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Abstract: We develop a class of Poisson autoregressive models with exogeneous covariates
(PARX) that can be used to model and forecast time series of counts. We establish the

time series properties of the models, including conditions for stationarity and existence of

moments. These results are in turn used in the analysis of the asymptotic properties of

the maximum-likelihood estimators of the models. The PARX class of models is used to

analyze the time series properties of monthly corporate defaults in the US in the period

1982-2011 using �nancial and economic variables as exogenous covariates. Results show that

our model is able to capture the time series dynamics of corporate defaults well, including the

well-known default counts clustering found in data. Moreover, we �nd that while in general

current defaults do indeed a¤ect the probability of other �rms defaulting in the future, in

recent years economic and �nancial factors at the macro level are capable to explain a large

portion of the correlation of US �rms defaults over time.

Keywords: corporate defaults, count data, exogenous covariates, Poisson autoregression,
estimation.

JEL codes: C13, C22, C25, G33.
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1 Introduction

There is a strong ongoing interest in modelling and forecasting time series of corporate

defaults. A stylized fact of defaults is that they tend to cluster over time. The default

clustering phenomenon has been explored in the �nancial literature, giving rise to a debate

about its causes, with several works trying to distinguish between �contagion e¤ects�, by

which �one �rm�s default increases the likelihood of other �rms defaulting� (Lando and

Nielsen, 2010), and �systematic risk�, where comovements in corporate solvency are caused

by common underlying macroeconomic and �nancial factors; see, for example, Das et al.

(2007) and Lando and Nielsen (2010) who investigate the role of systematic risk in default

correlations amongst US corporations.

We contribute to this debate by proposing a novel class of dynamic Poisson models for

describing and forecasting aggregate number of corporate defaults; that is, the number of

defaults within a given time period. We call this new class of models Poisson AutoRegres-

sions with eXogeneous covariates (PARX). PARX models are an extension of the Poisson

autoregression in Fokianos, Rahbek and Tjøstheim (2009) [FRT hereafter], which is here

augmented by including �in addition to lagged intensity and counts �a set of exogenous

covariates as predictors. This class of models provides a �exible framework within which

we are able to analyze dependence of default probabilities on past number of defaults as

well as on relevant �nancial and economic variables. These additional predictors are meant

to summarize the level of uncertainty during periods of �nancial turmoil and/or economic

downturns; that is, when corporate defaults are more likely to cluster together. We also con-

sider the impact of auxiliary information on the estimates of persistence parameters which

express the degree of dependence on the past history of the process.

Our approach to modelling defaults complements existing studies. These can broadly be

divided into two categories. In the �rst category, �rm-level data are available where default

times for a cross-section of �rms are recorded together with various �rm-speci�c covariates.

The default times are normally modelled by Poisson processes with macroeconomic and

�rm-speci�c covariates entering the default intensities; see, e.g., Das et al. (2007) and Lando

and Nielsen (2010). These types of models do not allow for direct modelling of contagion

and only allows for indirect evidence of contagion by testing whether the Poisson model

is misspeci�ed. In the second category, to which this paper belongs, aggregate data are

used where the number of defaults within a given period is observed together with various

macroeconomic variables. Two recent papers in this category are Koopman, Lucas and

Schwaab (2012) and Azizpour, Giesecke and Schwenkler (2015). Koopman et al. (2012)

model default counts using a binomial speci�cation where, similar to the PARX model,

the probability of default is a time-varying functions of underlying factors. Similar to so-

called frailty models, their speci�cation involve unobserved components which have to be
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integrated out in the estimation, which is generally done using computationally burdensome

Monte Carlo methods. In contrast, PARX models are observation-driven in that they do

not involve latent state variables. This in turn means that estimation and forecasting do

not require any sophisticated numerical techniques, and is straightforward to implement in

standard software packages. In particular, they can easily handle large number of exogenous

covariates.

Our empirical analysis using the PARX model provides new insights into the dynamics

of corporate defaults among Moody�s rated US �rms during the period 1982-2011. Various

macroeconomic and �nancial variables, meant to capture the state of the US economy and

�nancial markets, are included to investigate whether corporate defaults are driven by eco-

nomic fundamentals and/or contagion e¤ects during this period. We �nd that important

explanators of corporate defaults are the overall volatility of the US stock market and the

Leading Index of the US economy, but that contagion e¤ects are also present in the dy-

namics. A structural break analysis shows that these relationships are not stable over time

though and that the relative importance of the di¤erent factors have been changing over

the sample period. Interestingly, we �nd that the contagion e¤ects have been diminishing

over time and that corporate defaults during the recent �nancial crisis were mostly driven

by macroeconomic and �nancial fundamentals.

This paper also contributes to the literature on econometric and statistical analysis of

Poisson autoregressions. First, we provide new results on the time series properties of PARX

models, including conditions for stationarity and existence of moments. Second, we provide

an asymptotic theory for the maximum likelihood estimators (MLE�s) of the parameters

entering the model. These results extend and complement the ones found in, among others,

Rydberg and Shephard (2000), Streett (2000), Ferland et al. (2006) and FRT who analyze

the properties of the MLE�s for Poisson Autoregressive (PAR) models without covariates.

Compared to these papers, we take a very di¤erent approach to establishing the asymptotic

properties. Most notably, in order to establish a Law of Large Numbers [LLN] and a Central

Limit Theorem [CLT] for the PARX process, we utilize the concept of � -weak dependence

(Doukhan and Winterberger, 2008). This is a relatively new stability concept which proves

to be simpler to verify for discrete-valued Markov chains compared to existing stability

concepts such as geometric ergodicity. This means, for example, that we avoid to deal with

an augmented model where an additional error component is introduced, as done in FRT,

in the asymptotic analysis. As such, our theory is completely novel.

PARX models are also related to a recent literature on GARCH models augmented by

additional covariates with the aim of improving the forecast performance. These models

include GARCH-X models, the so-called HEAVY model as proposed by Shephard and Shep-

pard (2010), and the Realized GARCH model of Hansen et al. (2012); see also Han and
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Kristensen (2014) for econometric analysis of such models. In these models, the time-varying

volatility is explained by past returns and volatilities together with additional covariates,

usually a realized volatility measure. PARX share the same motivation and modelling ap-

proach, but the variable of interest in our case is discrete and so the technical analysis and

the applications are di¤erent.

The paper is organized as follows. In Section 2 we introduce the class of PARX models

and discuss them in relation to existing models, as well as to the literature on default

clustering and contagion. Time series properties of the models are investigated in Section

3. Maximum-likelihood based inference and methods for forecasting with PARX models

are presented in Section 4. Speci�cally, large-sample properties of the maximum likelihood

estimator are derived in Section 4.1, while its �nite sample properties are studied in Section

4.2 though Monte Carlo simulations. Moreover, Section 4.3 illustrates how the estimated

PARX speci�cation can be used for forecasting purposes. Section 5 contains the empirical

analysis of US default counts. Section 6 concludes. All auxiliary lemmas and mathematical

proofs are contained in the Appendix.

2 Modelling Defaults with PARX

We here set up a general dynamic model for time series count data, motivated by the empiri-

cal application where we analyze the dynamics of US corporate defaults. Let yt 2 f0; 1; 2; :::g,
t � 1, be a time series of counts, such as the number of corporate defaults in a given period,
say, a month. We then wish to model the dynamics of this process both in terms of its own

past, yt�1, yt�2, ..., but also in terms of dx additional covariates xt := (x1t; x2t; :::; xdxt)
0 2 Rdx.

In the empirical analysis of Section 6 these include relevant macroeconomic and �nancial

factors such as realized volatility measures, recession indicators, and measures of economic

activity and �nancial stability. We do so by modelling yt as a conditional Poisson distribu-

tion with time-varying intensity, �t, expressed as a function of past counts and covariates.

That is,

ytj Ft�1 � Poisson (�t) , t = 1; 2; :::; T (1)

where Ft�1 denotes the �-�eld �fy�p+1; :::yt�1;��q+1; :::; �t�1; x0; :::; xt�1g and Poisson(�) de-
notes a Poisson random variable with intensity parameter �. To close the model, we propose

the following speci�cation for �t,

�t = ! +

pX
i=1

�iyt�i +

qX
i=1

�i�t�i + f (xt�1; 
) : (2)

Note here that xt enters the intensity through a non-negative link function f (�; 
) : Rdx !
[0;1) as chosen by the researcher; the link function is introduced to to allow for possibly
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negative covariates.

The parameters of interest are given by ! > 0, �i � 0 (i = 1; 2; :::; p) and �i � 0

(i = 1; 2; :::; q), together with the additional vector of parameters 
 entering the function f .

A possible speci�cation of the function f , which will be extensively used in the empirical

analysis of Section 5, is the additive one,

f (x; 
) :=

dxX
i=1


ifi (xi) ; (3)

where fi : R 7! [0;1), i = 1; :::; dx, are known functions, while 
 :=
�

1; :::; 
dx

�0 2 [0;1)dx
is a vector of unknown parameters. Note that, without loss of generality, only one lag of xt
is included in the speci�cation of �t since multiple, say m, lags of a given set of variables, zt,

can be included by simply stacking them into a vector of the form xt�1 := (zt�1; :::; zt�m)
0.

Observe, �nally, that with f (xt�1; 
) � 0 the model reduces to the Poisson autoregression
(PAR) considered in FRT. However, in general, the inclusion of additional covariates xt will

improve on in- and out-of-sample performance of the model and provide further insights into

how exogenous covariates a¤ect the dynamics of default counts.

The above speci�cation allows for �exible dynamics of the number of counts in terms

of past counts, captured by
Pp

i=1 �iyt�i, and exogenous factors, as described by f (xt�1; 
).

The term
Pq

i=1 �i�t�i is a parsimonious way of incorporating a large number of lags of these

two components in the intensity equation, in a fashion similar to the extension of standard

ARCH processes to the general GARCH process (or, similarly, to the extension of AR time

series to ARMA processes). To see this, consider, for simplicity, the case of p = q = 1:

If �1 + �1 < 1 is satis�ed together with other regularity conditions, then there exists a

stationary solution to the PARX model (see Section 3), which can be represented by

�t = !(1� �1)
�1 + �1

1X
i=1

�i�11 yt�i +
1X
i=1

�i�11 f (xt�i; 
) : (4)

Thus, � > 0 allows modelling dependence of �t on all past lags of exogenous regressors and

counts without having to introduce a large number of parameters.

Finally, we note that the PARX model share some similarities with the GARCH model

with exogenous covariates, or GARCH-X; see Han and Kristensen (2014) and references

therein. Speci�cally, in GARCH-X speci�cations yt is a given return, whose conditional

volatility �say ht �follows

ht = ! +

pX
i=1

�iy
2
t�i +

qX
i=1

�iht�i + f (xt�1; 
) ,

where xt is a set of covariates. Special cases of the GARCH-Xmodel are the so-called HEAVY

model of Shephard and Sheppard (2010), and the realized GARCH model of Hansen et al.
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(2012), where the exogenous variable xt�1 is a (realized) measure of past volatility obtained

from high-frequency data.

While parts of the structure of GARCH-X type models are similar to that of the PARX

model, a crucial di¤erence is that while the former class of models is designed to capture

the evolution of the (conditional) variance of a continuously distributed variable, the latter

is modelling the full distribution of a count process. This also means that for the theoretical

analysis of PARX models, new tools have to be developed. In section 3 below we develop

one such set of tools by establishing conditions for stationarity and ergodicity which in turn

can be used to derive a LLN and a Martingale CLT for PARX processes.

2.1 Related Literature

There is a large existing literature on modelling corporate defaults using �rm speci�c data;

see, e.g., Das et al (2007), Du¢ e, Eckner, Horel and Saita (2009), Du¢ e, Saita and Wang

(2007), and Lando and Nielsen (2010). This literature has mostly employed duration mod-

els where the default of �rm i (i = 1; :::; n) occurs at the �rst arrival time, � i, of a

counting process Ni (s) with intensity �i (s), s � 0. Suppose that the counting processes

Ni, i = 1; :::; n, are so-called �doubly stochastic� (see, e.g., Das et al., 2007, Sec. I);

that is, conditional on the intensities, they are mutually independent Poisson processes.

Then the number of defaults within a given month (t � 1; t], that is, the count variable
yt := # fi : t� 1 < � i � tg, follows a Poisson distribution with intensity

�t =

Z t

t�1

nX
i=1

�i (s) I f� i > sg ds, (5)

where I f�g is the indicator function. In particular, this shows that the model of Das et al.
(2007), amongst others, implies that aggregate default counts will satisfy eq. (1) and so is

in agreement with our baseline PARX speci�cation.

Suppose, moreover, that the intensity of �rm i is a¤ected by observed �rm-speci�c, say

X1;i (s), and economy-wide, say X2 (t), covariates. Popular choices of X1;i include �distance

to default�and stock return of �rm i, while X2 (t) include variables such as the US treasury

bill rate, the S&P 500 return, and so forth. Note here that the doubly stochastic assumption

implies that the included covariates are completely exogenous relative to the n counting

processes. One speci�cation of �i (s) that allows for this analysis is

�i (s) = g (! + �01X1;i (s) + �02X2 (s)) ; (6)

for some known function g. Thus, in general this would imply that �t in (5) would depend

on aggregated �rm speci�c and economy-wide covariates, say x1t and x2t, as well as on

the past default count, yt�1. The PARX model is one particular speci�cation of �t, and
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can therefore be interpreted as an approximation of the aggregate �t obtained from the

underlying �rm-speci�c default model of Das et al. (2007), among others. Importantly, the

above aggregation result shows that if the main focus of the analysis is to gain understanding

of how macro-level factors and past defaults a¤ect default probabilities, it su¢ ces to model

the aggregate number of defaults instead of individual �rms�defaults. At the same time,

to understand the impact of �rm-speci�c variables on aggregate defaults, we need to obtain

aggregate data on these variables.

PARX speci�es �t as an observation-driven process. Alternatively, one can use a state

space model to describe the evolution of �t over time. This approach is pursued by Azizpour,

Giesecke and Schwenkler (2015) and Giesecke and Kim (2011), amongst others, who also

assume that aggregate counts satisfy eq. (1) but then proceeds to model the intensity as

�t =

Z t

t�1
g (! + �02X2 (s)) + �3Y (s) + �4Z (s))ds: (7)

Here, Y (s) = f (f(� i; di) : � i � sg), with di denoting the face value of �rm i�s defaulted debt,

is an observed process depending on past defaults, while Z (s) is a latent Markov process (the

so-called �frailty�) that, after controlling for observables, captures any time series dynamics

in the default intensity. The frailty process Z (s) captures unobserved risk �it is a common

underlying factor whose clustering over time generates clustering in defaults in addition to

the impact of X2 (s) �while Y (s) captures contagion in that past default a¤ects its own

evolution. Thus, the di¤erence between PARX and the model of Azizpour, Giesecke and

Schwenkler (2015) is similar to the di¤erence between a GARCH and a stochastic volatility

model. Both approaches, however, provide an empirical device to assess the existence of

default clustering channels, such as the exposure to macroeconomic and/or �nancial factors,

and the impact of past default events.

Finally, it is worth noticing that in a recent paper, Koopman, Lucas and Schwaab (2012)

model default counts in a similar fashion to Azizpour et al. (2015), except that they replace

the baseline Poisson distribution with a negative binomial distribution (see also Koopman,

Lucas and Schwaab, 2014). The underlying parameters of this discrete distribution are then

modelled as a time-varying, depending on underlying economic factors and past defaults,

similar to what we do here.

2.2 Contagion and systematic risk within PARX

Through the lens of the PARX model, we can di¤erentiate between "systematic" risk, where

the default probability of a given �rm is a¤ected by a set of common economic and �nancial

risk factors, and feedback e¤ects (or "contagion"), where current number of defaults a¤ect

the probability of other �rms�future defaults, conditionally on the common factors. More
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speci�cally, and again focusing on the PARX(1; 1) model for notational convenience, we may

interpret
P1

i=1 �
i�1
1 f (xt�i; 
) in (4) as the risk component attributable to common macroeco-

nomic and �nancial factors, while �1
P1

i=1 �
i�1
1 yt�i captures possible feedback e¤ects. More

generally, one can interpret the value of
Pmaxfp;qg

i=1 f�i + �ig, when
Pmaxfp;qg

i=1 �i > 0, as a

measure of the level of dynamic contagion, since large values of
Pmaxfp;qg

i=1 f�i + �ig imply
that past defaults have a large impact on current default probabilities, after controlling for

the covariates xt. In the extreme case when �1 + :::+ �p = 0, the model implies conditional

(on xt�1) independence between current and past defaults.

It should be pointed out that our de�nition of contagion is speci�c to the PARX model

and other de�nitions made in terms of alternative models for defaults can be found in the

literature. It is worthwhile noting that Das et al. (2006) and Lando and Nielsen (2010)

do not provide a precise de�nition of contagion: rather, they merely test for whether the

aforementioned �doubly stochastic� assumption is supported by data or not. Conditional

on all relevant covariates/risk factors having been included in their model, they attribute

rejection to the presence of contagion. This is a very broad de�nition which basically labels

any type of deviations from the �doubly stochastic�assumption as contagion. In contrast, we

here, more precisely de�ne it as the situation where past defaults a¤ect current defaults. This

measure broadly corresponds to the so-called �feedback channel�in the model of Azizpour

et al. (2015), as discussed earlier.

Our measure of contagion may in some situations be misleading. First, it relies on

the assumption that all relevant covariates, xt, are available and so observed. If not all

relevant covariates have been included, the model will be misspeci�ed and the estimated

parameters su¤er from biases. In particular, in this situation, we expect the estimated ��s to

be upward biased since the component
Pp

i=1 �iyt�i in eq. (2) will soak up the unexplained

time series dependence generated by the missing covariate. Again, this is not speci�c to

our approach, with the same issue being present in the framework of Das et al. (2006) and

Lando and Nielsen (2010), among others. In fact, one of the main points of Lando and

Nielsen (2010) is that by changing the speci�cation of the �rm-speci�c intensity employed

by Das et al. (2006), the contagion e¤ects reported in Das et al. (2006) vanish. Second,

the above measure ignores feedback e¤ects from defaults to covariates: Suppose that xt is

a¤ected by past defaults; in this case past defaults will a¤ect xt which in turn will a¤ect

future defaults. That is, contagion may take place indirectly through covariates. So to get

a complete picture of contagion, we would need to specify a dynamic model for xt that

incorporates potential dependence on lagged values of yt.
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3 Properties of PARX processes

In this section we provide su¢ cient conditions for a PARX process to be stationary and

ergodic with polynomial moments of a given order. This result in turn gives us access to

a LLN and CLT for (yt; xt) which will be used to analyze the asymptotic properties of the

MLE in Section 4.

The analysis is carried out by applying results on so-called � -weak dependence, hence-

forth weak dependence, recently developed in Doukhan and Wintenberger (2008). Weak

dependence is a stability concept for Markov chains that implies stationarity and ergodicity

and so allows us to establish, amongst other things, a (uniform) LLN for the process. It

is related to alternative concepts of stability and mixing of time series such as (geometric)

ergodicity (see, for example, FRT) but it is simpler to verify for discrete-valued data. Chris-

tou and Fokianos (2013) employ the same techniques in the analysis of a class of negative

binomial time series models.

Weak dependence basically requires that the time series satis�es a certain Lipschitz con-

dition (in the Ls-norm, s � 1). To establish this property for the PARX model, it is useful
to rewrite the Poisson model (1) in terms of an i.i.d. sequence of Poisson processes with

unit intensity, see FRT, p.1431. Speci�cally, for each t let Nt (�) be a Poisson process of unit
intensity. Since for any u > 0, the number of events Nt(u) in the interval [0; u] is distributed

as a Poisson random variable with intensity u, we can restate (1) in terms of Nt (�) as

yt = Nt (�t) . (8)

where Nt(�) is i.i.d. over time. We complete the model by imposing a Markov-structure on
the set of covariates; that is,

xt = g (xt�1; "t) ; (9)

for some function g (x; ") and with "t being an i.i.d. error term. The above structure could be

generalized to xt = g (xt�1; ::::; xt�m; "t) for some m � 1, thereby allowing for more �exible
dynamics of the covariates included in the model; see the discussion in Section 2. However,

we maintain eq. (9) for simplicity in the following.

We then impose the following assumptions on the complete model.

Assumption 1 (Markov) The innovations "t and Nt (�) are jointly i.i.d. over time.

Assumption 2 (Exogenous stability) E [kg (x; "t)� g (~x; "t)ks] � � kx� ~xks, for some
� < 1, and E [kg (0; "t)ks] <1, for some s � 1.

Assumption 3 (PARX stability) (i)
Pmax(p;q)

i=1 (�i + �i) < 1 and (ii) jf (x; 
)� f (~x; 
)j �
L kx� ~xk, for some L > 0.
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Assumption 1 implies that (yt; xt) can be embedded in a Markov chain and so we can

employ the theory of weak dependence. Notice that Assumption 1 does not require "t and

Nt (�) to be independent; on the contrary, contemporaneous dependence between current
counts and innovations to the exogenous variables is allowed. Assumption 2 imposes a

Lipschitz condition on g (x; ") w.r.t. x which is satis�ed for many popular time series models

such as (stable) linear autoregressive ones. This assumption is used to show, as a �rst step,

that xt is weakly dependent. Finally, Assumption 3(i) implies that the function L (y; �) =

! +
Pp

i=1 �iyi +
Pq

i=1 �i�i, where y = (y1; :::; yp) and � = (�1; :::; �q), is Lipschitz with

Lipschitz coe¢ cient
Pmax(p;q)

i=1 (�i + �i) smaller than one. It is identical to the conditions

imposed in FRT for the Poisson autoregressive model (without exogenous regressors and with

p = q = 1) to be stationary. Assumption 3(ii) restricts how xt can enter the Poisson intensity;

it requires f to be Lipschitz and so excludes certain functions, such as the exponential one.

This assumption will, however, be weakened at the end of this section.

Together the three assumptions imply that the PARX model admits a stationary and

weakly dependent solution, as shown in the following theorem.

Theorem 1 Under Assumptions 1�3, there exists a weakly dependent stationary and ergodic
solution to eqs. (1)-(2) and (9), which we denote X�

t = (y
�
t ; �

�
t ; x

�0
t )
0, satisfying E [kX�

t k
s] <

1 with s � 1 given in Assumption 2.

The above theorem complements the results of FRT, who derive su¢ cient conditions

for an approximate Poisson Autoregression to be geometrically ergodic. We here allow for

exogenous variables to enter the model, and provide su¢ cient conditions for weak dependence

directly for this extended model.

One particular consequence of the above theorem is that the expected long-run number

of defaults equals

E[yt] = E[�t] = � =
! + E [f (xt�1)]

1�
Pmax(p;q)

i=1 (�i + �i)
,

and furthermore, that Var[yt] > E[yt]. Thus, by including past values of the response as

well as covariates in the evolution of intensity, PARX models generate overdispersion in

the marginal distribution, a feature that is prominent in many count time series, including

corporate defaults.

One further consequence of Theorem 1 is that it gives us access to the (weak) LLN for

stationary and ergodic processes, T�1
PT

t=1 h (X
�
t )

P! E [h (X�
t )] for any function h (�) of

Xt = (yt; �t; x
0
t)
0, provided E[jjh(X�

t )jj] < 1. In the asymptotic theory of the proposed
estimators, the computation of the likelihood function is based on a set of �xed initial values

for the Poisson intensity. In order to analyze the asymptotic behavior of the likelihood

function in this setting, we need to generalize the LLN result to hold for any solution with
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arbitrary initialization. This extension is stated in the following lemma due to Kristensen

and Rahbek (2015):

Lemma 1 Let fXtg, t = 0; 1; 2:::, be a process with arbitrary initial value X0 and, for t � 1,
satisfying the equation Xt = F (Xt�1; �t) with �t and i.i.d. sequence. Moreover, assume that

E [kF (x; �t)� F (~x; �t)k
s] � � kx� ~xk and E [kF (0; �t)k

s] < 1 for some s � 1. Then, for
any function h (x) satisfying (i) kh (x)k1+� � C (1 + kxks) for some C; � > 0 and (ii) for

some c > 0, there exists Lc > 0 so that kh (x)� h(~x)k � Lc kx� xk for kx� ~xk � c, it holds

that T�1
PT

t=1 h (Xt)
P! E [h (X�

t )].

Remark 1 The above lemma can be used to establish a Martingale CLT. Let futg be a
seqience satisfying E [utjFt�1] = 0 and E [utu0tjFt�1] = h (Xt�1) w.r.t. some �ltration Ft,
where fXtg and h satisfy the conditions of Lemma 1. It then holds that

1p
T

TX
t=1

ut
d! N (0; E [h (X�

t )]) : (10)

This result follows readily from standard CLT for stationary martingale di¤erences (see e.g.

Brown, 1971). This CLT proves to be important for the asymptotic analysis of the maximum

likelihood estimator provided in the next section. �

We end this section by weakening the Lipschitz condition in Assumption 3, since this

rules out some relevant transformations f (xt) of xt, such as the speci�cation in (3) with

fi (xi) = exp (xi) for some 1 � i � dx. Such transformations can be handled by introducing

in the asymptotic analysis the following truncated intensity

�ct = ! +

pX
i=1

�iy
c
t�i +

qX
i=1

�i�
c
t�i + f (xt�1; 
) I fkxt�1k � cg , (11)

for some cut-o¤ point c > 0, and with yct the corresponding Poisson process. We can then

relax f (x; 
) to be locally Lipschitz in the following sense:

Assumption 3�Assumption 3 holds with condition (ii) replaced by the following: (ii�) for
all c > 0, there exists some Lc <1 such that

jf (x; 
)� f (~x; 
)j � Lc kx� ~xk ; kxk ; k~xk � c.

By replacing Assumption 3 with Assumption 3�we now obtain, by identical arguments

as in the proof of Theorem 1, that the truncated process has a weakly dependent stationary

and ergodic solution. While this approach is similar to the approximation of Poisson AR

process as used in FRT, the reasoning here is di¤erent. In FRT, an approximating process

12



was needed in order to establish geometric ergodicity of the Poisson GARCH process, while

here we introduce the truncated process in order to handle the often applied practice of

introducing non�bounded or exponential transformations of the regressors in the model.

In the next Lemma we formally prove that, as c!1, the truncated process approximates
the untruncated one (c = +1).

Lemma 2 Under Assumptions 1-3�together with E [f (x�t )] <1,

jE [�ct � �t]j = jE [yct � yt]j � �1 (c) ,

E
�
(�ct � �t)

2� � �2 (c) , E
�
(yct � yt)

2� � �3 (c) ,

where �k (c)! 0 as c! +1, k = 1; 2; 3.

The above result is akin to Lemma 2.1 in FRT. The additional assumption of E [f (x�t )]

being �nite needs to be veri�ed on a case-by-case basis. For example, with fi (xi) = exp (xi),

then this assumption holds if x�t has e.g. a Gaussian distribution, or some other distribution

for which the moment generating function, or Laplace transform, is well-de�ned.

Remark 2 The truncation argument used here is merely a theoretical device to prove that
LLNs and CLTs as the one given in Remark 1 above also hold in the presence of non-Lipschitz

link functions such as the exponential function. In empirical applications it is therefore not

required to truncate the conditional intensity equation as done in (11).

4 Estimation and Forecasting

In this section, we describe how the PARX model can be estimated by maximum likelihood

and employed for forecasting. We also provide an asymptotic theory for the estimated

parameters allowing for statistical inference, and present the results of a small simulation

study investigating the �nite-sample properties of the estimator.

4.1 Estimation

We consider the model for yt as speci�ed in eqs. (1)-(2) with f (x; 
) speci�ed as in eq. (3);

that is, with conditional intensity given by

�t(�) = ! +

pX
i=1

�iyt�i +

qX
i=1

�i�t�i (�) +
dxX
i=1


ifi (xit�1) ;

where � = (!; �0; �0; 
0)0 2 � � (0;1)� [0;1)p+q+dx, with � = (�1; :::; �p)0, � =
�
�1; :::; �q

�0
,

and 
 =
�

1; :::; 
dx

�0
. We let �0 = (!0; �

0
0; �

0
0; 


0
0)
0, where �0 = (�0;1; :::; �0;p)

0, �0 =
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�
�0;1; :::; �0;q

�0
, and 
0 =

�

0;1; :::; 
0;dx

�0
, denote the true, data-generating parameter value.

Notice that the parameter space excludes negative parameter values; this condition (which

resembles the well known non-negativity parameter constraint for GARCH models) is su¢ -

cient (albeit not necessary) for the conditional intensity to be strictly positive. It is also worth

noticing that, in contrast to FRT, we do not require the parameters to be bounded away

from zero1; this condition is particularly important given that, in applications, researchers

are often interested in testing whether a given parameter equals zero.

The conditional log-likelihood function of � in terms of the observations (y1; x0) ; :::; (yT ; xT�1),

given some initial values �0; ��1; :::; �1�q; y0; ::; y1�p and x0, takes the form

LT (�) =
TX
t=1

lt (�) , lt (�) : = yt log �t (�)� �t (�) (12)

where we have left out any constant terms. The maximum likelihood estimator (MLE) is

then computed as

�̂ := argmax
�2�

LT (�) : (13)

In order to analyze the large sample properties of �̂, we impose the following conditions on

the parameters and the exogenous regressors,

Assumption 4 � is compact so that for all � = (!; �; �; 
) 2 �, �i � �Ui , i = 1; :::; q, and

! � !L for some constants !L > 0 and �
U
i > 0 where

Pq
i=1 �

U
i < 1.

Assumption 5 The polynomials A (z) :=
Pp

i=1 �0;iz
i and B (z) := 1�

Pq
i=1 �0;iz

i have no

common roots; for any a = (a1; :::; ap)
0 6= 0 and g = (g1; :::gdx)

0 6= 0,
Pp

i=1 aiy
�
t�i +Pdx

i=1 gif
�
x�i;t
�
has a nondegenerate distribution.

Assumption 4 imposes weak restrictions on the parameter space; these are similar to the

ones imposed in the analysis of estimators of GARCH models and rule out ��s greater than

one (for which �t (�) is explosive) and !�s equal to zero. The latter is used to ensure that

�t (�) is bounded away from zero.

Assumption 5 is an identi�cation condition which is similar to the one found for GARCH

models with exogenous regressors. The �rst part is the standard condition for GARCH mod-

els (see, e.g., Berkes et al, 2003), while the second part rules out that the exogenous covariates

are colinear with each other and the observed count process (see Han and Kristensen, 2014,

for a similar condition).

Under this assumption, together with those used earlier to establish stationarity and

existence of moments, we obtain the following asymptotic result for the MLE conditional on

the initial values.
1Speci�cally, FRT requires �i � �L > 0 and �i � �L > 0 for some constants �L and �L.
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Theorem 2 Suppose Assumptions 1�5 hold with s � 2 and � = �0. Then, �̂ is consistent.

Furthermore, if �0 2 int�,

p
T (�̂ � �0)

d! N(0; H�1 (�0)); H (�) := �E
�
@2l�t (�)

@�@�0

�
,

where l�t (�) denotes the likelihood function evaluated at the stationary solution.

Remark 3 If the model is misspeci�ed, we expect the asymptotic properties of the MLE to
remain correct except that �0 is now the pseudo-true value maximizing the pseudo-likelihood

and the asymptotic variance takes the well-known sandwich form H�1 (�0) 
 (�0)H
�1 (�0),

where


 (�) = E

�
@l�t (�)

@�

@l�t (�)

@�0

�
;

see Besag (1975), White (1982) and Gourieroux, Monfort and Trognon (1984). �

Remark 4 The assumption �0 2 int� rules out cases where some of the parameters are zero.
We detail how this assumption can be relaxed at the end of this section. The requirement on

s, as de�ned in Assumption 2, is used to ensure that the likelihood function has a well-de�ned

limit and that the moments in the information matrix H (�) exist. �

The above theorem generalizes the result of FRT to allow for estimation of parameters

associated with additional regressors in the speci�cation of �t. It is established under the

assumption that f is globally Lipschitz as stated in Assumption 3. By combining the argu-

ments in FRT with Lemma 2, the asymptotic result can be extended to allow f to be locally

Lipschitz, see Assumption 3�. This is proved in the following theorem.

Theorem 3 Under Assumptions 1�3� and 4�5, and if E[fi (x�it)] < 1, i = 1; :::; dx, the

conclusions of Theorem 2 remain valid.

Remark 5 The proof of Theorem 3 is based on the following auxiliary likelihood for the

approximating (or, truncated) model:

LcT (�) =
TX
t=1

lct (�) , where lct (�)=yt log �
c
t (�)� �ct (�) ,

where the truncated intensity �ct is de�ned as in (11). Then, it immediately follows that

the results of Theorem 2 holds for the QMLE based on LcT (�), �̂
c
say. Finally, as the

approximating likelihood function can be made arbitrarily close to the true likelihood as

c ! 1, we are able to demonstrate that Assumption 3 in Theorem 2 can be replaced by

Assumption 3�.
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It will often be of interest to investigate if some of the elements of � are zero, as for

example �i = 0, �i = 0 or 
i = 0. In order to allow for this, where under the null the

parameter vector � is on the boundary of the parameter space �, we complement the results

of Theorems 2 and 3. To do so, we can apply the general theory of Andrews (1999), see

also Demos and Sentana (1998) and Francq and Zakoian (2009), to obtain the following

corollary where we state this explicitly for the case of testing one parameter equal to zero

(more general cases of multiple parameters on the boundary can be handled as in Francq and

Zakoian, 2009). Here, we denote the standard t statistic for the null hypothesis H0 : �i0 = 0

against the composite alternative H1 : �i0 > 0 with ti =
p
T �̂i=�̂ii, where �̂

2
ii is a consistent

estimator of the i-th diagonal element of H�1 as de�ned in Theorem 2. For instance, �̂2ii can

be taken as the i-th element of the diagonal of H�1
T (�̂), where

HT (�) := �
1

T

TX
t=1

1

�t (�)

�
@�t (�)

@�

��
@�t (�)

@�

�0
.

The likelihood ratio test for the same null hypothesis is denoted by LRi. The following

corollary of Theorem 2 holds under the null hypothesis.

Corollary 1 Under Assumptions 1-3�and 4�5 and H0 with �j0 6= 0 for all j 6= i,

ti
d! max f0; Zg ; (14)

LRi
d! (max f0; Zg)2; (15)

where Z is standard normally distributed.

Remark 6 For a given signi�cance level � 2 (0; 1=2), the (1� �) quantile of the asymptotic
distribution in (14) equals the (1� 2�) quantile of the standard normal distribution. There-
fore, a standard one-sided t test is (asymptotically) valid in this framework. Similarly for

the LR statistic, for any � 2 (0; 1=2) the (1 � �) quantile of the asymptotic distribution in

(15) equals the (1� 2�) quantile of the �2 (1) distribution. �

4.2 Finite Sample Performance

In this section we present results from a small simulation study aimed at evaluating the

�nite-sample performance of the MLE presented in the previous section. We consider the

PARX(1,1) model (1) with conditional intensity given by

�t = ! + �yt�1 + ��t�1 + 
 exp(xt�1) ;

investigation of the small sample properties of the estimator in higher order models is left

out. The use of an exponential link function is motivated by the empirical application of
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Section 6, where this is employed for the log-realized volatility. This particular choice of

the link function is covered by our theoretical results, cf. Assumption 3�and Theorem 3 of

Section 3.

We examine the performance of the MLE under two di¤erent data generating processes

(DGP�s) for the covariate xt.

DGP 1 xt is a stationary autoregressive process, xt = 'xt�1 + "t, with "t �i.i.d.N (0; 1),
initialized at x0 �i.i.d.N (0; 1= (1� '2)); the AR parameter is set to ' = 1=2.

DGP 2 xt is a stationary fractionally integrated process, �d
+xt = "t, where the operator

�d
+ is given by �

d
+zt := �dztI (t � 1) =

Pt�1
i=0 �i (�d) zt�i with �i (v) = (i!)�1(v(v +

1) : : : (v+ i�1)) denoting the coe¢ cients in the usual binomial expansion of (1� z)�v;
"t is i.i.d.N (0; 1) and d = 1=4.

These two DGP�s represent typical time series behavior found in the factors used in

the empirical application. The �rst DGP satis�es the theoretical conditions used in the

asymptotic analysis of the MLE, while the second one does not since it is not a Markov

chain. However, DGP 2 is stationary and we expect that the theory can be extended to

cover non-Markov regressors as long as they are stationary.

Since the distribution of yt is not invariant to the scale of the covariate xt, in each case xt
has been re-scaled by its unconditional variance. We report results for ! = 0:10; � = 0:30;


 = 0:5 and three alternative scenarios for �: � = 0 (no feedback from lagged intensity

to current intensity), � = 0:20 (low persistence) and � = 0:70 (high persistence). In all

cases considered, the model admits a stationary solution, see section 3. Finally, we consider

samples of size T 2 f100; 250; 500; 1000g. For each experiment, the number of Monte Carlo
replications is set to N = 1000.

Results for the case of DGP 1 are presented in Table 1. For each parameter, the mean and

root mean square error (RMSE) of the corresponding estimator are reported. Furthermore,

the p-value obtained from a Kolmogorov-Smirnov (KS) test for the hypothesis of N(0; 1)

distribution of each parameter estimator is reported.

The performance of the MLE for DGP 1 seems largely satisfactory for moderate and

large sample sizes. For samples of T � 250 observations and for all scenarios considered,

the hypothesis of normality of �̂i is never rejected at any conventional signi�cance level. For

samples of T = 100 observations, the degree of persistence of the process (here captured by

the � coe¢ cient) seems to a¤ect the distribution of the estimators. Speci�cally, while in the

case of lowest persistence (� = 0) normality of �̂i is never rejected, in the case of stronger

persistence � = 0:2 (� = 0:7) normality is rejected for the estimated constant term ! at the

1% (10%) signi�cance level. When T = 100 and � = 0:7, normality is also rejected for the

estimated PAR parameters � and �. All these deviations from normality, however, do not
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persist in larger sample sizes. Finally, it is worth noticing that the parameter which delivers

the highest RMSE is the constant term, !.

Next, consider the results for DGP 2 as presented in Table 2. Compared to DGP 1, xt
now has higher persistence. Despite this, for T � 250, with the only exception of the constant
term !, results do not show substantial di¤erences relative to the ones for DGP 1; that is,

the asymptotic N (0; 1) approximation is largely satisfactory. In the case of high persistence

(� = 0:7), normality of !̂ is rejected at the 1% signi�cance level even when T = 1000. This

is consistent with the �ndings of Han and Kristensen (2014) for the GARCH-X model who

also �nd that the intercept is less precisely estimated in the presence of persistent regressors.

[Table 1 and Table 2 about there]

4.3 Forecasting

Once the PARXmodel has been estimated, it can be used to forecast future number of counts,

yt. Forecasting of Poisson autoregressive processes is similar to forecasting of GARCH-

X processes (see, e.g., Hansen et al., 2012, Section 6.2) in that it proceeds in two steps:

�rst, a forecast of the time-varying parameter (conditional variance in the case of GARCH,

conditional intensity in the case of PARX) is obtained. This is then substituted into the

conditional distribution of the observed process yt. Consider �rst the forecasting of �t. A

natural one-step ahead forecast, given available information at time T and parameters �, is

�T+1jT (�) = ! +

pX
i=1

�iyT+1�i +

qX
i=1

�i�T+1�i (�) + f (xT ; 
) : (16)

More generally, a multi-step ahead forecast of �T+h, for some h > 1, can be obtained by

noticing that for any k � 1 the conditional intensity equation for �T+k can be expressed as

�T+k (�) = ! +

maxfp;qgX
i=1

f�i + �ig�T+k�i (�) +
pX
i=1

�i�T+k�i (�) + f (xT+k�1; 
)

where �t (�) := yt��t (�) has (conditionally on the past) zero expectation (as is standard, we
set �i = 0 for i > p and �i = 0 for i > q). By setting �t (�) to its (conditional) expectation

(which is zero) and replacing xT+k�1 by some point forecast xT+k�1jT , we obtain a multi-step

ahead forecast of �T+h through the recursive scheme

�T+kjT (�) = ! +

maxfp;qgX
i=1

f�i + �ig�T+k�ijT (�) + f
�
xT+k�1jT ; 


�
; k = 2; ::::::; h; (17)

with �T+1jT (�) coming from eq. (16), and �T+k�ijT (�) = �T+k�i (�) for k� i � 0. Note that
the above multi-step ahead forecast requires a forecasting model for xt.
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Once we have computed a (point) forecast of the underlying intensity, �T+hjT (�), this

can in turn be used to generate a forecast distribution of yT+h,

P̂ (yT+h = yjFT ) =
�yT+hjT (�) exp

�
��T+hjT (�)

�
y!

; y 2 f0; 1; 2; :::g :

This is related to the well-known concept of density forecasts (see Tay and Wallis, 2000, for

a review) except that we are here working with a discrete-valued distribution. A simple way

of representing the forecast distribution is by reporting the 100(1� �)% prediction interval

(as implied by the forecast distribution) for some � 2 (0; 1). Speci�cally, the (symmetric)
1� � prediction interval takes the form�

Q
�
�=2j�T+hjT (�)

�
; Q
�
(1� �=2)j�T+hjT (�)

��
;

where p 7! Q (pj�) denotes the quantile function of a Poisson distribution with intensity �.

5 Empirical Analysis

The aim of this section is to provide an empirical analysis of US corporate default counts

using PARX models as discussed in Section 2. Speci�cally, by including exogenous regressors

in the intensity speci�cation and by testing whether they cause a signi�cant decrease in the

impact of past default counts, we are able to investigate to what extent autocorrelation (as

well as clustering over time) in default counts depends on common (aggregate) risk factors.

That is, testing the existence of autocorrelation in default counts after correcting for common

risk factors can be viewed as testing the existence of contagion e¤ects over time in the sense

discussed in Section 2.2.

The data set on defaults consist of monthly number of bankruptcies among Moody�s

rated industrial �rms in the United States for the period 1982�2011 (T = 360 observations),

collected from Moody�s Credit Risk Calculator (CRC). Figure 1(a, b), which shows default

counts and the corresponding autocorrelation function, reveals three important stylized facts

of defaults: (i) high temporal dependence in default counts; (ii) existence of default clusters

over time; (iii) overdispersion of the distribution of default counts (the empirical average is

3:51 while the empirical variance is 15:57). It will be shown later in this section that all

these empirical properties are well explained using PARX speci�cations.

[Figure 1(a, b) about here]

The choice of covariates to be included in our PARX models is important, as they are

supposed to represent the common risk factors conditional a¤ecting �rm defaults. Similar
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to Lando and Nielsen (2010), we consider the following �nancial, credit market and macro-

economic variables: Baa Moody�s rated to 10-year Treasury spread (SP ), the number of

Moody�s rating downgrades (DG), year-to-year change in Industrial Production Index (IP ),

Leading Index released by the Federal Reserve (LI), the recession indicator released by the

National Bureau of Economic Research2 (NB).3 Moreover, in order to shed some light on

the possible impact of uncertainty in the �nancial markets on the number of future defaults,

we also consider realized volatility (RV ) on the S&P 500. RV is computed as a proxy of the

S&P 500 monthly realized volatility using daily squared returns (that is, RVt :=
Xnt

i=1
r2i;t

with ri;t denoting the i-th daily return on the S&P 500 index in month t and nt being the

number of trading days in month t).

Since Industrial Production and Leading Index take on both negative and positive values,

we decompose them into their negative and positive parts and let IP (+) := IfIP�0g jIP j,
IP (�) := IfIP<0g jIP j and similarly for LI. This is required in order to ensure non-negativity
of the additive (linear) link function adopted below, see (3) and the discussion in section 5.1.

This gives us a total of eight candidate covariates.

5.1 In-sample Performance

We here provide an analysis for the full sample 1982-2011. Preliminary covariate and lag

selection based on AIC and BIC and signi�cance of the estimated coe¢ cients �using all

eight covariates �suggests the following speci�cation of default intensity:

�t = ! + �1yt�1 + �2yt�2 + ��t�1 (18)

+
1RVt�1 + 
2SPt�1 + 
3DGt�1 + 
4NBt�1 + 
5IP
(�)
t�1 + 
6LI

(�)
t�1;

which is a special case of model (1)-(2) with p = 2, q = 1 and � = �1.

[Table 3 about there]

Table 3 shows the estimation results for the full PARX(2,1) model in (18), along with

the PAR(2,1) model (i.e., the model without covariates) and nested speci�cations based on

2This time series is released by the Federal Reserve Bank of St. Louis interpreting the Business Cycle

Expansions and Contractions data provided by The National Bureau of Economic Research (NBER) at

http://www.nber.org/cycles/cyclesmain.html. A value of 1 indicates a recessionary period, while a value of

0 denotes an expansionary period.
3Data are obtained from the FRED website, provided by the Federal Reserve Bank of St. Louis,

http://research.stlouisfed.org/, except for the number of Moody�s rating downgrades, which we collect from

Moody�s CRC.
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subsets of the six included covariates. For each speci�cation, we report parameter estimates

together with corresponding t statistics as well as standard (AIC and BIC) information

criteria4. Among the various models considered, the preferred PARX model, in terms of

information criteria (AIC and BIC) as well as LR tests, is the one only including realized

volatility and the leading index.

To our knowledge, the link between realized volatility (re�ecting uncertainty in �nancial

markets) and defaults of industrial �rms has not been documented earlier in the literature.

Similarly, signi�cance of the Leading Index highlights a clear link between macroeconomic

factors and corporate defaults, which is not generally found using standard econometric

techniques. For instance, recent empirical results of Du¢ e et al. (2009) and Giesecke et

al. (2011) do not show a signi�cant role of production growth while Lando et al. (2013)

�nd that, conditional on individual �rm risk factors, no macroeconomic covariate seems to

explain signi�cantly individual default intensity. However, once we control for the informa-

tion contained in realized volatility and the negative component of the Leading Index, none

of the other four covariates (NBER recession indicator, interest rate spread, and number of

downgrades) are found to be relevant in predicting future defaults.

We analyze the extent of the feedback from past defaults to current default counts (which

may indicate possible contagion e¤ects, see Section 2.2) by investigating whether by including

covariates, past default counts have a smaller impact, i.e. there is a signi�cant decrease in �̂1
and �̂2 in a given model with covariates (PARX) relative to the corresponding one without

covariates (PAR). As remarked previously in Section 2.2, the (extreme) case of conditional

independence over time would require that �1 and �2 are both zero,5 which would imply that

conditional intensity can fully be explained by past covariates only. Indeed, the inclusion

of covariates leads to a decrease in �̂1 + �̂2 for almost all the models considered. On the

other hand, the null hypothesis H0 : �1 + �2 = 0 is rejected for all speci�cations. Therefore,

although part of the dependence over time in default counts can be explained by the set of

covariates considered, a strong link between conditional intensity and past default counts

remains. This result provides �conditional on correct choice of the exogenous regressors �

strong evidence of contagion as de�ned in Section 2.2.

We run a number of model (mis)speci�cation tests on the selected model. First, to check

in-sample �t, we plot in Figure 2 the actual default counts (yt) together with the �tted

4We do not report the LR statistic of each model relative to the maintained (general) PARX model

because the null hypothesis imposes that a subset of the parameter vector lies on the boundary of the

parameter space and, therefore, the null asymptotic distribution of the LR statistic is non-standard.
5It is worth noticing that this approach is related to empirical studies aiming at measuring the impact

of covariates, such as the trading volumes, on future volatility using GARCH models (see, for instance,

Lamoureux and Lastrapes, 1990 and Gallo and Pacini, 2000).
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values (ŷt := �̂t = �t(�̂)) and the corresponding con�dence bands (at the 95% nominal level)

based on the underlying Poisson distribution; see Section 4.3. As can be seen from this

�gure, the model captures the default counts dynamics well. The associated generalized,

or Pearson, residuals (see Gourieroux et al., 1987; Kedem and Fokianos, 2002) �formally

de�ned as êt = �̂
�1=2
t (yt � �̂t) (t = 1; :::; T ) also appear to be uncorrelated over time; see

the corresponding correlogram and correlogram of the squares in Figure 3 (using 12 lags,

the corresponding Ljung-Box test has p-value 0:661 when computed using êt and 0:373 when

computed using ê2t ; similar results are obtained for other choices of the number of lags).

We also evaluate the goodness of �t of the assumed Poisson conditional distribution of yt
by comparing the observed zero counts with the corresponding model-implied probabilities,

P̂ (yt = 0jFt�1) = e��̂t (t = 1; :::; T ), i.e. the (conditional on the past) probability that a

Poisson(�̂t) random variable equals zero under the selected model speci�cation. Figure 4

shows the relation between the observed zeros and such model-implied probabilities. There

is a clear correspondence between periods characterized by high number of zeros and the

conditional probability of observing yt = 0, given the speci�ed model.

As a �nal assessment of the adequacy of the model, following Davis and Liu (2014) we

assess whether the randomized probability integral transform (PIT) is uniformly distributed

on [0; 1] using a standard Kolmogorov-Smirnov test. From the associated p-value (about

0:11) it can be seen that our preferred model passes the PIT test.

5.2 Out-of-sample Performance

We found in the previous subsection that the preferred model does a good job in terms of

in-sample �t. To further examine the performance of the PARX model, we also perform

a pseudo-out-of-sample forecasting exercise for the preferred model (the PARX(2; 1) with

RV and LI(�) as included covariates) and, for comparison, the PAR(2; 1) model (where no

covariates are included). The forecasting exercise is carried out along the lines of, for example,

Stock and Watson (1996): we split the sample in two with the �rst part of the sample of size

T0 (= 120), f(yt; xt�1) : t = 1; :::; T0g being used for initial estimation of the model, and the
remaining observations f(yt; xt�1) : t = T0 + 1; :::; Tg being used for a forecasting exercise
described below.

Let

�̂t = argmax
�
Lt (�)

be the MLE using observations up to time t � T0, where

Lt (�) =
tX
s=1

ls (�) , ls (�) : = ys log �s (�)� �s (�) :

22



Given �̂t, we then compute the corresponding one-step-ahead forecast of �t+1 using only

information up to time t, �̂t+1jt = �t+1(�̂t). We then repeat the above exercise for t =

T0 + 1; :::; T , thereby providing us with a time series of estimators, f�̂t : t = T0; :::; Tg, and
corresponding intensity forecasts, f�̂t+1jt : t = T0; :::; Tg. This procedure mimics what a
forecaster would obtain as (s)he starts forecasting at time T0 and updates his (her) estimates

and forecasts as more data arrive. Given the forecast path �̂t+1jt, we evaluate the performance

of the preferred PARX speci�cation and the corresponding PAR model through two standard

forecasting loss functions: The �rst is the average mean-square forecasting error,

MSFEt =
1

t� T0

tX
s=T0

(ys+1 � �̂s+1js)
2; t = T0; :::; T;

and the second is the average (logarithmic) forecasting score (FS), see e.g. Amisano and

Giacomini (2008),

FSt =
1

t� T0

tX
s=T0

(ys+1 log �̂s+1js � �̂s+1js); t = T0; :::; T:

The MSFE loss function only measures how well a given PARX model does in terms of

forecasting the level of defaults, while FS is a more comprehensive measure that evaluates

how well the model does in terms of forecasting the distribution of defaults. For both

measures, small (large) values indicate good (poor) forecasting performance. In Figure 5,

we plot MSFEt (left panel) and FSt (right panel) as functions of time for the PARX and

PAR model. We see that in terms of MSFE the two models perform very similarly with

the MSFE for both models being around the same level throughout the chosen forecasting

period. On the other hand, in terms of FS, the PARX model clearly dominates, providing

much better probability forecasts compared to the PAR model. In conclusion, we �nd that if

the goal is to forecast the level of defaults, covariates are not so important, while if the aim

is to provide a good forecast of the default count distribution RV and LI(�) are important

predictors.

[Figure 5 about there]

5.3 Structural Instabilities

As is also evident from Figure 5, the forecasting performances of both the PARX and PAR

model vary a lot. In particular, the forecast performances of the two models in terms of

FS deteriorate radically around the time when the Dot-com bubble burst in the late 1990�s

and again around the onset of the most recent �nancial crisis in 2008. If the PAR(X) model
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was stable over time, we should expect MSFEt and FSt to also remain stable over time.

This is not the case, however, indicating the presence of structural instabilities in the model

parameters during the sample period.

To formally test whether parameters are indeed varying over time in our sample, we

compute the Nyblom (1989) test statistic (see eq. (3.1) in Nyblom, 1989) for the PARX

model and clearly reject the null of parameter constancy using the critical values in Table 2

of Nyblom (1989). To further investigate the underlying causes for parameter instability in

the preferred PARX model, we plot in Figure 6 the time series of rolling-window parameter

estimates, f�̂tgTt=T0. These graphs provide further evidence of structural breaks during the
two most recent �nancial crises, with all parameter estimates changing radically during these

periods. In particular, the impacts of lagged default counts, RV and LI(�) on the default

intensity change dramatically over the 20 year forecasting period.

[Figure 6 about there]

Based on these �ndings, we split the full sample into three subsamples, 1982-1998, 1998-

2007, and 2007-2011, and for each subsample re-do model selection (based on the same

approach used for the full sample, see above) and estimation. In Table 4, we report the

preferred model with corresponding estimated parameters for each subsample. In the early

period (1982-1998), all macro factors (incl. RV and LI(�)) are irrelevant and past default

counts have a strong explanatory power (�̂1 + �̂2 + �̂ = 0:65). This may indicate that

during this period, default clustering mainly depends on the clustering channel caused by

past defaults, as well as on possible frailty factors (see section 2.2 and Azizpour et al., 2015).

During the second subsample, the feedback from past default counts to current defaults is

even stronger (�̂1+�̂ = 0:99) and the �tted model is close to the boundary of the stationarity

region established in Theorem 1 . Finally, during the Great Recession (2007-2011), we �nd

that RV and LI(�) are very strong explanatory variables and there are no contagion e¤ects

(�̂1 + �̂2 = 0:00). Finally, for comparison, we �t a PAR(2; 1) model to the third subsample

and obtain the following parameter estimates, !̂ = 0:00 (0.00), �̂1 = 0:43 (5.22), �̂2 = 0:18

(1.14), and �̂ = 0:39 (3.07). This shows that by, incorrectly, leaving out RV and LI(�) from

the model, one will mistake systematic risk for contagion e¤ects.

[Table 4 about there]

We also note that the estimated models for the three regimes match well with the pa-

rameter estimates we reported for the full sample, which are basically an average over the

24



estimates reported for each of the three di¤erent regimes. For instance, the full sample es-

timate of � is about 0.52 (see Table 3), which is close to the average of the estimated � in

the three subsample, i.e. 0:0 (1982�1998 subsample), 0:79 (1998�2007 subsample) and 0:82

(2007�2001).

Ideally, we would like to �nd a relevant regressor that captures these structural breaks.

Since the breaks occur at the onsets of the two latest �nancial crises, a good choice would

appear to be an indicator (possibly non-stationary) for �nancial crises, which we leave for

future research.

6 Conclusions

In this paper, we have developed a class of Poisson autoregressive models with exogenous

covariates (PARX) for time series of counts. Since PARX models allow for overdispersion

arising from persistence, they are suitable to model count time series of corporate defaults,

which are strongly correlated over time and exhibit high peaks, known as default clustering.

Our empirical analysis, where we use the PARX framework to model US default counts

dynamics, reveals that our model is capable to capture the dynamic features of default

counts, including the pronounced default clustering. PARX models also allow to investigate

to what extent dependence over time in default counts can be attributed by the various

default clustering channels, such as exposure to macroeconomic and �nancial factors and the

impact of past default events. We �nd that the lagged realized volatility of �nancial returns,

together with macroeconomic variables, signi�cantly explains the number of defaults. A

full sample analysis shows that past default counts are important explanatory variables of

current default counts, even when the exogenous covariates are included; this may indicate

that at the aggregate level, the so-called �conditional independence� hypothesis of �rm

defaults is not supported by the data. However, a further econometric investigation reveals

that such dependence is not constant over time. Speci�cally, while in the period leading

up to the Great Recession (1982�2006) all macro factors considered are not signi�cant and,

accordingly, past default counts are the main default clustering channel. However, during

the Great Recession (2007-2011), we �nd that �nancial volatility and macroeconomic factors

become strong explanators of defaults, while the feedback from past default counts (captured

by the parameters linking current intensity to past default counts) become weaker, in fact

absent. The latter result indicates that while in general current defaults do indeed a¤ect

the probability of other �rms defaulting in the future, in recent years economic and �nancial

factors at the macro level are explain most of the correlation of US �rms defaults over time.

It is, however, important to recall that, as for all econometric analyses of contagion and

default clustering channels, also ours could be a¤ected my misspeci�cation error due to the
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fact that our chosen set of covariates might not be exhaustive. Therefore, the results should

be interpreted with caution. Similarly, our analysis also ignores possible feedback e¤ects from

past default counts to the set of covariates. As suggested in section 2.2, a more complete

analysis would require us to specify a multivariate model where past default counts might

a¤ect the covariates xt.

Further issues are left to future research. First, our analysis is limited to defaults of U.S.

industrial �rms. It would be interesting to assess whether similar results characterize di¤erent

sectors (e.g., �nancial) and/or countries. Second, the PARX speci�cations developed in this

paper are univariate, in the sense that they can be used to model a single time series of default

counts. The multivariate PARX case, which would permit to analyze the cross linkages

between di¤erent time series of defaults, represents an obvious extension of the econometric

theory proposed in this paper and is currently under investigation by the authors.

A Appendix

A.1 Proof of Theorem 1

We �rst verify that the process Zt := (yt; xt)
0 satis�es the conditions of Corollary 3.1 in

Doukhan and Wintenberger (2008) from which the �rst part of the theorem will follow. To

simplify the notation, assume without loss of generality p = q in the following. With � (z) :=

1 �
Pq

i=1 �iz
i, z 2 C, note that Assumption 3(i) implies that � (z)�1 =  (z) :=

P1
i=0  iz

is well-de�ned for jzj � 1 + �, for some � > 0, with  i exponentially decreasing and de�ned

recursively by  0 = 1 and  n =
Pn

i=1 �i n�i for n � 1. Next, with � (z) :=
Pq

i=1 �iz
i�1,

note that �t de�ned in (2) can be rewritten in terms of the backshift operator B as

� (B)�t = ! + � (B) yt�1 + f (xt�1; 
) ;

such that with � := � (1), the conditional intensity �t of the PARX process yt can be

represented in terms of f(yt�i; xt�i)gi�1 as

�t = !=� +  (B) [� (B) yt�1 + f (xt�1; 
)] = !=� + � (B) yt�1 +  (B) f (xt�1; 
) ;

where � (z) :=  (z)� (z) =
P1

i=1 �iz
i and we have used that xt can be extended to the

in�nite past since it is a weakly dependent Markov chain by Assumptions 1-2. Thus, Zt
satis�es Zt = F (Zt�1; Zt�2; ::::; �t), where

F (Zt�1; Zt�2; ::::; �t) = (Nt (!=� +  (B) [� (B) yt�1 + f (xt�1; 
)]) ; g (xt�1; "t)) ;

and �t = (Nt; "t)
0 is an i.i.d. sequence by Assumption 1.
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De�ne the norm of Zt as kZtkw = jytj + wx kxtk ; for some wx > 0. Then, for any two

deterministic sequences fzt�igi�1 and f~zt�igi�1, we obtain:

E [kF (zt�1; zt�2; :::; �t)� F (~zt�1; ~zt�2; :::; ; �t)kw]
= E

h���N0 (�t)�N0(~�t)
���i+ wxEt�1 [kg (xt�1; "t)� g (~xt�1; "t)k]

�
1X
i=0

�i jyt�1�i � ~yt�1�ij+
1X
i=0

 i jf (xt�1�i; 
)� f (~xt�1�i; 
)j+ wx� kxt�1 � ~xt�1k

�
1X
i=0

�i jyt�1�i � ~yt�1�ij+ �L

1X
i=0

 i kxt�1�i � ~xt�1�ik+ wx� kxt�1 � ~xt�1k

=
1X
i=0

�i jyt�1�i � ~yt�1�ij+ wx

(
�L

wx

1X
i=0

 i kxt�1�i � ~xt�1�ik+ � kxt�1 � ~xt�1k
)

= :
1X
i=1

ai kzt�i � ~zt�ikw ;

where we have used that �i � 0 and  i � 0, i = 1; 2; ::: The coe¢ cients faigi�1 de�ned
above are given by a1 = maxf�0; �Lwx 0 + �g and ai = maxf�i�1; �Lwx i�1g; i � 2. Eq. (3.1)
of Doukhan and Winterberger (2008) is then satis�ed with � (z) = kzkw if

P1
i=1 ai < 1.

This inequality will in turn hold if (i) � (1) =
P1

i=0 �i < 1 and (ii) �L
wx

P1
i=0  i + � <

1. By the identity � (z) = � (z) � (z) it follows that � (1) = � (1) ��1 < 1 if and only ifPq
i=1 (�i + �i) < 1 and so (i) is satis�ed. Regarding (ii), we can choose wx arbitrarily large

and so this inequality will hold if � < 1 which holds by Assumption 2. We have now veri�ed

the conditions of Corollary 3.1 in Doukhan and Wintenberger (2008) which in turn implies

that fZtg is weakly dependent.
To show the second part of the theorem, observe that E [jy�t js] =

Ps
j=0

�
s
j

�
E[(��t )

j] where,

with �yt = (yt; :::; yt�p+1)
0 and ��t = (�t; :::; �t�p+1)

0,

E[��t ] =

pX
i=1

(�i + �i)E [�
�
t ] + 
E

�
f
�
x�t�1

��
+ !;

and

(��t )
s =

sX
j=0

�
s

j

��
��y�t�1 + ���

�
t�1
�j �

! + 
f
�
x�t�1

��s�j
:

Hence,

E[(��t )
s] =

sX
j=0

�
s

j

�
E
h�
��y�t�1 + ���

�
t�1
�j �

! + 
f
�
x�t�1

��s�ji
= E

��
��y�t�1 + ���

�
t�1
�s
+ E

�
! + 
f

�
x�t�1

��s�
+ E

�
rs�1

�
�y�t�1;

��
�
t�1; f

�
x�t�1

���
;
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with rs�1 (y; �; z) being an (s� 1)-order polynomial in
�
�y; ��; z

�
and soE

�
rs�1

�
�y�t�1;

��
�
t�1; f

�
x�t�1

���
<

1 by induction. Moreover, E
��
! + 
f

�
x�t�1

��s�
< 1 by applying Doukhan and Winten-

berger (2008, Theorem 3.2) on xt together with Assumption 2. Thus, we are left with

considering terms of the form

E
��
�iy

�
t�1�i + �i�

�
t�1�i

�s�
=

sX
j=0

�
s

j

�
�ji�

s�j
i E

h�
y�t�1�i

�j �
��t�1�i

�s�ji
=

sX
j=0

�
s

j

�
�ji�

s�j
i

jX
k=0

�
j

k

�
E
h
(��t )

s+(k�j)
i

=
sX
j=0

�
s

j

�
�ji�

s�j
i E [(��t )

s] + C

= (�i + �i)
sE [(��t )

s] + C;

where, by induction, E[(��t )
k] <1, for k < s. Collecting terms,

E [(��t )
s] =

"
pX
i=1

(�i + �i)

#s
E [(��t )

s] + ~C;

which, since
Pp

i=1 (�i + �i) < 1 (Assumption 3), has a well-de�ned solution.

A.2 Proof of Lemma 1

See Kristensen and Rahbek (2015).

A.3 Proof of Lemma 2

The proof mimics the proof of Lemma 2.1 in FRT. We set p = q without loss of generality,

such that by de�nition

�ct � �t =

pX
i=1

�
�i
�
yct�i � yt�i

�
+ �i

�
�ct�i � �t�i

��
+ 
ect ;

with ect := f (xt�1) I (kxt�1k � c). Hence E [�ct � �t] =
Pt�1

i=0

�Pp
j=1

�
�j + �j

��i
E
�
ect�i

�
;

and as
Pp

j=1

�
�j + �j

�
< 1,

��E �ect�i��� � �1 (c) with �1 (c) ! 0 as c ! 1, the �rst result
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holds with �1 (c) := �1 (c) =
�
1�

Pp
j=1

�
�j + �j

��
. Next,

E (�ct � �t)
2 =

pX
i=1

�2iE
�
yct�i � yt�i

�2
+ �2iE

�
�ct�i � �t�i

�2
+ 
2E (ect)

2

+ 2

pX
i;j=1;i<j

�i�jE
�
�ct�j � �t�j

� �
yct�i � yt�i

�
+ 2

pX
i=1

�iE
��
�ct�i � �t�i

�

ect
�
+ 2

pX
i=1

�i
E
�
ect
�
yct�i � yt�i

��
+ 2

pX
i;j=1;i<j

�i�jE
�
yct�j � yt�j

� �
yct�i � yt�i

�
+ 2

pX
i;j=1;i<j

�i�jE
�
�ct�j � �t�j

� �
�ct�i � �t�i

�
With �ct � �t; and t � s;

E [(�ct � �t) (y
c
s � ys)] = E [E ((�ct � �t) (y

c
s � ys)j Fs�1)]

= E [(�ct � �t)E (Ns [�s; �
c
s])] = E (�ct � �t) (�

c
s � �s) ;

where Fs�1 = F fxk; Nk : k � s� 1g and Nt [�t; �ct ] the number of events in [�t; �ct ] for the
unit-intensity Poisson process Nt: Likewise for �t � �ct . Also observe that, still for t � s;

E [(yct � yt) (y
c
s � ys)] = E [E ((yct � yt) (y

c
s � ys)j Fs�1)]

= E [(yct � yt)E ((y
c
s � ys)j Fs�1)]

= E (yct � yt) (�
c
s � �s) ;

For t � s; note that the recursion for (�ct � �t) above gives,

�ct � �t =

pX
i=1

�
�i
�
yct�i � yt�i

�
+ �i

�
�ct�i � �t�i

��
+ 
ect

=

pX
i=1

�i

(
pX
j=1

�
�j
�
yct�i�j � yt�i�j

�
+ �j

�
�ct�i�j � �t�i�j

��
+ 
ect�i

)

+

pX
i=1

�
�i
�
yct�i � yt�i

�
+ 
ect

�
= :::

=

t�sX
j=1

�
aj
�
yct�j � yt�j

�
+ gjet�j

	
+

pX
j=1

�
cj
�
�cs�j � �s�j

�
+ dje

c
s + hj

�
ycs�j � ys�j

�	
:
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Observe that aj; gj; cj; dj and hj are all summable. Using this, we �nd,

E [(�ct � �t) (y
c
s � ys)] = E

"
t�sX
j=1

�
aj
�
yct�j � yt�j

�
+ gjet�j

�
(ycs � ys)

#

+ E

"
pX
j=1

�
cj
�
�cs�j � �s�j

�
+ dje

c
s + hj

�
ycs�j � ys�j

��
(ycs � ys)

#

Collecting terms, one �nds E
�
(�ct � �t)

2� is bounded by, CPt
j=1  jE

�
ect�j

�2
for some con-

stant C, some  i with
P1

i=1  i <1 and which therefore tends to zero. Finally, using again

the properties of the Poisson process Nt we �nd,

E
�
(yct � yt)

2� � E
�
(�ct � �t)

2�+ jE [�ct � �t]j � E
�
(�ct � �t)

2�+ �1 (c) :

This completes the proof of Lemma 2.

A.4 Proof of Theorem 2

We consider here the case of p = q = dx = 1 and write the model as

�t (�) = ! + �yt�1 + ��t�1 (�) + 
f (xt�1) ;

the following arguments are easily extended to the general case since this is solely complicated

in terms of notation. We show consistency by verifying the general conditions provided in

Kristensen and Rahbek (2005, Proposition 2). Given the LLN established in Lemma 1, these

are easily veri�ed apart from the condition, E [sup�2� l
�
t (�)] <1, and showing identi�cation.

Since �t (�) � !L,

E

�
sup
�2�

l�t (�)

�
� E

�
��t (�0) sup

�2�
log ��t (�)

�
� !L

�

s
E
�
��t (�0)

2�E �sup
�2�

log ��t (�)
2

�
� !L

�

s
E
�
��t (�0)

2��E �sup
�2�

��t (�)
2

�
� 1
�
� !L:

Thus, the right-hand side is �nite if E
�
sup�2� �

�
t (�)

2� < 1. To show this, observe that
��t (�) � ��t

�
�U
�
, where �U = (!U ; �U ; �U) with !U and �U having been chosen as the upper

bounds implied by the compactness assumption on � while �U is de�ned in Assumption 4.

As
Pq

i=1 �
U
i < 1, it follows by the same arguments for existence of moments in the proof of

Theorem 1 that E
h
��t
�
�U
�2i

<1. Regarding identi�cation, we need to show that

L (�) := E [l�t (�)] = E [��t (�0) log �
�
t (�)� ��t (�)]
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has a unique maximum at � = �0. To this end, �rst note that

L (�)� L (�0) = E

�
��t (�0) log

�
��t (�)

��t (�0)

�
+ ��t (�0)� ��t (�)

�
� E

�
��t (�0)

�
��t (�)

��t (�0)
� 1
�
+ ��t (�0)� ��t (�)

�
= 0;

with equality if and only if

��t (�0) = ��t (�) almost surely. (A.1)

The stationary solution can be represented as

��t (�) =
!

1� �
+

1X
i=1

ai (�) y
�
t�i +

1X
i=1

bi (�) f
�
x�t�i

�
;

where ai (�) = ��i�1 and bi (�) = 
�i�1. Suppose now that there exists � 2 � so that

eq. (A.1) holds. We then claim that !0 = ! and ci (�0) = ci (�) for all i � 1, where

ci (�) = (ai (�) ; bi (�)), which in turn implies � = �0. We show this by contradiction: Let

m > 0 be the smallest integer for which ci (�0) 6= ci (�) (if ci (�0) = ci (�) for all i � 1, then
obviously !0 = !). Eq. (A.1) can then be rewritten as

a0y
�
t�m + b0f

�
x�t�m

�
= ! � !0 +

1X
i=1

aiy
�
t�m�i +

1X
i=1

bif
�
x�t�m�i

�
;

where ai := �0�
i�1
0 ���i�1 and bi := 
0�

i�1
0 �
�i�1, i = 1; 2; :::: The right hand side belongs

to Ft�m�1 and so a0yt�m + b0f (xt�m) jFt�m�1 is constant. This is ruled out by Assumption
5.

To establish asymptotic normality we follow Kristensen and Rahbek (2005, proof of

Theorem 2) and analyze the asymptotic behavior of the score and information which is done

below.

A.4.1 Score

The score ST (�) = @LT (�) = (@�) is given by,

ST (�) =

TX
t=1

st (�) , where st (�) =
�

yt
�t (�)

� 1
�
@�t (�)

@�
. (A.2)

Here, with � = (!; �; 
)0 and vt = (1; yt�1; f (xt�1))
0

@�t (�)

@�
= vt + �

@�t�1 (�)

@�

@�t (�)

@�
= �t�1 (�) + �

@�t�1 (�)

@
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In particular, with �t = �t (�0) and _�t = @�t (�) = (@�) �=�0, st (�0) =
_�t(yt=�t�1). The score

function is a Martingale di¤erence sequence w.r.t. the �ltrationFt satisfyingE
�
st (�0) st (�0)

0 jFt�1
�
=

_�t _�
0
t=�t. Note that _�t = (v

0
t; �t�1)

0 + � _�t�1, with _�0 = 0. Thus, by the same arguments as in

the proof of Theorem 1, it is easily checked that the augmented process ~Xt :=
�
X 0
t;
_�
0
t

�0
, with

Xt de�ned in Theorem 1, is weakly dependent with �nite second moments. Furthermore,

since �t � !,



 _�t _�0t=�t


 � 


 _�t


2. It now follows by the remark following Lemma 1 that

p
TST (�0)

d! N (0;
 (�0)) where, with H (�) de�ned in the theorem,


 (�) = E
�
s�t (�) s

�
t (�)

0� = E
h
_�
�
t (
_�
�
t )
0=��t

i
= �H (�) :

A.4.2 Information

The information is de�ned as

HT (�) = �
1

T

TX
t=1

@2lt (�)

@�@�0
; (A.3)

where

�@
2lt (�)

@�@�0
=

yt

�2t (�)

@�t (�)

@�

@�t (�)

@�0
�
�

yt
�t (�)

� 1
�
@2�t (�)

@�@�0
;

and

@2�t (�)

@�@�
=
@�t�1 (�)

@�
+ �

@2�t�1 (�)

@�@�
;

@2�t (�)

@�2
= 2

@�t�1 (�)

@�
+ �

@2�t�1 (�)

@�2
;

@2�t (�)

@�2
= �

@2�t (�)

@�2
= ::: = 0:

These recursions can be used to show that the augmented process

~Xt (�) :=
�
X 0
t (�) ;

_�
0
t (�) ; vec(

��t (�))
0
�0

is weakly dependent with second moments for � 2 � in the same way that Theorem 1 was

proved. In particular, for all � 2 �, we can apply Lemma 1 to obtain

HT (�) =
1

T

TX
t=1

@2lt (�)

@�@�0
P! E

�
@2l�t (�)

@�@�0

�
:

Moreover, � 7! @2lt (�) = (@�@�
0) is continuous and, with �� = (!U ; �U ; �U ; 
U) containing

the maximum values of the individual parameters, we obtain

@�t (�)

@�
= �t�1 (�) + �

@�t�1 (�)

@

�

t�1X
i=0

�iU�t�1�i
�
��
�
=
@�t

�
��
�

@�
;
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@2�t (�)

@�2
= 2

@�t�1 (�)

@�
+ �

@2�t�1 (�)

@�2
� 2

t�1X
i=0

�iU
_�t�1�i

�
��
�
=
@2�t

�
��
�

@�2
;

and similar for the other second order derivatives. while, by the same arguments as in Han

and Kristensen (2014), there exists a function B(~x) so that �t (�0) =�t (�) � B
�
~Xt

�
for all

� in a neighborhood of �0, where

E

24B( ~X�
t )






@��t
�
��
�

@�







2
35 <1; E

"
B( ~Xt)






@2��t
�
��
�

@�@�0







#
<1:

In total,





@2lt (�)@�@�0





 � �D( ~Xt

�
��
�
), �D( ~Xt

�
��
�
) := B

�
~Xt

�8<:





@�t

�
��
�

@�







2

+






@2�t
�
��
�

@�@�0







9=; ;

where E[ �D( ~X�
t (�))] < 1 with ~X�

t denoting the stationary version of ~Xt. It now follows

by Proposition 1 in Kristensen and Rahbek (2005) that sup�2� kHT (�)�H (�)k P! 0 with

H (�) de�ned in the theorem.

Finally, we show that H (�0) is non-singular. To see this, we use the same arguments as

in the proof of identi�cation that we provided as part of showing consistency: First note that

H (�0) = E[ _�
�
t

�
_�
�
t

�0
=��t ] is singular if and only if there exists a 2 R4n f0g and t � 1 such

that a0 _�
�
t = 0 a.s. Since _�

�
t is stationary, this must hold for all t. Recall that _�

�
t 2 R4 can

be written as _�
�
t = V �

t + � _�
�
t�1:, where V

�
t =

�
1; y�t�1; f

�
x�t�1

�
; ��t�1

�0
is a vector of positive

elements. So a0 _�
�
t = 0 a.s. holds if and only if a

0Vt = 0 a.s. for all t � 1. However, this is
ruled out by Assumption 5, cf. proof of identi�cation.

A.5 Proof of Theorem 3

The proof follows by noting that Lemmas 3.1-3.4 in FRT carry over to our setting with only

minor modi�cations. The only di¤erence is that the parameter vector � here include 
 as

related to the link function f (xt�1) : However, as E
�
f
�
x�t�1

��
< 1, all arguments remain

identical as is easily seen upon inspection of the proofs of the lemmas in FRT.

A.6 Proof of Corollary 1

It su¢ ces to verify the regularity conditions of Andrews (1999, Theorem 3). First, in the

proof of Theorem 2 we establish consistency and classic convergence of the score and infor-

mation. Second, the parameter set satis�es the geometric conditions needed by arguments

identical to the ones in Francq and Zakoian (2009).
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Table 1: Results of simulations for PARX(1,1) with DGP 1.

Scenario 1 (� = 0) Scenario 2 (� = 0:2) Scenario 3 (� = 0:7)

T True Mean RMSE KS Mean RMSE KS Mean RMSE KS

100 ! 0:10 0:09 0:16 0:36 0:10 0:18 0:01 0:15 0:30 0:07

� 0:30 0:28 0:13 0:32 0:27 0:11 0:97 0:18 0:15 0:00

� 0:00 0:02 0:15 0:31 0:22 0:14 0:34 0:77 0:15 0:00


 0:50 0:51 0:07 0:85 0:51 0:07 0:32 0:51 0:11 0:84

250 ! 0:10 0:09 0:07 0:85 0:10 0:08 0:19 0:13 0:21 0:13

� 0:30 0:30 0:07 0:87 0:29 0:07 0:99 0:23 0:06 0:72

� 0:00 0:00 0:08 0:93 0:21 0:08 0:63 0:72 0:06 0:64


 0:50 0:50 0:04 0:49 0:50 0:04 0:92 0:50 0:05 0:81

500 ! 0:10 0:10 0:05 0:66 0:10 0:05 0:35 0:11 0:13 0:21

� 0:30 0:30 0:04 0:33 0:30 0:04 0:87 0:24 0:04 0:86

� 0:00 0:00 0:05 0:17 0:20 0:05 0:16 0:71 0:04 0:96


 0:50 0:50 0:02 0:34 0:50 0:02 0:75 0:50 0:02 0:95

1000 ! 0:10 0:10 0:03 0:38 0:10 0:04 0:42 0:10 0:10 0:24

� 0:30 0:30 0:03 0:52 0:30 0:03 0:61 0:24 0:02 0:79

� 0:00 0:00 0:03 0:98 0:20 0:03 0:71 0:71 0:02 0:81


 0:50 0:50 0:02 0:74 0:50 0:02 0:32 0:50 0:02 0:99
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Table 2: Results of simulations for PARX(1,1) with DGP 2.

Scenario 1 (� = 0) Scenario 2 (� = 0:2) Scenario 3 (� = 0:7)

T True Mean RMSE KS Mean RMSE KS Mean RMSE KS

100 ! 0:10 0:12 0:20 0:00 0:11 0:18 0:00 0:16 0:30 0:02

� 0:30 0:29 0:13 0:47 0:27 0:13 0:43 0:17 0:16 0:00

� 0:00 �0:01 0:23 0:16 0:21 0:19 0:31 0:78 0:16 0:00


 0:50 0:51 0:13 0:50 0:51 0:12 0:32 0:51 0:14 0:81

250 ! 0:10 0:10 0:09 0:14 0:12 0:12 0:08 0:18 0:25 0:00

� 0:30 0:30 0:07 0:70 0:29 0:07 0:57 0:23 0:05 0:58

� 0:00 0:00 0:10 0:33 0:20 0:10 0:81 0:71 0:06 0:84


 0:50 0:50 0:06 0:39 0:50 0:07 0:85 0:51 0:14 0:30

500 ! 0:10 0:10 0:07 0:22 0:10 0:07 0:54 0:13 0:14 0:00

� 0:30 0:30 0:05 0:95 0:30 0:05 0:96 0:24 0:04 0:47

� 0:00 0:00 0:07 1:00 0:20 0:07 0:90 0:71 0:04 0:29


 0:50 0:50 0:04 0:59 0:50 0:05 0:97 0:51 0:07 0:46

1000 ! 0:10 0:10 0:05 0:73 0:10 0:05 0:14 0:12 0:11 0:02

� 0:30 0:30 0:03 0:81 0:30 0:03 0:56 0:24 0:02 0:95

� 0:00 0:00 0:05 0:82 0:20 0:05 0:80 0:70 0:03 0:97


 0:50 0:50 0:03 0:74 0:50 0:03 0:43 0:51 0:05 0:77

Figure 1: (a) Number of defaults per month among Moody�s rated US industrial �rms in

the period 1982-2011. (b) Autocorrelation function of the default data.
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Table 3: Estimation results of di¤erent PARX models.
PAR RV SP DG NB IP(�) LI(�) RV & LI(�) All

!̂ 0:301 0:169 0:116 0:206 0:289 0:202 0:295 0:232 0:208

(3:625) (2:467) (0:716) (2:219) (3:551) (2:142) (2:013) (3:242) (1:001)

�̂1 0:241 0:197 0:227 0:221 0:228 0:213 0:193 0:185 0:180

(5:441) (4:395) (5:159) (4:933) (5:119) (4:716) (4:265) (4:109) (3:944)

�̂2 0:215 0:179 0:2217 0:198 0:206 0:145 0:198 0:188 0:183

(3:221) (2:908) (3:348) (3:026) (3:138) (2:262) (3:117) (3:039) (2:898)

�̂ 0:459 0:526 0:4298 0:455 0:469 0:552 0:498 0:518 0:512

(6:094) (7:939) (5:430) (6:063) (6:296) (8:173) (6:881) (7:547) (7:087)

RV 63:99 28:09 24:31

(4:111) (2:057) (1:692)

SP 0:241 0:000

(2:802) (0:000)

DG 0:017 0:006

(1:893) (0:640)

NB 0:419 0:000

(2:229) (0:000)

IP 0:695 0:000

(3:287) (0:000)

LI 0:941 0:729 0:754

(4:194) (3:733) (1:561)

�̂1 + �̂2 0:465 0:376 0:449 0:419 0:434 0:358 0:391 0:373 0:363

(7:452) (8:069) (9:635) (8:743) (9:249) (7:380) (7:726) (6:679) (7:235)

AIC �1352:04 �1368:82 �1359:86 �1352:88 �1354:94 �1360:52 �1375:06 �1377:52 �1365:84
BIC �1336:47 �1349:36 �1340:40 �1333:42 �1335:48 �1337:17 �1351:71 �1354:17 �1319:14

Notes: t statistics in parentheses. For any signi�cance level � < 1=2 standard critical values for one sided t tests apply, see Remark 6.

Figure 2: Actual number of defaults (blue) and estimated intensity (red).
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Figure 3: Sample autocorrelation function of Pearson residuals.

Figure 4: Empirical zero counts (asterisks) and probability of having a zero count under the

estimated model (crosses).
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Figure 5: Rolling-window MSFE and FS of PAR and PARX model

Figure 6: Rolling-window estimate of � = (!; �1; �2; �; 
)
0 in the preferred PARX(2,1)

model.
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Table 4: Preferred models and their parameter estimates, 1982-1998, 1998-2007 and 2007-

2011
! �1 �2 � RV LI(�)

1982-1998 - PAR(1,1) 0.80 0.22 0.43 - - -

t-stats (7.04) (5.29) (8.32) - - -

1998-2007 - PARX(1,1) 0.00 0.20 - 0.79 - -

t-stats 0.10 (4.19) - (14.8) - -

2007-2011 - PARX(2,1) 0.00 - - 0.82 99.23 0.70

t-stats (0.00) - - (6.81) (2.17) (2.38)
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