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Bayes-Optimal Joint Channel-and-Data Estimation
for Massive MIMO with Low-Precision ADCs

Chao-Kai Wen, Chang-Jen Wang, Shi Jin, Kai-Kit Wong, and Pangan Ting

Abstract—This paper considers a multiple-input multiple-
output (MIMO) receiver with very low precision analog-to-digital
convertors (ADCs), motivated by the interest of massive MIMO
antenna systems operating with low cost and power requirements.
In this case, prior work demonstrated that the training duration
is required to be very large just to obtain an acceptable channel
state information (CSI). To tackle this, we adopt joint channel-
and-data (JCD) estimation based on the Bayes-optimal inference
which results in the minimal mean-square-error (MSE) with
respect to (w.r.t.) the channels as well as the payload data.
We realize the Bayes-optimal JCD estimator using a recent
technique based on approximate message passing and present
an analytical framework to study its theoretical performances in
the large-system limit. Simulation results confirm our analytical
results, which allow efficient evaluation of the performance for the
quantized massive MIMO systems and provide insights to system
design.

Keywords—Bayes-optimal inference, joint channel-and-data es-
timation, low precision ADC, massive MIMO, replica method.

I. INTRODUCTION

The fifth-generation mobile communications, widely known
as the 5G, is anticipated to obtain 1, 000-fold gains in capac-
ity, 10-fold increase in spectral and energy efficiencies, and
also 25-fold gains in average cell throughput [1]. The large-
scale multiple-input multiple-output (MIMO) antenna systems,
a.k.a. “massive MIMO” are being considered as a key enabler
for delivering these promises, e.g., [1–4]. Such systems employ
numerous number of antennas at the base station (BS) (e.g.,
hundreds or thousands) to serve multiple user terminals (tens
or hundreds) in the same time-frequency resource. As such, the
array gain is expected to grow unboundedly with the number
of antennas at the BSs so that the radiated energy-efficiency
shall increase dramatically and multiuser interference shall be
eliminated completely.

The high dimensionality however considerably increases
the hardware cost and power consumption. In particular, the
hardware complexity and power consumption of an analog-to-
digital converter (ADC) increase exponentially in the number
of bits per sample [5], and will be a major obstacle. This
has motivated the use of low-cost low-precision ADCs (e.g.,
1-3 bits) at the antennas, resulting in the quantized MIMO
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systems.1 With such coarse quantization, all communication
theories as well as signal processing techniques dedicating to
high-resolution quantization fail [6–9]. Some aspects of the
quantized MIMO systems have been studied in the literature
covering capacity analysis [10–12], energy efficiency analysis
[13, 14], feedback codebook design [15], data detection [16–
24], and channel estimation [18, 20, 23–26].

This paper’s focus is on data detection and channel esti-
mation for the quantized MIMO systems. Previous work in
this regard mostly assumed perfect channel state information
(CSI) at the receiver (CSIR) or considered problems merely
to channel estimation. The use of coarse quantization greatly
reduces the number of effective measurements, and therefore the
acquisition of CSIR becomes more challenging in the quantized
MIMO systems than in its unquantized counterpart. In [18], it
was shown that a one-bit quantized MIMO system requires
an extremely long training sequence (e.g., approximately 50
times the number of users) to achieve the same performance
as in the full CSI case. The requirement of long training
sequence motivates us to consider joint channel-and-data (JCD)
estimation in which the estimated payload data are utilized to
aid channel estimation. A major advantage of JCD estimation
is that relatively few pilot symbols are required to achieve the
equivalent channel and data estimation performances [27, 28].

Though performance enhancement by using the JCD tech-
nique is expected, its performance in quantized MIMO systems
is not understood.2 The most related work appears to be [20]
where the achievable throughput was investigated in the one-
bit quantized single-input single-output (SISO) channel using
JCD estimation (i.e., least-squares channel estimation jointly
on pilot and data symbols). For the one-bit quantized MIMO
system, [20] just considered a pilot-only scheme with least-
squares channel estimation followed by data detection utilizing
maximal-ratio combining. Although it was found that high-
order constellation such as 16-QAM can also be supported
by the one-bit quantized MIMO system, which outperforms
the ones reported in [18] for QPSK, the problem of requiring
long training sequence remains. Hence, there is strong desire to
study the fundamental performance limits on quantized MIMO
systems imposed by the JCD estimation.

In this paper, we present a framework to analyze the
achievable performance of the quantized MIMO system with

1In practice, an ADC, typically with a precision of 8-12 bits, is used in
modern communication systems so that the received signals can be processed
in the digital domain. In this paper, the “quantized” MIMO system specifically
represents a MIMO system equipped with very low-precision ADCs (e.g., 1-3
bits).

2In the context of unquantized MIMO system, several aspects of the JCD
estimation have already been widely studied, see e.g., [27, 28].
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JCD estimation. Unlike other JCD estimation schemes based
on suboptimal criteria [20, 27, 28], we use the Bayes-optimal
inference for JCD estimation because this approach gives the
minimum mean-square-error (MMSE) with respect to (w.r.t.)
the channels and data symbols. In the conference version of
this work [29], our simulation results have demonstrated that
the Bayes-optimal JCD estimator provides a significant gain
over the pilot-only schemes in the quantized MIMO system.
Besides the derivations that were omitted in [29], the main
contributions of this paper are summarized as follows:

• To implement the Bayes-optimal JCD estimator, a variant
of belief propagation (BP) to approximate the marginal
distributions of each data and channel components is used.
We modify the bilinear generalized approximate message
passing (BiG-AMP) algorithm in [30] and adapt it to the
quantized MIMO system by providing the corresponding
closed-form expressions for the nonlinear steps. We refer
to this scheme as the GAMP-based JCD algorithm.3

• By large-system analysis based on the replica method
from statistical physics, we show the decoupling principle
for the Bayes-optimal JCD estimator. That is, in the
large-system regime, the input-output relationship of the
quantized MIMO system using the Bayes-optimal JCD
estimator is decoupled into a bank of scalar additive white
Gaussian noise (AWGN) channels w.r.t. the data symbols
and the channel response, respectively. This allows the
characterization of several system performances of interest
in an intuitive way. In particular, the average symbol error
rate (SER) w.r.t. the data symbols as well as the average
MSE w.r.t. the channel estimate for the Bayes-optimal JCD
estimator are determined.

• Finally, computer simulations are provided to verify the
efficiency of the proposed GAMP-based JCD algorithm
and the accuracy of our analysis. The high accuracy of
our results allows a quick and efficient way to evaluate
the performances of the quantized MIMO system. Several
useful observations on aiding the system design are made
from the analysis.

Notations—Throughout, for any matrix A, Aij refers to the
(i, j)th entry of A, AT denotes the transpose of A, AH is the
conjugate transpose of A, and tr(A) denotes its trace. Also,
I denotes the identity matrix, 0 is the zero matrix, ‖ · ‖F
denotes the Frobenius norm, E[·] represents the expectation
operator, log(·) is the natural logarithm, and sign(·) is the
signum function. In addition, a random vector z drawn from the
proper complex Gaussian distribution of mean µ and covariance
Ω is described by the probability density function:

NC(z;µ,Ω) =
1

det(πΩ)
e−(z−µ)HΩ−1(z−µ),

where det(·) returns the determinant. We write z ∼
NC(z;µ,Ω). With Dz denoting the real (or complex) Gaussian

3In this paper, the Bayes-optimal JCD estimator is regarded as the theoretical
optimal estimator, while the GAMP-based JCD algorithm can be thought of as
a practical method to approximate the theoretical optimal estimator.
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Fig. 1. The quantized MIMO antenna system.

integration measure, for an n×1 real valued vector z, we have

Dz =

n∏
i=1

φ(zi) dzi with φ(zi) =
e−

z2i
2

√
2π

;

or Dz =
∏n
i=1

e−(Re(zi))
2−(Im(zi))

2

π dRe(zi)dIm(zi) for the com-
plex valued vector, where Re(·) and Im(·) extracts the real and
imaginary components, respectively. Finally,

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt.

denotes the cumulative Gaussian distribution function [31].

II. SYSTEM MODEL

We consider a MIMO uplink system where one BS equipped
with N receive antennas serves K single-antenna users. The
channel is assumed to be flat block fading, wherein the channel
remains constant over T consecutive symbol intervals (i.e., a
block). The received signal Y = [Ynt] ∈ CN×T over the block
interval can be written in matrix form as

Y =
1√
K

HX + W = Z + W, (1)

where X = [Xkn] ∈ CK×T denotes the transmit symbols in
the block, H = [Hnk] ∈ CN×K denotes the channel matrix
containing the fading coefficients between the transmit antennas
and the receive antennas, W = [Wnt] ∈ CN×T represents the
additive temporally and spatially white Gaussian noise with
zero mean and element-wise variance σ2

w, and we define Z =
[Znt] = 1√

K
HX ∈ CN×T .

On the receiver side, as illustrated in Figure 1, each re-
ceived signal is down-converted into analog baseband Ynt and
then discretized using a complex-valued quantizer Qc. Each
complex-valued quantizer Qc(·) is defined as Ỹnt = Qc(Ynt) ,
Q(Re{Ynt}) + jQ(Im{Ynt}), i.e., the real and imaginary parts
are quantized separately. In practice, a variable gain amplifier
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(VGA) with an automatic gain control (AGC) is used prior to
the quantization to ensure the analog baseband within a proper
range, e.g., (−1,+1). It is assumed that Ynt has included the
AGC gain and thus is in a proper range. The resulting quantized
signal Ỹ = [Ỹnt] ∈ CN×T is therefore given by

Ỹ = Qc(Y) = Qc(Z + W), (2)

where the quantization is applied element-wise.
Specifically, each complex-valued quantizer Qc consists of

two real-valued B-bit quantizers Q. Each real-valued quantizer
maps a real-valued input to one of the 2B bins, which are
characterized by the set of 2B − 1 thresholds [r1, r2, . . . , r2B−1],
such that −∞ < r1 < r2 < · · · < r2B−1 < ∞. For notational
convenience, we define r0 = −∞ and r2B =∞. The output is
assigned a value in (rb−1, rb] when the quantizer input falls in
the interval (rb−1, rb] (namely, the b-th bin). For example, the
threshold of a typical uniform quantizer with the quantization
step-size ∆ is given by

rb =
(
−2B−1 + b

)
∆, for b = 1, . . . , 2B − 1, (3)

and the quantization output is assigned the value rb − ∆
2 when

the input falls in the b-th bin.4 Figure 1 shows an example
of the 3-bit uniform quantizer. Notice that in practice, we can
adjust the VGA gain to attain the desired step-size ∆.

Since the channel matrix H needs to be estimated at the
receiver, we make the first Tt symbols of the block of T
symbols serve as pilot sequences. The remaining Td = T − Tt
symbols are used for data transmissions. The training and data
phases are referred to as t-phase and d-phase, respectively. This
setting is equivalent to partitioning X and Ỹ as

X =
[
Xt Xd

]
, with Xt ∈ CK×Tt , Xd ∈ CK×Td , (4a)

Ỹ =
[
Ỹt Ỹd

]
, with Ỹt ∈ CN×Tt , Ỹd ∈ CN×Td . (4b)

We assume that Xt (or Xd) is composed of independent and
identically distributed (i.i.d.) random variables Xt (Xd) drawn
from a known probability distribution PXt (or PXd

), i.e.,

PX(X) =

(
K∏
k=1

Tt∏
t=1

PXt(Xt,kt)

)
︸ ︷︷ ︸

=PXt (Xt)

(
K∏
k=1

Td∏
t=1

PXd
(Xd,kt)

)
︸ ︷︷ ︸

=PXd
(Xd)

. (5)

Since the pilot and data symbols should appear on constellation
points uniformly, the ensemble averages of {Xt,kt} and {Xd,kt}
are assumed to be zero. In addition, we let σ2

xt
and σ2

xd
be the

transmit powers during the t-phase and d-phase, respectively,
i.e., E{|Xt,kt|2} = σ2

xt
and E{|Xd,kt|2} = σ2

xd
. For ease of

notation, we refer an entry of X to Xkt instead of Xt,kt or
Xd,kt. Therefore, we use Tt = {1, . . . , Tt} and Td = {Tt +
1, . . . , T} to denote the sets of symbol indices in t-phase and
d-phase, respectively.

Similarly, we assume that each entry Hnk is drawn from
a complex Gaussian distribution NC(0, σ2

h), where σ2
h is the

4This output assignment is only true for b = 1, . . . , 2B − 1. If b = 2B, the
quantization output is assigned the value

(
2B−1 − 2−1

)
∆.

large-scale fading coefficient. Let PH(Hnk) ≡ NC(0, σ2
h). Then

PH(H) =

N∏
n=1

K∏
k=1

PH(Hnk). (6)

To prevent the key features of our results from being obfuscated
by complex notations, we consider the case where all the users
have the same large-scale fading factor in the main text. A
generalized version of our main result is presented in Appendix
E, where the users have different large-scale fading factors. This
generalization can be easily achieved by plugging user index k
into σ2

h.

III. BAYES-OPTIMAL JCD ESTIMATION

We consider the case where the receiver knows the distribu-
tions of H and X but not their realizations. In contrast to the
pilot-only scheme, we consider JCD estimation, where the BS
estimates both H and Xd from Ỹ given Xt. In Section III-A,
we will treat the problem under the framework of Bayesian
inference, which provides a foundation for achieving the best
MSE estimates [32]. Then, we explain explain this inference
in a simple SISO system in Section III-B. In Section III-C, we
present an algorithm to realize the Bayesian inference by an
approximation of the sum-product algorithm.

A. Theoretical Foundation

We define the likelihood, i.e., the distribution of the received
signals under (2) conditional on the unknown parameters, as

Pout(Ỹ|H,X) ,
N∏
n=1

T∏
t=1

Pout

(
Ỹnt

∣∣∣Znt), (7)

where

Pout

(
Ỹ
∣∣∣Z) =

(
1√
πσ2

w

∫ rb

rb−1

e
− (y−Re(Z))2

σ2w dy

)

×

(
1√
πσ2

w

∫ rb′

rb′−1

e
− (y−Im(Z))2

σ2w dy

)
(8)

when Re(Ỹ ) ∈ (rb−1, rb] and Im(Ỹ ) ∈ (rb′−1, rb′ ]. Based on
the cumulative Gaussian distribution function (see the definition
in Notations), (8) becomes

Pout

(
Ỹ
∣∣∣Z) = Ψb

(
Re(Z)

)
Ψb′
(
Im(Z)

)
, (9)

where

Ψb(x) , Φ

(√
2(rb − x)

σw

)
− Φ

(√
2(rb−1 − x)

σw

)
. (10)

The prior distributions of X and H are given by (5) and (6),
respectively. Then the posterior probability can be computed
according to Bayes’ rule as

P(H,X|Ỹ) =
Pout(Ỹ|H,X)PH(H)PX(X)

P(Ỹ)
, (11)

where

P(Ỹ) =

∫
H

∫
X

P(Ỹ|H,X)PH(H)PX(X) dHdX (12)
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is the marginal likelihood.
Given the posterior probability, an estimator for Hnk can be

obtained by the posterior mean

Ĥnk =

∫
HnkP(Hnk) dHnk, (13)

where

P(Hnk) =

∫
H\Hnk

dH

∫
X

dXP(H,X|Ỹ)

denotes the marginal posterior probability of Hnk. Here, the
notation

∫
H\Hnk dH denotes the integration over all the vari-

ables in H except for Hnk. Similarly, the estimator for Xo,kt

for o ∈ {t, d} can be obtained by the posterior mean

X̂o,kt =

∫
P(Xo,kt)Xd,kt dXo,kt, (14)

where

P(Xo,kt) =

∫
H

dH

∫
X\Xo,kt

dXP(H,X|Ỹ)

is the marginal posterior probability of Xo,kt. Also, the notation∫
X\Xo,kt dX denotes the integration over all the variables in X

except for Xo,kt. The posterior mean estimators (13) and (14)
minimize the (Bayesian) MSE [32] defined as

mse(H) =
1

NK
E
{
‖Ĥ−H‖2F

}
, (15a)

mse(Xo) =
1

KTo
E
{
‖X̂o −Xo‖2F

}
, for o ∈ {t, d}, (15b)

where the expectation operator is w.r.t. P(Ỹ,H,Xo), and we
have defined Ĥ = [Ĥnk] and X̂o = [X̂o,kt]. We refer to (13)
and (14) as the Bayes-optimal estimator.

Remark 1: Given a known pilot matrix Xt, which by defi-
nition is given by PXt(Xt) = δ(Xt −Xt), we obtain X̂t,kt =
Xt,kt from (14), and therefore mse(Xt) = 0. For the case of
our interest, we always have mse(Xt) = 0. The algorithm as
well as the analytical results still work even if the pilots are
unknown, we can express the MSE as in (15b).

B. Bayes-Optimal Estimator in SISO Channel

To better understand the Bayes-optimal estimator, we first
explain it in a simple SISO system. We consider a SISO version
of the system (1) given by

Y = Z +W. (16)

Recall that W is the additive white Gaussian noise with zero
mean and variance σ2

w. After a complex-valued quantizer, Ỹ =
Qc(Y ) is obtained. Based on the system model (1), Z = HX
should be kept. However, to facilitate interpretation, we first
let Z be a random variable with distribution PZ. According to
Bayes’ rule (11), the posterior probability can be computed as

P(Z|Ỹ ) =
Pout(Ỹ |Z)PZ(Z)

P(Ỹ )
, (17)

where P(Ỹ ) =
∫
Pout(Ỹ |z)PZ(z) dz is the marginal likelihood.

Then, from (13) or (14), the posterior mean estimator for Z is

given by

Ẑ =

∫
zP(z|Ỹ ) dz. (18)

To specify the estimator, we further assume that Z is a
proper complex Gaussian with mean p̂ and variance vp, i.e.,
PZ(Z) = NC(Z; p̂, vp). Then, we derive the estimator (18)
under the two channels, unquantized and quantized, in the
following examples.

Example 1 (Unquantized Channel). In this case, we have
Ỹ = Y and Pout(Ỹ |Z) = 1

πσ2
w
e−|Ỹ−Z|

2/σ2
w . Using these

distributions, we obtain

Pout(Ỹ |Z)PZ(Z) = NC(Z; Ỹ , σ2
w)NC(Z; p̂, vp)

= D · NC

(
Z;

vpỸ + σ2
wp̂

σ2
w + vp

,
σ2
wv

p

σ2
w + vp

)
, (19)

where D = NC(0; Ỹ − p̂, σ2
w + vp), and the second equality

follows the Gaussian reproduction property [33, (A.7)].5 Sub-
stituting (19) into (17), we obtain

P(Z|Ỹ ) = NC

(
Z;

vpỸ + σ2
wp̂

σ2
w + vp

,
σ2
wv

p

σ2
w + vp

)
. (20)

The estimator (18), which is the mean of P(Z|Ỹ ) after rear-
ranging is determined as

Ẑ = p̂+
vp

σ2
w + vp

(Ỹ − p̂). (21)

The MSE of the estimator, which is the variance of P(Z|Ỹ ),
is

vz = vp − (vp)2

σ2
w + vp

. (22)

Example 2 (Quantized Channel). If Re(Ỹ ) ∈ (rb−1, rb] and
Im(Ỹ ) ∈ (rb′−1, rb′ ], then the likelihood of the quantized mea-
surement Ỹ is given by (9). The calculation of the posterior
mean and variance in the quantized channel is technical, but it
basically follows a procedure similar to that in the unquantized
channel. A derivation is given in Appendix A, which turns out
to yield

Ẑ = p̂+
sign(Ỹ )vp√
(σ2
w + vp)/2

(
φ(η1)− φ(η2)

Φ(η1)− Φ(η2)

)
, (23)

vz =
vp

2
+

(vp)2

2(σ2
w + vp)

×(
η1φ(η1)− η2φ(η2)

Φ(η1)− Φ(η2)
+

(
φ(η1)− φ(η2)

Φ(η1)− Φ(η2)

)2
)
, (24)

5The product of two Gaussians gives another Gaussian [33, (A.7)]:

NC(x; a,A)NC(x; b, B) = D · NC(x; c, C),

where c = C(A−1a+B−1b), C = (A−1 +B−1)−1, and D = NC(0; a−
b, A+B).



5

where

η1 =
sign(Ỹ )p̂−min{|rb−1|, |rb|}√

(σ2
w + vp)/2

, (25a)

η2 =
sign(Ỹ )p̂−max{|rb−1|, |rb|}√

(σ2
w + vp)/2

. (25b)

The real and imaginary parts are quantized separately, and each
complex-valued channel can be decoupled into two real-valued
channels. The expressions (23)–(25) are the estimators only
for the real part of Z. To facilitate notation, we have abused Ỹ
and Ẑ in (23)–(25) to denote Re(Ỹ ) and Re(Ẑ), respectively.
The estimator for the imaginary part Im(Ẑ) can be obtained
analogously as (23) and (24), while Ỹ and b should be replaced
by Im(Ỹ ) and b′, respectively.

Remark 2: Recall r0 = −∞ and r2B =∞. Therefore, if
b = 1 or b = 2B, we obtain φ(η2) = 0, η2φ(η2) = 0, and
Ψ(η2) = 0. Additionally, for a special case of B = 1 (i.e.,
one-bit quantizer), the expressions of (23) and (24) agree with
those reported in [34].

Remark 3: For another extremely case of B → ∞ and
∆ → 0, we return to the unquantized channel as that in
Example 1. Instead of using the procedure in Example 1, we
show how can the expressions (21)–(22) be obtained from (23)–
(24). Recall that rb−1 and rb are the upper and the lower
bin boundary positions w.r.t. the b-th bin. Let rb−1 = r and
rb = rb−1 + dr. As B → ∞ and ∆ → 0, we have dr → 0
which results in rb → r and η1 → η2 , η. Furthermore, we
obtain Φ(η1)− Φ(η2)→ d

drΦ(η), φ(η1) − φ(η2) → d
drφ(η),

and η1φ(η1) − η2φ(η2) → d
drηφ(η). By substituting these

in (23)–(24) and applying the facts that d
drΦ(η) = φ(η) d

drη,
d
drφ(η) = −ηφ(η) d

drη, and d
drηφ(η) = (1 − η2)φ(η) d

drη, we
recover the same expressions as given in (21) and (22) for
the real part of Ẑ. The imaginary part for Ẑ can be obtained
analogously.

The aforementioned example is the estimator for Z. The
same concept can be easily applied to the estimate of H or
X , if Z is replaced by H or X in (16). However, if Z = HX
and both H and X are unknown, the Bayes-optimal estimator
increases in complexity. In this case, the posterior probability
in (17) becomes P(H,X|Ỹ ) = Pout(Ỹ |H,X)PH(H)PX(X)

P(Ỹ )
, which

involves two prior distributions for H and X as that in (11). To
implement the posterior mean estimator for H and X , we need
the marginal posterior probabilities P(H) =

∫
P(H,X|Ỹ ) dX

and P(X) =
∫
P(H,X|Ỹ ) dH , respectively. The posterior

probability P(H,X|Ỹ ) could not be found in closed form.
Although we can resort to numerical integration to implement
the estimator, the computational complexity is high. Therefore,
one might consider an alternative technique; that is, the estimate
of H is performed with fixed X and vice versa.

In the next subsection, we develop a practical algorithm for
the Bayes-optimal estimator. Before proceeding, we intend to
provide an intuition on the algorithm. A representation of the
algorithm is shown in Fig. 2, which seems to operate in the
alternative manner. Conceptually, when the posterior mean and
variance of Z are obtained from the quantized observation Ỹ ,
we can reconstruct Y and then approximate Pout(Y |Z) as a
Gaussian distribution. Then, the posterior mean estimator for H

Fig. 2. A representation of the GAMP-based JCD algorithm.

eY11

eY21

eY31

eY12

eY22

eY32
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Xd;11

Xd;21

H11

H21
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H22

H32

PXt
(Xt;11)

PH(H11)

PH(H21)

PH(H31)

PH(H12)

PH(H22)

PH(H32)

PXt
(Xt;21)
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(Xd;11)
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(Xd;21)

Data Variables

Channel Variables

Pilots

Fig. 3. Factor graph representation of the integrant of (26), where N = 3,
K = 2, and T = 2.

(or X) can be conducted through Y , which is an AWGN channel
rather than a quantized channel, in an alternative manner. This
representation is merely for an intuition. The accurate algorithm
development takes a different route.

B. GAMP-Based JCD Algorithm

From the discussions above, direct computations of (13) and
(14) are intractable due to high-dimensional integrals in the
marginal posteriors P(Xkt) and P(Hnk). To be tractable, we
first note that by combining (5)–(7), the posterior probability
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(11) can be factored into

1

P(Ỹ)

N∏
n=1

T∏
t=1

Pout

(
Ỹnt

∣∣∣Znt)× N∏
n=1

K∏
k=1

PH(Hnk)

×
K∏
k=1

Tt∏
t=1

PXt(Xt,kt)×
K∏
k=1

Td∏
t=1

PXd
(Xd,kt). (26)

An example factor graph for (26) is shown in Figure 3, where
a square represents a factor node associated with the sub-
constraint function Pout(Ỹnt|Znt) in (26), while a circle shows
a variable node associated with Hnk, Xd,kt, or Xt,kt. The factor
graph suggests the use of the canonical sum-product algorithm
to compute the marginal posterior probabilities. The algorithm
uses a set of message passing equations which go from factor
nodes to variable nodes and vice versa.

However, the computational complexity of the sum-product
algorithm is still infeasible in the case of our interest because
it still involves high-dimensional integration and summation.
Hence, we resort to a recently developed approximation: the
so-called AMP (approximate message passing) algorithm [35]
and generalized AMP (GAMP) [36]. In particular, AMP is
a variant of the sum-product algorithm, which was initially
proposed by Donoho et al. [35] in order to solve a linear inverse
problem in the context of compressive sensing. Using GAMP
to our MIMO system means that given H known, GAMP can
provide a tractable way to approximate the marginal posteriors
P(Xkt)’s. This part corresponds to addressing the message
passing equations among Ỹnt and Xkt, i.e., the left-hand side of
Figure 3. For the study see, e.g., [19, 37]. More recently, Parker
et al. in [30] applied the same strategy of GAMP to the problem
of reconstructing matrices from bilinear noisy observations (i.e.,
reconstructing H and X from Y), which is referred to as BiG-
AMP.

BiG-AMP for JCD estimation is presented in Algorithm 1
for a given instantiation of the quantized observations Ỹ, the
pilot matrix Xt, as well as the likelihood Pout(Ỹ|Z), and the
variable distributions PH(H) and PXd

(Xd). We refer to this
scheme as the GAMP-based JCD algorithm, which follows the
same structure as BiG-AMP [30] except for the part dealing
with the known pilots, i.e., t ∈ Tt in Algorithm 1. We refer the
interested reader to [30] for derivation details of BiG-AMP.

To better understand the algorithm, we provide some intu-
ition on each step of Algorithm 1. Also see the representation
in Fig. 2. Lines 3–6 compute an estimate P̂d = [p̂nt] of the
matrix product Zd = HXd and the corresponding variances
{vpnt : t ∈ Td}. Here, P̄d = [p̄nt] and {v̄pnt : t ∈ Td} in lines
3–4 can be regarded as auxiliary variables.6 Similarly, lines 1–
2 do the same matter but for the matrix product Zt = HXt.
Because pilot matrix Xt is known, the corresponding variances
for Xt are zero, i.e., vxkt = 0 for t ∈ Tt. With vxkt = 0, we thus
have plugged p̄nt and v̄pnt into p̂nt and vpnt for t ∈ Tt to get
lines 1–2. Using {p̂nt, vpnt}, lines 7–8 then yield the posterior
means Ẑ = [Ẑnt] and variances {vznt} of Z. Then lines 9–10
use these posterior results to compute the residual Ŝ = [ŝnt]
and the inverse residual variances {vsnt}. Lines 11–12 then use

6P̄d is a plug-in estimate of Zd while P̂d = [p̂nt] provides a refinement by
introducing “Onsager” correction in the context of AMP. See [30] for details.

Algorithm 1: GAMP-based JCD Algorithm
input : Quantized observations Ỹ, pilot matrix Xt, likelihood

Pout(Y |Z), and variable distributions PH(H) and PXd
(Xd)

output : Ĥ, X̂d

definition:
∑
k ,

∑K
k=1,

∑
n ,

∑N
n=1

initialize : ∀n, t: ŝnt(0) = 0, vznt(0) = 1, Ẑnt(0) = 0; ∀n, k, t:
vxkt(1) = 1, X̂d,kt(1) = 0, vhnk(1) = 1, Ĥnk(1) = 0.

ξ ← 1;

while
∑
n,t |Ẑnt(ξ)−Ẑnt(ξ−1)|2∑

n,t |Ẑnt(ξ−1)|2
> ε and ξ < ξmax do

if t ∈ Tt then
1 ∀n: vpnt(ξ) =

∑
k v

h
nk(ξ)|Xkt|2;

2 ∀n: p̂nt(ξ) =
∑
k Ĥnk(ξ)Xkt − ŝnt(ξ − 1)vpnt(ξ);

if t ∈ Td then
3 ∀n: v̄pnt(ξ) =

∑
k

∣∣Ĥnk(ξ)|2vxkt(ξ) + vhnk(ξ)|X̂kt(ξ)|2;

4 ∀n: p̄nt(ξ) =
∑
k Ĥnk(ξ)X̂kt(ξ);

5 ∀n: vpnt(ξ) = v̄pnt(ξ) +
∑
k v

h
nk(ξ)vxkt(ξ);

6 ∀n: p̂nt(ξ) = p̄nt(ξ)− ŝnt(ξ − 1)v̄pnt(ξ);

7 ∀n, t: vznt(ξ) = Var
{
Znt

∣∣p̂nt(ξ), vpnt(ξ)};

8 ∀n, t: Ẑnt(ξ) = E
{
Znt

∣∣p̂nt(ξ), vpnt(ξ)};

9 ∀n, t: vsnt(ξ) = (1− vznt(ξ)/v
p
nt(ξ))/v

p
nt(ξ);

10 ∀n, t: ŝnt(ξ) = (Ẑnt(ξ)− p̂nt(ξ))/vpnt(ξ);

11 ∀k, t: vrkt(ξ) =
[∑

n |Ĥnk(ξ)|2vskt(ξ)
]−1

;

12 ∀k, t: r̂kt(ξ) = X̂kt(ξ)
(
1− vrkt(ξ)

∑
n v

h
nk(ξ)vsnt(ξ)

)
+vrkt(ξ)

∑
n Ĥ
∗
nk(ξ)ŝnt(ξ) ;

13 ∀n, k: vqnk(ξ) =
[∑

t∈Tt |Xkt|
2vsnt(ξ)

]−1
;

14 ∀n, k: q̂nk(ξ) = Ĥnk(ξ)
(

1− vqnk(ξ)
∑
t∈Td v

x
kt(ξ)v

s
nt(ξ)

)
+vqnk(ξ)

(∑
t∈Tt X

∗
ktŝnt(ξ)

+
∑
t∈Td X̂

∗
kt(ξ)ŝnt(ξ)

)
;

15 ∀k, t ∈ Td: vxkt(ξ + 1) = Var
{
Xkt

∣∣r̂kt(ξ), vrkt(ξ)};

16 ∀k, t ∈ Td: X̂kt(ξ + 1) = E
{
Xkt

∣∣r̂kt(ξ), vrkt(ξ)};

17 ∀n, k: vhnk(ξ + 1) = Var
{
Hnk

∣∣q̂nk(ξ), vqnk(ξ)
}

;

18 ∀n, k: Ĥnk(ξ + 1) = E
{
Hnk

∣∣q̂nk(ξ), vqnk(ξ)
}

;

ξ ← ξ + 1 ;

these residual terms to compute R̂ = [r̂kt] and {vrkt}, where
r̂kt can be interpreted as an observation of Xd,kt under an
AWGN channel with zero-mean and variance of vrkt. Similarly,
lines 13–14 evaluate Q̂ = [q̂nk] and vqnk, where q̂nt can be
interpreted as an observation of Hnk under an AWGN channel
with noise variance of vqnk. Finally, lines 15–16 estimate the
posterior mean X̂ = [X̂kt] and variances {vxkt} by taking into
account the prior PXd

; lines 17–18 perform the same for Hnk.

C. Nonlinear Steps

Algorithm 1 gives a high-level description of BiG-AMP
to perform JCD estimation. Lines 7–8, 15–16, and 17–18 of
Algorithm 1 perform the posterior mean and variance estimators
for Znt, Xkt, and Hnk, respectively. A remarkable feature of
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the algorithm is that at each iteration, the estimate of Znt, Xkt,
and Hnk can perform separably as the estimators over a bank
of scalar channels. Next, we detail these nonlinear steps. For
brevity, we omit the subscript indexes n, k, t hereafter.

First, we notice that lines 7–8 compute the posterior mean
and variance of Z, where the expectation operator is w.r.t.

P(Z) =
Pout(Ỹ |Z)PZ(Z)∫
Pout(Ỹ |z′)PZ(z′) dz′

,

where Pout(Ỹ |Z) is given by (9), and PZ(Z) = NC(Z; p̂, vp).
This process is exactly identical to what we have done in
Example 2 of Section III.B. As a result, lines 7–8 of Algorithm
1 for each real-valued channel can be computed using the
expressions in (23) and (24).

Next, we discuss the nonlinear steps used to compute (X̂, vx)
and (Ĥ, vh) in lines 15–16 and 17–18 of Algorithm 1. Specif-
ically, the expectations and variances in lines 15-16 and 17-18
are taken w.r.t. the marginal posterior

P(Xd) =
N (Xd; r̂, v

r)PXd
(Xd)∫

N (x′d; r̂, v
r)PXd

(x′d) dx′d
, (27)

P(H) =
N (H; q̂, vq)PH(H)∫
N (h′; q̂, vq)PH(h′) dh′

. (28)

These posterior probabilities are similar to that of (Ẑ, vz)
except that Pout is replaced by a Gaussian distribution, and
the corresponding priors PXd

and PH are used in place of
PZ. In fact, the former change results in a fundamentally
difference estimator than in the case of Z. Recall from Example
1 of Section III.B that if Pout is a Gaussian distribution, the
estimator is operated in an unquantized channel. That is, the
estimates of H and X in Algorithm 1 are based on AWGN
channels.

To specify (X̂, vx), we consider the square QAM constella-
tion with 2ν × 2ν points

X =
{
XR + jXI : XR, XI ∈ {−(2ν − 1)ζ, . . . ,−3ζ,−ζ,

ζ, 3ζ, . . . , (2ν − 1)ζ}
}
, (29)

where ζ = 1/
√

2((2ν)2 − 1)/3 is the power normalization
factor. If X is drawn from the constellation points uniformly,
i.e., PXd

(Xd) = 1/(2ν)2 for Xd ∈ X , lines 15–16 of Algorithm
1 can be computed using

X̂d =

∑ν
i=1(2i− 1)ζF s

i (Re(r̂))∑ν
i=1 F

c
i (Re(r̂))

+ j

∑ν
i=1(2i− 1)ζF s

i (Im(r̂))∑ν
i=1 F

c
i (Im(ϑi))

, (30)

vx =

∑ν
i=1(2i− 1)2ζ2F s

i (Re(r̂))∑ν
i=1 F

c
i (Re(r̂))

+

∑ν
i=1(2i− 1)2ζ2F s

i (Im(r̂))∑ν
i=1 F

c
i (Im(r̂))

− |X̂d|2, (31)

where

F s
i (x) = e−

(2i−1)2ζ
vr sinh

(
2(2i− 1)ζ

vr
x

)
,

F c
i (x) = e−

(2i−1)2ζ
vr cosh

(
2(2i− 1)ζ

vr
x

)
.

Finally, recall that PH(Hnk) = NC(0, σ2
h). Then lines 17–18 of

Algorithm 1 can be computed using

Ĥ =
σ2
h

σ2
h + vq

q̂ and vh = vq − (vq)2

σ2
h + vq

. (32)

The derivation of (32) is identical to that in Example 2.
Using the above nonlinear steps (23)–(24) and (30)–(32), the

GAMP-based JCD algorithm has been implemented based on
the open-source “GAMPmatlab” software suite. The code for
the GAMP-based JCD algorithm is available upon request.

IV. PERFORMANCE ANALYSIS

Here, we present a framework to analyze the Bayes-optimal
JCD estimator. First, recall the definitions of the MSEs of H
and Xd and from (15). The key strategy for analyzing mse(H)
and mse(Xd) is through the average free entropy

F , 1

K2
EỸ

{
logP(Ỹ)

}
, (33)

where P(Ỹ) denotes the marginal likelihood in (12), namely
the partition function. Following the argument of [38, 39], it
can be shown that mse(Xd) and mse(H) are saddle points of
the average free entropy. Thus, our goal reduces to finding (33).

Our analysis is based on the large-system limit. That is, when
N,K, T →∞ but the ratios

N/K = α, T/K = β, Tt/K = βt, Td/K = βd, (34)

are fixed and finite. For convenience, we simply use K →
∞ to denote this large-system limit. Even in the large-system
limit, the computation of (33) is hard. The major difficulty in
computing (33) is the expectation of the logarithm of P(Ỹ),
which, nevertheless, can be facilitated by rewriting F as7

F =
1

K2
lim
τ→0

∂

∂τ
log EỸ

{
Pτ (Ỹ)

}
. (35)

Note that the expectation operator is now moved inside the
log-function. We first evaluate EỸ{P

τ (Ỹ)} for an integer-
valued τ , and then generalize the result to any positive real
number τ . This technique, called the replica method, is from
the field of statistical physics [40], which is not mathemat-
ically rigorous. Nevertheless, the replica method has proved
successful in a number of highly difficult problems in statistical
physics [40] and information theory, e.g., [27, 41–47]. Some
of the results originally obtained by the replica method have
been subsequently validated by other approaches, e.g., [48, 49].
Under the assumption of K →∞ and replica symmetry (RS),
an asymptotic free entropy can be obtained later in Proposition

7We use the formula

lim
τ→0

∂

∂τ
log E{Aτ} = lim

τ→0

E{Aτ logA}
E{Aτ}

= E{logA},

where A is any positive random variable.
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1. We check the accuracy of the replica-based analysis via
simulations. Proposition 1 involves several new parameters, we
find it helpful to introduce them first.

A. Parameters of Proposition 1

Most parameters (except for some auxiliary parameters) of
Proposition 1 can be illustrated systematically by the scalar
AWGN channels:

YXd
=
√
q̃Xd

Xd +WXd
, (36a)

YH =
√
q̃HH +WH , (36b)

where WH ,WXd
∼ NC(0, 1), H ∼ PH , and Xd ∼ PXd

. We
shall specify how the parameters q̃H and q̃Xd

are related to the
asymptotic free entropy later in Proposition 1. Here, we know
that the parameters q̃Xd

and q̃H serve as the signal-to-noise
ratios (SNRs) of the above AWGN channels. The likelihoods
under (36a) and (36b) are, respectively, given by

P(YXd
|Xd) =

1

π
e−|YXd

−
√
q̃Xd

Xd|2 , (37a)

P(YH |H) =
1

π
e−|YH−

√
q̃HH|2 , (37b)

and then we get the posteriors

P(Xd|YXd
) =

PXd
(Xd)P(YXd

|Xd)∫
dx′d PXd

(x′d)P(YXd
|x′d)

, (38a)

P(H|YH) =
PH(H)P(YH |H)∫

dh′ PH(h′)P(YH |h′)
. (38b)

With the posteriors, some important quantities are obtained.
For example, the posterior mean estimators for Xd and H read

X̂d =

∫
dXdXdP(Xd|YXd

), (39a)

Ĥ =

∫
dHHP(H|YH). (39b)

The MSEs of the estimators are thus given by

mseXd
= E

{
|Xd − X̂d|2

}
, (40a)

mseH = E
{
|H − Ĥ|2

}
, (40b)

in which the expectations are taken over P(YXd
, Xd) and

P(YH , H), respectively. Also see (30)–(32) for an example of
explicit expressions of the above quantities. In addition, the
mutual information between YXd

and Xd reads [50]

I(Xd;YXd
|q̃Xd

) = −EYXd

{
log EXd

{
e−|YXd

−
√
q̃Xd

Xd|2
}}
− 1

(41)
and the mutual information between YH and H is

I(H;YH |q̃H) = −EYH
{

log EH
{
e−|YH−

√
q̃HH|2

}}
−1. (42)

From (36), one would infer that there exists another scalar
AWGN channel w.r.t. the t-phase; i.e.,

YXt =
√
q̃XtXt +WXt , (43)

where WXt ∼ NC(0, 1) and Xt ∼ PXt . As the pilot is known,
we can easily obtain mseXt = 0 following the argument in

Remark 1; and the mutual information between YXt and Xt

is 0. As all the performances relating to (43) are trivial, we
will not use (43) in the following discussions.

B. Analytical Results
Proposition 1: As K →∞, the asymptotic free entropy is

F = α
∑

o∈{t, d}

βo

(
2B∑
b=1

∫
DvΨb (Vo) log Ψb (Vo)

)
− αI(H;YH |q̃H)− βdI(Xd;YXd

|q̃Xd
)

+ α(cH − qH)q̃H +
∑

o∈{t, d}

βo(cXo − qXo)q̃Xo , (44)

where

Ψb(Vo) , Φ

( √
2rb − Vo√

σ2
w + cHcXo − qHqXo

)

− Φ

( √
2rb−1 − Vo√

σ2
w + cHcXo − qHqXo

)
; (45)

Vo ,
√
qHqXov for o ∈ {t, d}; I(·)’s are given by (41) and

(42); and cXo , E{|Xo|2} = σ2
xo , cH , E{|H|2} = σ2

h.
In (44), the other parameters {qXo , qH , q̃Xo , q̃H} are obtained
from the solutions to the following fixed-point equations

q̃H = βtqXtχt + βdqXd
χd, qH = cH −mseH , (46a)

q̃Xt = αqHχt, qXt = cXt −mseXt , (46b)
q̃Xd

= αqHχd, qXd
= cXd

−mseXd
, (46c)

in which mseXt = 0, and mseH and mseXd
are given by (40).

Also, in (46), we have defined

χo ,
2B∑
b=1

∫
Dv

(
Ψ′b
(√
qHqXov

) )2

Ψb

(√
qHqXov

) , for o ∈ {t, d} (47)

with Ψb(·) given by (45) and

Ψ′b(Vo) ,
∂Ψb(Vo)

∂Vo

=
e
− (

√
2rb−Vo)

2

2(σ2w+cHcXo
−qHqXo ) − e

−
(
√

2rb−1−Vo)
2

2(σ2w+cHcXo
−qHqXo )√

2π(σ2
w + cHcXo − qHqXo)

. (48)

Proof: See Appendix B. �
As mentioned earlier, the asymptotic MSEs of Xd and H

are saddle points of the free entropy. Clearly, from Proposition
1, they are mseXd

and mseH , respectively. Note that the
MSEs are associated with the scalar AWGN channels (36a)
and (36b). Therefore, one would infer that performances of
the quantized MIMO system can be fully characterized by
the scalar AWGN channels (36). The following proposition
formulates such intuition.

Proposition 2: Let Xd,kt, Hnk, X̂d,kt, and Ĥnk denote the
(k, t)-th and the (n, k)-th entries of Xd, H, X̂d, and Ĥ. As
K → ∞, the joint distribution of (Xd,kt, Hnk, X̂d,kt, Ĥnk) of
channels (2), (13), and (14) converges to the joint distribution
(Xd, H, X̂d, Ĥ), for the scalar channels (36a) and (36a).

Proof: See Appendix C. �
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Proposition 2 shows that in the large-system limit, the input-
output of the quantized MIMO system employing the Bayes-
optimal JCD estimator is decoupled into equivalently a bank of
the scalar AWGN channels (36a) and (36b). This characteristic
is known as the decoupling principle, which was introduced by
[43] for treading an unquantized MIMO system with perfect
CSIR. If perfect CSIR is available, then we will not need (36b)
for treating the channel estimation quality. Clearly, Proposition
2 extends the decoupling principle to a very general setting. In
particular, we allow the JCD estimator so that the decoupled
AWGN channels involve not only the data symbol [i.e, (36a)]
but also the channel response [i.e., (36b)] as well.

Remark 4: The equivalent channels (36) are the scalar
AWGN channels with q̃d and q̃H being the equivalent SNRs.
From (46) and (47), we see that the quantization effect is
included in q̃d and q̃H through χo for o ∈ {t, d}. Consider the
extremely case of B → ∞ and ∆ → 0, i.e., the unquantized
channel. In this case, the Riemann sums

∑2B

b=1 in (47) becomes
the Riemann integral over the interval (−∞,∞). Applying the
technique in Remark 3 to (47) and evaluating the integrals, χo
can be simplified to

χo =
1

σ2
w + cHcXo − qHqXo

. (49)

Substituting (46) for qH and qXo in the demonstrator of (49),
we obtain σ2

w+cHmseXo +(cXo−mseXo)mseH . The quantity
in this form can be understood as the noise pulse the residual
interference due to estimation errors of the data symbol and
channel response.

To gain more insight into Proposition 2, we particularize
our interest to some special cases in the following examples.
Example 3 (Constellation-like Inputs). By Proposition 2, the
asymptotic MSEs w.r.t. Xd and H can be determined by the
MSEs of the scalar AWGN channels (36a) and (36b), respec-
tively. Thus, if the data symbol is drawn from a quadrature
phase shift keying (QPSK) constellation, we will have

mseXd
= 1−

∫
Dz tanh

(
q̃Xd

+
√
q̃Xd

z
)
, (50)

mseH =
σ2
h

1 + σ2
hq̃H

. (51)

Besides, the SER w.r.t. Xd can also be evaluated through the
scalar AWGN channel (36a), which is given by [51, p.269]

SER = 2Q
(√

q̃X

)
−
[
Q
(√

q̃X

)]2
, (52)

where Q(x) =
∫∞
x

Dz is the Q-function.
In fact, all these performances w.r.t. Xd can be determined

based on the knowledge merely of the scalar AWGN channel
with SNR q̃X . Thus, if the data symbol is drawn from other
square QAM constellations, the corresponding SER can be
easily obtained by the closed-form SER expression in [51,
p.279].
Example 4 (Perfect CSIR). If the channel matrix H is known
perfectly, then the t-phase will not be required so that

βt = 0 and βd = β. (53)

Because H is perfectly known, mseH = 0. Plugging this into

(46a), we immediately obtain qH = cH = σ2
h, which gives

qHqXd
= cHqXd

, (54)
cHcXd

− qHqXd
= cHmseXd

, (55)

in which (55) follows from the result that cHcXd
− qHqXd

=
cH(cXd

− qXd
) and (46c). Substituting (53)–(55) into (45), (47)

and (48), we get more concise expressions for χd, Ψb(·), and
Ψ′b(·). Interestingly, when particularizing our results to the case
with the QPSK inputs, we recover the same asymptotic MSE
expression as given in [16, (7) & (8)]. More precisely, in [16],
the real-valued system with BPSK signal was considered. In
such case,

√
2rb in our paper should be replaced by rb.

Example 5 (Pilot-Only Scheme). In the conventional pilot-only
scheme, the receiver solely uses Ỹt and Xt to generate an
estimate of H and subsequently uses the estimated channel
for estimating the data Xd from Ỹd [18]. The analysis of the
asymptotic MSE w.r.t. H is the same as that in Example 4
but the roles of H and Xt are exchanged. Specifically, during
the t-phase, we have βd = 0 and mseXt = 0 because no data
symbol is involved and the pilot matrix Xt is known. After
substituting these parameters into (46) and simplification, we
obtain the following self-contained fixed-point equations

mseH =
σ2
h

1 + σ2
hq̃H

, (56)

q̃H = βtσ
2
xt
χt (57)

with

χt =

2B∑
b=1

∫
Dv

(
Ψ′b

(√
σ2
xt

(σ2
h −mseH)v

))2

Ψb

(√
σ2
xt

(σ2
h −mseH)v

) . (58)

Here, mseH in (56) represents the asymptotic MSE w.r.t. H for
the pilot-only scheme, which is also the MSE w.r.t. H for the
scalar AWGN channel (36b). Recall that q̃H serves as the SNR
of the AWGN channel (36b). Comparing q̃H in (57) with that
in (46a), we realize that the second term of (46a) is the gain
due to data-aided channel estimation.

Before proceeding with the analysis of data estimation in the
pilot-only scheme, we provide the following proposition to get
a better understanding on mseH in (56).

Proposition 3: Let the channel gain and the transmit pilot
power be normalized, i.e., σ2

h = 1 and σ2
xt

= 1. In the high-
SNR regime and βt = Tt/K � 1, mseH of the pilot-only
scheme can be approximately expressed as

mseH ≈ −20 log10(βt) + CB (dB), (59)

where CB is a quantizer-dependent (e.g., ∆ and B) constant.
Proof: See Appendix D. �

As an example, Table I provides the corresponding value of
CB for a uniform B-bit quantizer with ∆ =

√
B2−B. In this

case, we plot the MSEs that use the approximate expression
(59) as well as its analytical form (56) in Figure 4. We see
that for βt > 2, the approximation (59) matches the theoretical
result (56) perfectly. Interestingly from Table I, the constant
CB satisfies CB ≈ −6.02B + 4.4895 in high resolution cases,
indicating that mseH decreases 6 dB for each 1-bit increase
of rate. Interestingly, this property coincides with the well-
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TABLE I
CB FOR UNIFORM B-BIT QUANTIZER WITH ∆ =

√
B2−B .

B 1 2 3 4 5 6 7

CB (in dB) 2.8731 −5.9852 −13.0201 −19.4804 −25.7065 −31.8265 −37.6547
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Fig. 4. The asymptotic MSE w.r.t. H of the pilot-only scheme versus the pilot
ratio βt = Tt/K for different B-bit quantizer.

known figure of merit in quantization.8 In addition, from (59),
given a fixed quantizer (i.e., fixed CB), mseH improves 6 dB
for each doubling of training length βt. Consequently, doubling
the length for training plays the same effect as increasing an
extra bit on every ADC at the massive MIMO receiver.

The proceeding observation provides a useful guideline on
the trade-off between the training length and the ADC word
length. For instance, if we target βt to that attained by the pilot-
only scheme at mseH = −30dB, the 4-bit receiver requires
βt = 4 from Figure 4. If we intend to reduce the ADC word
length of each ADC to 1-bit, the training length increases
24−1 = 8 times than that in the 4-bit case. This argument shows
the special importance of the JCD technique in the quantized
MIMO system. With the JCD technique, the estimated payload
data are utilized to aid channel estimation so that the effective
training length virtually increases.

Next, we return to the analysis of data estimation. If the
channel estimate is subsequently used for data estimation via
the Bayes-optimal approach, we can get the corresponding self-
contained fixed-point equations for the d-phase similar to (56)-
(57). Specifically, we have (46c) given a fixed qH = σ2

h −mseH
with mseH given by (56). Notice that since there is no iteration
processing between the pilots and data symbols, (46a) and
(46b) are not involved in the d-phase. If the JCD technique
is employed, mseH can be further reduced. Any reduction in
channel estimation error mseH results in a increasing of qH
and thus increases q̃Xd

= αqHχd.

mseHmseH (dB)
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Fig. 5. SER versus SNR for QPSK constellations. In the results, the JCD
estimation scheme is used under the settings with a) perfect CSIR and b)
no CSIR. Curves denote analytical results and markers denote Monte-Carlo
simulation results achieved by the GAMP-based JCD algorithm. The MSEs
w.r.t. H of the JCD estimator are plotted as a subfigure.

V. DISCUSSIONS AND NUMERICAL RESULTS

A. Accuracy of Analytical Results

Computer simulations are carried out to verify the accu-
racy of our analytical results. In particular, we compare the
SER expression (52) and the analytical MSE w.r.t. H (51)
with those obtained by simulations. The simulation results
are obtained by averaging over 10, 000 channel realizations
wherein the GAMP-based JCD algorithm (Algorithm 1) are
performed with tolerance ε = 10−8 and the maximum number
of iterations ξmax = 100.9 The system parameters are set
as follows: K = 50, N = 200, Tt = 50, and Td = 450. The
SNR of the system is defined by SNR = 1/σ2

w. The pilot
matrix Xt ∈ CK×Tt consists of statistically independent QPSK
constellations. In the simulations, we use the typical uniform
quantizer with a fixed quantization step-size ∆ = 1/2. Note
that this quantization step-size is not optimal. The optimal
step-size will be discussed in the next subsection. As QPSK
constellations are used for data transmission, Figure 5 shows
the corresponding SER results for the cases of 1) perfect CSIR
and b) no CSIR. The corresponding MSEs w.r.t. H of the JCD
estimator are plotted as a subfigure in Figure 5(b). We observe
that the GAMP-based JCD algorithm can generally achieve
the performances of the theoretical Bayes-optimal estimator

8The property of 6 dB improvement in signal-to-quantization-noise ratio for
each extra bit is a well-known figure of merit in the ADC literature [52, p.248].

9Due to space limitation, we do not show the convergence of the GAMP-
based JCD algorithm. In most cases, the GAMP-based JCD algorithm con-
verges after 20–30 iterations although it shows very slow convergence at low
SNRs.
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whose performances can be described by our analytical ex-
pressions. Note that the GAMP-based JCD algorithm is only
an approximation to the Bayes-optimal JCD estimator whose
implementation is prohibitive. For the case with no CSIR,
the GAMP-based JCD algorithm cannot work as well as that
predicted by the analytical result at low SNRs. This is because
at low SNRs, the GAMP-based JCD algorithm shows very slow
convergence so that the adopted maximum number of iterations
is not sufficient.10 This gap has motivated the search for other
improved estimators in the future.

From Figure 5(b), we see that the performance degradation
due to low-precision quantization is small. For instance, if we
target the SNR to that attained by the unquantized system
at BER= 10−3, the 3-bit Bayes-optimal JCD estimator only
incurs a loss of 4.98− 4.40 = 0.58 dB. Even with 2-bit quan-
tization, the loss of 6.59− 4.40 = 2.19 dB remains acceptable.

B. Optimal Step-Size
In the one-bit ADC (i.e., B = 1), the quantization output is

assigned the value ∆
2 if the input is a positive number and −∆

2
otherwise. For the Bayes-optimal estimator, the performances
are irrelevant to any particular value of ∆.11 This property can
be easily realized by reviewing the likelihood in (8), wherein
rb = {−∞, 0,∞} for b = 0, 1, 2. Clearly, ∆ is not involved at
the very beginning of the estimate development. Therefore, we
shall focus on the cases with B > 1.

Recall that Ynt is the input signal to the quantizer. Direct
application of the central limit theorem results in that Ynt
can be approximated as Gaussian distribution with variance
E{|Ynt|2} = 1 + σ2

w. For a Gaussian signal with unit variance,
the optimal step size for minimizing the quantization distortion
is computed in [53] and is 1.008/

√
2 ≈ 0.7128 if B = 2.12

Under the same setting as previously, i.e., α = N/K = 4,
β = T/K = 10, βt = Tt/K = 1, Figure 6 gives the
BERs of the Bayes-optimal estimator as a function of the
normalized step size ∆/

√
E{|Ynt|2} for B = 2. It turns out

that the step size optimized in terms of the BER for the Bayes-
optimal estimator is quite different from that for minimizing its
distortion.

Figure 7 shows the optimal step sizes for different input
signals Xd including QPSK, 16QAM, 64AM, and Gaussian
inputs. The optimal step size seems to vary slightly for different
input signals, while all become smaller with increasing SNR.
We observe from other simulations that the optimal step size
varies only very slightly for different setting of α and β. We
thus conclude that the optimal step size for the Bayes-optimal
estimator is mainly dominated by the SNR.

To get a general expression, we fit the optimal step sizes for
different input signals by a first degree polynomial equation

∆opt(snrdB) = a0 + a1snrdB, (60)

where snrdB represents SNR in dB scale, and the (least-squares
fit) coefficients a0, a1 are listed in Table II. The optimal step

10At low SNRs, we observe a good result by increasing the maximum
number of iterations.

11This property is not true for other estimators such as linear estimators [54].
12The optimal step size [53] is divided by

√
2 here because the signal power

of the real or imaginary part is 1/
√

2.
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TABLE II
THE COEFFICIENTS a0 AND a1 OF ∆opt(snrdB) FOR B = 2, 3, 4.

B a0 a1

2 0.6921 −0.0154
3 0.4364 −0.0118
4 0.2559 −0.0071
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Fig. 8. mseXd
versus SNR for the pilot-only scheme and the Bayes-optimal

JCD estimator with and without perfect CSIR under the 1-bit quantization and
unquantized receivers. α = N/K = 4, β = T/K = 10, βt = Tt/K = 1,
and Xd,kt ∼ NC(0, 1).

sizes determined by ∆opt are also indicated by a shadow drawn
in Figure 6. We observe that although ∆opt is not optimal for
each specific input, their corresponding performances remain
affordable. Following the same argument above, we find the
corresponding polynomial equation ∆opt(snrdB) for different
quantization bits, with their coefficients listed in Table II.

C. Effects Due to Absence of CSIR

Comparing Figures 5(a) and 5(b), we see that the loss due
to no CSIR is small for the Bayes-optimal JCD estimator. To
have a better understanding on the effects of CSIR over the
quantized MIMO system, we then discuss the performances of
the Bayes-optimal JCD estimator with and without the perfect
CSIR under various system settings. Unlike the QPSK signals
used in pervious simulations, we focus on the Gaussian inputs,
i.e., Xd ∼ NC(0, 1), in the following experiments. The other
system parameters are the same as before, i.e., α = N/K = 4,
β = T/K = 10, βt = Tt/K = 1. Showing in Figure 8 is the
asymptotic MSE mseXd

for the Bayes-optimal JCD estimator
with and without perfect CSIR. Also shown is the MSE for
the pilot-only scheme. It can be seen that the Bayes-optimal
JCD estimator shows a large improvement over the pilot-only
scheme in both the 1-bit and unquantized cases. The gap
between the Bayes-optimal JCD estimator with and without
perfect CSIR is very small in the unquantized case while the
gap is enlarged in the case of a 1-bit quantizer. By observing
the 1-bit and unquantized cases, we can expect that the gap can
be smaller with increasing the ADC resolution.

A straightforward way to reduce the gap of the 1-bit case

-5 0 5 10 15 20 25 30
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

SNR (dB)

m
se

X
d

m
se

X
d

(d
B

)

¯ = 10, ¯t = 1; 5; 9¯ = 10, ¯t = 1; 5; 9

Perfect CSIR

JCD

Pilot-Only

¯ = 50; 100, ¯t = 1¯ = 50; 100, ¯t = 1

1-bit
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receivers under various setting of β and βt. α = 4 and Xd,kt ∼ NC(0, 1).

is increasing the training length. To verify this intuition, we
provide the MSE results in Figure 9 for βt = 5 and βt = 9.
However, the improvement by increasing the training length
is limited even if βt = 9, leaving only βd = 1 for data.
Alternatively, we may consider a greater β although it may
not be a controllable factor. Note that β is determined by the
coherent time. If β = 100 and βt = 1, the Bayes-optimal JCD
estimator without perfect CSIR can perform very close to the
(fundamental limit) case with perfect CSIR. Nevertheless, such
a long coherent time is usually unavailable in practice.

VI. CONCLUSION

We developed a framework for studying the best possible es-
timation performance of the quantized MIMO system, namely,
the massive MIMO system with very low-precision ADCs. In
particular, we used the Bayes-optimal inference for the JCD
estimation and achieve this estimation by applying the BiG-
AMP technique. The asymptotic performances (e.g., MSEs and
SERs) w.r.t. the channels and the payload data were derived
and shown as simply characterized by scalar AWGN channels.
Monte-Carlo simulations were conducted to demonstrate the
accuracy of our analytical results.

The high accuracy of the analytical expressions enable us
to quickly and efficiently assess the performance of the quan-
tized MIMO system. Thus, we obtained the following useful
guidelines for the system design:
• We showed that the asymptotic MSE of the channel

estimate in the conventional pilot-only scheme decreases
by approximately 6 dB for each bit added to the ADCs
or each doubling of training length. This finding supports
the importance of the JCD technique, especially in the
quantized MIMO system.

• The optimal step size for minimizing BERs of the Bayes-
optimal estimator were shown to be highly different from
that for minimizing the distortion of a Gaussian signal and,
fortunately, can be quickly determined by our analytical
expressions.

• The Bayes-optimal estimator already exhibits the best
possible estimation performance. Even so, we showed
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that the performance gap between the Bayes-optimal JCD
estimator with and without perfect CSIR still cannot
be negligible in the quantized MIMO system. We also
discussed the ways to reduce the gap and then concluded
that achieving the same performance as the full CSIR case
in the quantized MIMO system is very difficult.

Many potential directions for future work are available. The
GAMP-based JCD algorithm presented in this paper is a first
step toward achieving the optimal JCD estimate under the
quantized MIMO system. The computational complexity of
the GAMP-based JCD algorithm may still be too high to be
affordable in a commercial system. One possible solution is
to adopt other suboptimal schemes such as linear estimators.
Another feasible solution is using mixed-ADC receiver archi-
tecture [12] wherein a small number of high-resolution ADCs
is available. Thus, CSIR gains high accuracy and facilitates the
JCD procedure. For a development in this direction, see [54].

APPENDIX A: DERIVATIONS OF (23) AND (24)

In this appendix, we derive the expressions (23) and (24), by
applying the techniques in [33, Chapter 3.9]. The derivations
below are only dedicated for the real part of the estimator
because the imaginary part of the estimator can be obtained
analogously. Note that the signal power and noise power are
vp/2 and σ2

w/2, respectively, per real and imaginary part. For
ease of notation, we have abused Ỹ , Z, and p̂ to denote Re(Ỹ ),
Re(Z), and Re(p̂), respectively.

To get (23), we begin by deriving the denominator of (17).
First, recall from (8) that if Ỹ ∈ (rb−1, rb] and Ỹ ≤ 0, the
likelihood is given by

Pout(Ỹ |Z) = Φ

(
rb − Z√
σ2
w/2

)
− Φ

(
rb−1 − Z√

σ2
w/2

)
. (61)

Note that for the special case b = 1, we have r0 = −∞, and
the second term of (61) will disappear. Substituting (61) into
the denominator of (17), it can be shown that13∫

Pout(Ỹ |z)N (z; p̂, vp/2) dz

= Φ

(
sign(Ỹ )p̂− |rb|√

(σ2
w + vp)/2

)
− Φ

(
sign(Ỹ )p̂− |rb−1|√

(σ2
w + vp)/2

)
, C.

(62)

Differentiating w.r.t. p̂ on both sides of (62) yields∫ (
z − p̂
vp/2

)
Pout(Ỹ |z)N (z; p̂, vp/2) dz

=
sign(Ỹ )√

(σ2
w + vp)/2

(
φ

(
sign(Ỹ )p̂− |rb|√

(σ2
w + vp)/2

)

− φ

(
sign(Ỹ )p̂− |rb−1|√

(σ2
w + vp)/2

))
, (63)

where we have used ∂Φ(x)/∂p̂ = φ(x)∂x/∂p̂. Using (62), (63)

13The calculation can be done by using the Gaussian reproduction property
given by footnote 5.

can be rearranged as∫
z Pout(Ỹ |z)N (z; p̂, vp/2) dz

= p̂C +
sign(Ỹ )vp√
2(σ2

w + vp)
(φ(η1)− φ(η2)) , (64)

where η2 and η1 are given by (25). Multiplying both sizes by
1/C, we obtain the marginal posterior mean given in (23).

Similarly, (24) can be calculated by differentiating (62) twice
as ∫ (

z2

(vp/2)2
− 2p̂z

(vp/2)2
+

p̂2

(vp/2)2
− 1

vp/2

)
× Pout(Ỹ |z)N (z; p̂, vp/2) dz

=
−1√

(σ2
w + vp)/2

(
η1φ(η1)− η2φ(η2)

)
, (65)

which then can be rearranged as

E
{
Z2
∣∣ p̂, vp/2} = 2p̂E

{
Z
∣∣ p̂, vp/2}+

(
vp/2− p̂2

)
− 1

C

(vp)2√
2(σ2

w + vp)

(
η1φ(η1)− η2φ(η2)

)
. (66)

We also note that

Var
{
Z
∣∣ p̂, vp/2} = E

{
Z2
∣∣ p̂, vp/2}− (E{Z∣∣ p̂, vp/2})2 .

(67)
After plugging (66) and (23) into (67), we obtain (24). In the
above derivations, we have assumed Ỹ ≤ 0. For Ỹ > 0, the
above derivations can be used in the same way.

APPENDIX B: PROOF OF PROPOSITION 1

Using the replica method, we first compute the replicate par-
tition function EỸ {P

τ (Y)} in (35), which with the definition
of (11) can be expressed as

EỸ

{
Pτ (Ỹ)

}
= EH,X

{∫
dỸ

τ∏
a=0

Pout

(
Ỹ
∣∣∣Z(a)

)}
, (68)

where we define Z(a) , H(a)X(a)/
√
K with H(a) and X(a)

being the a-th replica of H and X, respectively, and X ,
{X(a),∀a} and H , {H(a),∀a}. Here, (H(a),X(a)) are
random matrices taken from the distribution (PH,PX) for
a = 0, 1, . . . , τ . In addition,

∫
dỸ denotes the integral w.r.t. a

discrete measure because the quantized output Ỹ is a finite set.
We will calculate the right-hand side of (68), by applying the
techniques in [38, 39] after additional manipulations.14

To average over (H,X ), we introduce two (τ + 1)×(τ + 1)
matrices QH = [QabH ] and QXo = [QabXo ] for o ∈ {t, d} whose
elements are defined by QabH = h

(b)
n (h

(a)
n )†/K and QabXo =

(x
(a)
t )†x

(b)
t /K for t ∈ To, where, h

(a)
n is the nth row vector of

H(a), and x
(a)
t is the tth column vector of X(a) for t ∈ Tt or

14Details are omitted here. The interested reader is referred to the longer
version of this paper from ArXiv.



14

Td. The definitions of QH and QXd
are equivalent to

1 =

∫ N∏
n=1

τ∏
0≤a≤b

δ
(
h(b)
n (h(a)

n )† −KQabH
)

dQabH ,

1 =

∫ ∏
o∈{t,d}

∏
t∈To

τ∏
0≤a≤b

δ
(

(x
(a)
t )†x

(b)
t −KQabXo

)
dQabXo ,

where δ(·) denotes Dirac’s delta. Let QX , {QXo ,∀o} and
Z , {Z(a),∀a}. Inserting the above into (68) yields

EỸ{P
τ (Ỹ)} =

∫
eK

2G(τ)

dµ
(τ)
H (QH)dµ

(τ)
X (QX), (69)

where

G(τ)(QZ) ,
1

K2
log EZ

{∫
dỸ

τ∏
a=0

Pout

(
Ỹ
∣∣∣Z(a)

)}
,

µ
(τ)
H (QH) , EH

{
N∏
n=1

τ∏
0≤a≤b

δ
(
h(b)
n (h(a)

n )† −KQabH
)}

,

µ
(τ)
X (QX) , EX

{ ∏
o,t∈To

τ∏
0≤a≤b

δ
(

(x
(a)
t )†x

(b)
t −KQabXo

)}
.

Using the Fourier representation of the δ function via auxiliary
matrices Q̃H = [Q̃ab

H ] ∈ C(τ+1)×(τ+1), Q̃X , {Q̃Xo =
[Q̃ab

Xo
] ∈ C(τ+1)×(τ+1),∀o} and performing the saddle point

method for the integration over (QH ,QX), we attain

1

K2
EỸ{P

τ (Ỹ)} = Extr
QH ,QX ,Q̃H ,Q̃X

{
F (τ)

}
(70)

with

F (τ) ,
1

K2
log EZ

 ∏
n,o,t∈To

∫
dỸnt

∏
a

Pout

(
Ỹnt

∣∣∣Z(a)
nt

)
+

1

K2
logM(τ)

H (QH)− αtr
(
Q̃HQH

)
+

1

K2
logM(τ)

X (Q̃X)−
∑
o

βotr
(
Q̃XoQXo

)
, (71)

where Extrx{f(x)} denotes the extreme value of f(x) w.r.t. x;

M(τ)
H (Q̃H) , EH

{
N∏
n=1

etr(Q̃HHH
n Hn)

}
,

M(τ)
X (Q̃X) , EX

{ ∏
o∈{t,d}

etr(Q̃XoXH
o Xo)

}
,

HH
n , [h

(0)T
n h

(1)T
n · · ·h(τ)T

n ]T , Xo , [x
(0)
o x

(1)
o · · ·x(τ)

o ].
According to (35), the average free entropy turns out to be
F = limτ→0

∂
∂τ ExtrQH ,QX ,Q̃H ,Q̃X

{
F (τ)

}
.

The saddle points of F (τ) can be found by the point of zero
gradient w.r.t. {QH ,QXo , Q̃H , Q̃Xo} but it is still prohibitive
to get explicit expressions about the saddle points. Thus, we
assume that the saddle points follow the RS form [39] as QH =
(cH − qH)I + qH11T , Q̃H = (c̃H − q̃H)I + q̃H11T , QXo =
(cXo−qXo)I+qXo11T , and Q̃Xo = (c̃Xo−q̃Xo)I+q̃Xo11T . In
addition, the application of the central limit theorem suggests
that znt , [Z

(0)
nt Z

(1)
nt · · ·Z

(τ)
nt ]T are Gaussian random vectors

with (τ + 1)× (τ + 1) covariance matrix QZt . If t ∈ To, then
the (a, b)th entry of QZo is given by

(Z
(a)
nt )∗Z

(b)
nt = QabHQ

ab
Xo , Q

ab
Zo . (72)

As such, we set QZo = (cHcXo − qHqXo)I + qHqXo1,
which is equivalent to introducing to the Gaussian random
variable znt for t ∈ To as Z(a)

nt =
√
cHcXo − qHqXo u

(a)
c +

√
qHqXovc, for a = 0, . . . τ , where u(a)

c and vc are independent
standard complex Gaussian random variables.

With RS, the problem of seeking the extremum w.r.t.

{QH ,QXo , Q̃H , Q̃Xo}

is reduced to seeking the extremum over

{cH , qH , cXo , qXo , c̃H , q̃H , c̃Xo , q̃Xo},

which can be obtained by equating the corresponding partial
derivatives of the RS expression F (τ) to zero. In doing so, as
τ → 0, it is easy to get that c̃H = 0, c̃Xo = 0, cH = E{|H|2},
and cXo = E{|Xo|2}. Also, we obtain the fixed-point equations
given in (46). Finally, taking the partial derivatives of F (τ) at
τ = 0, and applying the parameters introduced in Section IV-A,
we obtain (44).

APPENDIX C: PROOF OF PROPOSITION 2
Consider the (n, k)-th and (k, t)-th entries of H and Xd,

respectively. We will show that the joint moments of the joint
distribution of (Hnk, Xd,kt, Ĥnk, X̂d,kt) for some indices (n, k)
and (k, t) converges to the joint distribution of

P(H)P(YH |H)P(H|YH)P(Xd)P(YXd
|Xd)P(Xd|YXd

), (73)

independent of (n, k) and (k, t). Following [43], we proceed
to calculate the joint moments

E{Re(Hnk)iRh Im(Hnk)iIhRe(Ĥnk)jRh Im(Ĥnk)jIh

Re(Xd,kt)
iRx Im(Xd,kt)

iIxRe(X̂d,kt)
jRx Im(X̂d,kt)

jIx} (74)

for arbitrary non-negative integers iRh , iIh , jRh , jIh , iIx , jRx ,
jIx , jIx . To proceed, we define

fh =
∑
n,k

(
Re(H

(0)
nk )
)iRh(

Im(H
(0)
nk )
)iIh

×
(

Re(H
(aR)
nk )

)jRh(
Im(H

(aI)
nk )

)jIh
,

fx =
∑
k,t

(
Re(X

(0)
d,kt)

)iRx(
Im(X

(0)
d,kt)

)iIx
×
(

Re(X
(bR)
d,kt )

)jRx(
Im(X

(bI)
d,kt)

)jIx
, (75)

with aR, aI ∈ {1, . . . , τ}, aR 6= aI and bR, bI ∈ {1, . . . , τ},
bR 6= bI. If we define the generalized free entropy as

F̃ =
1

K2
lim
τ→0+

∂2

∂εh∂εx
lnEỸ

{
eεhfhεxfxPτ (Ỹ)

}∣∣∣∣∣
εh=0,εx=0

,

(76)

it exactly provides the joint moments of interest.
As εh = 0 and εx = 0, EỸ{e

εhfhεxfxPτ (Ỹ)} reduces to
EỸ{P

τ (Ỹ)} given in (68). Therefore, proceeding with the same
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steps as in Appendix B from (68) to (70), we get

1

K2
EỸ

{
eεhfhεxfxPτ (Ỹ)

}
= Extr

QH ,QX ,Q̃H ,Q̃X

{
F̃ (τ)

}
, (77)

where F̃ (τ) is exactly identical to (71) while M(τ)
H (Q̃H) and

M(τ)
X (Q̃X) should be replaced by

M̃(τ)
H (Q̃H) = EH

{
eεhfh

N∏
n=1

etr(Q̃HHH
n Hn)

}
,

M̃(τ)
X (Q̃X) = EX

{
eεxfx

∏
o∈{t,d}

etr(Q̃XoXH
o Xo)

}
.

Thus, except for M̃(τ)
H (Q̃H) and M̃(τ)

X (Q̃X), the RS ex-
pressions for the other parts of F̃ (τ) can be obtained as in
Appendix B. We now only need to obtain the RS expressions
for log M̃(τ)

H (Q̃H) and log M̃(τ)
X (Q̃X). The generalized free

energy in (76) becomes

F̃ =

∫
dYHdYXd

EH{(Re(H))
iRh (Im(H))

iIhP(YH |H)}

× EH{(Re(H))
jRh (Im(H))

jIhP(H|YH)}︸ ︷︷ ︸
Re(Ĥ)

jRh Im(Ĥ)
jIh

× EXd
{(Re(Xd))

iRx (Im(Xd))
iIxP(YXd

|Xd)}
× EXd

{(Re(Xd))
iRx (Im(Xd))

iIxP(Xd|YXd
)}︸ ︷︷ ︸

Re(X̂d)
iRx Im(X̂d)

iIx

(78)

which is the joint moments of (H,Xd, Ĥ, X̂d). Consequently,
the joint moment of interest is thus uniquely determined by
(78) due to the Carleman theorem.

APPENDIX D: PROOF OF PROPOSITION 3

In this derivation, we consider the case at infinity SNR,
i.e. σ2

w = 0, and we let σ2
h = 1 and σ2

xt
= 1 without loss

of generality. From (56), as βt → ∞, we have q̃H → ∞.
An application of the Taylor expansion yields 1 − mseH =
(1 + 1/q̃H)−1 ≈ 1− 1/q̃H , and thus we have

mseH ≈ 1/q̃H . (79)

Let u =
√

2rb−
√

1−mseHv√
mseH

. We then evaluate χt in (58) by
changing the integration variable from v to u, which yields

χt =
cB√

mseH(1−mseH)
, (80)

where

cB =

2B∑
b=1

∫
e
− (√mseHz−

√
2rb)

2

2(1−mseH )

√
2π

×

(
φ(z)− φ

(
z −

√
2(rb−rb−1)√

mseH

))2

Φ(z)− Φ
(
z −

√
2(rb−rb−1)√

mseH

) dz. (81)

As mseH → 0, cB can be approximated by

cB ≈
1

(2π)3/2

2B∑
b=1

e−r
2
b

∫
e−z

2

Φ(z)
dz, (82)

which is a quantizer-dependent constant. Using q̃H = βtχt

given in (58) and combining (79) and (80), we obtain
mseH ≈ (βtcB)−2 or (59) in dB scale, wherein CB =
−20 log10(cB). The values of CB in Table I are obtained from
(81) numerically.

APPENDIX E: A GENERALIZATION OF PROPOSITION 1

In this Appendix, we extend Proposition 1 into the case
where users have different large-scale fading factors σ2

hk
. This

task can be performed by proceeding with the same steps as in
Appendix A, and the proof is omitted.

Similar to (36), we define the scalar AWGN channels for this
case:

YXd,k
=
√
q̃Xd,k

Xd,k +WXd,k
, (83a)

YHk =
√
q̃HkHk +WHk , (83b)

where WXd,k
,WHk ∼ NC(0, 1), Xd,k ∼ PXd

, and Hk ∼
PHk ≡ NC(0, σ2

hk
). For ease of notation, we use 〈ak〉 =

1
K

∑K
k=1 ak to represent the average over a set {ak : k =

1, . . . ,K}.
Proposition 4: As K →∞, the asymptotic free entropy is

F = α
∑

o∈{t, d}

βo

(
2B∑
b=1

∫
DvΨb (Vo) log Ψb (Vo)

)
− α〈I(Hk;YHk |q̃Hk)〉 − βd〈I(Xd,k;YXd,k

|q̃Xd,k
)〉

+ α〈(cHk − qHk)q̃Hk〉+
∑

o∈{t, d}

βo〈(cXo,k − qXo,k)q̃Xo,k〉,

(84)

where

Ψb(Vo) , Φ

( √
2rb − Vo√

σ2
w + 〈cHkcXo,k − qHkqXd,k

〉

)

− Φ

( √
2rb−1 − Vo√

σ2
w + 〈cHkcXo,k − qHkqXo,k〉

)
; (85)

Vo ,
√
〈qHkqXo,k〉 v for o ∈ {t, d}; I(Hk;YHk |q̃Hk) is the

mutual information between YHk and Hk; I(Xd,k;YXd,k
|q̃Xd,k

)
is the mutual information between YXd,k

and Xd,k; and
cXo = σ2

xo , cHk = σ2
hk

. In (84), the other parameters
{qXo,k , qHk , q̃Xo,k , q̃Hk} are obtained from the solutions to the
following fixed-point equations

q̃Hk = βt,kqXt,k
χt + βdqXd,k

χd, (86a)
q̃Xt,k

= αqHkχt, (86b)
q̃Xd,k

= αqHkχd, (86c)
qHk = cHk −mseHk , (86d)
qXt,k

= cXt −mseXt,k
, (86e)

qXd,k
= cXd

−mseXd,k
, (86f)
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in which mseXt,k
= 0, and mseHk and mseXd,k

are the MSEs of
the Bayes-optimal estimators over (83b) and (83a), respectively.
Also, in (46), we have defined

χo ,
2B∑
b=1

∫
Dv

(
Ψ′b
(√
〈qHkqXo,k〉v

) )2

Ψb

(√
〈qHkqXo,k〉v

) , for o ∈ {t, d}

(87)
with Ψb(·) given by (85) and Ψ′b(Vo) = ∂Ψb(Vo)

∂Vo
.
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