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ABSTRACT Tuberculosis is a significant global disease today,
so understanding its origins and history is important.

It is primarily a lung infection and is transmitted by infectious
aerosols from person to person, so a high population density
encourages its spread. The causative organism is Mycobacterium
tuberculosis, an obligate pathogen in the M. tuberculosis
complex that also contains closely related species, such as
Mycobacterium bovis, that primarily infect animals. Typical bone
lesions occur in about 5% of untreated infections. These can
be recognized in historical and archaeological material,

along with nonspecific paleopathology such as new bone
formation (periostitis), especially on ribs. Based on such lesions,
tuberculosis has been found in ancient Egypt, pre-Columbian
America, and Neolithic Europe. The detection of M. tuberculosis
ancient DNA (aDNA) by using PCR led to the development of the
new field of paleomicrobiology. As a result, a large number of
tuberculosis cases were recognized in mummified tissue and
bones with nonspecific or no lesions. In parallel with these
developments, M. tuberculosis cell wall lipid biomarkers have
detected tuberculosis suggested by paleopathology and
confirmed aDNA findings. In well-preserved cases, molecular
typing has identified M. tuberculosis lineages and genotypes.
The current interest in targeted enrichment, shotgun
sequencing, and metagenomic analysis reveals ancient mixed
infections with different M. tuberculosis strains and other
pathogens. Identification of M. tuberculosis lineages from
samples of known age enables the date of the emergence of
strains and lineages to be calculated directly rather than by
making assumptions on the rate of evolutionary change.

THE MODERN DISEASE

Tuberculosis remains one of the world’s deadliest com-
municable diseases. In 2014, tuberculosis developed
in an estimated 9.6 million people, and 1.5 million died
of the disease (1). The principal causative organism is
Mycobacterium tuberculosis, an obligate pathogen that
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is a member of the M. tuberculosis complex (MTBC), a
group of closely related organisms that primarily infect
different animal hosts. Tuberculosis may involve every
organ in the body, but the most common clinical pre-
sentation is pulmonary disease, in which transmission is
via infectious aerosols released from the lungs of an
infected person. In the alveolus of the lung, inhaled tu-
bercle bacilli are ingested by macrophages and are nor-
mally contained by the host immune response. This leads
to granuloma formation and eventually to calcified le-
sions. Swallowing infected sputum can cause intestinal
tuberculosis. Transmission can occur via direct con-
tact in cases of scrofula (skin tuberculosis). In addition,
ingestion of milk or food from an infected animal can
cause human infection with Mycobacterium bovis or
other members of the MTBC. However, subsequent
transmission of these animal MTBC lineages from per-
son to person is rare. M. tuberculosis can survive and
grow within macrophages, so that it is able to evade
the host immune system. An active cell-mediated im-
mune response is required to contain and kill the tu-
bercle bacilli, so any underlying conditions that reduce
its efficiency increase susceptibility to tuberculosis. One-
third of the global population is estimated to have latent
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tuberculosis infection. These individuals do not have
active disease but may develop it in the near or remote
future, a process called tuberculosis reactivation. The
lifetime risk for reactivation is estimated to be 5% to
10%, with tuberculosis developing in the majority of
cases within the first 5 years after initial infection.
However, the risk is considerably higher in the presence
of predisposing factors (2).

PALEOPATHOLOGY OF TUBERCULOSIS

Skeletal Changes Indicative of Tuberculosis
The most characteristic visible skeletal changes in ar-
chaeological cases of tuberculosis are those to the spine,
such as Pott’s disease (Fig. 1A) and cold (chronic) ab-
scess (Fig. 1B). Pott’s disease is diagnosed by charac-
teristic changes that result in kyphosis, or gibbus, in
which there is loss of function in the lower limbs due to
damage to the spinal column. Tuberculosis can affect
any part of the skeleton, but bony joints are common
sites of involvement. Changes associated with tubercu-
losis are periosteal reactive lesions on tubular bones,
hypertrophic ostearthropathy, and osteomyelitis (3, 4).
It is estimated that approximately 40% of cases of
skeletal tuberculosis result in tuberculosis of the spine
(5). However, as skeletal tuberculosis occurs in only 3%
to 5% of untreated cases, the incidence of tuberculosis in
the past was undoubtedly far higher than that suggested
by the number of bony lesions observed (6). Historical
texts contain recognizable descriptions of tuberculosis,
in which it is identified as phthisis, scrofula, King’s Evil,
lupus vulgaris, or consumption, for example (7). De-
tailed morphological studies enabled diagnostic criteria
to be agreed upon, based on more recent historical skel-
etal collections with contemporaneous records of indi-
vidual cases, including age, sex, occupation, symptoms,
and cause of death (8-10). It was noted that periostitis
(surface changes caused by new bone formation) on ribs
was significantly associated with individuals in whom
clinical tuberculosis had been diagnosed (Fig. 1C). Other
conditions linked to recognized tuberculosis changes in-
clude hypertrophic ostearthropathy (11, 12) and serpens
endocrania symmetrica—a morphological sign of respi-
ratory distress and increased vascularization around the
brain (11).

Archaeological Reports of

Tuberculosis around the World

Paleopathology suggestive of tuberculosis has been re-
ported from predynastic Egypt (3500 to 2650 BC) (13,
14), middle Neolithic Italy at the beginning of the fourth

millennium BC (15), and an eastern Mediterranean Pre-
Pottery Neolithic site (9250 to 8160 years BP) (16).
There are fewer reports from eastern and southeastern
Asia, but tuberculosis was present in northeastern
Thailand at an Iron Age site dated from 2500 to 1700
years BP (17) and in Japan and Korea at least 2,000
years ago (18). Precolonial tuberculosis in the Americas
was first identified in humans in a mummified child with
bone pathology suggestive of tuberculosis, dated to ap-
proximately 700 AD, from the Nazca culture of south-
ern Peru (19, 20). It was also recognized in northwestern
Argentina (21) and northern Chile (22), with most mor-
phological evidence found in the period from 500 to
1000 AD, corresponding to fully agropastoral societies.
More recently, tuberculosis has been confirmed in Peru
from Chiribaya cultures (750 to 1350 AD) associated
with the Middle Horizon/Late Intermediate Period (23).

Relationship of Tuberculosis

to Early Human Populations

Because M. tuberculosis is an obligate pathogen with
no environmental reservoir, its persistence is related to
the density of the human population. Therefore, the long
hunter—gatherer stage of human evolution, consisting of
small populations, would select for commensal orga-
nisms or for pathogens that could be transmitted decades
after infecting a host, after new susceptible individuals
had been introduced into the population via births or
migration (24). Typically, commensals are transmitted
vertically from parent to child, whereas pathogens are
transmitted horizontally. However, tuberculosis is an
intermediate case because in a low-density population
individuals are more likely to spread infection to family
members than to strangers.

The Neolithic transition and development of agri-
culture were associated with a pronounced increase in
tuberculosis prevalence (25, 26). Indirect evidence of
this association between urbanization and tuberculosis
is the relationship between human natural resistance to
the disease and long-term urban settlements (27). Al-
though a majority of individuals have a long or life-
time tuberculosis infection, disease may be latent or have
phases of activity, which then subside. Pathogen and
host can co-exist, which provides a reservoir of infec-
tion for the pathogen and may cause selection pressure
on the survival of its human host. Early in life, there is
the opportunity for tuberculosis transmission, as infants
with an immature cell-mediated immune system can
develop active disease with a high mortality rate. Late
transmission can occur when adults become suscepti-
ble from causes that increase their susceptibility, such
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FIGURE 1 (A) Paleopathology diagnostic for skeletal tuberculosis: Pott's disease, angular kyphosis in Th8-L2. Hungary: Zalavar-
Varsziget-Kapolna, juvenile, grave No. 17/03. (B) Paleopathology highly suggestive of tuberculosis: evidence of infection shown
by fusion of vertebrae (Th6-8) with slight gibbus, cavities, and traces of cold abscess (chronic lytic lesion). Hungary: Zalavar-
Varsziget-Kapolna, juvenile, grave No. 74/03. (C) Paleopathology showing nonspecific changes consistent with a tuberculosis
infection; disseminated, small, new bone formations can be observed on the costal groove and on the inner surface of the ribs.
Romania: Peteni, grave No. 107. (Courtesy of Tamas Hadju, Department of Biological Anthropology, E6tvds Lorand University,
Budapest, Hungary. Fig. 1A, B reprinted from HOMO - Journal of Comparative Human Biology [95] with permission of the
publisher. Fig. 1C reprinted from Spine [96] with permission of the publisher.)
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as malnutrition, warfare, and old age. The transition
from foraging to settled farming communities in the
Neolithic period coincided with the appearance of dis-
eases associated with larger, denser populations, a sed-
entary lifestyle, widespread domestication of animals,
social stratification, and a less varied diet (28, 29).
Agriculture in the Old World is evident from about
10,000 years ago, where five independent areas of cul-
tivation emerged in Mesopotamia, sub-Saharan Africa,
southeastern Asia, northern China, and southern China.
Initially, it was believed that humans acquired tuber-
culosis from animals, especially after domestication
(30), because this coincided with the observed human
paleopathology. As we now know that the human tu-
bercle bacillus is of a more ancestral lineage (31), it
is likely that animal domestication was important in
sustaining a denser human population, thereby enabling
tuberculosis to become endemic (16). However, it is
most unlikely that the bovine tuberculosis lineage was
derived from the lineage that principally infects humans

(32).

DETECTION AND MOLECULAR
DIAGNOSIS OF TUBERCULOSIS

The traditional method of diagnosis, still used in many
parts of the world today, is chest radiology plus the
microscopic examination of sputum smears following
Ziehl-Neelsen staining. This method identifies only 10%
to 30% of cases, even when enhanced by fluorescence
microscopy, so diagnosis is confirmed by culture in solid
or liquid media. Because M. tuberculosis can take 4 to
6 weeks to grow, the World Health Organization re-
commends rapid diagnostic methods based on M. tu-
berculosis genetic markers and PCR, such as the Xpert
MTB/RIF rapid TB test, for the diagnosis of pulmonary
and extrapulmonary tuberculosis in adults and children
(33). It was the early development of M. tuberculosis
molecular diagnostic markers that led to the discovery of
tuberculosis in archaeological material.

Detection of Archaeological and Historical
Mycobacterium tuberculosis Ancient DNA

M. tuberculosis was first identified in the pre-Columbian
Americas by using tissue from a mummified child from
the Nazca culture of southern Peru (19, 20). As previ-
ously described, this mummy had bone pathology sug-
gestive of tuberculosis and microscopic evidence of
acid-alcohol-resistant bacilli. Although these findings
are highly suggestive of active tuberculosis, molecular
evidence was required to confirm the diagnosis.

Characteristics of Ancient DNA
Modern DNA sequences will outnumber ancient DNA
(aDNA) in any sample, so stringent precautions must
be taken, throughout the excavation and sampling pro-
cess, to reduce extraneous contamination to a minimum.
In living cells, DNA is subjected to enzymatic repair
processes, but after death DNA is rapidly degraded by
enzymes derived from both the host and the macro and
microbial flora that form part of the natural decay pro-
cess (34). As a result of cumulative changes over time
(diagenesis), aDNA may develop hydrolytic and oxidative
lesions. The breakdown of the N-glycosyl bond between
the sugar and the base, in the presence of water, leads to
hydrolytic cleavage and DNA fragmentation. Hydrolytic
depurination causes a preferential loss of guanine and
adenine, whereas the pyrimidines cytosine and thymine
are 40-fold more susceptible to hydrolytic deaminization
(35). Oxidative damage, especially to pyrimidines, can
result in the formation of substances such as hydantoins,
which block extension during PCR (36). DNA strands
may also become chemically cross-linked as a result of
the formation of Maillard products (37) by condensation
reactions between sugars and primary amino groups in
proteins and nucleic acids (34). Local environmental con-
ditions have a strong impact on the persistence of aDNA,
such as the temperature, the pH at the site, the availability
of water and oxygen, and the fluctuations of all these
factors over time (38). Indeed, these factors outweigh the
impact of the chronological age of samples.
Mycobacterial DNA is more robust than the DNA
of mammals (39), but its persistence depends not only
upon the local environmental conditions but also on the
nature of the infection at the time of death of its host.
Therefore, M. tuberculosis aDNA is often highly localized,
and DNA extraction protocols may have to be optimized
for specimens from different sites (40). DNA extraction
normally involves the disaggregation of samples with
ethylenediamine-tetraacetic acid (EDTA) and proteinase
K. Covalent cross-links can be reduced by the reagent
N-phenacylthiazolium bromide (PTB), which cleaves
glucose-derived protein cross-links (37). The final stage is
disruption of samples with lysis buffer based on guanidium
thiocyanate or hydrochloride, followed by silica capture or
isopropanol precipitation of aDNA, washing, and drying.

Methods of Mycobacterium tuberculosis
Complex Ancient DNA Analysis

The MTBC was one of the first groups of microorga-
nisms to benefit from the introduction of molecular
diagnostics because of their very slow growth rate
and clinical significance. Early molecular detection of
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M. tuberculosis was based on short palindromic repeat
sequences. Insertion sequences IS6110 and I1S1081 were
identified as useful specific targets for PCR analysis (41).
IS6110 ranges from 1 to 24 copies per cell but is absent
in rare strains from southeastern Asia (42), whereas
IS1081 is present at 1 copy per cell (41, 43) and so can be
used for quantitative analysis.

Initially, conventional PCR was used to detect an-
cient and historical tuberculosis, followed by agarose gel
electrophoresis for the detection of amplicons. Because
of the tendency of aDNA to fragment, there should be
an inverse correlation between the length of the target
sequence and amplification efficiency, with claims of
long amplicons subject to scrutiny. Results should be
repeated in a second extract and verified in an inde-
pendent laboratory. The use of real-time PCR, based on
specific primers and fluorescent probes enables shorter
DNA fragments to be examined.

Verification of Mycobacterium tuberculosis
Complex Ancient DNA Findings

Initially, there was considerable skepticism among an-
thropologists when tuberculosis was reported in skel-
etal material with nonspecific or no paleopathology,
although to clinical microbiologists, the findings were
unsurprising. Suggested criteria for analysis were based
on host aDNA, in which protein preservation was used
as a marker to indicate the likelihood of successful de-
tection of aDNA, although this relationship has since
been questioned (44). In any event, because of the thick,
lipid-rich bacterial cell wall and the DNA high guanine—
cytosine (GC) content, mycobacterial aDNA is more
persistent than the surrounding host aDNA (39), so such
prior screening is unnecessary.

In the early days of aDNA research, there were genuine
concerns about the prevention of cross-contamination
between samples and amplified DNA. For work on host
DNA, stringent containment facilities with one-way access
and negative air pressure have been designed to minimize
the possibility of contamination with modern DNA or
amplicons. Although careful precautions are required,
work on the MTBC can be accomplished with the use of
good microbiological technique and the strict separation
of different stages of DNA extraction, amplification, and
subsequent analysis (43, 46). This is because the organisms
are pathogens with no known environmental reservoir.

Mycobacterium tuberculosis Complex
Genotypes, Strains, and Lineages

PCR-based typing methods have facilitated epidemi-
ological studies of tuberculosis. An early example is

Paleomicrobiology of Human Tuberculosis

spoligotyping, which is based on the direct repeat (DR)
region of the MTBC (47). PCR primers are used to
amplify 43 unique spacer regions that lie between each
DR locus, and amplicons from individual spacers are
visualized by dot-blot hybridization on a membrane.
Spoligotyping and typing based on other repetitive ele-
ments clearly distinguish members of the MTBC and can
identify different lineages. M. tuberculosis strains com-
monly show deletions, and because the loss of spacers is
unidirectional, the data can indicate evolutionary trends
(31, 48). Synonymous single-nucleotide polymorphisms
(SNPs) or variants (SNVs) are functionally neutral and
so can also be used to distinguish between lineages,
aided by the virtual lack of horizontal gene transfer. This
has led to the recognition of seven phylogeographical
lineages (Fig. 2), each associated with specific human
populations (49-52), with the animal lineages some-
times described as lineage 8 (53). High-throughput se-
quencing of entire genomes, coupled with updates in
bioinformatics analysis, is the latest tool used to eluci-
date the relationships between lineages and strains. Re-
cent genomic analyses suggest that M. tuberculosis has
evolved from a pool of smooth colony-like mycobacteria
(STMs) that gained additional virulence and persistence
mechanisms, including loss of gene function, acquisition
of new genes via horizontal gene transfer, interstrain
recombination of gene clusters, and fixation of SNPs
(54). The individual members of the MTBC (excluding
the STMs classified as Mycobacterium canettii) are
99.95% identical on the basis of nucleotide sequence.
This has led to the suggestion that there was an evolu-
tionary bottleneck at the time of speciation. The esti-
mated date of this event (Fig. 3) varies from 3 million
years ago if the STMs are included (48) to 40,000 years
ago (55), to 70,000 years ago (56), to only 6,000 years
ago—based on pre-European contact Peruvian mate-
rial (23). Clearly, the identification of the Most Recent
Common Ancestor (MRCA) is crucial in such calcula-
tions (32).

Mycobacterium tuberculosis

Cell Wall Lipid Biomarkers

In parallel with M. tuberculosis aDNA studies, the
use of specific mycobacterial cell wall lipid biomarkers
has been developed. M. tuberculosis has a cell envelope
incorporating a peptidoglycan-linked arabinogalactan
esterified by long-chain mycolic acids. A range of “free”
lipids is associated with the “bound” mycolic acids,
producing an effective envelope outer membrane. The
distribution of these lipids varies among mycobac-
teria, and such lipids can act as specific biomarkers
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FIGURE 2 Evolutionary relationship between selected mycobacteria and members of the
Mycobacterium tuberculosis complex (MTBC). The MTBC was thought to arise as a clonal
expansion from a smooth tubercle bacillus (STB) progenitor population. The animal-
adapted Mycobacterium bovis ecotypes branch from a presumed human-adapted lineage
of Mycobacterium africanum that is currently restricted to West Africa. Human-adapted
M. tuberculosis strains are grouped into seven main lineages, each of which is primarily
associated with a distinct geographical distribution. The dates of branching events are only
crude estimates. (Courtesy of James E. Galaghan, Department of Biomedical Engineering,
Bioinformatics Program and National Emerging Infectious Diseases Laboratory, Boston
University, Boston, Massachusetts, USA, and Broad Institute of Massachusetts Institute
of Technology and Harvard, Cambridge, Massachusetts, USA. Reprinted from Nature

Reviews Genetics [97] with permission of the publisher.)

in the identification of M. tuberculosis and in tracing its
evolution (40, 57). The advantage of lipid biomarkers is
that they are detected by extremely sensitive methods,
so that there is no amplification of material. Initially,
detection of the 70 to 90 carbon mycolic acids was used
to complement DNA amplification and paleopathol-
ogy (58, 59). The biomarker range now includes multi-
methyl-branched mycocerosic and mycolipenic acids
(Fig. 4A, B) (40, 60). Mycolic acids were originally
analyzed by fluorescence high performance liquid chro-
matography (HPLC) of slightly unstable methylanthryl
esters (59), so a special robust derivatization protocol,

involving pyrenebutyrates of pentafluorobenzyl (PFB)
esters, was systematically developed (16, 59, 60). Se-
lected ion monitoring (SIM) negative ion-chemical ion-
ization gas chromatography mass-spectrometry (NICI-
GCMS) is an exquisitely sensitive detection method
for the mycocerosate and mycolipenate PFB esters (60—
63).

With the aim of limiting destructive analyses, it is
useful to know that the aqueous residues from DNA
extractions can be used for lipid extractions because
these use hydrophobic reagents that release different
components from samples (64).
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FIGURE 3 A possible timeline of evolutionary events and archaeological data; the location
for archaeological evidence is indicated in each box. Boxes outlined in black indicate
morphological evidence only, whereas boxes outlined in red denote both morphological
and molecular evidence. (Courtesy of James E. Galaghan, Department of Biomedical
Engineering, Bioinformatics Program and National Emerging Infectious Diseases
Laboratory, Boston University, Boston, Massachusetts, USA, and Broad Institute of
Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.
Reprinted from Nature Reviews Genetics [97] with permission of the publisher.)

MYCOBACTERIUM TUBERCULOSIS
FINDINGS BASED ON MOLECULAR
BIOMARKERS

Overview of Mycobacterium

tuberculosis Ancient DNA Research

Spigelman and Lemma (65) were the first to demonstrate
MTBC DNA in ancient skeletal material. The follow-
ing year, it was detected in 1,000-year-old human tissue
from an Andean mummy and confirmed by sequencing
(66). This showed that tuberculosis was definitely pres-
ent in the Americas before historical European contact.
Thereafter, there were several reports of individual cases
(6) and cases with no signs of paleopathology, such as
those in China from 2,000 years ago (67). Multiple
burials enable populations to be studied and the epide-
miology of past infections to be investigated. It is espe-
cially useful to study infections in the absence of any
effective treatment because this has the potential to in-
vestigate the host—pathogen interaction at a molecular
genetic level. In Thebes-West, ancient Egypt, tubercu-

losis was quite frequent across a long time period, from
the Predynastic Period (c. 3500 to 2650 BC) to the Late
Period (c. 1450 to 500 BC). It was suggested that the
relatively high incidence of disease might have been re-
lated to the dense crowding in the city at a time of
prosperity (68). Spoligotyping of the MTBC aDNA
demonstrated human M. tuberculosis that had experi-
enced the TbD1 deletion, similar to one of the major
clades in the world today.

The earliest known published human cases of tuber-
culosis were from the Pre-Pottery Neolithic site of Atlit
Yam in the eastern Mediterranean, dating from 9250 to
8150 BP (16, 60). DNA preservation was excellent be-
cause the skeletal remains had been buried in thick clay
under the sea. It was possible to demonstrate that two
individuals were infected with a strain of M. tuberculosis
in which the TbD1 deletion had occurred, thus identi-
fying it as the human and not the bovine strain of the
MTBC. In northern Europe, M. tuberculosis aDNA
was detected in eight of 21 early Neolithic samples (5400
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FIGURE 4 Structures of Mycobacterium tuberculosis selected lipid biomarkers. (A) The main components of each mycolic
acid class are shown; each class comprises a limited range of homologous components with different chain lengths.
(B) Mycolipenic and mycocerosic acids; for each component, the ions (m/z) monitored on negative ion-chemical ionization gas
chromatography-mass spectrometry (NICI-GCMS) of pentafluorobenzyl esters of these acids are given. (Courtesy of David E.
Minnikin, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.)
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to 4800 BC) from central Germany (69), including
three individuals with no visible pathology. Six samples
were positive for spoligotyping. A further example of
Late Neolithic tuberculosis was reported from central
Hungary and dated to 7000 BP (70). In addition to
molecular biomarkers, this was a striking case of tu-
berculosis with characteristic paleopathology—namely,
hypertrophic pulmonary osteopathy with rib changes
and cavitations in the vertebral bodies.

High-throughput sequencing of entire genomes, cou-
pled with continuing updates in bioinformatics analysis,
is now being applied to the examination of historical
tuberculosis cases. Bouwman et al. (71) used next-
generation sequencing, based on hybridization capture
directed at specific polymorphic regions of the M. tu-
berculosis genome, to identify a detailed genotype for
a historical M. tuberculosis strain from an individual
buried in the 19th century in St. George’s Crypt, Leeds,
West Yorkshire, England. A recent high-profile study
(23) examined skeletal material from a large number of
pre- and post-contact sites in the New World. Samples
were processed via established protocols and screened
for MTBC DNA by an in-solution capture assay de-
signed for the rpoB, gyrA, gyrB, katG, and mpt40
genes. Capture products for samples and negative
controls were sequenced on an Illumina MiSeq System
and mapped to the corresponding regions in the M. tu-
berculosis H37Rv reference genome. There were three
positive samples that had been recovered from exca-
vations in Peru and derived from Chiribaya cultures
associated with the Middle Horizon/Late Intermediate
Period (750 to 1350 AD).

Using a metagenomic approach of shotgun sequenc-
ing without prior enrichment, Chan et al. (72) identified
two M. tuberculosis genomes in one 18th century nat-
urally mummified individual from Vdac, Hungary. The
Vic mummies are remarkably well preserved because
of the local environmental conditions in the sealed
crypt where they were found. In addition, there is a
contemporaneous archive, so family groups and age
at death can be determined (73). The latest findings
confirmed an earlier PCR-based study (74) in which
each member of a small family group appeared to
be infected with a different strain of M. tuberculosis.
Whole-genome sequencing showed that the mother and
her older daughter were both infected with the same
two strains of M. tuberculosis, but in different pro-
portions (75). In addition, of six other individuals in
the same crypt, one was co-infected with three differ-
ent strains of M. tuberculosis, two individuals were
co-infected with two strains and the remaining three
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individuals were each infected with one strain. Six dif-
ferent sub-lineages were detected in this population.
PCR-based genotyping has also demonstrated at least
one possible mixed infection from British historical
samples (76). The presence of mixed infections with
more than one strain of M. tuberculosis is of particular
interest because this phenomenon has been noted in
modern tuberculosis infections and described as micro-
evolution, both within a patient and between patients
(77). Finding evidence of the same phenomenon in the
pre-antibiotic era indicates that this phenomenon is re-
lated more to human population density than to anti-
microbial therapy.

Human Infections with Other Members of

the Mycobacterium tuberculosis Complex

In their spoligotyping study of three different popula-
tions in ancient Egypt, Zink et al. (68) showed evidence
of human M. tuberculosis that had experienced the
TbD1 deletion. In addition, there were some strains
lacking spacer 39, in samples from a Middle Kingdom
tomb in Thebes-West (2050 to 1650 BC). This latter
pattern is typical of Mycobacterium africanum. M. bovis
is very rare in the archaeological record. However, it
was found in a group of Iron Age Siberian pastoralists
(4th century BC to 4th century AD) who wintered in
huts with their animals (78). The paleopathogenic le-
sions (79) were typical of tuberculosis, and the analysis
of M. bovis—specific genetic markers confirmed the di-
agnosis. The most recent example of an archaeological
human infection with an animal lineage of the MTBC
is the study from Peru (23). These ancient strains were
most closely related to those adapted to seals and sea
lions, known as Mycobacterium pinnipedii.

Past Human Migrations and Mycobacterium
tuberculosis Epidemiology

There is a striking parallel between human lineage and
the corresponding M. tuberculosis lineage that is har-
bored, which apparently persists even if people relocate
to other parts of the world. A recent example is shown
by a study of a locally dominant M. tuberculosis genetic
lineage currently circulating among aboriginal popula-
tions in Alberta, Saskatchewan, and Ontario, as well as
among French Canadians in Quebec, Canada (80). Sub-
stantial contact between these human populations was
limited to a specific historical era (1710 to 1870 AD),
when individuals met to barter furs. Therefore, this
study of M. tuberculosis provides independent evidence
of past contact between distinct peoples.
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Applications of Mycobacterium tuberculosis
Cell Wall Lipid Markers

Initially, lipid biomarkers were used as an independent
method of detecting pathogenic mycobacteria and veri-
fying aDNA data. For example, Redman et al. (61) in-
vestigated a group of 49 individuals from the 1837 to
1936 Coimbra Identified Skeletal Collection (Portugal),
half of whom had records giving tuberculosis as a cause
of death. There was a 72% correlation of the detection
of mycocerosate acid biomarkers with individuals who
were listed as likely to have died of tuberculosis. Because
there is no amplification in lipid analysis, the amount
of specific lipid biomarkers can be quantified and used
for comparative purposes. Another use is the examina-
tion of archaeological samples in which there is poor or
no preservation of aDNA. Although samples may show
signs of diagenesis, especially samples several thousand
years old, the lipid biomarkers are significantly more
stable than aDNA and provide independent evidence of
infection.

Use of Other Biomarkers

Carbohydrate or protein antigens are molecules that can
induce antibody production, so they can be used to de-
tect infectious organisms. These are often more stable
than nucleic acids, but even so, antigenic determinants
in ancient tissues may be damaged or destroyed, which
limits their use. Antibodies may also be detected in mum-
mified tissues by using a method such as an enzyme-
linked immunoelectrotransfer blot. Although the host
produces antibodies in response to an infection, their
direct detection is difficult because they are generally less
stable than antigens. A rare example of a study based
on the host response to infection is the work by Corthals
et al. (81). These authors reported the first use of shot-
gun proteomics to detect the protein expression profile
of buccal swabs and cloth samples from two 500-year-
old Andean mummies. The profile of one of the mum-
mies was consistent with an immune system response
to a severe bacterial lung infection at the time of death.
One buccal swab contained a probable pathogenic My-
cobacterium species that was confirmed by DNA ampli-
fication, sequencing, and phylogenetic analyses. However,
the species was not determined.

An initial proteomic study using shotgun proteomics
of mummified lung tissue from Vac, Hungary, revealed
a suite of proteins, predominantly derived from the
human host. Only one sample demonstrated weak evi-
dence of organisms from the MTBC (82). It appears that
most identified proteins were derived from high abun-
dance human extra-cellular matrix proteins, although

some immune system and catabolic proteins were iden-

tified.

Host Susceptibility and Ancient Tuberculosis
Co-infections

It is rare to find visual paleopathological changes that
indicate more than one infection. However, in addition
to specific aDNA markers, both M. tuberculosis and
Mycobacterium leprae lipids can be identified and dis-
tinguished from each other. This led to the discovery that
in the past some individuals were co-infected (83). In
Europe, the decline of leprosy in the late middle Ages
coincided with a rise in tuberculosis. Suggested reasons
for this observation include cross-immunity (5) and the
increased virulence of tuberculosis (83). Both scenarios
are epidemiologically feasible (84).

Evidence of parasitic infections is widespread in hu-
man remains. Co-infection with M. tuberculosis and
parasites is an important public health problem today
in areas of the world where both are endemic and is
therefore likely to have been so in the past. This has been
demonstrated in ancient Lower Egypt dating to ¢. 800
BC, where four mummies were found with aDNA
from both M. tuberculosis and Plasmodium falciparum
(85). Chagas disease, caused by the protozoan parasite
Trypanosoma cruzi, was prevalent in pre-Columbian
northern Peru, and tuberculosis has also been demon-
strated in this population (86). A combination of pa-
leopathology and aDNA analysis demonstrated both
diseases in a 12-year-old girl from 910 to 935 BP (87).
Leishmaniasis is caused by a protozoan flagellated par-
asite with a sand fly vector that is associated with acacia
trees. Northern Sudan is a region where this disease is
endemic today, and Leishmania kinetoplast aDNA has
been detected from Early Christian Nubia and Middle
Kingdom ancient Egypt, where the lack of acacia trees
and sand flies led to the assumption that the infection
had been spread by trade connections with Nubia (88).
Based on aDNA analysis, tuberculosis and leishmaniasis
co-infections have been confirmed in Early Christian
Nubia (89). It is known that intestinal unicellular para-
sites and worms are responsible for immunomodulatory
effects in their host (90), including the modulation of
responses to tuberculosis infections (91). As intestinal
parasites are often found in the remains of early human
populations, it is highly likely that such modulation of
the host response occurred in the past.

Co-morbidities
Natural resistance to infection is reduced by physical
and mental stress, which in turn is caused by invasion,
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warfare, displacement, and exclusion from society due
to stigma. Also, a pre-existing infection decreases innate
host resistance and increases susceptibility to further
infections. However, another important consideration is
host genetic susceptibility to infectious diseases. Innate
immunity is an important arm of the host antimycobac-
terial defenses that sense various pathogenic microbes by
pattern recognition receptors. Toll-like receptors (TLRs)
play a crucial role in the recognition of M. tuberculosis
and other pathogenic mycobacteria (92). Host immune
activation occurs only in the presence of functional
TLRs. Therefore, any coding changes in TLRs are as-
sociated with a substantial drop in susceptibility to these
pathogens.

Different types of cancer (neoplasms) have a detri-
mental effect on host resistance. For example, Langerhans
cell histiocytosis, now recognized as a neoplasm, has
distinct paleopathology and has been diagnosed in skel-
etal remains. Langerhans cell histiocytosis is related to
immune dysfunction, an increased risk for acquired
infections, and early death. A case of archaeological
Langerhans cell histiocytosis in an infant, who also had
aDNA evidence of tuberculosis infection, has been rec-
ognized in one of the Vic Hungarian mummies (93). It is
likely that the genetic impairment in the host immune
response in such cases increases susceptibility to tuber-
culosis. In this same 18th century Hungarian popula-
tion, a 37-year-old woman, with a massive vertebral
deformity that would have reduced lung function and
therefore increased susceptibility to infection, was found
to have tuberculosis (94).

CONCLUDING REMARKS

The study of ancient tuberculosis based on aDNA, pub-
lished in 1993, was the first to directly investigate a
human infectious disease by using microbial aDNA.
Since that date, the field has become recognized around
the world, and an increasing range of microbial patho-
gens is being examined. We now have a clearer under-
standing of the occurrence of tuberculosis in the past,
its epidemiology, and its geographical location. The
paleomicrobiology of tuberculosis has verified histori-
cal records of past infections and confirmed or refuted
the findings of paleopathologists, anthropologists, and
archaeologists. Palaeomicrobiology enables the recog-
nition of co-infections, multiple infections, and co-
morbidities such as tuberculosis and cancer. Links with
medical anthropology and biomedical archaeology en-
able data on human diet, society, location, migra-
tions, stress, and trauma to be considered in relation to

Paleomicrobiology of Human Tuberculosis

past tuberculosis infection and host susceptibility. Col-
laboration with geneticists and evolutionary biologists
has increased our understanding of the origins of the
MTBC, M. tuberculosis, and the time scale for their
emergence.

The newer technologies of high-throughput sequenc-
ing, bioinformatics, and metagenomics have made it
possible to obtain a complete picture of the host and
the microbial contents of samples based on skeletal or
mummified remains. An unexpected finding was the
discovery of mixed infections with different M. tuber-
culosis lineages. Initially, it was believed that these
were linked to scenarios such as the one in modern
sub-Saharan Africa, where there are highly dense hu-
man populations, many immunocompromised patients,
and rising levels of antibiotic resistance. However, we
now know that a high incidence of infection, with mul-
tiple strains of M. tuberculosis, occurred in 18th century
Hungary, during a time of peace but also of a rising
human population and the start of industrialization.
In the present day, there is widespread human mobility
around the world, huge changes in lifestyle, and evolu-
tionary changes increasing exponentially in line with
the human population. In this scenario, we need to know
the origins and development of human microbial path-
ogens such as M. tuberculosis in order to better under-
stand the future. Paleomicrobiology is one of the tools
that we can use.
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