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Abstract. This paper provides an analysis of the linearized inverse problem in multifrequency electrical impe-
dance tomography. We consider an isotropic conductivity distribution with a finite number of un-
known inclusions with different frequency dependence, as is often seen in biological tissues. We
discuss reconstruction methods for both fully known and partially known spectral profiles and
demonstrate in the latter case the successful employment of difference imaging. We also study
the reconstruction with an imperfectly known boundary and show that the multifrequency approach
can eliminate modeling errors and recover almost all inclusions. In addition, we develop an efficient
group sparse recovery algorithm for the robust solution of related linear inverse problems. Several
numerical simulations are presented to illustrate and validate the approach.
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1. Introduction. Electrical impedance tomography (EIT) is a diffusive imaging modality
that allows recovering the conductivity of an electrically conducting object by using elec-
trodes to measure the resulting voltage on its boundary, induced by multiple known injected
currents. It is safe, cheap, and portable and is potentially applicable to clinical imaging in a
range of areas. However, the EIT inverse problem is severely ill-posed and has thus shown only
modest image quality when compared with other modalities [11]. This has motivated numer-
ous mathematical studies on EIT imaging techniques including small anomaly conductivity
imaging [7, 8, 10, 42] and hybrid conductivity imaging [2, 3, 4, 6, 9, 20, 56].

Static imaging aims at recovering absolute conductivity values. Apart from the popular
linearization approach, a number of static imaging algorithms have been developed, e.g., the
least-squares method [51, 14, 45, 34, 36], direct methods [57, 13, 44], and statistical methods
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1526 ALBERTI, AMMARI, JIN, SEO, AND ZHANG

[37, 22]; see also the overviews [11, 46]. However, static imaging has so far achieved only limited
success in practice, since electrode voltages are insensitive to localized conductivity changes
but sensitive to forward modeling errors, e.g., boundary shape and electrode positions. Hence,
apart from accurate data, a very accurate forward model is required for its success; however,
this is often difficult to obtain in practice. A prominent idea is to use difference imaging, in the
hope of canceling out modeling errors due to, e.g., boundary shape. A traditional approach
is time difference imaging, which produces an image of the conductivity change by inverting
a linearized sensitivity model. A second approach is multifrequency EIT (mfEIT), which has
also attracted attention in recent years.

Imaging by mfEIT exploits the frequency dependence of the conductivity. Experimental
research has found that the conductivity of many biological tissues varies strongly with the
frequency [21, 19, 43]. In [5], the authors analytically exhibited fundamental mechanisms
underlying the fact that effective electrical properties of biological tissue and their frequency
dependence reflect the tissue composition and physiology, and a homogenization theory was
developed. In mfEIT, boundary voltages are recorded simultaneously, while varying the modu-
lation frequency of the injected current. It is expected to be especially useful for the diagnostic
imaging of conditions such as acute stroke, brain injury, and breast cancer, because patients
are admitted into care after the onset of the pathology and thus lack a baseline record for
healthy tissue, so time difference imaging may not be used.

There have been several studies on frequency-difference imaging [26, 53, 63]. An mfEIT
experimental design for head imaging was given in [63]. In these works, the simple frequency
difference (between two neighboring frequencies) was often employed. Seo et al. [55] proposed
a weighted frequency difference imaging technique, based on a suitable weighted voltage dif-
ference between any two sets of data. It was numerically shown that the approach can ac-
commodate geometrical errors, including an imperfectly known boundary. This approach can
improve the imaging quality when the background is frequency dependent. Recently, Malone
et al. [47, 48] proposed a nonlinear reconstruction scheme, which uses all multifrequency data
directly to recover the volume fractions of the tissues, and validated the approach on phantom
experimental data. Harrach and Seo [27] developed a direct method for detecting inclusions
from frequency-difference data. See also [39] for a recovery algorithm at low frequencies.

This work analyzes mfEIT in the linearized regime, by linearizing the forward model
around a constant conductivity, as customarily adopted in practice. We shall discuss both the
mathematically convenient continuum model and the practically popular complete electrode
model. Our main contributions are as follows. First, we discuss mfEIT imaging for spectral
profiles that are known, partially known, or unknown, and we also generalize existing studies,
especially [55]. Second, we rigorously justify mfEIT for handling geometrical errors. Third,
we present a novel group sparse reconstruction algorithm of iterative shrinkage type, which
is easily implemented and converges quickly. Extensive numerical experiments confirm our
discussions. All these findings provide new valuable insights into mfEIT, which are expected
to be of great interest to the engineering community.

This paper is organized as follows. In section 2, we mathematically formulate mfEIT using
a continuum model and analyze three important scenarios, depending on the knowledge of
the spectral profiles. Then, in section 3, we illustrate the potential of mfEIT in handling
the modeling errors due to an imperfectly known boundary shape. These analyses are thenD
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extended to the complete electrode model in section 4. In section 5, we present a novel group
sparse reconstruction algorithm. In section 6, extensive numerical experiments are presented
to illustrate the approach. Finally, some concluding remarks are given in section 7.

2. The continuum model. In this section, we mathematically formulate mfEIT in the
continuum model with a known boundary. Let Ω ⊂ R

d (d = 2, 3) be a bounded domain
with a smooth boundary ∂Ω. The forward problem reads as follows: for an input current
f ∈ L2�(∂Ω) := {g ∈ L2(∂Ω) :

∫
∂Ω g ds = 0} and σ(x, ω), find u(·, ω) ∈ H1� (Ω) := {v ∈ H1(Ω) :∫

∂Ω vds = 0} such that:

(2.1)

⎧⎨⎩
−∇ · (σ(x, ω)∇u(x, ω)) = 0 in Ω,

σ(x, ω)
∂u

∂ν
= f(x) on ∂Ω,

where ω is the frequency and ν is the unit outward normal vector to ∂Ω. The weak formulation
of problem (2.1) is to find u = u(·, ω) ∈ H1� (Ω) such that∫

Ω
σ∇u · ∇v dx =

∫
∂Ω

fv ds, v ∈ H1(Ω).

Throughout, we assume that the conductivity σ(x, ω) takes a separable form

(2.2) σ(x, ω) =
K∑
k=0

σk(x)sk(ω),

where K + 1 is the number of spectral profiles, {sk(ω)}Kk=0 are the (possibly only partially
known) material spectra, also known as endmembers, and {σk(x)}Kk=0 are scalar functions
representing the corresponding proportions, also known as abundances in the hyperspectral
unmixing literature [38]. Further, we shall assume

σ0(x) = 1 + δσ0(x),

σk(x) = δσk(x), k = 1, . . . ,K,

where the δσks, i.e., {δσk}Kk=0, are small (in suitable Lp(Ω) norms) so that a linearized model
is valid. The δσks, including the background δσ0, are all unknown, represent the small in-
clusions/anomalies in the object Ω, and have compact spatial supports that are disjoint from
each other. We also assume that the background frequency s0(ω) is known.

Now we apply N linearly independent input currents {fn}Nn=1 ⊂ L2�(∂Ω). Let {un ≡
un(·, ω)}Nn=1 ⊂ H1� (Ω) be the corresponding solutions to (2.1), i.e.,

(2.3)

∫
Ω
σ∇un · ∇v dx =

∫
∂Ω

fnv ds, v ∈ H1(Ω).

The inverse problem is to recover δσks from {un(x, ω)}Nn=1 on ∂Ω at the frequencies {ωq}Qq=1.
Next we derive the linearized model for the inverse problem, based on an integral repre-

sentation. Let vm ∈ H1� (Ω) be the potential corresponding to the unperturbed conductivity
σ0(x, ω) ≡ s0(ω) with the input current fm ∈ L2�(∂Ω), namely,

(2.4)

∫
Ω
σ0∇vm · ∇v dx =

∫
∂Ω

fmv ds, v ∈ H1(Ω).
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1528 ALBERTI, AMMARI, JIN, SEO, AND ZHANG

Then vm = v∗m/s0(ω), where v∗m is the solution of (2.4) corresponding to the case s0 ≡ 1.
Namely, the dependence of vm on the frequency ω is explicit. Using (2.3) and (2.4), we obtain

K∑
k=0

sk(ω)

∫
Ω
δσk∇un · ∇vm dx =

∫
∂Ω

(fnvm − fmun) ds.

Hence, using the approximation ∇un(x, ω) ≈ ∇vn(x, ω) in Ω (valid in the linear regime) and
the identity vm = v∗m/s0(ω), we arrive at a linearized model:

(2.5)

K∑
k=0

sk(ω)

∫
Ω
δσk∇v∗n · ∇v∗m dx = s0(ω)

2

∫
∂Ω

(fnvm − fmun) ds.

The right-hand side of (2.5) can be treated as a known quantity: un is the measured voltage
data (and thus depends on ω), and vm is computable. Next, we triangulate Ω into a shape-
regular quasi-uniform mesh {Ωl}Ll=1 and consider a piecewise constant approximation of δσk:

(2.6) δσk(x) ≈
L∑
l=1

(δσk)lχΩl
(x), k = 0, 1, . . . ,K,

where χΩl
is the characteristic function of the lth element Ωl, and (δσk)l denotes the corre-

sponding value of δσk. Thus we get a finite-dimensional linear inverse problem

K∑
k=0

sk(ω)

L∑
l=1

(δσk)l

∫
Ωl

∇v∗n · ∇v∗m dx = s0(ω)
2

∫
∂Ω

(fnvm − fmun) ds.

Throughout, we shall focus on the finite-dimensional linear inverse problem, where the
discretization is always assumed to be adequate. We refer interested readers to [49] for dis-
cussions on the interplay between regularization, discretization, and noise level.

Last, we introduce the sensitivity matrix M and the data vector X. We use a single index
j = 1, . . . , J with J = N2 for the index pair (m,n) with j = N(m− 1) + n and introduce the
frequency-independent sensitivity matrix M = [Mjl] ∈ R

J×L with its entries Mjl given by

Mjl =

∫
Ωl

∇v∗n · ∇v∗m dx (j ↔ (m,n)).

Likewise, we introduce a vector X(ω) ∈ R
J with its jth entry Xj(ω) given by

Xj(ω) = s0(ω)
2

∫
∂Ω

(fnvm(ω)− fmun(ω)) ds (j ↔ (m,n)).

By writing Ak = (δσk)l ∈ R
L, k = 0, . . . ,K, we obtain a linear system (parameterized by ω)

(2.7) M
K∑
k=0

sk(ω)Ak = X(ω).
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Remark 1. In (2.7), the sensitivity matrix M is identical with that in static imaging, and
hence mfEIT does not lead to improved resolution. Namely, in mfEIT the diffusive nature of
the modality does not change with the frequency ω. But as we shall see below, in the presence
of spectral contrast, mfEIT does allow recovering {Ak}Kk=0 and removing modeling errors.

In mfEIT, Aks are of primary interest. Depending on the a priori spectral knowledge,
we discuss the following three cases separately: (a) all sks are known; (b) sks may not be
fully known, but with substantially different frequency dependence; (c) sks are only partially
known, and we aim at a partial recovery of Aks. They are of different degrees of challenge.

2.1. Case (a): Known spectral profiles. First we consider the case when sks are all
known. In some applications, this is feasible, since the spectral profiles of many materials can
be measured (see, e.g., [18] for tissues). Suppose that we can measure X(ω) at Q distinct
frequencies {ωq}Qq=1. By writing S = (Skq) ∈ R

(K+1)×Q with Skq = sk(ωq), we get from (2.7)

(2.8) MAS = X,

where the matrix X = [X(ω1) . . . X(ωQ)] ∈ R
J×Q. In (2.8), the matrix M can be precom-

puted, and the matrix S and the data X are known: only A = [A0 . . . AK ] ∈ R
L×(K+1)

is unknown. It is natural to assume that a sufficient number of frequencies are taken so
that S is incoherent, namely, Q ≥ K + 1 and rank(S) = K + 1 (and presumably S is also
well-conditioned). Then S admits a right inverse S−1. By letting Y = XS−1 we obtain

MA = Y.

These are K + 1 decoupled linear system. By letting Y = [Y0 . . . YK ] ∈ R
J×(K+1), we have

(2.9) MAk = Yk, k = 0, . . . ,K,

where Ak represents the kth abundance. Here each linear system determines one and only
one abundance Ak. The stable and accurate solution of (2.9) will be discussed in section 5.

The condition rank(S) = K + 1 is necessary and sufficient for a full decoupling, and the
well-conditioning of S ensures a stable decoupling. It specifies the condition under which the
abundance unmixing is practically feasible and also the proper selection of {ωq}Qq=1 such that

rank(S) = K + 1. It depends essentially on the incoherence of {sk(ω)}Kk=0, without which a
full decoupling is impossible. For example, consider the simple case of two endmembers with
s0(ω) = 1 + ω, s1(ω) = 2 + 2ω. Then for any Q > 1, S is always of rank one.

The right inverse Y = XS−1 can also be viewed as a least-squares procedure

min
Y ∈RJ×(K+1)

‖X − Y S‖F .

Thus, for a rank-deficient S, our approach yields the minimum-norm matrix Y compatible
with the data, and for an inconsistent S, it yields a best approximation via projection. By the
perturbation theory for least-squares problems [25], the well-conditioning of S implies that
the procedure is stable with respect to small perturbations in the spectral profiles.

This approach generalizes the weighted frequency difference EIT (fdEIT) method [55].D
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Example 1. Consider the case with K = 1 and Q = 2, i.e., two frequencies. We write

X = [X(ω1) X(ω2)] and S =

[
s0(ω1) s0(ω2)
s1(ω1) s1(ω2)

]
.

Therefore, if S is invertible, we obtain

Y = XS−1 =
s0(ω1)

detS

[
s1(ω2)

s0(ω1)
X(ω1)− s1(ω1)

s0(ω1)
X(ω2) X(ω2)− s0(ω2)

s0(ω1)
X(ω1)

]
.

The second column of Y recovers the weighted fdEIT method [55]. Thus our method gen-
eralizes [55]. Our approach directly incorporates multifrequency data, which improves the
numerical stability, especially in the presence of strong correlation between neighboring fre-
quencies and imprecisely known spectral profiles. Further, it enables decoupling multiple
inclusions. In the special case s0(ω1) = s0(ω2), it recovers the usual frequency difference.
This delineates the region of validity of frequency difference for multifrequency data.

Remark 2. The minimal number Q of frequencies is equal to K + 1, provided that with
{ωq}Qq=1, S is sufficiently incoherent, i.e., rank(S) = K+1. With an inadvertently poor choice

of {ωq}Qq=1, it may require more than K + 1 frequencies to achieve the desired incoherence.

2.2. Case (b): Spectral profiles with substantially different frequency dependence.
Next we consider the case when some of (or, possibly, all) sk(ω)s are not known but do not
change rapidly with ω, when compared to the remaining ones. Thus, instead of using X(ω)
directly, it is natural to differentiate (2.7) with respect to ω to eliminate the contributions from
those sk(ω)s that do not vary much with ω. This discriminating effect is useful in practice.
For example, the conductivity of malign tissues is more sensitive with respect to frequency
variations in a certain frequency range [59, 43], even though that of healthy tissues in the
background may exhibit fairly complex structure.

More precisely, let P ⊆ {0, 1, . . . ,K} be such that

(2.10)
∣∣s′p(ωq)

∣∣ � ∣∣s′k(ωq)
∣∣ , p ∈ P, k ∈ {0, 1, . . . ,K} \ P.

By differentiating (2.7) with respect to ω and invoking the assumption (2.10), we obtain

(2.11) M
∑
p∈P

Aps
′
p(ω) ≈ X ′(ω).

Thus the contributions from the remaining profiles are negligible. Different reconstruction
schemes should be used depending on whether the spectral profiles {sp(ω)}p∈P are known.

2.2.1. Case (b1): The spectral profiles {sp(ω)}p∈P are not known. In the case when
the spectral profiles {sp(ω)}p∈P are not known, (2.11) cannot be simplified further. By solving
(2.11), we can recover at most

∑
p∈P s′p(ω)Ap, namely, a linear combination of the inclusions.

Since the weights {s′p(ω)}p∈P are unknown, it is impossible to separate {Ap, p ∈ P}. However,
when P = {p} (i.e., |P| = 1), δσp may be recovered up to a multiplicative constant, which
gives the support information. We illustrate the technique with an example.D
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Example 2. Consider the case K = 1 and two linear frequency profiles, i.e., s0(ω) =
α0 + β0ω and s1(ω) = α1 + β1ω with β0 � β1. Then the differentiation imaging amounts to

β0MA0 + β1MA1 = X ′(ω).

If MA0 and MA1 are comparable, then β0 � β1 implies that the contribution of β0MA0 to
the data is negligible. Hence, the technique allows one to recover the component β1MA1,
which upon linear inversion yields β1A1. In particular, it gives the support supp(A1) and also
its magnitude up to a multiplicative constant. Further, for known β1, it allows recovering A1.

2.2.2. Case (b2): The spectral profiles {sp(ω)}p∈P are known. If the spectral profiles
{sp(ω)}p∈P are known, it is possible to perform the same analysis of Case (a) to (2.11). Taking
measurements at Q distinct frequencies ω1, . . . , ωQ, we have

M
∑
p∈P

Aps
′
p(ωq) ≈ X ′(ωq), q = 1, . . . , Q.

Then, with S̃ = (S̃pq) ∈ R
|P|×Q, S̃pq = s′p(ωq), X ′ = [X ′(ω1) . . . X ′(ωQ)] ∈ R

J×Q, we

get MAS̃ = X ′. Then the inversion step is completely analogous to that in section 2.1, if
rank S̃ = |P| (and well-conditioning). All the inclusions Ap, p ∈ P, can be recovered.

2.2.3. Numerical implementation. In the implementation, we take

(2.12) M
K∑
k=0

Ak
sk(ωq+1)− sk(ωq)

ωq+1 − ωq
=

X(ωq+1)−X(ωq)

ωq+1 − ωq
.

It approximates the derivative s′k(ωq) with the forward difference s′k(ωq) ≈ (sk(ωq+1) −
sk(ωq))/(ωq+1 − ωq). One can also use higher-order difference formulas, and they represent
different ways to perform difference imaging. Their robustness with respect to noise might
differ due to the ill-posed nature of numerical differentiation. In this work, we shall use (2.12).

2.3. Case (c): Partially known spectral profiles, partial recovery of the abundances.
In practice, it is also of interest to recover some information about {Ak} when {sk(ω)} are
only partially known. Generally, this is infeasible. But, one can still obtain some information
under certain a priori knowledge. To this end, recall the notation Yk = MAk; cf. (2.9). Then

(2.13) Y0s0(ωq) + · · ·+ YKsK(ωq) = X(ωq), q = 1, . . . , Q.

Now suppose the frequency dependence of {sk(ω)}Kk=0 is of polynomial type, namely, sk(ω) =∑N
n=0 α

n
kω

n. Inserting this expression into (2.13) yields
∑N

n=0

∑K
k=0(α

n
kYk)ω

n = X(ω). By

taking a sufficiently large number of modulating frequencies {ωq}Qq=1 (to be more precise, Q ≥
N + 1), and using the identity principle for polynomials, we can compute Bn :=

∑K
k=0 α

n
kYk,

n = 0, . . . , N. Note that adding more frequencies does not tell more about Yk and αj
k than

{Bn}Nn=0. Namely, {Bn}Nn=0 contain the essential information in {X(ωq)}Qq=1. Depending
on K, N , and further a prior knowledge, some Yk can be recovered without knowing the
corresponding spectral profiles. Instead of providing a general analysis of all possible cases,
we present two examples that explain the different situations that may appear.D
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Example 3. Consider the case K = 1. For every n we have B0 = α0
0Y0 + α0

1Y1 and
Bn = αn

0Y0 + αn
1Y1, whence Y1 = (α0

0α
n
1 − α0

1α
n
0 )

−1(α0
0Bn − αn

0B0). Since s0 is known, so are
α0
0 and αn

0 . Hence, Y1 may be recovered up to a multiplicative constant c, if α0
0α

n
1 −α0

1α
n
0 = 0,

without assuming any knowledge of s1(ω). This condition simply represents the incoherence
between s0 and s1. Finally, by solving MA1 = cY1, δσ1 can be recovered up to some constant.

Further, assuming a unique recovery of the linearized inverse problem, the knowledge of
B0 allows recovering an unknown linear combination of A0 and A1, especially the union of
their supports. Since the supports of A0 and A1 are assumed to be disjoint from each other,
this allows recovering supp(A0), given that supp(A1) has already been recovered.

Example 4. Note that if K = 2 and N = 1, we get only

α0
0Y0 + α0

1Y1 + α0
2Y2 = B0 and α1

0Y0 + α1
1Y1 + α1

2Y2 = B1,

which is vastly insufficient to determine all the unknowns. However, a calculation similar to
Example 3 shows that the support of Y2 can be determined if K = N = 2 and s1 is known,
if a certain incoherence condition is satisfied. Like before, by solving the underdetermined
system MA2 = cY2, we can recover the support of δσ2. Further, assuming a unique recovery
with the linearized inverse problem, supp(δσ0) and supp(δσ1) may be determined.

With obvious modifications, the preceding discussion is also valid for more general basis
functions φn(ω) which form a unisolvent system on the set {ωq}Qq=1 [17, pp. 31–32].

3. Imperfectly known boundary. Now we illustrate the potentials of mfEIT for handling
modeling errors, e.g., an imperfectly known boundary, which has long been one of the main
obstacles in practice [1, 40, 41]. The use of a slightly incorrect boundary can lead to large
reconstruction errors, and mfEIT is one strategy to overcome the challenge [55]. Here we
present an analysis of the approach in the linearized regime to justify these numerical findings.

We denote the true but unknown physical domain by Ω̃ and the computational domain
by Ω. Next we introduce a forward map F : Ω̃ → Ω, x̃ �→ x, which is assumed to be a smooth
orientation preserving map with a smooth inverse map F−1 : Ω → Ω̃. We denote the Jacobian
of the map F by JF and the Jacobian of F with respect to the surface integral by JS

F .

Now suppose that the function ũn(x̃, ω) ∈ H1� (Ω̃) satisfies (2.1) in the true domain Ω̃ with
a conductivity σ̃(x̃, ω) and input current f̃n ∈ L2�(∂Ω̃), namely,

(3.1)

⎧⎨⎩−∇x̃ · (σ̃(x̃, ω)∇x̃ũn(x̃, ω)) = 0 in Ω̃,

σ̃(x̃, ω)
∂ũn(x̃, ω)

∂ν̃
= f̃n on ∂Ω̃.

Here the conductivity σ̃(x̃, ω) takes a separable form (cf. (2.2))

(3.2) σ̃(x̃, ω) =

K∑
k=0

sk(ω)σ̃k(x̃)

with σ̃0(x̃) = 1 + δσ̃0(x̃), and σ̃k(x̃) = δσ̃k(x̃), k = 1, . . . ,K, where δσ̃ks are small and their
supports are disjoint and stay away from ∂Ω̃. The weak formulation (by suppressing theD
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dependence on ω) is given by the following: find ũn(·, ω) ∈ H1� (Ω̃) such that

(3.3)

∫
˜Ω
σ̃∇x̃ũn · ∇x̃ṽdx̃ =

∫
∂˜Ω

f̃nṽds̃, ṽ ∈ H1(Ω̃).

Let us now discuss the experimental setup. The practitioner chooses a current density
fn ∈ L2�(∂Ω) defined on ∂Ω. It is then applied to the unknown boundary ∂Ω̃. The applied
current f̃n on ∂Ω̃ results to be

(3.4) f̃n = (fn ◦ F )|det JS
F |.

This implies
∫
∂˜Ω f̃nds̃ = 0, whence problem (3.1) is well-posed. This induces the potential

ũn ∈ H1� (Ω̃) given by (3.3), which should be measured on ∂Ω̃. However, due to the incorrect
knowledge of the boundary, the measured quantity is in fact un := ũn ◦ F−1 restricted to ∂Ω.

Remark 3. The current density on ∂Ω̃ is locally defined by J̃ = I/area(Ã), where I is

the current injected through a small surface Ã ⊆ ∂Ω̃. Thus J̃ = I

area( ˜A)
= I

area(A)
area(A)

area( ˜A)
=

J area(A)

area( ˜A)
, where J is the current density on A := F (Ã) ⊆ ∂Ω. Hence, |det JS

F | is the infinites-

imal version of area(A)

area( ˜A)
. Since

∫
∂˜Ω f̃nũnds̃ =

∫
∂Ω fnun ds and

∫
∂Ω fnun ds denotes the power

needed to maintain the potential un on ∂Ω, the choice (3.4) preserves the needed power for
the data.

We consider only the case that Ω is a small variation of Ω̃ (but comparable with δσk) so
that the linearized regime is valid. We write F : Ω̃ → Ω by F (x̃) = x̃+ εφ̃(x̃), where ε > 0 is
small and the smooth function φ̃(x̃) characterizes the deformation. Let F−1(x) = x+εφ(x) be
the inverse, which is also smooth. To examine its influence on the linearized inverse problem,
we introduce vm ∈ H1� (Ω) corresponding to σ0(x, ω) = s0(ω) in Ω and the flux fm, i.e.,

(3.5)

∫
Ω
σ0∇vm · ∇v dx =

∫
∂Ω

fmv ds, v ∈ H1(Ω).

We can now state the corresponding linearized inverse problem. The proof shows that
even for an isotropic σ̃ in Ω̃, cf. (3.2), in Ω the equivalent σ is generally anisotropic.

Proposition 1. Set δσk = δσ̃k ◦ F−1 for k = 0, 1, . . . ,K and v∗m = s0(ω)vm for m =
1, . . . , N . The linearized inverse problem on the computational domain Ω is given by

(3.6) s0(ω)ε

∫
Ω
Ψ∇v∗n ·∇v∗m dx+

K∑
k=0

sk(ω)

∫
Ω
δσk∇v∗n ·∇v∗m dx =s0(ω)

2

∫
∂Ω

(fnvm− fmun) ds

for some smooth function Ψ : Ω → R
d×d, which is independent of the frequency ω.

Proof. First, we derive the governing equation for the variable un = ũn◦F−1 in the domain
Ω from (3.3). Denote by v = ṽ ◦ F−1 ∈ H1(Ω). By the chain rule we have ∇x̃ũn ◦ F−1 =
(J t

F ◦ F−1)∇xun, where the superscript t denotes the matrix transpose. Thus, we deduce∫
˜Ω
σ̃∇x̃ũn ·∇x̃ṽdx̃ =

∫
Ω
σ∇un · ∇v dx,
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where the transformed conductivity σ(x, ω) is given by [60, 40, 41]

(3.7) σ(x, ω) =

(
JF (·)σ̃(·, ω)J t

F (·)
|det JF (·)| ◦ F−1

)
(x).

Moreover, by (3.4) we have
∫
∂˜Ω f̃nṽds̃ =

∫
∂Ω fnv ds. Hence, by (3.3) the potential un satisfies

(3.8)

∫
Ω
σ∇un · ∇v dx =

∫
∂Ω

fnv ds, v ∈ H1(Ω).

Then by choosing v = vm in (3.8) and v = un in (3.5), we arrive at

(3.9)

∫
Ω
(σ − σ0)∇un · ∇vm dx =

∫
∂Ω

(fnvm − fmun) ds.

Note that JF = I + εJ
˜φ
, and JF−1 = I + εJφ = I − εJ

˜φ
◦ F−1 +O(ε2), since ε is small. Since

|det JF | = 1 + εdivφ̃+O(ε2) [28, equation (2.10)], σ(x, ω) can be written as

σ(x, ω) = σ̃(·, ω)(1 + εdivφ̃(·))−1(I + ε(J
˜φ
(·) + J t

˜φ
(·))) ◦ F−1(x) +O(ε2)

= σ̃(·, ω)((1 − εdivφ̃(·))I + ε(J
˜φ
(·) + J t

˜φ
(·))) ◦ F−1(x) +O(ε2)

= σ̃(·, ω) ◦ F−1(x) + Ψ(x)ε+O(ε2),

where Ψ = (J
˜φ
+ J t

˜φ
− divφ̃I) ◦ F−1 is independent of ω. Thus we obtain,

(3.10) σ(x, ω) ≈ s0(ω)I + εs0(ω)Ψ(x) +

K∑
k=0

δσk(x)sk(ω)I.

Substituting it into (3.9) and invoking the approximation∇un ≈ ∇vn completes the proof.

By Proposition 1, in the presence of an imperfectly known boundary with the deforma-
tion magnitude ε comparable with {δσk}Kk=0, there is a dominant source of errors in (3.6): it
contains an additional anisotropic component εΨ. Thus a direct inversion of (3.6) is unsuit-
able. This explains the observation that a slightly incorrect boundary can lead to erroneous
recoveries [1, 24]. This issue can be resolved by mfEIT. Indeed, by rearranging (3.6) we obtain
(3.11)

s0(ω)

∫
Ω
(εΨ+δσ0)∇v∗n ·∇v∗m dx+

K∑
k=1

sk(ω)

∫
Ω
δσk∇v∗n ·∇v∗m dx = s0(ω)

2

∫
∂Ω

(fnvm−fmun) ds.

This is analogous to (2.5), with the only difference lying in the extra term εΨ. Hence, all
methods in section 2 are applicable. The inclusion δσ0 will never be properly recovered, due
to the pollution of the term εΨ. However, {δσk(ω)}Kk=1 may be reasonably recovered, since
they are affected slightly by the deformation only through δσk = δσ̃k ◦F−1. Thus, mfEIT can
effectively eliminate modeling errors caused by the boundary uncertainty.

4. The complete electrode model. In this section we adapt the approach discussed in
sections 2 and 3 to the more realistic complete electrode model (CEM).D
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4.1. Perfectly known boundary. First we consider the case of a perfectly known boundary.
Let Ω be an open bounded domain in R

d (d = 2, 3) with a smooth boundary ∂Ω. We denote
the set of electrodes by {ej}Ej=1 ⊂ ∂Ω, which are disjoint from each other, i.e., ēi ∩ ēk = ∅ if
i = k. The applied current on the jth electrode ej is denoted by Ij, and the current vector

I = (I1, . . . , IE)
t satisfies

∑E
j=1 Ij = 0 by the law of charge conservation. Let the space RE� be

the subspace of RE with zero mean, i.e., I ∈ R
E� . The electrode voltages U = (U1, . . . , UE)

t are
also grounded so that U ∈ R

E� . Then the CEM reads as follows [12, 58]: given the conductivity
σ(x, ω), positive contact impedances {zj}Ej=1, and an input current I ∈ R

E� , find the potential

u(·, ω) ∈ H1(Ω) and the electrode voltages U ∈ R
E� such that

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (σ(x, ω)∇u(x, ω)) = 0 in Ω,

u+ zj
∂u

∂νσ
= Uj on ej , j = 1, 2, . . . , E,∫

ej

∂u

∂νσ
ds = Ij for j = 1, 2, . . . , E,

∂u

∂νσ
= 0 on ∂Ω\ ∪E

j=1 ej ,

where ∂u
∂νσ

denotes the co-normal derivative (σ∇u) · ν. The second line describes the contact

impedance effect. In practice, the contact impedances {zj}Ej=1 are observed to be inversely
proportional to the conductivity of the object [30, 32], i.e.,

(4.2) zj = s0(ω)
−1cj

for some constants cj > 0 independently of ω, since by assumption, near ∂Ω we have σ(x, ω) =
s0(ω). The weak formulation is given by the following: find (u,U) ∈ H := H1(Ω) × R

E� such
that [23]∫

Ω
σ∇u · ∇v dx+

E∑
j=1

z−1
j

∫
ej

(u− Uj)(v − Vj) ds =

E∑
j=1

IjVj , (v, V ) ∈ H.

The bilinear form defined on the left-hand side is coercive and continuous on H, and thus by
the Lax–Milgram theorem there exists a unique solution (u(·, ω), U(ω)) ∈ H.

Consider N input currents {In}Nn=1 ⊂ R
E� , and let {(un, Un)}Nn=1 ⊂ H be the corresponding

solutions to (4.1), i.e., for all (v, V ) ∈ H

(4.3)

∫
Ω
σ∇un · ∇v dx+

E∑
j=1

z−1
j

∫
ej

(un − Un,j)(v − Vj) ds =

E∑
j=1

In,jVj .

The electrode voltages Un ∈ R
E� can be measured and are used to recover the conductivity

σ(x, ω). To derive a linearized model, let (vm, Vm) ∈ H be the solution corresponding to the
reference conductivity σ0(x, ω) = s0(ω): for every (v, V ) ∈ H we have

(4.4)

∫
Ω
σ0∇vm · ∇v dx+

E∑
j=1

z−1
j

∫
ej

(vm − Vm,j)(v − Vj) ds =

E∑
j=1

Im,jVj.
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By (4.2), we can write (v∗m, V ∗
m) = s0(ω)(vm, Vm) for the solution (v∗m, V ∗

m) corresponding to
σ0 ≡ 1. Now we assume that σ(x, ω) follows (2.2). Using (4.3) and (4.4), we deduce

K∑
k=0

sk(ω)

∫
Ω
δσk∇un · ∇vm dx =

E∑
j=1

(In,jVm,j − Im,jUn,j).

Then, under the approximation ∇un ≈ ∇vn in the domain Ω, and the approximation (2.6) of
the inclusions δσks on the triangulation {Ωl}Ll=1, we have

(4.5)

K∑
k=0

sk(ω)

L∑
l=1

(δσk)l

∫
Ωl

∇v∗n · ∇v∗m dx = s0(ω)
2

E∑
j=1

(In,jVm,j − Im,jUn,j).

This formula is almost identical with (2.5), and formally their only difference lies in the
computation of X(ω). Hence, all the discussions in section 2 can be adapted to the CEM
(4.1). In particular, all inversion methods therein can be directly applied to this case.

4.2. Imperfectly known boundary. Now we consider the case of an imperfectly known
boundary. Like before, let Ω̃ be the unknown true domain with a smooth boundary ∂Ω̃, and Ω
be the computational domain with a smooth boundary ∂Ω. Accordingly, let {ẽj}Ej=1 ⊂ ∂Ω̃ and

{ej}Ej=1 ⊂ ∂Ω be the real and computational electrodes, respectively, and assume they satisfy
the usual conditions discussed above. Then we introduce a smooth orientation preserving
forward map F : Ω̃ → Ω with a smooth inverse F−1 : Ω → Ω̃, and we denote the restriction
of F to the boundary ∂Ω̃ by f : ∂Ω̃ → ∂Ω. We write F−1(x) = x + εφ(x), where ε > 0
denotes the deformation magnitude. Further, it is assumed that there is no further electrode
movement, i.e., ej = f(ẽj), j = 1, . . . , E. With the conductivity σ̃(x̃, ω) of the form (3.2) and

input current In ∈ R
E� , by (4.1), the quantity (ũn(x̃, ω), Ũn(ω)) ∈ H̃ ≡ H1(Ω̃)× R

E� satisfies

(4.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇x̃ · (σ̃(x̃, ω)∇x̃ũn(x̃, ω)) = 0 in Ω̃,∫
ẽj

∂ũn
∂ν̃σ̃

ds̃ = In,j on ẽj, j = 1, 2, . . . , E,

zj
∂ũn
∂ν̃σ̃

+ ũn = Ũn,j on ẽj , j = 1, 2, . . . , E,

∂ũn
∂ν̃σ̃

= 0 on ∂Ω̃ \ ∪E
j=1ẽj .

The weak formulation is given by the following: find (ũn, Ũn) ∈ H̃ such that for every
(ṽ, Ṽ ) ∈ H̃ ∫

˜Ω
σ̃∇x̃ũn · ∇x̃ṽ dx̃+

E∑
j=1

z−1
j

∫
ẽj

(ũn − Ũn,j)(ṽ − Ṽj) ds̃ =

E∑
j=1

In,jṼj .

In the experimental setting, on Ω, the injected current In ∈ R
E� on the electrodes {ej}Ej=1 is

known, and the corresponding voltage Ũn(ω) ∈ R
E� can be measured. The inverse problem is

to recover {δσ̃k}Kk=0 from the voltages {Ũn(ω)}Nn=1 ⊂ R
E� at {ωq}Qq=1.D
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Now we can state the corresponding linearized inverse problem for (4.6). Consider the
potential un(·, ω) = ũn(·, ω) ◦ F−1 and the associated electrode voltages Un = Ũn.

Proposition 2. Let the reference solutions (vm, Vm) ∈ H be defined by (4.4) and the con-
ductivity σ̃ be of the form (3.2). Set z = |det JS

F−1 |, δσk = δσ̃k ◦ F−1 for k = 0, 1, . . . ,K and
(v∗m, V ∗

m) = s0(ω)(vm, Vm) for m = 1, . . . , N . The linearized inverse problem on Ω is given by

(4.7) s0(ω)ε

∫
Ω
Ψ∇v∗n · ∇v∗m dx+

K∑
k=0

sk(ω)

∫
Ω
δσk∇v∗n · ∇v∗m dx

= s0(ω)
2

E∑
j=1

(In,jVm,j − Im,jUn,j)− s0(ω)

E∑
j=1

cj

∫
ej

(z − 1)

(
∂v∗m
∂ν

)2

ds

for some smooth function Ψ : Ω → R
d×d, which is independent of the frequency ω.

Proof. Proceeding as in the proof of Proposition 1, by a change of variables (and sup-
pressing the variable ω), since ej = f(ẽj) we deduce∫

˜Ω
σ̃∇x̃ũn · ∇x̃ṽdx̃ =

∫
Ω
(σ̃ ◦ F−1)(J t

F ◦ F−1)∇un · (J t
F ◦ F−1)∇v|detJF−1 |dx

and ∫
ẽj

(ũn − Ũn,j)(ṽ − Ṽj)ds̃ =

∫
ej

(un − Un,j)(v − Vj)|det JS
F−1 | ds,

where v = ṽ◦F−1 ∈ H1(Ω) and Vj = Ṽj. Hence, (un(·, ω), Un(ω)) satisfies for every (v, V ) ∈ H∫
Ω
σ∇un · ∇v dx+

E∑
j=1

z−1
j

∫
ej

(un − Un,j)(v − Vj)z ds =

E∑
j=1

In,jVj ,

where σ(x, ω) is given by (3.7). By combining this identity with (4.4), we obtain∫
Ω
(σ − σ0)∇un · ∇vm dx =

E∑
j=1

(In,jVm,j − Im,jUn,j) +

E∑
j=1

∫
ej

(z − 1)(un − Un,j)
∂vm
∂νσ0

ds.

In view of [28, 29], z = 1 + ε(Divφt − (d − 1)Hφν) + O(ε2), where Div denotes the surface
divergence, φt and φν denote the tangential and normal components of the vectorial function
φ on ∂Ω, respectively, and H is the mean curvature of ∂Ω. In particular, z− 1 = O(ε). Thus,
by linearization we have∫

ej

(z − 1)(un − Un,j)
∂vm
∂νσ0

ds ≈
∫
ej

(z − 1)(vn − Vn,j)
∂vm
∂νσ0

ds = −zj

∫
ej

(z − 1)

(
∂vm
∂νσ0

)2

ds.

Inserting this approximation in the above identity we obtain∫
Ω
(σ − σ0)∇un · ∇vm dx =

E∑
j=1

(In,jVm,j − Im,jUn,j)−
E∑

j=1

zj

∫
ej

(z − 1)

(
∂vm
∂νσ0

)2

ds.

Using (4.2), the rest of the proof follows as in Proposition 1, and thus it is omitted.D
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By proceeding as in the continuum model, we can rewrite (4.7) as

(4.8) s0(ω)

∫
Ω
(εΨ+ δσ0)∇v∗n · ∇v∗m dx+

K∑
k=1

sk(ω)

∫
Ω
δσk∇v∗n · ∇v∗m dx

= s0(ω)
2

E∑
j=1

(In,jVm,j − Im,jUn,j)− s0(ω)

E∑
j=1

cj

∫
ej

(z − 1)

(
∂v∗m
∂ν

)2

ds.

When compared with (3.11), we observe the presence of the additional error term s0(ω)Cm,

where Cm := −∑E
j=1 cj

∫
ej
(z − 1)(∂v

∗
m

∂ν )2 ds, which comes from the boundary deformation.

The formula (4.8) is consistent with (3.11): in the continuum case, the contact impedance
effect is not present, and un = Un on the electrodes, namely, cj = 0, whence Cm = 0.

All the preceding analysis easily carries over to the case cj > 0. Before treating the general
case, let us consider the simple scenario where z ≡ 1 on the electrodes ∪jej.

Example 5. Recall that z(x) = |det JS
F−1(x)| for x ∈ ∂Ω. Physically, the factor z rep-

resents the length/area deformation relative to the map F−1 : ∂Ω → ∂Ω̃. Thus, it may be
reasonable to assume that the parametrization of the electrodes {ej}Ej=1 is known, which
implies z ≡ 1 on the electrodes ∪jej . Then we have Cm ≡ 0, whence

s0(ω)

∫
Ω
(εΨ+δσ0)∇v∗n·∇v∗m dx+

K∑
k=1

sk(ω)

∫
Ω
δσk∇v∗n·∇v∗m dx = s0(ω)

2
E∑

j=1

(In,jVm,j−Im,jUn,j).

This identity is similar to (3.11), and the comments on the recovery issue remain valid, since
the right-hand side is known. Thus, by applying any of the techniques in section 2, it is
possible to eliminate the error εΨ due to the domain deformation, as this affects only the
inclusion δσ0. All the other inclusions {δσk}Kk=1 may be successfully recovered.

Now we consider the general case z ≡ 1 on ∪jej , i.e., the length (or the area) of the
electrodes is not precisely known. However, since the error term Cm is independent of ω,
the difference imaging in section 2.2 may be applied, provided that 0 /∈ P, i.e., if the fre-
quency profile s0(ω) does not vary much with respect to ω. Then s0(ω)Cm disappears upon
differentiating (4.8), and the inversion step may be performed as in section 2.2.

The method of section 2.1 may also be applied, since the error term s0(ω)Cm depends only
on s0(ω). Namely, its influence on the inversion step is lumped into δσ0, like the conductivity
perturbation εΨ. Thus, all the inclusions {δσk}Kk=1 may be recovered. Alternatively, one may
see this as follows. When multiplying the system of equations associated to (4.8) by S−1, the
error term s0(ω)Cm cancels out in all the systems MAk = Yk, for k = 1, . . . ,K:

[s0(ω1)C , . . . , s0(ωQ)C]S−1 = C [s0(ω1) , . . . , s0(ωQ)]

⎡⎢⎣ s0(ω1) · · · s0(ωQ)
...

...
...

sK(ω1) · · · sK(ωQ)

⎤⎥⎦
−1

= [C , 0 , . . . , 0],

where C denotes the column vector corresponding to Cm.D
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5. Group sparse reconstruction algorithm. For all the scenarios discussed in the previous
sections, one arrives at a number of (decoupled) linear systems

(5.1) MAk = Yk, k = 0, . . . ,K,

where M ∈ R
J×L, Ak ∈ R

L, and Yk ∈ R
J . The linear systems are often underdetermined,

and severely ill-conditioned, due to the ill-posed nature of the EIT inverse problem. Below
we describe a heuristic and yet very effective strategy for the stable and accurate solution of
(5.1); we refer to [52, 54, 33] for general discussions on regularization methods.

There are several natural aspects for the regularization term, especially sparsity, grouping,
disjoint sparsity, and bound constraints.

(1) For every k, the abundance Ak = (δσk)l ∈ R
L is sparse with respect to the pixel basis.

This suggests minimizing

min
Ak∈Λ

‖Ak‖1 subject to ‖MAk − Yk‖ ≤ εk

for each k = 0, . . . ,K. Here ‖·‖1 denotes the �1 norm of a vector. The set Λ represents
a box constraint on Ak, since σ is bounded from below and above by positive constants,
due to physical constraint, and εk > 0 is the estimated noise level of Yk.

(2) In EIT applications, each Ak is often clustered, and this refers to the concept of group
sparsity. The grouping can remove undesirable spikes often observed in the recoveries
using the �1 penalty alone. This can be achieved by, e.g., elastic net [35]. In this work,
we shall exploit the dynamic group sparsity (DGS) [31], which dynamically realizes
group sparsity without knowing the supports of the Aks.

(3) The supp(Ak)s are disjoint from each other. The disjoint supports of Aks can be
promoted, e.g., by penalizing the scalar product of the absolute values of the Aks [62].

Next we develop an algorithm, termed as group iterative soft thresholding (GIST), for
achieving the above goals. It combines the strengths of iterative soft thresholding (IST) [16]
and DGS [31]: IST is easy to implement and has a built-in regularizing effect, whereas DGS
encourages the group sparsity pattern. It is a simple modification of the IST (by omitting the
subscript k): given an initial guess A0, construct an approximation iteratively by

Aj+1 = Ssjα(g
j),

where the proxy gj is defined by

(5.2) gj = Aj − sjM t(MAj − Y ).

Note that M t(MAj − Y ) is the gradient of 1
2‖MA − Y ‖2 at Aj . The scalar α > 0 is a

regularization parameter, and sj > 0 is the step length. One simple choice of sj is the constant
one sj = 1/‖M‖2, which ensures the convergence of IST [16]. The operator Sλ for λ > 0 is
defined by Sλ(t) = max(|t|−λ, 0) sign(t) and applied componentwise for a vectorial argument.

In GIST, instead of performing the thresholding on gj directly, we take into account the
neighboring influence. This can be achieved by computing a generalized proxy djl by [31]

(5.3) djl = |gjl |2 +
∑
k∈Nl

wlk|gjk|2, l = 1, . . . , L,

D
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where wlk ≥ 0 are weights, and Nl denotes the neighborhood of the lth element. The weights
wlk determine the correlation strength: the smaller wlk is, the weaker the correlation between
the lth and kth components is, and if wlk = 0 for all k ∈ Nl, it does not promote grouping
at all. In our implementation, we take wlk = β for some β > 0 for all k ∈ Nl, with a default
value β = 0.5, and Nl consists of all elements in the triangulation that share one edge with
the lth element. Then dj is used to reweigh the thresholding step by

(5.4) d̄j = max(dj)−1dj .

It indicates a normalized grouping effect: the larger d̄jl is, the more likely the lth element
belongs to the group, and thus less thresholding should be applied. This can be achieved by
rescaling α to be proportional to (d̄jl )

−1 with a spatially variable regularization parameter

(5.5) ᾱj
l = α/d̄jl , l = 1, . . . , L,

and last perform the projected thresholding with ᾱj

(5.6) Aj+1 = PΛ(Ssjᾱj (gj)),

where PΛ denotes the pointwise projection onto the set Λ. The complete procedure is listed
in Algorithm 1. Here N ∈ N is the maximum number of iterations, and the initial guess A0 is
the zero vector. The parameter α plays a crucial role in the performance of the algorithm: the
larger α is, the sparser the recovered A is. There are several strategies available for its choice,
e.g., the discrepancy principle and balancing principle [33]. One can terminate the algorithm
by monitoring the relative change of the iterates.

Algorithm 1. Group iterative soft thresholding.

1: Input M , Y , W , N , α, N and A0.
2: for j = 1, . . . , N do
3: Compute the proxy gj by (5.2).
4: Compute the generalized proxy dj by (5.3).
5: Compute the normalized proxy d̄j by (5.4).
6: Adapt the regularization parameter ᾱj by (5.5).
7: Update the abundance Aj+1 by the group thresholding (5.6).
8: Check the stopping criterion.
9: end for

Last, disjoint sparsity can also be enforced in Algorithm 1. Specifically, we first compute
d̄k,j for Ak separately according to (5.4) and then at each l = 1, . . . , L, update them by

d̄k,jl =

{
d̄k,jl if k = k∗l ,
ε otherwise,

k∗l = argmax
k=0,...,K

d̄k,jl ,

where ε > 0 is a small number to avoid numerical overflow. It only retains the most likely
abundance (with the likelihood for Ak given by d̄k,j) and hence enforces the disjoint sparsity.

Remark 4. The theoretical analysis of the dynamic group sparse recovery is still unavail-
able, except for compressed sensing problems [31]. However, it does not cover the EIT inverse
problem, due to a lack of the restricted isometry property.D
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(a) computational domain Ω (b) imperfectly known electrode positions

Figure 1. Electrode arrangement for the computational domain Ω and for imperfectly known electrode
positions (used in Example 10). The curved segments in red denote the electrodes.

6. Numerical experiments and discussions. Now we present numerical results to illus-
trate the analytic study. We consider only the CEM (4.1), since the results for (2.1) are
similar. The experimental setup is as follows. The computational domain Ω is taken to be the
unit circle Ω = {(x1, x2) : x21 + x22 < 1}. There are sixteen electrodes {ej}Ej=1 (with E = 16)
evenly placed along the boundary ∂Ω, each of length π/16, thus occupying one half of ∂Ω;
cf. Figure 1(a). Unless otherwise specified, the contact impedances {zj}Ej=1 on the electrodes

{ej}Ej=1 are all set to unit, and σ0 ≡ 1. Further, we assume that s0(ω) for the background is
s0(ω) ≡ 1. This is not a restriction, since s0(ω) is known, and one can rescale sk(ω)s so that
s0 ≡ 1. We measure U for all 15 sinusoidal input currents. The model (4.1) is discretized
using a piecewise linear FEM on a shape regular quasi-uniform triangulation of Ω [23]. For the
inversion, the conductivity is represented on a coarser mesh using a piecewise constant basis.
Then the noisy data U δ is generated by adding Gaussian noise to the exact data U † := U(σ†)
corresponding to the true conductivity σ†(x, ω) as follows:

U δ
j = U †

j + εmax
l

|U †
l − Ul(σ0)|εj , j = 1, . . . , E,

where ε is the relative noise level, and εj follows the standard normal distribution.

Remark 5. Colton and Kress [15, pp. 121, 289] coined the term inverse crime to denote the
act of employing the same model to generate and to invert synthetic data. Inverse crime often
leads to excellent reconstructions without revealing the ill-posed nature of inverse problems
and hence has to be avoided in numerical experiments. In section 6.1, we have employed a
finer mesh to generate the data than for inversion, in order to alleviate the inverse crime; and
in section 6.2, the meshes for generating the data and inversion are completely different.

We shall present numerical results for the cases of a perfectly known and of an imperfectly
known boundary separately and discuss only cases (a) and (b) with spectral profiles that are
either fully known or have substantially different frequency dependence. Case (c) will not be
discussed since the inversion is analogous to case (a). To solve (5.1), we use Algorithm 1 with
a constant step size. The scalar α was determined in a trial-and-error manner, and set to 10−2

for all examples below, unless otherwise specified. We did not implement disjoint sparsity,D
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(a) true δσks
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(b) recovered δσ1
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(c) recovered δσ2

Figure 2. Numerical results for Example 6(i) with 1% data noise and fully known sk(ω)s. The recoveries
are obtained using the direct approach.

since in all examples below the recoveries are already very satisfactory. The algorithm is
always initialized with a zero vector. Numerically, it converges steadily and fast, and for the
examples presented below, it takes about 8 seconds per recovery. All the computations were
performed using MATLAB 2013a on a 2.5G Hz and 6G RAM personal laptop.

6.1. Perfectly known boundary. First, we consider the case of a known boundary.

Example 6. Consider three square inclusions: the two inclusions on the top share the
same spectral profile s1(ω), and the one on the bottom has a second spectral profile s2(ω); cf.
Figure 2(a) for an illustration. In the experiments, we consider the following two cases:

(i) The spectral profiles are s1(ω) = 0.1ω + 0.1. and s2(ω) = 0.2ω.
(ii) The spectral profiles are s1(ω) = 0.1ω + 0.1 and s2(ω) = 0.02ω.
In either case, we take Q = 3 frequencies, ω1 = 0, ω2 = 0.5 and ω3 = 1.

The results for Example 6 with ε = 1% data noise are shown in Figures 2 and 6 for cases
6(i) and 6.1(ii), respectively. In case 6(i), the two frequencies have about the same magnitude,
and the matrix S is nonsingular. The direct approach in section 2.1 separates the two sets
of inclusions well thanks to the spectral incoherence. The recovery is very localized within a
clean background, the supports match closely the true ones (and are clearly disjoint from each
other), and their magnitudes are well retrieved. The latter observation is a distinct feature of
the proposed GIST in section 5. Hence, for known incoherent profiles, the inclusions can be
fairly recovered. It is noteworthy that our approach is insensitive to model parameters: see
Figure 3 for the recoveries with different contact impedance constants. Case 6(ii) is similar,
except that the variation of s2(ω) is much smaller. The preceding observations remain largely
valid, except that the inclusion δσ2 has minor spurious oscillations. This is attributed to the
presence of data noise: the noise is comparable with inclusion contributions. Hence, for the
accurate recovery, the data should be reasonably accurate.

The well-conditioning of S implies the robustness of the direct approach with respect
to spectral profile perturbations; cf. section 2.1. We present in Figure 4 the recoveries using
imprecise spectral profiles for Example 6(i), where the spectral matrix is perturbed by additive
Gaussian noise with a zero mean and standard deviation proportional to the entry magnitude.
Even only with three frequencies, the recoveries remain stable up to 20% spectral perturbation,
indicating the robustness of the approach, concurring with the findings in [48].D
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(d) recovered δσ2

Figure 3. Numerical results for Example 6(i) with different contact impedance constants, 1% data noise,
and fully known sk(ω)s. The recoveries in (a) and (b) are obtained with zj = 0.1, j = 1, . . . , E, and those in
(c) and (d) with zj = 0.01, j = 1, . . . , E, by the direct approach.
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(a) recovered δσ1

 

 
−0.2

0

0.2

0.4

0.6

0.8

1

(b) recovered δσ2
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(d) recovered δσ2

Figure 4. Numerical results for Example 6(i) with 1% data noise and imprecisely known sk(ω)s. The
recoveries in (a) and (b) are obtained with S perturbed by additive Gaussian noise with mean zero and standard
deviation 10% of the entry magnitude, and those in (c) and (d) with 20% noise, both by the direct approach.

Table 1
The relative errors for Example 6(i) with various mesh size h, noise level ε, and regularization parameter

α, where h1 = 1.27e-1, h2 = 6.36e-2 and h3 = 3.18e-2. The error is computed with respect to the reference
solution, which is the recovery on the finest mesh.

α = 5-3 α = 1e-2 α = 5e-2
ε h1 h2 h3 h1 h2 h3 h1 h2 h3

1e-3 5.57e-2 2.72e-2 1.22e-2 7.80e-2 3.85e-2 1.74e-2 2.42e-1 1.26e-1 5.87e-2
3e-3 5.61e-2 2.75e-2 1.23e-2 7.83e-2 3.87e-2 1.75e-2 2.42e-1 1.26e-1 5.88e-2
1e-2 5.77e-2 2.82e-2 1.27e-2 7.95e-2 3.94e-2 1.78e-2 2.42e-1 1.26e-1 5.89e-2

Throughout, we have assumed a fixed discretization for the linearized model. Due to
the ill-posed nature of the problem, the recovery may vary with the discretization, due to
discretization error, apart from the data noise (and inherent linearization error). With Exam-
ple 6(i), we briefly illustrate the dependence of the relative error of the recovery on the mesh
size h used for the inversion (cf. (4.5)), the noise level ε, and the regularization parameter α.
The results are shown in Table 1 for various combinations of h, ε, and α. Just as expected, the
relative error increases with h and ε, and the convergence is relatively independent of α within
this range. A detailed convergence analysis with respect to the discretization parameter for
EIT imaging with Tikhonov regularization can be found in [23, 50].

Since s′2(ω) is small in Example 6(ii), we also illustrate difference imaging of section 2.2.1.
The recovery of the first set of inclusions, in the absence of the knowledge of sks, is shown inD
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(a) true δσks
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(d) recovered δσ1

Figure 5. Numerical results for Example 6(ii) with 1% data noise. The recoveries in (b) and (c) are
obtained with known sk(ω)s using the direct approach and that in (d) without knowing sk(ω)s, using difference
imaging.
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(d) recovered δσ3

Figure 6. Numerical results for Example 7(i) with 1% data noise, with fully known sk(ω)s. The recoveries
are obtained by the direct approach.

Figure 5(d). The recoveries are free from spurious oscillations. This shows the capability of
difference imaging for spectral profiles with substantially different dependence on ω.

Example 7. Consider three rectangular inclusions on the top left, top right, and bottom
of the disk with spectral profiles s1(ω), s2(ω), and s3(ω), respectively; cf. Figure 6(a) for an
illustration. In the experiments, we consider the following two cases:

(i) The spectral profiles are s1(ω) = 0.2ω + 0.2, s2(ω) = 0.1ω2 and s3(ω) = 0.2ω + 0.1.
(ii) The spectral profiles are s1(ω) = 0.02ω + 0.02, s2(ω) = 0.1ω2 and s3(ω) = 0.2ω + 0.1.
In either case, we take three frequencies, ω1 = 0, ω2 = 0.5, and ω3 = 1.

The numerical results for Examples 7(i) and 7(ii) are shown in Figures 6 and 7, respectively.
If all three sk(ω)s are known, the use of three frequencies yields almost perfect separation of
the inclusions using the direct method: the recovered inclusions are well clustered with correct
supports and magnitudes. For Example 7(ii), s1(ω) is much smaller, and thus the recovered
δσ1 is more susceptible to noise, whereas the other two are more stable.

The results in Figure 7 indicate that with known s2(ω) and s3(ω) and unknown s1(ω),
since s′1(ω) is small, difference imaging can recover accurately both the magnitude and support
of δσ2 and δσ3. These observations fully confirm the discussions in section 2.2.

Our next example illustrates the case of different conductivities for each inclusion.

Example 8. The setup of the example is identical with that of Example 7(i), except that
the inclusions on the top left, top right, and bottom have conductivity perturbations of 1.5,
1, and 0.5, respectively.D
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(a) true δσks
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Figure 7. Numerical results for Example 7(ii) with 1% data noise. Here (b)–(d) are the recoveries with
fully known sk(ω) and obtained by the direct approach, while for (e) and (f) only s2(ω) and s3(ω) are known,
and the recoveries are obtained by difference imaging.
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Figure 8. Numerical results for Example 8 with 1% data noise, with fully known sk(ω)s. The recoveries
are obtained by the direct approach.

The numerical results are presented in Figure 8. With different conductivities for each
inclusion, the reconstructions remain fairly reasonable: all three inclusions are well separated
from each other, with their magnitudes accurately estimated, as in Example 7(i). However, the
support of the inclusion on the bottom is slightly distorted; cf. Figure 8(d). This is attributed
to the smaller magnitude of the inclusion, yielding a higher noise level of the corresponding
linear inversion step, which deteriorates the reconstruction.

6.2. Imperfectly known boundary. Now we illustrate the approach in the case of an
imperfectly known boundary. In the first example, the unknown true domain Ω̃ is an ellipse
centered at the origin with semiaxes a and b, Ea,b = {(x1, x2) : x21/a2 + x22/b

2 < 1}, and the
computational domain Ω is taken to be the unit circle.D
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Figure 9. Numerical results for Example 9(i) with 0.1% data noise, fully known sk(ω). The recoveries are
obtained using difference imaging.
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Figure 10. Numerical results for Example 9(ii) with 0.1% data noise, fully known sk(ω)s. The recoveries
in (b)–(c) are based on difference imaging, and those in (d)–(f) on the direct approach.

Example 9. Consider two square inclusions on the top and the bottom of the ellipse, with
s1(ω) = 0.2ω + 0.2 and s2(ω) = 0.1ω2 (Figure 9). We consider the following two cases:

(i) The true domain Ω̃ is Ea,b with a = 1.1 and b = 0.9.

(ii) The true domain Ω̃ is Ea,b with a = 1.2 and b = 0.8.
In either case, we take three frequencies, ω1 = 0, ω2 = 0.5, and ω3 = 1.

The results are given in Figures 9 and 10 with 0.1% noise in the data, for Examples 9(i) and
9(ii), respectively. Although not presented, we note that the static imaging can only produce
useless recoveries, due to the presence of significant modeling errors. Numerically one can ver-
ify that for both cases, the contribution from domain deformation is much larger than that ofD

ow
nl

oa
de

d 
03

/2
3/

17
 to

 1
28

.4
1.

61
.1

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LINEARIZED INVERSE PROBLEM IN mfEIT 1547

the inclusions, which justifies the smaller noise level 0.1%. By exploiting the spectral incoher-
ence, mfEIT can separate different contributions and hence recover each inclusion accurately.

From Figure 9, difference imaging can recover the inclusions accurately, and they are well
separated, due to their incoherent sk(ω)s. However, the shape and location of the recovery tend
to be slightly deformed. This concurs with the analysis in section 4: the unknown boundary
induces deformed conductivity of the inclusions, in addition to the anisotropic component.

In Figure 10 we present the results related to Example 9(ii). The preceding observations
on difference imaging still hold; cf. Figures 10(a) and 10(b). The direct approach works equally
well: the recovered δσ1 and δσ2 are fairly accurate; and the results are comparable with those
obtained by difference imaging. The recovered δσ0 contains only the spurious conductivity
induced by the domain deformation. Should there be any true inclusion δσ0 corresponding
to s0(ω), it will be washed away by the error εΨ; cf. (4.8). The preceding discussions fully
confirm the analysis in section 4: mfEIT is capable of discriminating the perturbation due to
domain deformation from the inclusions by either the direct approach or difference imaging.

Last we present one example where the electrodes are misplaced, but their lengths do not
change, i.e., the factor z in the boundary integral can be set to the unit (see Example 5). This
is a special case of the imperfectly known boundary case, where the forward map F maps the
domain Ω onto itself. However, the forward map is not the identity or a rotation operator, and
thus it will induce an anisotropic conductivity, especially in the regions near the boundary.

Example 10. The true domain Ω̃ is identical with the computational domain Ω, the unit
circle, but every other electrode is shifted by an angle of π/32, while the length of each electrode
remains unchanged; see Figure 1(b) for a schematic illustration. There are two rectangular
inclusions, on the top and on the bottom of the ellipse, with spectral profiles s1(ω) = 0.2ω+0.2
and s2(ω) = 0.1ω2, respectively. We take three frequencies ω1 = 0, ω2 = 0.5, and ω3 = 1.

The results for Example 10 are given in Figure 11. The analysis in section 4.2 indicates
that the conductivity perturbation can be lumped to δσ0. The results confirm the analysis:
when using the direct approach, there are pronounced oscillations around the boundary in the
recovered δσ0. However, the recovered δσ1 and δσ2 are reasonable in both location and size.
The difference imaging can also remove the contributions due to unknown electrode locations,
since sk(ω)s are incoherent both before and after differentiation.

In summary, as expected from the analysis of sections 3 and 4.2, the mfEIT technique
has significant potential in handling modeling errors. The inclusion δσ0 corresponding to s0
may not be recovered. However, by mfEIT, {δσk}Kk=1 can be correctly recovered by either the
direct approach or difference imaging, provided that sks or s

′
ks are sufficiently incoherent.

7. Concluding remarks. In this paper we have presented novel reconstruction methods for
multifrequency EIT. In particular, we have illustrated both analytically and numerically the
significant potentials of mfEIT in handling the modeling error due to an imperfectly known
boundary shape. We have also introduced a new and efficient group sparse reconstruction
algorithm for the linearized EIT problem. The techniques may be extended to quantitative
photoacoustic imaging from multispectral measurements [61].

This work represents only a first step toward the rigorous mathematical and numerical
analysis of mfEIT. There are a few questions deserving further research. For instance, beyondD
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Figure 11. Numerical results for Example 10 with 0.1% data noise, fully known sk(ω)s. The recoveries in
(b)–(c) are based on difference imaging, and those in (d)–(f) on the direct approach.

the linearized regime, the nonlinear approach may be more appropriate, but it comes with
significant computational overhead, due to a large number of PDEs involved. It is impera-
tive to develop fast image reconstruction algorithms and to provide theoretical justifications.
Moreover, in this work we have mainly focused on the recovery of the abundances. It would be
of great interest to derive sufficient conditions for the simultaneous recovery of partial spectral
profiles, under suitable structural prior knowledge, e.g., the (disjoint) sparsity of abundances.
It is expected that this issue may have different features in the nonlinear regime.
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