nf%z=§3<¢”%)nﬁﬁ—£¥wﬁ
j=1
< ||a<07r RTADE

N N
< W(ulu mgf+uwm|hm>+c A

similarly

(@07, y7) 1, Ep)x < hQ(MHu 3.0, + 1 12 Qf)+0 ||€hH

and by linearity of the operator 9, we obtain

N} ot
(0,0 (00, y2) & N =) (-0 (07, yp) - n, gt — & K >ij

J=1

< 7lle(0:07, 0-yz) - mlloxhlVEL lox
ETL

2T L,

TT _ -1
< ThZ(uH@runllg,ngru Homp™ 3 a,) +C [r3 o

Using the stability of the Ritz projection, a Taylor expansion and (6.10) one more time

we have
. —F/
Trg = — Z 07, yr) -m,m(d" — 0-d") — mi(d" — 0,d") ") s
J
< THU( T n) M p(d" = 0-d™)||o,x
S Rl 3o, + 1 R g,) + Tur|| V(A — 0,d")|3
~ 9T 2,0, TH 1P 1,0 H T 0,s
T _ .
S ﬁhQ(ullu”llé,gf +u M3 0,) + Tt 10l 2,y o .-

Finally using (6.13) and classical inequalities

N;
1 _1
Try < Thz[lo (0%, yx) - nllosh™ 2| Z’Yjﬂoj 0,%
j=1
N
T _ _
S SRl B, +p )+ urh ™2 Y 11,1 e
j=1
. ) .
S ShP(ullu"Ba, +uH P IEa,) + prh? A3,
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Using the stability of the interpolation operator Zg (6.14) the term Ty is bounded such
that ) )
Ty < 7Sn(Zpp", Zsp")> Sn(yh» yh)?
< thQ IVZap™ oo VYR o0,

T,
"2 R, + ek IV R,
7p 2),n 2 -1 n

< @h Ip ||1,Qf + Ceryph™p ||Vyh||o,9f~

Using similar arguments, the inverse inequality and the properties of {; we obtain

1 1
Ty < Su(Zsp", Zsp™ )2 Sn(Ch, Cn)2
< wh* IV Zep" o0, I VEhllo, Py
l .
< Cyph2 [[Vp*{lo,ap <7 (05 — &) - nllo.x
TYp 1 2),m2 2  TH n 0 2
<e—=h C — (0}, — :
Se€ i Ip ”1,9f+ S 'Yp4€hH( n—&n) 1o
Collecting the terms T1-Ty and taking the sum from ¢ to tx we get
Pf P 1 % Al Pf
511 &N |2 N2 n n—1/2
101 B, + 516N B, + 5 (1 — O ) €N oy 52107~ 03 3.,
p . o 1 _
+ o l1€h — & 8.0, + 51165 — €173 + n(2Ck — 50| VO[3 g,

2+ n_ gn
211007 — &3) - mll s

+ B2 (3 — 2CL+ )|V B, + 5% (1= sC

h

P Y 1
FI0 3, + G 1€ 0, + 5 (2 + ) IRI2

+CTT (pf||8ttu\|%2(07T;Lz(Qf)) + ps||8ttc.l||%z(07T;Lz(Qs))
+ (L1 + Ly + 1) || s

2
(0.T:H1(2,)))

+ CTR (g |00l F20 o111y + 251100 20 a1 )
N
+ Crh? Y | T(Ly + Do)l|@ B0, + oL+ T H]w" B g, +

n=1

+ ulld" g, + Tulloru"3g, + Tu 100" 1 o, |

1+T71 44
—— "I

+ B, + o 10" 3 ,)
1 H 2
(1 er)leniz].

with ¢ and € chosen in the right way. Then we conclude applying Lemma 6.5.1 with

+ Chzwuulnégf 1

+0r Z (L1671, + 2

ps N (12 1( 'u) N2 (
Ps “(1-ecc — T
2 ||€h ||0,Qs + 9 € Ll ||£h Hsa Mp = MmMax T’ TL1 _ EC,[L

O
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We define the energy and dissipation errors such that

£ = prlu” — il .o, + pslld” — dil3 o, + 1d" — dj]z,

D" = pl|V(u" —up)|§ o, + 2p~ V" — )

0.0, + uh™H|(uh — dy) - nllf 5.

Corollary 6.5.1. Under the assumptions of Theorem 6.5.1 the following error estimate
holds for N > 0
N
EN Y D" E +ar? + &h?
n=1
where ¢1,Cy denote positive constants that depends on the physical parameters and the

reqularity of (u,p,d, d) but independent of h and T.
Proof. Applying triangle inequality we get

E" < &L+ pyllu” = Tou" |3 o, + pslld” — mid" [ o, + A" — Z,d"I2,
D" < Djp + pl|V(u" = Zou™)[§ o, +h2u IV (0" — Zsp")II5 o -

The claim follows directly by applying the interpolation results of Lemma 6.5.2 and
Lemma 6.5.2. ]

6.6 Extension to the unfitted case

In the previous sections the fluid-solid interface ¥ coincides exactly with faces of the
triangulation 7. In this section we present the tools needed to extend the stability
and the convergence to the unfitted case when ¥ does not coincide with 7. In this
case we let 03 = {K € T, | KNQp # 0}, O = {K € T, | KN Qs # 0} and
G ={K € Tp | KNX # 0}. First, the pressure stabilisation (6.4) (or (6.5)) has to be

considered on the full domain Q} such that

2

h
Sh(ph7Qh) = 'Vp/ ;Vpthh dx.

*

!

As in the fitted case this term ensures the stabilisation of the pressure over the physical
domain, in the unfitted framework it also ensures the stability of the coupling over the
unfitted boundary playing the role of the pressure ghost penalty (see Chapters 3 and 5)
at the interface. The fluid velocity needs to be stabilised at the interface for K N,

small, once again we use the ghost penalty [25]

T (up, vp) =g > /Mh[[vuh-np]]F[[Vvh-nF]]F ds,
FeFk r
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with }"é ={F € G), | FN Qs # 0}. This ghost penalty operator brings additional
control of the fluid velocity in the domain €%, such that

uIVonllier < pllVouldo, + T4 (vn, vn)-

In the same way the solid displacement is stabilised at the interface such that

Ji(dh, 'wh) =y Z /F(L1 + LQ)h[[th . nF]]FHv'wh . ’I’lF]]F ds,
FeFy

with 75 = {F € G), | F N Qg # 0}, and
I Vwnlfo: S pllVwnlliq, + I (wh,wh)-

The interface patches introduced in the analysis need to be extended, their structure
is identical to the patches introduced in Chapters 3 and 5. In another hand extension
operators Eg t H?(Qy) — H2(Q>‘]Z), E{ cHY(Qy) — HI(Q*]Z) need to be used for the fluid
velocity and pressure such that [Efv|s.05 < [[v]20, and [E{q]l10; < llalho,. For the
solid displacement and velocity E§ : H2(Qs) — H?(€2) such that |E5v|2,0: < [[v]2.0.-
For the fluid velocity and pressure, these extensions operators brings control on Q}\Q ¥
and similarly for the solid velocity and displacement on Q%\Qs. In Chapters 3 and 5
the tools presented here are introduced to show the stability and convergence of unfitted
schemes, considering these analyses we claim that the analysis done in this chapter is

straightforward to extend to the unfitted case.

6.7 Numerical results

In order to verify numerically the accuracy of the implicit scheme (6.7) we consider
the two dimensional pressure wave propagation benchmark [54, 49, 34] for the coupling
of a two dimensional fluid with a one dimensional elastic solid. The analysis above
covers the case where the fluid and solid domains are both two dimensional, however,
[34] presents an analysis for the case of a one dimensional solid for a penalised version
of (6.6) which is directly applicable to the penalty-free scheme considered here. The
fluid domain is defined as Q; = [0, L] x [0, R], the solid domain is considered as one
dimensional ¥ = [0, L] x {R}. In the system of equations (6.1)-(6.3) the relations (6.2)
and (6.3) are replaced by

psdid + L°d = —o(u,p) -m in %,
C.l = 8td n E,
u=d on X,

d=0 on I'%.
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The generalised one dimensional elastic string equation is considered then d = (0, d2) and
Led = (0, fklamdyqt)\ody)T with A\ = % and \g = ﬁ where € is the thickness
of the solid, F is the Young modulus and v denotes the Poisson ratio. The unfitted case

is considered, Figure 6.2 shows the configuration of the mesh. At the beginning of the

)

$2y

V4

FIGURE 6.2: Pressure wave mesh, the solid domain is the bold line.

simulation, we impose half a sinusoid of pressure with maximal amplitude 2 x 10* on
the side [0, R] x 0 between time ¢ = 0.0 and ¢t = 0.005. The pressure is fixed to zero
on the side [0, R] x L and a symmetry condition is imposed on the lower boundary
0 x [0, L]. The stabilisation parameters are considered such that v, = 1.0, 7, = 1073,
The fluid is characterised by the following material parameters py = 1.0, p = 0.035,
the parameters of the solid are taken such that p, = 1.1, € = 0.1, E = 0.75 x 10% and
v = 0.5. The computations are done using the package FreeFem++ [75], Figure 6.4
shows the pressure profiles and the displacement of the solid at different times during
the simulation. In order to show the convergence of the scheme as h and 7 are refined
we generate a reference solution with a fitted configuration where the solid X fits exactly
with the upper boundary of the mesh. For this reference solution h = 3.125 x 1073
and 7 = 107%. To generate a convergence curve, we refine simultaneously the mesh
size h and the time step 7 with 7 = O(h). We also compare the slope of convergence
obtained with the scheme considered in |34] that considers the classical Nitsche’s method
(symmetric with penalty parameter 103). Figure 6.3 shows that the convergence rate
observed corresponds to what has been shown in Corollary 6.5.1. The penalty-free scheme
performs very slightly better than the classical Nitsche scheme in terms of absolute error,
with the advantage that for the penalty-free scheme, no Nitsche penalty parameter had

to be investigated in order to get the expected convergence of the scheme.
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10°F
]
Gy
o
.
]
=
—~
&)
—o—Implicit penalty free
-&-Implicit classical
—O(n)
-1 I
10
107 107!

h

FIGURE 6.3: Classical Nitsche’s method versus penalty-free Nitsche’s
method, time convergence history of the solid displacement at ¢ = 0.015,

7= O(h).
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(a) t = 0.0025

(b) t = 0.005

(c) t =0.0075

(d) t = 0.01

(e) t =0.0125

(f) t = 0.015

FIGURE 6.4: Pressure profiles, the black straight line is the profile of d,
the second black line is the exaggerated displacement is 5 x d.



Chapter 7

Conclusions & Further work

In this thesis, we have investigated several frameworks for the penalty-free Nitsche’s
method, in this final chapter we highlight the main results of the thesis and we present
the future directions that will be investigated. These future investigations are either
precise ideas that are already ongoing work, or future projects that are mostly ideas that
needs to be refined. In the thesis, several penalisations has been introduced to ensure
the stability of the schemes proposed (i.e. pressure stabilisation & ghost penalty), we
call the method penalty-free in the sense that we have removed the penalty term relative
to the Nitsche’s method (see Section 1.2.2). We considered the two dimensional case,
the extension to the three dimensional case would need some arguments of the proofs to

be refined.

7.1 Fictitious domain method

The fictitious domain method as investigated in Chapter 3 is often called Cut Finite
Element Method. The boundary is allowed to cut arbitrarily elements of the mesh. We
have introduced the ghost penalty in order to regain stability which is lost because of

the possible small elements pieces that result from the cut.

7.1.1 Results

In this thesis we have shown theoretically the optimal convergence of the H!'-error and

the convergence of the L?-error with suboptimality of order (’)(h%)
1
lu—unllo S P¥fulk 0, lu—unllo.o S P52 fulki,0-

The theory has been extended to compressible and incompressible elasticity. Numerical
investigations have been performed and illustrate the convergence for first order approxi-
mations. Higher order approximations have not been considered due to the fact that the

library CutFEM |[28] considers yet only a piecewise affine approximation of the boundary.
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7.1.2 Boundary value correction

In order to handle the loss of accuracy generated by the piecewise affine approximation
of the boundary, a boundary value correction method has been introduced recentely
in [39]. The principle of the method involves a Taylor expansion in the formulation in
order to approximate the solution at the boundary. In this method, the Nitsche’s method
is used to enforce the boundary conditions, in a paper in preparation, we extend this
method to the penalty-free Nitsche’s method |T. Boiveau, E. Burman, S. Claus and M.
G. Larson, Fictitious domain method with boundary value correction using penalty-free
Nitsche method|. The domain Q;, with boundary I'; is the approximation of the domain
) with piecewise affine approximation of the boundary, and Ty (u) is the Taylor expansion
of order k of u at the boundary. For Vj, a H'-conforming finite element space attached
to a mesh that covers but not fits with © and €. For the Poisson problem (3.14) the

finite element formulation reads: find u, € V), for all vy, € V}, such that

(Vup, Vup)a, — (Vup -nn, vn)r, + (Vop - np, Ti(up))r, = (f,vn)a, + (Von-nn, gopn)r),

with ny, the unit normal vector to I'y, and gopj, the projection of the boundary condition

g on I'y. The ghost penalty has to be added similarly as in Chapter 3.

7.2 Domain decomposition

In Chapters 4 and 5 domain decomposition is considered, the fictitious domain method
from Chapters 3 is the key that makes the analysis of the unfitted case very close to
the fitted case. In both chapters we have shown a theoretical convergence in the broken

norms such that
1
lu — upllre < hFulke o, Ju = unllo.o S A2 ufpir 0

The theory has been extended to compressible and incompressible elasticity. Numerical
results are provided for first and second order piecewise approximation in the fitted case,
and only first order approximation in the unfitted case, because of the piecewise affine
description of the interface as explained in the previous section. The study of fitted
and unfitted domain decomposition for the Poisson case presented in this thesis will be
reported in an article that is currently in preparation [T. Boiveau, Fitted and unfitted
domain decomposition using penalty-free Nitsche method for the Poisson problem with

discontinuous material parameters|.

7.2.1 Fitted domain decomposition

An important result to highlight for the fitted domain decomposition study is that the

analysis is robust regardless of the material parameters discontinuity. Another interesting
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result is that the analysis is robust regardless of the ratio hy/hg with h; and hg the mesh
parameters of the subdomains ; and 2y as defined in Chapter 4.

7.2.2 Unfitted domain decomposition

In the unfitted configuration the interface is allowed to cross the elements of the mesh,
however, as for the fitted case the analysis for unfitted domain decomposition is robust
regardless of the material parameters discontinuity. An extension of the boundary value
correction as presented in Section 7.1.2 could be designed for this case in order to handle

the piecewise affine approximation of the interface.

7.3 Fluid-structure interaction

In Chapter 6 we have introduced an implicit scheme for time dependent fluid structure
interaction, the scheme considers a master/slave configuration for the coupling with the
fluid as the master and the solid as the slave. At the interface the penalty-free Nitsche’s

method is used in order to enforce the coupling.

7.3.1 Results

Stability and optimal convergence have been shown theoretically for the scheme, the

convergence result reads:
N
EN 4D D" SEY +err? + b,
n=1

with £" and D" respectively the energy and dissipation errors at time {t,}i<p<ny as
defined in Section 6.5. The positive constants ci, co depends on the physical parameters
and the regularity of the exact solution. h and 7 are respectively the mesh parameter
and the time step.

7.3.2 Further inversigations

In a paper in preparation [T. Boiveau, E. Burman, B. Fabréges, M. A. Fernandez, M.
Landajuela, Penalty-free immersed boundary methods for incompressible fluid-structure

interaction| we will study the case of thin structures for several penalty-free schemes.
e An implicit scheme as presented in Section 6.7.
e An explicit scheme as presented in [27].
e A semi-implicit scheme inspired from [50, 51, 98, 7|.

e An explicit scheme inspired from the immersed boundary method [95, 19].
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In this article we will present various numerical examples, we will also show the stability
and optimal convergence for all the schemes except the explicit scheme from [27] for which
we have not been able to find a proof. The proofs of stability and convergence for this
explicit scheme remains an open problem, investigating the convergence for this scheme
would be interesting given its numerical convergence properties observed in Figure 1.8.
Another extension of this work is to investigate the time dependant fluid-fluid interaction

[52], the analysis would be an extension of the results from Chapter 6.

7.4 General remarks

In this final section we highlight some advantages and limitations of the new method
introduced in this thesis. An important point is the nonsymmetric property of the
method, this leads to a lack of adjoint consistency and a suboptimality of order (’)(h%)
for the L2-error. Also, the coercivity of the problem is lost by removing the penalty
term, however inf-sup stability can be proven using a boundary mortaring. The great
advantage of the method is that no arbitrary parameter has to be chosen in order to get
stability, optimal convergence of the error in the H'-norm can be proven. The application
to the fictitious domain framework is straightforward, the domain decomposition case
shows interesting properties such as convergence independent of the physical parameters
of the subdomains. As mentioned in the introduction, for fluid-structure interaction the
explicit coupling shows optimal convergence when the penalty-free Nitsche coupling is

used which is not the case when the classical Nitsche’s method is used.



Appendix A

Functional analysis

Definition A.0.1. A Banach space is a normed vector space whose associated metric is

complete.

Definition A.0.2. A Hilbert space is an inner product space whose associated morm

defines a complete metric.

A.1 Lebesgue spaces

Definition A.1.1. Let Q be an open subset of R™ and assume 1 < p < 400, LP (Q) is

a space of integrable functions

LP(Q):{U:Q—HR{] /Q\v(m)yp da:<+oo}

The space LP (2) is a Banach space, its norm is defined as

el = ( [ ool dx);

The space L? () is a Hilbert space with inner product (-, ‘) defined as
(u.0)g = [ ula)o(o) d.
Q
associated with the norm [[v|y o = [[v[| 20

A.2 Sobolev spaces

Definition A.2.1. Let k be a nonnegative integer and 1 < p < 4+o00. A Sobolev space
WHEP (Q) is defined as

WkP(Q) = {ve LP(Q) | D% € LP (Q) V|a| < k}.
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The space W¥? (Q) is a Banach space, its norm is defined as

lollweney = | 3 1D%l2,
|| <k

The space H* (Q2) is a Hilbert space defined as H* (2) = W*?2 (Q), with the inner product

(,0) gy = Y (D%, D) 12qy
le| <k

associated with the norm [[v[|, o = [[v[lyyr.2(q)- The HF-semi-norm is defined as

2
\U’k,Q: Z ”DaUHo,Q

|a|=k
A.3 Standard inequalities

Lemma A.3.1. The Poincaré inequality is defined for all v € Wol’p(Q) with1 < p < 400
and  a bounded open set such that

[vllze) S IVVllLe()s
with Wy P(Q) = {v € WyP() | v|apq = 0}.

Lemma A.3.2. The Minkowski’s inequality is defined for u,v € LP () with1 < p < 400
by
o+ 0l oy < Ml oy + 1ol ogey -

The Minkowski’s inequality is the trace inequality in LP (2).

Lemma A.3.3. The Holder inequality is defined for u € LP (Q) and v € L1 (), 1 < p,
g < +oo with L+ =1

|(u,v)g| < HUHLP(Q) H”HLq(Q)-
Taking p = ¢ = 2 the Hoélder inequality leads to the Cauchy-Schwarz inequality.

Lemma A.3.4. The Cauchy-Schwarz inequality is defined for u,v € L* () by

[(u, v)al < llullgq llvlloq-

Lemma A.3.5. The Korn’s inequality is defined for all v € [HY(Q)]? with Q € R? such
that

vl S le(@)llog + [[v]lo.o-
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Lemma A.3.6. The second Korn’s inequality is defined for allv € [HE(Q)]? with Q € R?
such that

[vllie < lle(@)]og-






Appendix B

Main notations

Basic notations

(a7 b)Q
<a7 b>8§2
I Mls o
| ’ |s,w
n,n
T, T

ng
[v]r

@I

Constant of order O(1), may change at each occurence
Lebesgue measure of £ C R"

Restriction of the function v to the set £

a<(Cb

is the boundary of the domain

{KeTy | KNQ#0}

Jqab dz

S50 ab ds

Usual Sobolev norm in H*(w) with s > 0

Usual Sobolev semi-norm in H*(w) with s > 0

Unit normal vector

Unit tangent vector

Unit normal vector to a face F

v — vy, with v% = lim,_,p+v(x F sng), jump across F’
meas(1)~! [, v ds

Vectors and matrices

g g8 g =
e

ann

One dimensional variable of R
Two-dimensional variable of R?
Dot product

Transpose of u

Identity matrix with n rows and columns

Interface related symbols

,UZ

[v]
{v}
(v)

w1, W2

Variable related to €);

Ul—U2

wwl + Wsz

wgvl + wlv2

Weights related to 21 and 9
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Differential operators

(x1,...,2q) Coordinates in R¢
oru Time derivative of u
O;u Partial derivative of u with respect to x;
Oiju Second-order derivative of v with respect to x; and x;
D= oM. 99" where o = (o, ..., oq) € N? is a multi index
D D% -n
|| Length of o = (av1,...,aq) €N ag + -+ ay
Vu Gradient of u, (O1u,...,0qu)T € RY
Vu Gradient of u € Rd, (8jui)1gi7j§d € Rdxd
T
V-u Divergence of u € R, Zle Oiu; € R, if u € R*, (E?Zl 8juij>1<'<d € R?
<i<
Au Laplacian of u € R, 25:1 Oiiu € R
Au Laplacian of u € R, (Z;-lzl ijui) e € R¢
e(u) $(Vu+ (Vu)T)
Mesh-related notations
Th Triangulation of the domain €2
T Triangulation of the domain €2; (Chapter 4)
K Generic triangle of a triangulation
F Generic face of a triangulation
hK diam (K)
h maxgeT;, hi (Chapters 2,3,5,6)
hi maxKeThihK
h max(hy, ha) (Chapter 4)
Pr(K) Polynomial of order less than or equal to k on K
x; Generic node of a triangulation
Spaces
H;(Q) {ve HY(Q) : v|pq = g}
Weak imposition of boundary conditions
1% {op € HY(Q) : vyl € P(K),VK € Tp,} k>1
Wi {vn € [H' ()] : vnlk € [PR(K)], VK € Th} k>1

p
QY {an € L*() : qulx € Pu(K),VK € Tp; Jgqn dz =0} k>1
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Fictitious domain

1% {op, € HY(Q) s vp|g € PR(K),VK € Tp,} k>1
Wk {vp € [HY(Q9))? :vp|k € [Pe(K)2VK € T} k>1
QF {an € L*(Q%) : qn|k € Pr(K),YK € Tp; [qn dz =0} k>1

Domain decomposition

Vi {v e H' () : v|pg = 0}
Vik {vp, € Vi s up|k € Pi(K) VKE’ELZ'}, k>1
vy Vi x v
HE() {v e H*(Q;) : v|pq = 0}
W; [Vi)?
wi VP2
Wi Wh Wk
Qi {g € L*(), [o qdz=0}
¥ {gn € Qi anlk €Pr(K) VK €T}, k>1
h QY x Q8
Unfitted domain decomposition
1% {ve HY Q) : v|ga = 0}
Vik {UhEV;*:UMKEPk(K) VK € Tp}, Vk >1
14 Vi x v
HE() {v e HE(S) : v|pq = 0}
wi V42
wk WE x Wk
H {g€ LX), [o,q dz =0}
Qf {an € QF - qulx € PL(K) VK € T}, k>1

N QY x Q%






Appendix C

(General concepts

In this section the well-posedness is defined in the sense introduced by Hadamard [66].
Let us define an abstract problem. Let W and V' be Hilbert spaces equipped respectively
with the norms |-||;;; and ||-||;;. Let £(E,F) the vector space of the bounded linear
operators from E to F. Let f € V' = L(V,R) be a continuous linear form, we write
f (v) instead of (f,v)v,y for simplicity, with <"'>V’,V the duality pairing. Let a €

L (W x V,R) be a continuous bilinear form. We consider the following abstract problem.
Find w € W such that a (u,v) = f (v) Yv e V. (C.1)
Taking W =V we get the following abstract problem
Find w € V such that a (u,v) = f (v) Yv e V. (C.2)

Theorem C.0.1. (Lax-Milgram) Let a € L(V x V,R) and f € V'. Assume that the

bilinear form a(-,-) is coercive, i.e.,
Ja > 0 such that a (v,v) > « Hv||%/ Vv eV.

Then the problem (C.2) is well-posed with a priori estimate

1
VeV ||y, < > [ £l -

Let us define a discrete abstract problem. Let V;, and W}, be two finite-dimentional
spaces equipped with the norms [-[|. and |||y, . Using Galerkin method we construct

the approximation of the abstract problem (C.1)
Find vy, € V}, such that ap (vh, wp) = fr (wp) Yw, € W, (C.3)

Note that aj, is an approximation of the bilinear form a and f;, an approximation of the

linear form f. The discrete inf-sup condition condition is written as

38 >0, inf  sup @ (Uh, Wh) > 5. (C4)

wp€EWp vREVY thHVh HwhHWh N
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Theorem C.0.2. Assume that
e ay is bounded on Vi x Wy and fr, is continuous on W,
e The discrete inf-sup condition (C.4) is fulfiled.
e Vi, and W}, have the same dimension.

Then the approzimate problem (C.3) is well-posed, and the a priori estimate |lup |y, <
1|/ fully, holds.
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Technical proofs

Lemma 2.2.1

Proof. In the rotated frame (§,7n) by applying (2.27) we can write

A 0 0D9\ ..
(AV - 05,1y, - 1) F, :)\/Fj (a16—§+a2—)u2 ds
)\/ ar s 4 aph= (@2 ds+)\/ s 222 (4, — 75 ds
= 15, U2 + g 2 92— (2 — U2 :
r o 0 o On

We observe that 6”51 =V. (01,0)T. Using the trace inequality, the inverse inequality and

(2.28), we can show

(%1 T
HOF ShYuR' T

L5

we also note that | F; 8”1 ds = 0, using these properties and the inequality (2.11), i
follows that

aUlA 81} —F;
)\/F,al 8§u2ds )\/F.ala€ (g — Uy 7) ds

J J

< Carh™'A[wg™ - o5, | (un — ") - nllo,r,

—
< Teﬁ”uh 7'||(2),Fj + E)\||V’uh||(2),Pj-

We also have %”2 = V- (0,12)T, using (2.27) and (2.28) we obtain similarly

Ca2 ”

009
)\/a Uy — U ds <
Fj2377(2 2)

4 —F A
)\/F aoh (g 7 )? d$=042ﬁ||thJ -nlff -

J
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Lemma 2.2.2

Proof. In the rotated frame (&, 7), applying (2.27), we can write similarly as in the

previous proof

P A A 8@1 ~ 8’0 00 V9 .
2 i) = — 2 d
(2u€(D;) - M, Up) Ry M/F]-ala77m+a2 6£u1+ OéQanUQ s
= / alh_l(i 7?2 +a28—u1—|—2a2h (G F‘)2 ds
F o¢
J
00 —F; 00 —F;
‘|‘,U/ alﬂ(ﬂl — ﬂlFJ) dS—I—QﬁL/ agﬂ(ﬂg —fLQFJ) ds.
F; on Fj on

Term by term we obtain
1, —F; __F
p [ @) ds = a7l g,

Fj

p [ 200k @) ds = 20
F.

J

00‘1 I

8{11 ~ TF'
p [ anGt i =) ds < SRS 7l g, + el Vunl

J

009 Ca’
2#/ Qg 2(@ —@n ') ds < 2M|| i
F n

J

We observe that %—? = V(O,@g)T - 1. Using the trace inequality, the inverse inequality

and (2.27), we can show the stability

1% 5”2

7 SR - nlog,.
Note that since fF 8”2 ds = 0, we have

009 00y , . —F C’ozz,u o
u/ aga—gul ds = ,u/Fj a287§(u1 — Ty 7)) ds < T;EHU}LFJ ‘nHaFj + euHVuhHapj.

O

Lemma 3.3.2

Proof. The bilinear form can be written as

(AV - vj,up - n)r;, = (AV - vj,up - (n — ﬁrj)>rj + (A\V - vj,uy -ﬁrﬂ'>rj.
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Using the bound ||n — n'i|| Le(r;) S h and the trace inequality we obtain

AV - vj,up - (n — 7)), < (n—7")or,
S ARV - wjlor; [lunllor;

_1
S MU[Vvjlloph ™2 unllor;-

Similarly as in the proof of lemma 2.2.1,

AV - 5,0, 7 )r, :)\/ O+ anh= (@) ds+/\/ 220 40— ") ds.
I 85 L on
Term by term we have
001 Ca I,
A oG ds < RIS T, + ITunl
U2 CO@ —T; 2 2
3 [ a2 - T ds < RS w R, + AVl s,
I n
—1/7Tjy2 ZAJTHS LR
A g agh™ (g 7) ds:agﬁﬂuh 7-m o,
i
The claim holds under the condition hg < O(1). O

Lemma 3.3.3

Proof. We can write
(2pe(v)) - nyup)r, = (2ue(v;) - (n = 7'7), up)r; + (2ue(vy) -7, up)r;.

Using the bound ||n —n'i [zoo(r,;) < h and the trace inequality

(2ue(v;) - (n—n'), up)r, < 2ule(v;) - (n—n") o, lunllor,
< 2uh||Vglor, lusllor;
_1
< 2uh||Vvjllo,p,h 72 |uplor; -

Then similarly as lemma 2.2.2

ara v =05 . 15T 009
(2u€(vj).nF Up)T; :M/ arh™ My 7)? +ozza—§u1+2a2h L@
Ly

F)2d$

aﬁl ~ —1I 6@2 ~ —TI
+M/ a1— (] — b1 ds+2u/ oag—— (g — Uo 7) ds.
[ oG ) ] )

j L
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Term by term we have

H/ arh™ (@7 ?)? ds = 041%H1Thrj T3 s
r

J

u/ 2ash ! (@ )2 ds = 204#\\1&7“ Sl A
Lj

001 Caip T

iy s P ds <
p [ Gt~ as < S

J

009 Co2u, .
o [ a2~ ) ds < SRR A Ry, + el Vs

i
00y Ca3 J ,
p ealggin ds < SRR AN, + ol Vunl
The claim holds under the condition hg < O(1). O
Lemma 4.3.1

1
Proof. Using the property (4.16) and the fact that [, %Lxl ds = 0 we get
J

(WiAiV - v}, [us] "n>F]1 - /F alwl)\l ([[UQH [[UQ]]F;)
+ a2w1/\1 ([[UQE [[U2]]FJ1) + QQWIAlhl_l(mF;)Q

Where we can write the last term as

_ —F} AL, ——=F!
axoiti? [ ([l ds = Tl - nl o
Fj1 M1 Rl
We observe that 81)2 =V - (0,v3)T, then using (4.17) we obtain

ovd
| 2||0F1 Shy 1II[[’uh]] “1flo,r2-
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Using this result with inequality (2.11) and the trace inequality

Z/ ‘WW [[Uzﬂ Tual ™) ds

Nl
—F!
S ZO‘Wl’\l el “flo,r [ ([un] = [ur] 7) - mllo,r2
7=1
Nl
< )\ j ] 72F]1
ZOQ’YEH[[UFLH -, Fl(HUh Uh o, F} + Huh Up Ho,Fjl)
7=1
]\/V1 N2
A1 Ca} A1
<225 (SRl -l gy + ellh — w7 R ) +ev;ZHuh w12 e
T j=1
N C S Mtz .
1 Cos 1H2
S 2 Z ITun]™ - T ewih Z Va3 pr T w2 1/\2>\2 > HVU%HS,p]z-
j=1 j=1
Also avl =V - (v},0)T, using (4.17) we get
o}
I 1le < by 'l “Tllo,Fr
we obtain similarly the bound
—F1
Z/ alwl/\l [[u2]] [u2] )
N} N} N?
A Ca? A1pi2
S e - Z 1™ I3, Fr e Z IV I3 P w0 A2 Z IV I3 P2
7j=1
We conclude by collecting the bounds for each term. O

Lemma 4.3.2

Proof. Using (4.16) and the fact fFl —x ds=0

(2wime(v))  m, [[“h]DF} - /F O‘lmm ([[m]] - [[m]] ) + a1w1M1hf1(ijl)2

S N
+2042W1u1 ([[W]] [us] ) + 200w pr by H([ua] 7 )

+azw1m (M Tual ) ds
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Where we have
B — —F}
oot [ (T2 as =Bl i

2t pirh! / w1y ds = 20Tl - nl3 .

Since %—zj = V(vi,0)T - n, using (4.17) we have

ovl
| 1||0F1 N h11||[[uh]] ] “Tllo,rr-

Similarly as in the proof of 4.3.1

Z / onern 2L [[ulu—[[ulﬂ ') d

N1
< Zal’YH[uhﬂ ; THOFl(”Uh uh & HOFl + Huh uh HOFl)
" N} N2
<Zv II[[u 1o TIIOF1 +6VZIIuruh ; H0F1 +672||uh*uh g IIOFz
N} " N} : Jiﬂ
<7 C = ZH[[U K S +6wluleVuhHop1 +ewwzzHVuhHop2
Jj=1 j=1

Also 802 = V(0,v3)" - 7, then using (4.17) we have

ovd F}
| 2||0F1 Shy 1II[[’Uh]] “1flo,r1,

we obtain similarly the bound

Z / agen i 22 (o] — ] ) s

9 N} N} N2

C
<7 Z Tl g 1+ wnm E IVanllg pr + 6W2M2Z IV aillg p2-
Jj=1 7j=1 j=1



Appendix D. Technical proofs 181

Similarly as in the proof of 4.3.1 we have

Z / sazenn 34 (- Tl )

9 Ny N} N2
Cos
< 77 Z H[[u I i nHo F} + ewipn Z HVUhHO P} + cwa iz Z ”vuh”o P
Jj=1 j=1 j=1
We conclude by collecting all the terms. O

Lemma 5.3.1

Proof. Using the property (5.18) and the fact that [ %—7;11 ds = 0 we get
J

¥ o ] m)e, = [ a5 % (o] — Fal"™)
+a2wm1 <[[u21] Tual ) + aseor b~ ([ua] *)?

Where we can write the last term as

A ——T
i Ah™ / ([eal ) ds = 0 A Fual ™ - ml,.

We observe that 8v2 =V - (0,v3)T, then using (5.19) we obtain

ovl . —T
| 2H0F W [un] - o, -

Using this result with inequality (3.12) and the trace inequality

/a2w1/\1 2 ([us] — Toa]"?) ds
I

J

< aswihih ™ [[ua] * - nllor, | ([us] = [un] ) - nllor,

A1 —=T; —T; —T;
< azWEH[[Uh]] “nllor; (lwy, —w) “llor, + llur —ui or,)
A1 Ca Tl A1 —T,
< TT:M I’ m (Huh_uh Hor + [lup — u JH%,Fj)
A Cad ) A
< y=—= AV 2 )\ Vu
> 7#1 % H[[u H F + ewy 1” uh”o p1 + 6&)2,u 2” h”o P2
Also 801 =V - (v},0)T, using (5.19) we get

ovi 17—l
15, o S 2 Twnl ™ - lor,
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we obtain similarly the bound

vl o,
/Fj a1w1>\1%([[lt2ﬂ - HUQ]]FJ) ds

A1fi2
Tunl - 7l r, + el Vul 2 o + w24

p1A2

<7z

Aol Va2 e

We conclude by collecting the bounds for each term. O
Lemma 5.3.2

Proof. Using (5.18) and the fact fl“j % ds=0

(2wipne(vj) - n, [up])r, _/F al‘*’lﬂl ([[ul]] ~ Tl ) + crwrh ™[] *)?

81; — T pppe—
+ 200w1 11— 6y 2 (Tuz] = Tua] ) + 2a0wipinh ™" (Tuz] 7)*
1".
+042w1M1 (ﬂuzﬂ [ua] *) ds
Where we have
~1 T2 q. Tl 2

arwiprh ([ur] ") ds = ary[[[un] * - 7ll5,r,

r; ‘

_ T T
Do h~! / ([l ™)? ds = 2009wl - ml2.
Ly

Since é%} = V(v},0)T - n, using (5.19) we have

v} _1 =Ty
Hleor W=t |[[un]

Similarly as in the proof of 5.3.1

/ alwm ([[uﬂ}—[[ul]] ) d

Ly

< ary||Tun] 7o, (lup —ub “llor, + [ —u?

;)

ot . —=T — T — 1
Yo el - T, + evlluy, = wy g, + evllun —ui 5,

Ca? ——T;
<7 —Hwnl -7l r, +GW1M1HVU}LH§JDJ_1 +6w2u2HVU?LH3,p;-

Also %—? = V(0,v3)T - 7, then using (5.19) we have

ovd 1T}
15, o S 7 Tual ™ - nllor;,
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we obtain similarly the bound

/azwml 2 ([us] — [ua] *) ds
T

J

Ca?
<~ 2H[[Uh]] nl!%,r]-+6w1u1HVU;1LH§,pj1+€wwzllvui|l3,p;-

Similarly as in the proof of 5.3.1 we have

/anwl 2 ([ua] — Tual ) ds

J

Ca3 —r,
<= Tl -l + sl V] + oo Ve

We conclude by collecting all the terms. O
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