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Abstract— Concentric tube robots comprise telescopic pre-
curved elastic tubes. The robot’s tip and shape are controlled
via relative tube motions, i.e. tube rotations and translations.
Non-linear interactions between the tubes, e.g. friction and
torsion, as well as uncertainty in the physical properties of
the tubes themselves, e.g. the Young’s modulus, curvature, or
stiffness, hinder accurate kinematic modelling. In this paper, we
present a machine-learning-based methodology for kinematic
modelling of concentric tube robots and in situ model adapta-
tion. Our approach is based on Locally Weighted Projection
Regression (LWPR). The model comprises an ensemble of
linear models, each of which locally approximates the original
complex kinematic relation. LWPR can accommodate for model
deviations by adjusting the respective local models at run-time,
resulting in an adaptive kinematics framework. We evaluated
our approach on data gathered from a three-tube robot, and
report high accuracy across the robot’s configuration space.

I. INTRODUCTION

While surgical robot design for laparoscopy has converged
around a standard architecture, the design of robots for
minimally invasive treatment of deep-seated legions is still
an area of research. While catheter-like robots can navigate
anatomical pathways such as the vessels or urinary tract to
perform interventions, the compliance and passive shape con-
trol of traditional catheters preclude their use for procedures
requiring tissue manipulation.

Concentric tube robots alleviate these limitations by pro-
viding active control of both shape and tip pose, i.e. position
and orientation [1], [2] (Fig.1). These devices offer a
means to perform elaborate tip motion, tissue interaction, and
navigation of anatomical pathways. Concentric tube robots
consist of pre-curved, superelastic tubes, which rotate and
telescopically extend relative to each other. These relative
motions enable shape and tip pose control. The pre-curvature,
stiffness, and curved length of each tube can be computation-
ally selected to accomplish the desired surgical tasks [3], [4],
[5], which range from cardiac surgery [6], to neurosurgery
[7], and prostate surgery [8].

Kinematic models predict the tip’s pose given the relative
displacement of the tubes. Mechanics-based models exist
that account for torsion [1], [9], friction [10], and known
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Fig. 1. Exemplary concentric tube robot comprising three pre-curved tubes.

external forces [11], [12]. Although exteroceptive sensing via
EM trackers or Fiber-Bragg-Gratings may also be available
[13], the importance of accurate kinematics is paramount for
planning and control.

Inverse kinematics provide an estimation of the relative
tube motion that would yield a desired tip pose (feedfor-
ward control). Sensor measurements are then used within
this scheme to reduce the estimation error further (closed
loop control). Closed loop control, however, also requires
kinematic models. Specifically, closed-loop schemes use
the robot’s inverse Jacobian to map tip-error minimizing
directions onto respective tube motion. Besides control,
motion planners also require a kinematic model [14], [15].
Moreover, kinematics may drive the robot ”blindly” between
low-frequency measurements. Finally, accurate kinematics,
combined with an appropriate recursive estimation algorithm,
may provide graceful degradation in case of sensor failure.

What current approaches do not account for is the inherent
dependence of kinematic calculations on the physical param-
eters of the tubes and their complex nonlinear interaction.
For example, existing friction models have seen limited
experimental evaluation on multi-tube robots. Further, even
though NiTi, the common material of concentric tubes, is
well characterised, measurements of Young’s modulus and
Poisson ratio for a particular tube will contain inaccuracies.
Similarly, the pre-curvature, stiffness, and length estimations
for each tube will contain errors. All these lead to mises-
timation of tip pose and robot shape, even when the most
advanced kinematics models are used. Adaptive kinematics-
model estimation is, thus, desirable. Ongoing research on
online adaptation of the truncated Fourier series defining the



kinematics model of [1] in [16], and neural-network-based
kinematics trained through observation in [17] are prelim-
inary approaches that address the above issues. However,
both [16], [17] will overfit locally, tuning the parameters of
a global model based on local information. Local regression
methods can remedy the problem of overfitting by adapting
only where necessary, preserving global model accuracy.

Here, we present a machine learning approach for adap-
tively modeling concentric tube robots kinematics based
on Locally Weighted Projection Regression (LWPR) [18],
yielding an accurate, non-parametric representation of the
robot’s kinematics. Incoming pose measurements refine the
local models at runtime, in situ, to accommodate complex
non-linear phenomena. Local adaptation improves model ac-
curacy while preserving global goodness-of-fit. Our approach
is evaluated experimentally using a three-tube robot and a
tip-mounted EM tracker. High accuracy across the robot’s
configuration space is achieved, outperforming existing kine-
matics models.

II. KINEMATICS

A kinematic model is a map between two spaces: the
configuration space and the task space. The configuration
space for an n-tube CTR is the set of relative tube ro-
tations αi1 = θi − θ1 and translations di1 = φi − φ1, i ∈
{2, ...,n}; both relative rotations and translations are com-
puted with respect to the first tube. Hence, for an n-tube
robot, a point in the configuration space is defined as: x =
[αi1,di1, ...,αn1,dn1]

T ∈ R2n−2. The task space comprises all
feasible end-effector (tip) poses. A pose is represented as a
homogeneous transform Htip ∈ SE(3) between a coordinate
frame attached at the robot’s tip and a static reference frame,
attached at the robot’s base. Pose can be defined as a vector
y ∈ R6 representing the six degrees of freedom. Finally, the
entire robot can move as rigid body in space. Hence, the full
kinematic representation is defined as follows:

y = Hbase f (x) (1)

where Hbase ∈ SE(3) is the homogeneous transformation that
accounts for the robot’s rigid motion, and f (x) : R2n−2 7→R6

is the robot’s non-linear kinematics.
In this paper, we use non-parametric regression, specif-

ically Locally Weighted Projection Regression [18], to ap-
proximate the kinematic map f (x). This section describes
the application of this technique to kinematic modeling.

A. Locally Weighted Projection Regression

Regression is used to approximate relations between vari-
ables from an input space X to an output space Y ; e.g., the
kinematic model fR2n−2 7→ R6. The spaces X and Y are
known as the domain and range of the target function f (x).
Kernel-based regression, specifically, will predict the tip’s
pose f (x), for any configuration x ∈ R2n−2, using training
data; i.e., tuples of the form (xtrain,ytrain) such that ytrain =
f (xtrain), xtrain ∈ X . Configurations close to x provide more
information for the robot’s tip pose f (x). Like a distance
metric, a kernel quantifies proximity between points in the

configuration space by assigning a scalar value (weight) to
the pair of points. For regression, training data for which
k(x,x j) > ε > 0 all contribute to the function estimation.
These data correspond to robot configurations that are suffi-
ciently close.

Locally Weighted Projection Regression approximates
nonlinear functions using a collection of linear models. To
this end, the function’s input space is partitioned into local
neighborhoods. At each neighborhood, the target function
is approximated by a hyperplane. To partition the space
into such neighborhoods, we utilize Gaussian kernels. The
mean (center) and covariance (width) define a Gaussian
kernel uniquely. The Gaussian kernel assigns a weight to
any point in the domain, defined as follows:

w(x) = exp
(
−1

2
(x− c)T D(x− c)

)
(2)

where c ∈ R2n−2 is the center of the Gaussian kernel and
D−1 ∈ R(2n−2)×(2n−2) is the covariance; equivalent to the
kernel’s width. The points around the center with w > ε > 0
define the kernel’s receptive field.

Ideally, the union of all receptive fields covers the domain
of the target function. In practice, this is not guaranteed,
as it depends on the distribution of the training data. For
each receptive field, LWPR fits training data with a linear
model through Partial Least Squares (PLS; [19]). Partial
Least Squares combines linear regression with dimensional-
ity reduction. For this reason, LWPR’s accuracy is preserved
for high-dimensional problems.

B. Learning

Learning the kinematic model entails partitioning the
robot’s configuration space with kernels and fitting local
models to each kernel’s receptive field. To this end, the
center and width of each receptive field should be specified.
For each neighborhood in the robot’s configuration space,
the coefficients of the hyperplane that fits the training data
locally are also required. All these parameters are updated
by minimizing the following cost function:

C =
∑

M
i=1 wi(yi− ŷi,−i)

2

∑
M
i=1wi

+
γ

N

N

∑
i, j=1

D2
i j (3)

where (xi,yi) are M training examples, and ŷi,−i is the
estimation of the target function with the i-th data point
excluded from the training set [20]. In the above equation,
N is the number of activated Receptive Fields. The first
term in (3) is the leave-one-out-cross-validation error of
the model [21]. The second term penalizes infinitely small
receptive fields to avoid model overfitting. The parameters
of each RF are updated by applying Stochastic Gradient
Descent on cost C:

θθθ := θθθ −η∇θθθC(θθθ) (4)

where θθθ summarizes all the training parameters of
LWPR (center and width of each receptive field, local
hyperplane parameters), and η is the step of the stochastic



gradient descent (also known as the learning rate). The
difference between stochastic and standard gradient descent
lies in the computation of the cost gradient: in gradient
descent, all data samples are used to compute the expected
value of the gradient. Conversely, stochastic gradient descent
calculates the cost gradient locally at the neighborhood of
the incoming training data sample. Therefore, the standard
gradient descent yields a batch optimization method, whereas
stochastic gradient descent affords incremental parameter
updates. The update rules for the model parameters have
been omitted due to space limitations; readers are referred
to [18].

C. Model Prediction

Given the set of all local models, LWPR combines individ-
ual, local predictions into a final estimation of the tip’s pose.
For a configuration xq, LWPR detects all models, relevant to
that estimation; namely, all models k ∈ {0, ...,K} for which
xq ∈ RFk, where RFk denotes the receptive field of the k-
th model. The kernel associated with each of the K models
assigns a weight to each local prediction of the tip’s pose.
The final estimation ŷ, i.e. the predicted end-effector pose,
is the weighted sum of all activated model-predictions:

ŷ =

(
K

∑
k=1

wk

)−1 K

∑
k=1

wkŷk (5)

where wk denotes the weight, as indicated by each kernel (see
Equation (2)), and ŷk the local prediction of the respective
model.

D. Adaptation

Using Stochastic Gradient Descent, LWPR can be trained
incrementally, incorporating newly-received information.
LWPR’s parameters are updated as follows: when a new
set of joint variables and tip pose (xi,yi) is provided, the
algorithm first detects the activated models by checking
which of the respective kernels yield weights wk above a
predefined threshold ε . Next, the activated models update
the local parameters using (4). When none of the models
produces a sufficiently large weight, LWPR creates a new
Receptive Field, centered on this particular training sample.
Given a second sample within the newly created receptive
field, PLS computes the local hyperplane. This procedure is
repeated as more data become available. In this way, LWPR
adapts at runtime, effectively incorporating new information
into the initial model. This feature is exploited to refine the
kinematic model in real-time, given an initial approximation
of the kinematics.

Adapting the kinematics at one point in the configuration
space improves model estimation at nearby configurations,
as well. While at configuration x1, LWPR adapts all active
models in the neighborhood of x1 (see Fig. 2). The union of
the receptive fields of all activated models defines a region
in configuration space around x1. Note that the same models
are responsible for model prediction at x1. Given a small
displacement ∆y in the task space, the robot’s configuration

becomes x2 = x1 +J†∆y, where J† stands for the pseudoin-
verse. Similarly, a new region is defined at x2, based on
the models activated by x2. For a small ∆x = x2− x1 the
two successive regions of activation overlap. The activated
models within the overlapping region, have been already
updated once when the robot was at x1. Hence, the prediction
at x2 is improved, even before adapting again at x2.

The above concept is depicted in Fig. 2, where the gray
ellipses represent activated regions as the robot moves along
a trajectory in configuration space (marked as a red line).
Zooming in, the activation region at x1 (left circle) partially
overlaps with activation region at x2. The overlapping re-
gion (shaded area) is responsible for the rapid improvement
of model accuracy during online adaptation. The magnitude
of ∆x directly influences the size of the overlapping regions,
and depends on the desired velocity ∆y in the workspace,
as well as the magnitude of 1/det(JT J). From that follows
that close to singular configurations, the robot needs to
move slower to maintain the overlap of successive regions
of activation.
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Fig. 2. Model-estimation improvement due to overlapping adaptation
regions.

III. GENERATING A NOMINAL KINEMATIC MODEL

LWPR can be trained on a synthetic dataset to yield
an initial kinematic model. The mechanics-based parametric
model of [1], [12] is used here to generate a training data
set. Initially, an n-dimensional grid is created, spanning the
robot’s configuration space. The grid consists of equispaced
points, ensuring in this way uniform sampling of the configu-
ration space. For each configuration x, the parametric model
is applied, yielding a pose y for the robot’s end-effector.
The resulting {x,y} pairs are used to train the initial LWPR
model.

Two parameters may influence LWPR’s learning perfor-
mance: the width of a newly created receptive field (Dinit )
and the learning rate η in (4). Initial width was chosen based
on the density of the grid. Specifically, initial width was set
to three times larger than the distance between successive
training configurations. Model accuracy is not very sensitive
to this parameter since it is refined online by the algorithm.
The learning rate α is, in turn, adjusted using the Incremental
Delta Bar Delta (IDBD) algorithm [22].



Relative tube rotations require some special handling. Ro-
tational joint variables are constrained in the closed interval
[−π,π] with the limit points −π,π identified. Identification
declares two points equivalent. The endpoints of the line
segment (corresponding to the limit points of the closed
interval) are “glued” together, forming a closed loop. During
distance computation, the loop can be traversed in both
directions. In this way, points that are in the neighborhood
of the two endpoints get closer. The distance metric should
reflect this property of the target function’s domain.

To alleviate this issue, we replicate data from the bounds
and extend the training dataset to [−π − ε,π + ε],ε > 0.
Specifically, data that correspond to [π− ε,π] will be repli-
cated in the range of [−π − ε,−π]; whereas, data from
[−π,−π + ε] will be copied at [π,π + ε]. Modifying the
dataset in this way has the same result as changing the
metric, but it does not require modification of the algorithm’s
implementation.

The generated data are split into two datasets: the training
and test dataset. The training dataset consists of 85% of
the original data and is used to identify LWPR’s internal
parameters. The remaining data (test dataset) are used to
estimate the model’s generalization capability.

IV. EXPERIMENTS

In this paper, we used the CTR shown in Fig. 3 that
consists of three NiTi tubes. Tubes 1 and 2 have one constant
curvature section and are equally stiff. Moreover, curved
sections of both tubes have the same radius of curvature. The
second tube is merely allowed to rotate relatively to the first;
conversely, relative tube translation is fixed at zero (d21 = 0).
Based on the above, tubes 1 and 2 form a balanced pair;
i.e., the combination of the two tubes at α21 = π yields a
straight robot body. The third tube comprises two sections:
one straight and one with nonzero constant curvature. Table I
summarizes all robot parameters:

TABLE I
ROBOT PARAMETERS

Tube 1 Tube 2 Tube 3
Section 1 Section 1 Section 1 Section 2

Length (mm) 150 150 150 87
Curvature (m−1) 3.7736 3.7736 0 14.29
Relative Stiffness 1 1 0.2857 0.2857

The configuration space of this robot consists of all
x = [α21,α31,d31]

T , where α21,α31 ∈ [−π,π] and d31 ∈
[0,87]. The task space consists of end-effector position
and orientation. In this experiment, we controlled just the
direction of ztip (tangent vector at robot’s tip). For this
reason, the representation for the orientation is merely the
3-dimensional coordinates of this unit vector. Due to the
unit-vector constraint, only two of the three coordinates of
ztip are independent. Therefore, pose y belongs to a five-
dimensional manifold embedded in R6. LWPR approximates
the map f : R3 7→ R6. Next, the result corresponding to
ztip is normalized to a unit vector. This projects the LWPR

Fig. 3. Robot comprised of three tubes with tip-mounted EM sensor.

estimation from R6 onto the manifold. The robot can also
translate and rotate as a whole along zbase, which adds two
more degrees of freedom for control. Since this is merely
a rigid body transformation, LWPR does not consider these
two degrees of freedom during training.

For training, we generated a 80× 80× 80 grid covering
the robot’s configuration space uniformly. For each configu-
ration, we computed the corresponding end-effector position,
as described in Section III. Then an LWPR model was trained
on the generated data. Table II provides the absolute and
normalized Root Mean Square Error (RMSE) of the model
predictions computed on the test dataset for all task space
dimensions. For evaluating orientation accuracy, we used the
relative angle between the predicted and measured tangent
vectors at the robot’s tip.

TABLE II
MODEL VALIDATION

x y z orientation
RMSE 0.97mm 0.87mm 0.41mm 1.89 deg

nRMSE [100%] 0.68 0.58 0.52 1.05

Next, the trained kinematics model was tested on the
robot. The experimental setup consists of the three-tube
robot mounted on a drive system, a haptic device (Phantom
Omni) for teleoperation, and a Trackstar EM-tracker by NDI.
Control software is implemented in C++ and is executed on
a Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz with 8Gb
of RAM. Communication between the computer and the mo-
tors of the drive system is accomplished using a Controller
Area Network (CAN) adapter with 1Mbps maximum bitrate.
The CAN adapter provides both position and velocity control
of the individual motors. In all experiments, the control law
is as follows:

u = J†KP� (ydes−ycurrent) (6)

J† = (JT J+ εI)−1JT ,ε > 0 (7)



where ydes,ycurrent ∈ R6 represent the goal and current end-
effector pose respectively, KP ∈ R6 is a vector of gains,
J† is the damped least-square pseudo-inverse of Jacobian
J∈R6×5, and � is the Schur product of two vectors (elemen-
twise multiplication). Damped least squares inverse provides
robustness to kinematic singularities [23]. J is computed
numerically by successive perturbation of each joint coor-
dinate. For Jacobian computation, the full configuration is
considered; including the rigid body transformation of the
base. The configuration space velocity u ∈ R5 is applied to
the motors via the CAN card.

To test model accuracy, we performed trajectory-following
experiments, in which we provided the robot with time-
stamped end-effector target poses. The robot used the learned
kinematic model to estimate the current pose of the end-
effector. We used two types of trajectories: a circular one
on the x− y plane, and a random one that we recorded by
teleoperating the robot.

Figure 4a compares the desired, model-predicted and
actual robot tip positions when moving on the commanded
circle. Since model adaptation is off, there is a consistent
error throughout the experiment. When adaptation is turned
on, the result is shown in Fig. 4b. It is observed that
the model-predicted path, and thus the sensed path, rapidly
converge to the desired path.
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Fig. 4. Circular trajectory with and without online adaptation.

The speed of convergence is clearly shown in Fig. 5,
which depicts model error as a function of time. The position
error is less than 1mm for most of the experiment duration.
Likewise, the orientation error drops to about one degree.

For a more general trajectory, the robot was moved under
teleoperation, while recording tip pose. The resulting path
is more convoluted, providing a stronger test for online
adaptation. We used the recorded trajectory to perform a
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Fig. 5. Difference between sensor measurements and kinematic model
prediction for the circular trajectory.

second set of experiments. Initially, adaptation is switched
off. As previously, the initial model estimate deviates from
sensor measurements. Figure 6a shows the desired trajec-
tory juxtaposed with the model predictions and the sensor
measurements. Next, we switched adaptation back on and
repeated the experiment. As shown in Fig. 6b the model
predictions, and consequently the actual robot trajectory,
match the desired path accurately. Figure 7 shows the error
of the kinematic model for the two experiments; online mode
adaptation improves the prediction accuracy significantly.
Table III summarizes the tracking error for both position and
orientation for all experiments.

TABLE III
EXPERIMENTAL RESULTS

trajectory adaptation x[mm] y[mm] z[mm] θ [deg]
circle off 3.34 3.03 2.66 2.96
circle on 0.28 0.33 0.13 1.09
teleop off 2.01 1.67 2.785 3.39
teleop on 0.63 0.65 0.38 1.11

V. CONCLUSIONS

We presented a novel approximate kinematic model for
Concentric Tube Robots, based on Locally Weighted Projec-
tion Regression, that approximates complex relations with
multiple locally linear models. The main strength of our
approach is efficient model adaptation due to incremental
learning of local model parameters. The model updates
local model parameters based on sensor information while it
preserves goodness-of-fit across the rest of the configuration
space. All the above yield an accurate kinematic representa-
tion that can account for unmodeled phenomena. LWPR is a
non-parametric regression algorithm. Hence, there is no need
to define model order or parameters of any sort; all internal
parameters are learned autonomously during training.

A kinematic model for a three-tube CTR was learned and
evaluated on experimental data. Adaptation improved accu-
racy significantly on both a predefined regular shaped (circu-
lar) trajectory, as well as on a trajectory generated by teleop-
eration. This last experiment was performed to ensure that the
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Fig. 6. Teleoperation generated trajectory with and without online model
adaptation

algorithm performs well for random non-smooth trajectories
generated such as may be generated by a surgeon during
a procedure. In both experiments, adaptation substantially
reduced model error.
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