
SIFT: Building an Internet of Safe Things
Chieh-Jan Mike Liang†, Börje F. Karlsson†, Nicholas D. Lane†, Feng Zhao†,

Junbei Zhang?, Zheyi Pan‡, Zhao Li?, Yong Yu‡

†Microsoft Research ?USTC China ‡Shanghai Jiao Tong University

ABSTRACT
As the number of connected devices explodes, the use scenar-
ios of these devices and data have multiplied. Many of these
scenarios, e.g., home automation, require tools beyond data
visualizations, to express user intents and to ensure interac-
tions do not cause undesired effects in the physical world.
We present SIFT, a safety-centric programming platform for
connected devices in IoT environments. First, to simplify
programming, users express high-level intents in declarative
IoT apps. The system then decides which sensor data and
operations should be combined to satisfy the user require-
ments. Second, to ensure safety and compliance, the sys-
tem verifies whether conflicts or policy violations can occur
within or between apps. Through an office deployment, user
studies, and trace analysis using a large-scale dataset from
a commercial IoT app authoring platform, we demonstrate
the power of SIFT and highlight how it leads to more robust
and reliable IoT apps.

1. INTRODUCTION
Through the proliferation of open programmable objects and
devices, IoT systems in homes and the workplace are rapidly
going mainstream. Projections suggest that, in the next
five years, more than 20 billion networked devices will be
installed in the environments we work and live [22]. Industry
is responding to this new normal with universal protocols
and interfaces (e.g., AllJoyn [1], Thread [6]) that allow these
devices to inter-operate, and thus provide rich and adaptive
user experiences.

Although the adoption of IoT technology is rapidly ad-
vancing, technology that ensures these systems are safe and
secure is lagging significantly. This is quickly creating a crit-
ical problem, in which IoT systems are likely to appear in
common usage, but without the verifiable guarantees neces-
sary for users who must live in these connected environments
to feel safe. A recent study of the top 10 IoT devices across
dozens of categories found that most devices presented a
broad range of known vulnerabilities [23], from networking,
firmware, authentication, programming/device interaction,
to encryption. Specifically, 60% failed to encrypt network
traffic (even for device software updates!) and 80% used
weak authentication with the cloud. This is even more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
IPSN’15, April 14 - 16, 2015, Seattle, WA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3475-4/15/04 ...$15.00.
http://dx.doi.org/10.1145/2737095.2737115.

alarming if we consider IoT devices increasingly have even
lethal ties to our physical well-beings (e.g., insulin pumps)
and safety [17, 18].

A fundamental piece in the emerging puzzle of IoT safety,
security, and privacy is understanding precisely what new
breakthroughs in programming support are necessary to en-
able users to develop and operate safe IoT apps. Although
attention has largely focused on vulnerabilities more famil-
iar to networked systems (e.g., authentication, encryption),
new safe IoT development tools are needed for two reasons.
First, programming is central to the customization of an IoT
system to the required behavior and preferences of users.
More importantly, a bug in an IoT app could have its effect
greatly amplified by the physical world. Second, already tens
of thousands of early-adopters are using commercial services
like IFTTT.com [4] to author IoT apps that automate vari-
ous parts of their lives. Yet, programming support is still in
its infancy – virtually no IoT development tool exists today
to help improve key safety aspects of IoT apps.

In this paper, we present SIFT (Safe Internet oF Things),
an IoT framework that provides the key programming sup-
port for users to customize the behavior of their IoT sys-
tems. The goal of SIFT is to radically reduce the user ef-
fort needed to produce safe IoT apps by introducing a se-
ries of automated techniques for verifying key safety criteria
and providing the necessary support for users to easily cor-
rect problems that are detected. Because of the breadth of
safety problems, SIFT defines IoT safety problems by two
most important system properties: verifiability and deter-
minism. First, SIFT ensures apps respect custom policies
– for instance, policies describing safety limits ranging from
hardware specifications to the CO2 concentration in a room
– and verifies that an IoT app will behave within the bounds
specified by the policies. Second, SIFT guarantees apps do
not result in logical conflicts or policy violations at runtime.
The former captures non-deterministic system states, such
as when two apps specified by users attempt to both open
and close a door at the same time, or when a faulty IoT de-
vice results in unpredictable app behavior. Although SIFT
primarily targets end-users (e.g., home-users, employees, IT
staff) whom we anticipate will create IoT apps, we also ex-
pect those who install, maintain and even build IoT systems
will use SIFT to write and verify policies for their devices
or environments in which these devices are deployed.

Under SIFT, users program an IoT app with a series of
event-based rules. While individual rules remain simple, by
aggregating rules together, complex system behavior is pos-
sible. This programming model is natural for non-expert
end-users to express their intended behaviors for the IoT
system. It also allows developers to rapidly build large and
rich apps from simple rules. Unlike any current solution,
SIFT provides the key support for developing an IoT app

and ensuring its safety properties before being deployed into
the wild. First, SIFT uses its synthesis engine to generate
code that is specific to the deployment environment. Users
no longer have to specify, for example, which exact IoT de-
vices in the environment are used to implement the desired
behavior – a key source of safety-violating errors. As a re-
sult, IoT apps are no longer brittle to devices that become
faulty and allow unexpected un-safe behavior to manifest.
Next, SIFT verifies this synthesized representation through
a safety engine. By leveraging recent advances in white-box
model checking, SIFT is able to scalably verify that IoT
apps do not violate safety policies. Significantly, SIFT al-
lows users of the system (e.g., maintainers or end-users) to
specify policies that are considered safe, and prevent any
IoT app from executing that breaks such specification. In
practice, IoT app development can benefit from either or
both of the synthesis and verification support.

The contributions of SIFT are as follows:

• It is a first-of-its-kind development support framework
focused on bridging the safety gap plaguing IoT apps
today. IoT app safety can now be significantly im-
proved, without increasing efforts from non-expert IoT
users. While related model-checking efforts in veri-
fying cyber-physical systems (CPS) exist [10], these
efforts typically target domains, e.g., automotive con-
trol, where expert-built models are readily available.
In contrast, IoT app verification must address impre-
cisely defined user intents, complex interactions be-
tween many requirements and things (possibly deployed
over time), and incomplete rule specifications.

• SIFT formulates the verification problem for IoT apps
as formal model checking, and provides tools for spec-
ifying and efficiently checking of key IoT app safety
properties. Safety is tested with respect to both log-
ical conflicts, e.g., conflicting rules, and policy con-
flicts that enforces, for example, device operating pa-
rameters, privacy agreements, or user preferences. We
leverage the state-of-the-art program verification tech-
niques for both efficiency and scalability.

• SIFT provides an easy-to-use authoring environment
for IoT apps that lessens the development burden and
promotes app safety. SIFT is able to synthesize a tar-
geted deployment-specific implementation based on a
high-level specification by the user. Not only is this
easier for the user, but it also removes important forms
of un-safe behavior that might be introduced through
human error. SIFT is also capable of learning and
proposing new IoT apps by observing the behavior of
users and their common routines.

2. BACKGROUND
The need for programming safety in IoT environments is un-
derpinned by the rapid adoption of diverse open systems
that in turn lack adequate protection from a variety of con-
cerns. We describe a representative and highly popular com-
mercial platform for developing IoT apps along with key ex-
amples of safety concerns that are beginning to manifest.

2.1 IoT Programming with IFTTT.com
Thousands of people use IFTTT.com [4] everyday; this web-
site acts as a platform to author, host, execute and share

a series of individual rules that encode a simple seman-
tic of: if event occurs then perform action (referred to as
if-this-then-that). Over 140,000 rules have been shared so
far. Although the platform is for generic task automation
(e.g., if I am tagged in a photo on Facebook, then email
me the photo), IFTTT.com includes extensive support for
IoT devices (more than one quarter of all data sources and
sinks are IoT related). Today, an 8,000 strong community of
IFTTT.com users exchange rules with each other, designed
to automate various IoT devices they own (e.g., light bulbs,
door locks, lawn sprinklers). 34,000 IoT-specific rules have
been created so far, and they include: gradually turning
on bedroom lights when it is time to wake up; turning off
heating when the user falls asleep (detected by IFTTT com-
patible wearables); or notifying their family when their car
passes a landmark nearby their house.

Representative of existing IoT programming models in
use, IFTTT has very limited authoring assistance. Users can
compose individual rules (or recipes) with a web interface.
This manual process requires specifying the exact device(s)
that are involved in the rule and related parameters of the
action taking place.

2.2 Emerging Safety Concerns
Our work examines key safety concerns exposed in user-
automated IoT systems today, both for individual user sce-
narios and in cases where apps from multiple users interact
on the same environment. Three of the most challenging
concerns for non-expert users to cope with are:

Manual Conflict Checking. A key way in which the
programming of IoT systems can become unsafe is through
conflicts. In this context, there are several types of conflicts
to consider. First, conflicts can emerge when two or more
instructions given to IoT devices cannot be satisfied simul-
taneously. A simple but practical example of this is when
two instructions are provided to a single device simultane-
ously, both of which can not be executed. For instance, a
single light-bulb may have two simple rules provided to it –
one that requires it to be turned on during evening hours,
and other that requires it to be turned off when no one is in
the room. Conflicting IoT programs can occur with a single
user who perhaps does not realize instructions can conflict.
Or through multiple users who encode opposing preferences.
Second, conflicts can arise between an app rule and a pre-
defined policy. For example, turning on a light based on
time can violate an energy-conserving policy that turns off
light based on room occupancy. In these two cases, what is
required are automated methods to highlight to users when
such situations arise before they become a problem.

Complexity of Programming. A large amount of IoT
system utility is only available if users are able to specify
how they wish devices to interact and operate. However,
available programming models remain too complex to use
safely. There are two key sources of complexity. First, fun-
damentally IoT applications include a significant amount of
event-based (for example, context driven) logic that is well
known to be error prone to author [29]. This problem does
not disappear even if the building blocks of programming
model are simple (such as the popular if-then-else semantics
of IFTTT) as the logic that needs to be encoded does not
change. Second, IoT development today assumes a very low-
level abstraction where users are highly aware of how device

Figure 1: SIFT Architecture.

behavior is performed. For example, users must determine
exact source devices of information (such as, the specific
door lock), as well as which specific devices will provide any
required actuation. Even worse, users must manually specify
parameters in the logic they provide. Not only is it hard and
error prone for users to specify their IoT applications, but
also the resulting IoT apps are brittle and tied to the par-
ticular IoT deployment (e.g., which devices used, where are
they placed) at the time of authoring. Significant opportu-
nity for more robust and safer IoT app behavior is possible
if users are able to have low-level operational details au-
tomatically generated from high-level descriptions that are
separated from the system deployment.

Lack of Feedback. Available methods of IoT program-
ming today offer few tools for users to examine, diagnose
and debug deployed code. Even if problems such as conflict
checking are detected, users still require ways of understand-
ing what is causing the conflict and even be offered ways of
solving the issue. What is missing are techniques that pro-
vide feedback to users in intuitive ways to understand how
apps can be made safer.

Collectively, these problem are increasingly exacerbated as
the size and complexity of IoT systems built increase. This
can happen even in scenarios where system requirements or
the programming model may appear to be relatively simple.
For example, in home scenarios with IFTTT-like rules, as
these systems are used by non-expert users for long peri-
ods, the number of rules and their interactions can increase
beyond what users can comfortably understand.

3. SIFT OVERVIEW
We begin our description of SIFT with an overview that also
examines the considerations that underpin its design.

3.1 Design Goals
The design of SIFT is grounded in the following objectives:

Safer Programming with Low User Effort. Most ap-
proaches to IoT programming in current use make strong
assumptions as to the user’s programming skills and under-
standing of device behavior. Users need to discover and
manipulate individual devices around them – as well as un-
derstand how devices should best interact to achieve user
objectives. IoT apps are written with a low-level abstrac-
tion directly addressing devices. Users are empowered under
such assumptions, but this can be dangerous!

As IoT gains mainstream usage, not only is this device-
centric paradigm more difficult (and less portable), but it
is also exposed to user errors and system failures. To this

end, SIFT adopts a semantic programming model that al-
lows non-expert users to focus on their intents rather than
which specific device are used to achieve their needs. Data-
centric operations are then translated by SIFT into device
operations at runtime. Furthermore, this approach lowers
the user effort as such suggested programs are already veri-
fied IoT apps, rather than those built by hand.

Target Common IoT Safety Violations. Guided by our
own user study (see §6) and the findings of various studies,
two common safety-related problems are: conflicts among
app rules, and violations of policies of various types (poten-
tially written by multiple stakeholders). As mentioned in §2,
the challenge is to help developers debug and receive feed-
back on these potential problems before apps are deployed.
Examples of the former are: finding conditions where con-
tradictory app rules would be triggered to act on a single
connected device or where state of a device becomes unstable
as multiple apps change it in a rapid looping sequence. Re-
porting these violating conditions guides developers in tun-
ing app rules. For the latter, policy verification requires the
knowledge of impacts on the physical world due to individ-
ual rules. Modeling physical world entities can approximate
such impacts and provide programming guidance to users.

Actionable Safety Verifications and Guidance. For
the same reason end users require automated verification of
their IoT apps to avoid unintended harm, end users also need
assistance in understanding how to correct problems when
they are detected. It will be unclear to a non-expert why
an app has failed without precise feedback. Therefore SIFT
should use the same model checking algorithms that help
verify when problems appear to also indicate key pieces of
information. For example, users should be informed of the
type of problem and locations in their IoT app the issue
emanates.

The SIFT platform provides this end user experience via the
architecture shown in Figure 1. Next, we describe function-
alities and challenges addressed by system components in
running and verifying IoT apps.

3.2 Safety Promoting Semantic Programming
SIFT allows an IoT app to be constructed as a set of rules
defining device triggers and actions. For example, a home
owner might write an IoT app to automate light behavior
and define a series of rules that describe the times and con-
ditions (such as when a room is occupied) that trigger lights
in a room to be turned on and off. We note that several
apps can share a common subset of rules. Individual rules
can also query for data points of a spatial and temporal
instance, and can change a device state. The grammar of
the SIFT programming model is as follows. We note that
app_rule_name enables rule chaining.

IF (data_query) THEN (actuation || app_rule_name)

ELSE (actuation || app_rule_name)

data_query := SELECT (data_type) IN (data_unit)

AT (location)

BETWEEN (time_from) AND (time_to)

actuation := UPDATE (device_type)

AT (location)

SET (device_state) = (new_state)

A SIFT app to control a humidifier based on room occu-
pancy can be written as follows:

IF (SELECT people IN int AT living_room) > 0

THEN (UPDATE humidifier AT living_room SET switch = on)

ELSE (UPDATE humidifier AT living_room SET switch = off)

Under SIFT, there are two ways for users to create apps.
The simplest method is for them to accept (and likely edit)
recommended rules that are auto-generated by App Rec-
ommendation Engine (described in detail in §5.1). How-
ever, the primary way users build an app with SIFT is by
specifying their own bundles of rules (as above) and relying
on the Synthesis Engine. Users then submit their app to
the SIFT platform, where app rules are first processed by
the Synthesis Engine, which builds an execution plan tree
to translate user-friendly app rules into machine-friendly in-
structions.

The Synthesis Engine can handle a diverse set of app
types. First, for rules targeting a space (e.g., temperature of
the living room), it uses Device Metadata Registry to find
data sources (upon connecting to SIFT, all devices register
the following metadata specified by system maintainers: ID,
model number, location, sensing type, and unit).

Second, rules can query for data points that do not ex-
ist, possibly due to unit mismatches or even the lack of
physical sensors at the points of interest. In these cases,
the Synthesis Engine identifies functions in Code Library
to transform data or estimate answers (with attached con-
fidence values). Code functions are contributed by users in
the ecosystem or by outside experts that have the knowledge
on data processing (e.g., counting people in a picture). For-
ward and backward chaining are two general approaches to
select code functions, with the difference being problem solv-
ing direction. Backward chaining works from the end goal
(i.e., query) and finds a chain of functions (based on pre- and
post- conditions) that would lead to a set of devices. Given
the potentially large number of connected devices and code
functions, SIFT uses backward chaining known to be more
efficient when the answer space is too large.

Third, the Synthesis Engine needs to translate semantics
into machine-friendly instructions. For example, turning on
lamp x can mean sending the string {"cmd":"2","val":"1"}.
To help build the command mapping for new connected de-
vices, we recommend similar devices previously known in
Device Registry for users to update. The recommendation
algorithm ranks devices based on location proximity, device
model, and sensing type.

The output of Synthesis Engine is an execution plan tree
whose nodes represent data sources or code functions to ex-
ecute. Then, Execution Engine executes the synthesized
tree, by traversing edges from leaf nodes up to the root.

3.3 Safety Verification
Two categories of safety problems are tested by the Safety
Engine before an app is executed: conflicts among app
rules, and nonconformity with user policies. Policies are
written in the form of conditions that should not happen in
the physical world (e.g., the house temperature should not
be over 40°Celsius). Verifying IoT apps is inherently more
difficult than traditional software packages, due to interac-
tions with the physical world. One example is that, while
temperature threshold is one common type of policy, check-
ing policies requires at least the knowledge of HVAC’s capa-

Figure 2: Architecture of Safety Engine, which
checks for two types of safety violations: (1) app
rule conflicts and (2) policy violations.

bilities. The problem becomes more challenging, as we con-
sider cross-domain relationships. In the previous HVAC ex-
ample, since temperature can influence humidity, how should
the Safety Engine check the HVAC-related app (which spec-
ified a user’s humidity preference) against, for instance, a
manufacturer’s temperature-defined operating policy?

The basis of both safety problems can be reduced to sat-
isfiability: Does there exist a condition that would trigger
multiple rules to act on a single device, or trigger an user
policy violation to happen? While theorem provers seem
natural for these two problems, §4 explains our experience
with them and motivations to consider other approaches. To
this end, SIFT adopts white-box exploration which has been
commonly used for testing software problems by automat-
ically feeding input parameters. However, most white-box
exploration techniques are not designed for IoT systems (one
example: they often assume sequential program execution,
a characteristic not present in most IoT apps programming
models – such as SIFT and IFTTT.com).

Figure 2 shows how the Safety Engine checks for rule con-
flicts and policy violations. First, an IoT app is converted
(using the Code Transformer) into an intermediate format
compatible with existing verification tools (described as the
White-box Exploration Tool). This process also includes im-
portant annotations with flags and assertions that capture
the true semantics of the IoT app. For code exploration
tools, an assertion triggered would signal an exception. In
the case of SIFT, assertions check for invalid device states
and policy conditions.

4. SAFETY ENGINE
In what follows, we detail the design of the SIFT Safety
Engine. Later in §5.2, we describe how this design is im-
plemented with state-of-the-art model checking solvers and
symbolic execution.

Is Theorem Proving Alone Enough? The goal of soft-
ware verification is to prove properties of programs; tested
properties range from simple assertions, which state that a
condition holds when a particular code location is reached,
to global invariants, which check that certain predicates hold
on every reachable state. In the case of app rules under SIFT
(see earlier example in §3.2), similarities between the rule
structure1 and logical first order formulas suggest the use
of automated theorem proving technologies as a seemingly
suitable approach for verification.

The conventional approach in a verifier architecture is to
convert the source language under analysis to an interme-
diate representation that preserves its characteristics and

1Incidentally, IFTTT-like rules as well.

facilitates reasoning over it. Once rules are translated to a
logical representation that models the constraints over its
triggers and actions, the satisfiability of these constraints
can be checked by a constraint solver. However, doing this
for IoT apps is problematic. The translation itself is not sim-
ple, for reasons that include: (1) rules can be chained; (2)
devices might have multiple non-boolean states; (3) there is
no a priori implied precedence between rules; and (4) rules
frequently make use of more than just boolean logic (like
arithmetic). Moreover, other capabilities than just identi-
fying logical conflicts are needed, such as: checking of ad-
ditional safety policies, violation of user preferences, and
identification of specific situations and inputs that lead to
problems.

To address these challenges, our design utilizes a three-
stage approach combining the use of a SMT-solver and run-
time code exploration. Formally, we consider safety verifica-
tion problems specified in the following form: the input is a
set of IoT rules (τ) – i.e., an IoT app – and a set of policies
(ϕ), and the output is safe if τ is deemed satisfiable and no
reachable execution path reaches a state that violates ϕ or
any other τ , IoT app. We now describe each Safety Engine
stage in turn.

4.1 Detect IoT App Rule Conflicts
As discussed, verification or analysis tools require a model of
the IoT apps being analyzed that is amenable to symbolic
reasoning (i.e. well-formed formal expressions that allow
valid deductions). Thus the Safety Engine begins by parsing
rules of τ into a set of logical rules (the model) representing
the system input, that can then be verified for app rule
conflicts through the use of symbolic execution testing. App
rule conflicts occur, for example, when two rules within two
IoT apps try to cause different (and incompatible) actions
on the same device simultaneously.

Next, a SMT solver is applied to this intermediate rep-
resentation (model). Satisfiability modulo theories (SMT)
generalizes boolean satisfiability (SAT) by adding support
for other relevant theories (e.g. arithmetic, arrays, quanti-
fiers) [19]. The SMT solver decides the satisfiability of the
generated logical formulas. If the model is deemed unsatis-
fiable, an unsat core is produced containing the conflicting
rules. (More details provided §5.2). It is important to note
that it is not possible to guarantee the unsat core will be
minimal, so extra processing to weed out rules not involved
in conflicts might be needed.

If the model is satisfiable, then this means solutions for
it indeed exist. However, specific situations (i.e., rule pa-
rameter values) might still lead to conflicting actions. As
a simple example, the expression: (T >= 25 =⇒ AC =
true) ∧ (T <= 25 =⇒ AC = false) is satisfiable for
any value of T different than 25. But for 25, a conflict ex-
ists. Coping with this situation could be accomplished with
a more refined intermediate representation (model). How-
ever, recovering the reasons for the conflict (i..e, which rules
were involved and exact parameter values that resulted in
the conflict) from the unsat proof might be impractical. This
can occur during skolemization (often SNF) and simplifica-
tion steps – often when optimizing the search for proofs may
produce expressions not necessarily equivalent to the origi-
nal ones (but still equisatisfiable).

Finally, to discover which specific instances of environ-
mental inputs (e.g. sensed values) can trigger conflicts, we

Figure 3: A state diagram models an HVAC main-
taining the room temperature between 20 and
26°Celsius. The user also specifies an negative policy
for temperature reaching 25°Celsius.

combine model checking with symbolic execution. Symbolic
execution techniques enumerate all program paths, and gen-
erate and solve constraints for each enumerated path. Es-
sentially, this step works by repeatedly executing the rule set
(IoT apps) and solving constraint systems to obtain inputs
that will guide the search towards conflict-triggering exe-
cution paths. The problematic generated inputs being the
situations we want to identify. This also allows us to easily
check for additional properties like safety policies and envi-
ronmental models (e.g., through the use of properly placed
assertions in the executed code). We consider these proper-
ties in § 4.2 and §4.3.

4.2 Identify Policy Violations
Policies encode real world conditions that users do not want.
For example, policy((SELECT light_tsr IN lux AT bal-

cony BETWEEN 7AM and 6PM) == true) specifies that the bal-
cony light should not be ON during the day. SIFT analyzes
app rules during submission to catch potential violations as
part of the development process. To this end, our design
extends the symbolic execution tool for catching app rule
conflicts described in the previous subsection.

Policy checking begins with the device and real world phe-
nomenon states that need to be tracked. In the example
above, the balcony light is such a state to be tracked. Like-
wise, location information of individual app rules suggest
the scope of the actuation. Next, user policies are trans-
lated into a series of assertions that are inserted at the end of
each rule. This forms the policy-version of the intermediate
language required for violation testing. By again applying
symbolic execution techniques, the Safety Engine can enu-
merate all program paths attempting to solve all inputs. In
other words, they look for any possibility to make an asser-
tion true. If any assertion is evaluated to be true, the Safety
Engine reports this exception to users before triggering the
app. Because it is clear which assertion became true, users
can be informed not only which rule of their IoT app breaks
which policy, but also which environment trigger or actions
(and even the parameter range if relevant) – such actionable
feedback assists users in correcting violations.

With the changes described so far, the Safety Engine can
verify policy violations related to discrete states. However,
policies can also concern real world phenomenon which has
continuous state (e.g., room temperatures fluctuation within
a range of values). The challenge is to capture and model
these phenomenon during code analysis. Our solution is to
construct a state diagram that captures transitions among
critical states from the continuous space. Critical states in-

clude the following: (1) the initial/default value, (2) min and
max values possible (according to device specifications), (3)
values specified by the condition of each policy. Figure 3
provides an illustrative toy example of this process with a
room and an HVAC. In this case, state transitions are cre-
ated according to device specifications. As shown, states
are associated with the policies they violate – thus when the
Safety Engine is inspecting an IoT app, a violation is flagged
if any of reachable states has a policy violation.

4.3 Coping with Cross-Domain Variables
Verifying policies simply by inspecting the triggers, actions
and parameters explicitly described in the policies them-
selves and IoT apps is brittle. For instance, a policy might
detail the maximum level of CO2 in a building floor, but
a user IoT app might only refer to opening windows, and
disabling air conditioning – which also may result in unac-
ceptable CO2 levels, and therefore is unsafe. Enabling ver-
ification of latent consequences of IoT apps requires some
understanding of how cross-domain variables relate to each
other.

Clearly, completely solving this problem is unrealistic as
it requires deep comprehensive environmental and physical
models. For this reason, SIFT adopts a conservative (but
practical) approach relying on readily available sensor data
to minimize this concern in a tractable manner. Our design
centers on a datastore of cross-domain correlations to test
for violations when entities are not of the same type. In
the previous example, the datastore would contain a simple
model for estimating the CO2 in-flow to the building based
on the number of open windows and duration of time the
air conditioning (that provides air cleaning) is disabled.

In addition to be populated by system installers and main-
tainers, the datastore can be dynamically constructed by es-
timating the relationship between IoT device actions/triggers
and environmental condition of interest (e.g., temperature,
light). The design of SIFT is agnostic to any specific model-
ing technique – currently, we build a Bayesian network based
model that incrementally learns from data and traces of IoT
usage. Over time the system can learn how this positive rela-
tionship is parametrized within a particular building deploy-
ment – note, unlike many cases of learning where manually
labeled data is required, SIFT can perform this modeling
without any supervision (i.e., no user involvement). During
the verification, SIFT changes modeled variables (e.g., CO2

level) with actions of app rules (e.g., opening a window).

5. IMPLEMENTATION
SIFT is implemented as a series of independent modules
written in C++ and Python that co-ordinate via a TCP-
based control plane. In sum, our SIFT prototype spans
8,950 lines of code and primarily resides on cloud servers
with end-devices connecting via an open RESTful interface.
Our design allows SIFT to scale as required, by dynami-
cally allocating additional instances of each module based
on traffic demand. The exception to this being the cen-
tralized component for model checking found in the Safety
Engine (see Figure 1) that can not easily be parallelized.

In the remainder of this section, we focus on the two
core SIFT components providing semantic programming and
safety verification.

5.1 Semantic Programming Engines
Three programming engines are built into SIFT, and the
operation of each in our prototype is described below.

Synthesis Engine. For each IoT app rule, the Synthesis
Engine extracts the trigger or action clause. Those clauses
with queries that no device can directly satisfy, the Synthesis
Engine uses a backward chaining algorithm to find REST
calls offered by IoT devices that either return (or estimate,
transform at a minimum) the desired result. Importantly,
SIFT allows REST calls to express a confidence value in their
result returned (key for those that estimate their response).
Also while REST calls are often device based they can also
correspond to Code functions contained in the Code Library.

Both the Device Metadata Registry and Code Library
Registry are built using the SICStus Prolog engine [32].
Backward chaining is parameterized by matching pre- and
post-conditions of IoT app rules. This process can also be
done incrementally, by adding one component to the chain
of rules at a time; the stopping condition is when a device
is included in the chaining output. Some REST calls may
require more than one input. In these cases, the output
execution plan is a tree that links the output of multiple
iterations of backward chaining. These execution plans are
consumed by the Execution Engine.

Execution Engine. Runtime usage of an execution plan is
relatively simple. The Execution Engine begins by travers-
ing the tree from leaf nodes to root. Depending on the spec-
ification of each node in the tree, the Execution Engine per-
forms a different operation, which includes: collecting data
from a IoT device (or historical store of the information),
or making a RESTful call to a component (or IoT device)
within SIFT, for example, to perform some actuation.

App Recommendation Engine. Based on patterns of
manual (user initiated) usage of IoT-enabled devices, this
engine generates IoT apps that non-expert users might not
be able to author correctly (e.g., missing conditions). To
accomplish this, we adopt and modify association rule min-
ing techniques [12]. At a high-level, this approach searches
the combinations of concurrent IoT device activations (e.g.,
events) and selects candidate combinations ({X,Y } =⇒ Z)
– for example, lock all doors when leaving the house, if you
are last person in the home) – based on computed values of

support (φ · σ({X,Y }∪Z)
N

) and confidence (σ({X,Y }∪Z)
σ({X,Y }). We

use a relaxed notion of concurrent activation and treat multi-
ple activations within a 15-minute window (θ) as concurrent
(θ tuned as required). Our design deals with two additional
challenges. First, we correlate only events happening within
a proximity or space. This helps both reduce the search
space for the algorithm, and prevent recommending unrea-
sonable app rules that tie two events happening far away.
Second, we scale the support of candidates (φ) based on
how likely an app would be useful to users. Our current
implementation leverages a large open repository of com-
mon sense (ConceptNet3 [2]) that provides a quantification
of how strongly related multiple concepts typically are; for
example, concepts like“leaving a house”and“locking doors”.
As a result, if candidates are composed of unrelated device
activations it is penalized and less likely to recommended.
Tackling this issue is important because standard associa-
tion rule mining is prone to generating unnecessary rules.

5.2 Safety Engine
The core of the Safety Engine is a model verification pipeline.
Provided rules from IoT apps act as pipeline input, and
are translated into an intermediate format where specific
conditions can be verified. SIFT takes a pragmatic two stage
process to analyze IoT apps (rule collections) and test for
both App Conflicts (§4.1) and Policy Violations (§4.2).

Stage One – Logic Inspection. Safety checking begins
with a basic series of logic checks that act as a sanity test
on a tree representation of the IoT app rules. The goal is
to analyze for conflicts caused by triggering of contradictory
or incompatible actions. These can be either two actions on
the same device (e.g. turning on and off a light) or opposing
actions by two devices (e.g. turning both AC and heater
on at the same time). This process takes advantage of the
structure of the rules in that they already resemble logic
formulas (A =⇒ B) and so we translate them into a com-
bination of formulas to be checked for satisfiability, encoded
following the SMT-LIB standard [8]. The resulting set of
formulas is then checked using the theorem prover and con-
straint solver Z3 [19]. If Z3 deems the model unsatisfiable
we retrieve an unsatisfiable core from Z3 that can identify
which rules (and which specific values) lead to the conflicts.
This valuable feedback is provided back to the end-user.

However, as we learned in §4, other types of safety need to
be tested by SIFT. As shown in [9], software model check-
ing can be used to find program paths satisfying certain
coverage conditions (in our case, a path reaching a particu-
lar conflict by triggering particular rules), and the symbolic
constraints generated from the path are solved by a con-
straint solver to produce test inputs (i.e. the environment
situation that would trigger the problem). Symbolic execu-
tion (a technique similar to concrete execution, but where
symbolic variables are used for the program inputs) can be
used to obtain these constraints. Such constraints are then
combined with additional ones to eliminate situations that
could never happen in the environment where the IoT apps
run, which allows identifying problematic inputs.

Stage Two – Symbolical Execution. A core challenge
in the symbolic execution for SIFT is in the automatic gen-
eration of suitable intermediate representation for use by
conventional model checking algorithms. In particular, rule
collections must be transformed into actual code that pre-
serves the characteristics of the execution environment of the
IoT apps. In-line with current programming models (such as
IFTTT for instance), SIFT does not have an implied prece-
dence between rules – all of them are active at a given time
and in this way they do not behave like more familiar firewall
rules or e-mail filters (situations where rule order matters).
A further complication is that users are allowed to chain rule
activations together within IoT apps. For example, a user
may enter a house and turn a light on which is tied to turn-
ing on the air conditioner – an intermediate representation
must account for this additional dimension. The Safety En-
gine adopts a bounded model checking flavor of solution. It
begins by unrolling the control flow graph of the IoT app for
a fixed number steps (k). Conceptually checking for unsafe
situations extends within this number of k steps. To per-
form this, C# code is generated where each rule becomes
multiple statements including an IF statement along with a
set of supporting additional ones. Statements sit within a

loop structure iterating k times. This design provides equiv-
alence to chaining without precedence whereby statements
mapping to a rule can fire each state.

To illustrate this intermediate representation we show an
example with two rules that is chained three times:

WHILE (k < 3) {
IF (tr1 AND !f1) THEN (action = A AND tr2 = True AND

f1 = True)
IF (tr2 AND !f2) THEN (action = B AND f2 = True)

}

(Clearly, A and B can not happen simultaneously in this
example intermediate code.)

Using this representation we can integrate Pex into SIFT.
Pex is a automated white box testing tool for .NET [33]. It
performs path-bounded model-checking by repeatedly exe-
cuting the program and solving constraint systems to obtain
inputs that will steer the program along all execution paths.
If a conflicting situation is triggered we can then retrieve
the input parameters that led to it, as all as the triggered
rules (flags). Through Pex we can perform the App Conflict
and Policy Verifications described in §4. The state machine
used for policy checking is implemented as a separate mod-
ule within C# and is easily integrated into the Pex operation
as it is designed to be extended with such modules. When
necessary for policy checking, the datastore for cross-domain
data types are accessed, each of these stored models is also
written in C# for ease of operation. Periodic generation of
models by running the Bayesian network across the accumu-
lated environment and IoT device data occurs – by default
this interval is 1-week.

6. EVALUATION
We present our results from an office deployment and a large-
scale trace analysis with data collected from IFTTT.com.
The key findings of our experiments are as follows:

• Even for users with technical backgrounds, unintended
conflicts (both intra-app and inter-app in multi-user
settings) occur at a surprising rate. SIFT is able to
detect and report such conflicts in a timely fashion.
Furthermore, conflict detection remains responsive for
rule set sizes (i.e., collections of IoT apps) typically
created by users today.

• The Synthesis Engine is able to service the IoT apps
that users specify and auto-generate deployment/device-
specific code that meet the users’ requirements. We
observe no example where: (1) the synthesized code
is not in-line with the user’s expectation; or, (2) users
are unable to express their requirements.

• Policies are created by users for a number of situations.
In our experience, we notice they are inventive and
embrace the approach. Further, we find that execution
time at the level of usage seen during the deployment
is sufficient, and not a bottleneck.

6.1 Methodology and Experiment Setup
Our evaluation includes both a small-scale office deploy-
ment and home-oriented data-driven simulations. While the
deployment provides a real-world environment for experi-
ments, simulations provide a way to study larger-scale user
and system behaviors.

User #1, #2 User #3
Light sensor

√
Env brightness

√
Env brightness

Temp sensor
√ √

Humidity sensor
√ √

Motion detector
√

Seat occupancy
Air quality sensor

√

Pwr outlet switch
√

Lamp
√

Lamp

Table 1: Devices in office deployment.

Office-oriented Small-scale Deployments. To study
how users and SIFT interact with a diverse set of devices,
we instrument the working area of a floor inside an office
building with connected devices. Table 1 lists our deployed
devices that are connected to the SIFT back-end. All sen-
sors report new readings every three seconds. We report
results based on three weeks of data.

Home-oriented Data-driven Simulations. In order to
evaluate the safety engine, we need access to (1) IoT apps
that when executed together (i.e., simultaneously) by users
might result in conflicts and (2) deployment environments.
As a repository of such apps is currently not available and
deployments would vary in structure and availability of de-
vice types, we need to synthesize IoT app workloads.

IFTTT.com is currently the service that comes closest to
representing a large scale repository of IoT apps. As such,
we crawled all IoT-related recipes available online (i.e. rules
shared by users of the service). We then analyze this dataset,
focusing on the popularity of rules and the distribution of
devices involved, to come up with representative devices and
automation behaviour for a home-oriented scenario.

However, this still does not address a number of miss-
ing deployment details (device placement, for example). We
gather these missing information via a user study. To facil-
itate this we use a standard floor plan that interviewed users
could treat as the target deployment environment when defin-
ing their own IoT apps. The floorplan of this standard
house, and the location of devices in it, are shown in Fig-
ure 4. To assist these users in creating more diverse apps
and leveraging available devices, we also provide them with
generalizations of the most popular 35 recipes (related to
IoT) available from the IFTTT.com service. This has also
the added benefit that it allows us to collect parameters for
these popular recipes from real users.

We then performed a user study with 10 unrelated users,
with technical backgrounds, but no previous IoT automa-
tion experience. Users were asked to choose a room as their
supposed bedroom in the standard floor plan and what IoT
apps they would like to have active in such environment
(both apps active in their bedroom and in the whole house).

Interviewed users were instructed to either pick from the
examples apps provided and fill their missing parameters,
or to come up with brand-new apps (which could be com-
pletely different and even possibly include extra devices). It
is important to note that rules from IFTTT.com only allow
the simple if-this-then-else structure; not allowing chaining
of rules nor multiple triggers and action on the same rule
(e.g. using AND). Table 2 shows the distribution of apps
created chosen by the users in the study. One can see that
multiple users indeed created their own apps, and some of
them made use of the added programming model flexibility.

01 02 03 04 05 06 07 08 09 10
Re-used 35 33 25 25 25 19 30 10 10 30
New 12 4 6 21 2 11 11 10 16 3
Include 11 4 6 16 2 7 6 5 8 3
chaining
Individual 123 64 75 97 38 123 74 66 42 51
parts

Table 2: Distribution of app rules (ordered by ID),
as chosen by users for home automation.

Figure 4: Floor plan of a “standard house”, used in
the user study to elicit app rule sets.

6.2 Programming Synthesis
Our office deployments executed SIFT apps both manually
authored by users and automatically recommended by the
system. We highlight interesting case studies below.

6.2.1 User Apps
Users in our office deployments wrote several apps to help
them better adapt to environment dynamics. These apps
are the natural choice for users with no prior experience
with IoT-enabled devices. One interesting observation is
that sharing code functions (stored in Code Library) can
guide users in writing apps. For example, users initially fo-
cused on simple apps that read physical sensor data such as
temperature and room brightness. Then, we added the code
function, ApparentTemperature, that calculates the human
perceived temperature by considering the humidity. This
inspired User #1 to write ComfortIndex to estimate his en-
vironment comfort. Since people define comfort differently,
User #3 copied the code function and customized it.

Figure 5 shows the synthesized execution plan of the apps
of User #1 and #3 described above. The figure shows com-
ponent reuse between two execution plan trees. In addition,
both trees have multiple layers that represent chains of code
functions and devices.

6.2.2 App Rule Recommendation
We illustrate the usefulness of app rule recommendation,
with an interesting case from User #3. After collecting two
days of data from User #3, AppRecEng recommended the
automation app below for turning on and off a lamp. In
fact, this recommendation considers occupancy, which is a
condition that User #3 missed if he were to author the rule
himself. This observation highlights the value of recommen-
dations in assisting users authoring “correct” IoT apps.

IF (SELECT env_brightness IN lux AT 12435) <= 29.907

AND (SELECT occupancy IN boolean AT 12435) == true

THEN (UPDATE light AT 12435 SET state = on)

Figure 5: Two multi-level execution plan trees syn-
thesized from IoT apps of office deployments.

Data Collection Time Duration (min)

H
it

R
at

io
 (

%
)

0 500 600 700 800 900 1000...

0
25

50
75

10
0

Figure 6: The hit ratio for app recommendation in-
creases with the amount of data collected for train-
ing. This result specifically shows this behavior
manifesting for User #3’s light control.

We note that the confidence of a recommendation largely
depends on the frequency of the recurring pattern (r) and
the number of counter examples observed (c). Figure 6 illus-
trates this issue with User #3’s recommended app. Each
time instance on the x-axis represents the amount of train-
ing data from User #3 sensors, which AppRecEng uses to
build rules to recommend. Then, we use another set of 500-
min data to evaluate how well the recommended rule aligns
with real user behavior. First, App Recommendation had
enough data (578 minutes) since the data collection started.
This was around 5 PM, when the office starts to get dark.
User #3 then starts to interact with the desk lamp. Second,
as User #3 exhibits more interactions, e.g., turning off the
lamp during dinner and before leaving work, App Recom-
mendation had more data points to adjust the rule. Finally,
around 13 hours after the experiment started, the hit ratio
reached 99%.

6.3 App Conflict Detection
The dataset of apps collected during the user study provides
us with enough information on different ways the same home
could be automated via IoT apps. With these sets of apps
in hand, we can then look at the number of conflicts that
they may cause during runtime. Figure 8 shows the number
of conflicts detected between each set of apps, both if we
look at individual users, or when two users share the same
home environment (as mentioned before, we assign users
to the two bedrooms in the standard house). The number
of conflicts (and what circumstances would trigger them)
can not be directly used as a final metric to determine the
usefulness of the system, as this output would be the initial
feedback from SIFT to users; that could then used to refine
the rules in an iterative process. But analysis numbers show

Number of Rules

T
im

e
(s

ec
)

20 40 60 80 100 120 140 160 180 200 220

0
0.

5
1

1.
5

2

●
●

●

●●

●●

●●●

●
●

●●●

●

●
●●

●●
●●●●

●●●●●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●
●

●
●

●

●
●

●●●●

●
●●

●
●

●

●
●

●

●
●

●●●●
●

●●●
●

●

●
●

●

●●
●●●●

●●●●
●

●

●
●

●

●
●

●●●
●

●●
●

●

●

●

●
●

●

●
●

●●●●

●
●●

●
●

●

●
●

●

●●
●●●●

●●●●●

●

●
●

●

●●
●●●●

●
●●●●

●

●
●

●

●●
●●●●

●
●●●●

●

●
●

●

●●

●●●●

●
●●

●
●

●

●

●
●

●●

●
●●●

●
●●

●
●

●

●
●

●

●●
●●●●

●●●●●

●

●
●

●

●●
●●●●

●
●●●●

●

●
●

●

●●
●●●●

●
●●●●

(a) Time to detect conflicts for a rule set

Number of Conflicts

T
im

e
(s

ec
)

0 20 40 60 80 100 120 140 160 180 200 220

0
40

80
12

0
16

0

●●

●●
●

●●
●●●

● ●
●●●

●
●

●
●●

● ●● ●●●●●● ●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●●
●

●

●

●
●

● ●
●

●

●

●
●●● ●

●

●
●

●

●●●
● ●●

●●● ●
●

●
●

●
●●

●●
●●●

●●●●●

●
●

●

●

●

●●
●

●

●
●●

● ●●

●
●

●

●

●
● ●

●
●

●
●●●●●

●●
●

●
●

●●
●

●
●●●●● ●

●
●

●

●
●

●●● ●● ●●●●●

●
●

●
●●

●●● ●● ●●●●●

●

●

●

●
●

● ●
●

●
●

●

●●● ●

●

●

●

●
●

● ●

●
●

●
●

●●● ●

●

●

●
●●

● ●
●

●●
●

●●● ●

●
●

●
●

●
●●

●
●● ●●●●●

●
●

●
●●

●●
● ●● ●●●●●

(b) Time to identify parameters that cause conflict, given a
number of conflicts to be identified

Figure 7: Timing analysis of the app rule conflict
checking mechanism.

that, even for users with technical backgrounds, unforeseen
interactions between IoT apps manifest easily (especially in
multi-user situations).

To illustrate performance of the safety engine, we ran a se-
ries of micro-benchmarks on the two steps of the verification
process. Figure 7 shows the time it takes to analyze each
app set and detect conflicts. Starting with users individually
and combining them 2×2 (when appropriate, depending on
their assigned rooms). We can see that the time needed for
the analysis increases with rule set size, but even to analyze
≈200 rules, it takes less than 2 seconds.

Identifying precisely the circumstances that lead to each
conflict potentially takes much longer during symbolic exe-
cution. For instance, exploring 200 conflicts takes around
2.58 minutes if analyzed in sequence (Figure 7). This time
could be greatly reduced if the analysis is parallelized, but
even using the simpler approach, it is still within expectation
as validation would happen at ruleset modification time.

6.4 Policy Violation Detection
Since there are very few reports on verifying policy confor-
mance of an IoT app, this section presents our observations
and results on (1) how people think about policies and (2)
the kinds of violations that the Safety Engine identified.

For the user study, we observe ∼89% of policies authored
by users are related to making the environment safer to oc-
cupants. Interestingly, many of these policies have an oc-
cupancy component, e.g., “Rice cooker cannot work when
there is no one at home” and “Room 1 temperature should
never be > 25°Celsius when someone is in the room”. This
suggests that an efficient way of providing occupancy or lo-
cation information plays a major role towards safe IoT apps.
In addition, there are many policies looking at safety from
the perspective of human health, e.g., “Never set TV speaker
to more than 90dB” and “Speakers never on when I sleep”.
During interviews, authors of these two rules explained their

0
50

10
0

15
0

20
0

25
0

Number of rules Number of conflicts

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Figure 8: Number of conflicts in different simulations of app combinations.

Num App Rules

V
er

ifi
ca

tio
n

T
im

e
(x

)

5 10 15 20 25 30

0
2

4
6

8

Figure 9: Additional time to verify policies grows
w.r.t. number of app rules. Baseline is five rules.

intention to prevent hearing damage and promote better
sleeping environment. We see this as the opportunity for
incorporating human-centric sensors to improve safety.

Safety Engine verifies policy conformance of an app be-
fore the Execution Engine executes it. We use an interesting
case study of User #3 from office deployment to illustrate
the usefulness of policy violation detection. Section 6.2.2
presents an app rule that App Recommendation Engine rec-
ommended to User #3 for automating lamp control. How-
ever, since User #3 is using an old lamp that can get hot
enough to be a potential concern, he authored a policy that
mandates the lamp should be OFF when there is no one
around. Safety Engine was able to identify this potential
policy violation, and User #3 subsequently added the fol-
lowing rule.

IF (SELECT occupancy IN boolean AT 12435) == false

THEN (UPDATE light AT 12435 SET state = off)

A related question is the time required to perform policy
verifications. Micro-benchmarks suggest that most of the
verification time is taken by the symbolic execution tool to
solve constraints and explore all program paths. Since the
number of paths is related to the number of IoT app rules to
check, we measured the verification time needed with respect
to the number of app rules. We artificially generated app
rules with random inputs. Figure 9 shows the verification
time increases almost linearly with the number of app rules.

7. DISCUSSION
We discuss overarching issues related to SIFT.

Modeling Environment with High Fidelity. Through
connected devices, IoT apps actuate and interact with their
environment. The type and specification of connected de-
vices and real world entities determine both the scope and

0 1 2 3 4

User agreement

N
um

be
r

of
 r

ul
es

0
1

2
3

4
5

6
7

Figure 10: User rating of mined rules.

impact of their interactions. Modeling the real world is a
useful approach for improving safety verification complete-
ness. For example, automotive manufacturers have long
been evaluating safety under different real world models.
However, the complexity of modeling IoT systems in the
real world can quickly explode, considering device type di-
versity, temporal behavior, physical space layout and so on.
As a result, SIFT does not fully model the physical world. In
the future, we anticipate exploring the relationship between
modeling fidelity and verification completeness as well as
approaches towards increasing modeling fidelity.

Run-time Policy Violation Detection. Like most soft-
ware testing tools, there are types of violations that SIFT
cannot identify with code analysis. Some of these unde-
tected violations are due to missing knowledge of how vari-
ables can correlate in the real world. For example, open-
ing windows may increase the level of air pollutants present
indoors, which can then raise a policy violation. Another
example is when IoT devices are deployed in a previously
unknown environment. To cope with these cases involving
deep knowledge of the real world, SIFT currently also per-
forms run-time policy violation detection on incoming sensor
data streams. SIFT captures violations that it understands
based on a device and IoT app model; as well as relation-
ships between the system and the real-world that can be
learned on-line.

Model Limitations. At this time, we adapt existing model
checking techniques that are well understood to verify logical
conflicts and policy violations. However, some aspects of
rules and the environment are not modeled in the current
implementation, such as time intervals and time delays, and
interference of device effects in environment characteristics
not covered; which can lead to false positives. Examples
include: if a light is turned on for only 5 minutes, if a heater

takes 15 minutes to warm up, or if opening the window lets
dust come in into the home. We expect, in the near future, to
revise our safety engine design to incorporate new techniques
(e.g. [11]) that better capture these types of effects.

Actionable Feedback for Non-expert Users. When ei-
ther a problem of rule conflicts or policy violations is found,
SIFT currently points users to offending app rules along with
model parameters. While this information has been shown
to be useful, non-expert users might need further assistance
in fixing offending app rules. To this end, we are currently
working on algorithms that take the first step in automati-
cally suggesting concrete fixes for such IoT app rules.

Connecting New IoT Devices to SIFT. There are many
efforts on standardizing the communication and manage-
ment of heterogeneous IoT devices [21]. SIFT leverages
these existing efforts to simplify the process of connecting
new devices. We take a gateway-oriented approach, where
most of our devices indirectly connect to SIFT through a
intermediate network device. Specifically, this gateway has
the necessary radio and networking stack to communicate
with nearby devices with such interaction occurring using
RESTful interfaces. By delegating device management to
the gateway, we can simplify the architecture of SIFT and
operate only against a device abstraction.

8. RELATED WORK
We now discuss how SIFT compares to, and extends beyond,
existing IoT related research.

IoT Security Testing. Most current industrial and aca-
demic efforts on IoT target connectivity and communication
issues, which, from the safety and security point of view,
naturally translate into a fixation on protocol design, en-
cryption, and authentication [1, 6]. There is also scrutiny
regarding privacy [27]. However, the gamut of issues that
can impact users is much broader. SIFT views program-
ming as one building-block activity in practical IoT systems
today, and assists non-expert users in addressing problems
from imprecise app rules and models.

Depending on the app model considered, verification might
not be possible resulting in other approaches to test IoT apps
being necessary. Two directions that appear promising are:
(1) the synthesizing of inputs received by apps from char-
acteristics of the environment where they run (e.g., [15]);
or, (2) automatically extrapolating new test cases based on
some templates and information of the IoT apps [36].

Conflicts Detection and Resolution. While event-
based interfaces do provide a flexible programming inter-
face and a good degree of usability, most proposed systems
do not handle problems that emerge from the interaction
among IoT app rules. Rules in general can be hard to de-
bug when the system is not working as users expect; often
early adopters simply live with problems or even just turn
the rules off [14].

To resolve app conflicts, HomeOS [21] allows priorities to
be assigned to IoT apps. However, priorities are not suffi-
cient if two apps have approximately the same importance
to users. There have also been efforts on running concurrent
applications in sensor networks [13, 26, 38], but these are ei-
ther limited in resolving conflicts (for example, by imposing
overly strong restrictions) or too complex to be comprehen-

sible for non-expert end users. Striking the balance between
flexibility of device orchestration and minimizing possible
safety violations is key.

Notably, DepSys [28] describes an approach to specify, de-
tect, and resolve conflicts among home IoT apps. DepSys is
able to identify dependency issues and resolve them (some-
times involving user intervention). However, it places the
burden of properly specifying app intents and dependencies
on app developers. SIFT employs a more flexible app model,
where a user can author apps, and the synthesis engine is re-
sponsible for fulfilling data and control dependencies (e.g.,
potentially re-using other previously available app parts).
Moreover, the safety engine can precisely point out which
circumstances cause a particular conflict so users can take
action. On the other hand, DepSys lacks the visibility into
app internals to make this possible.

CPS System Verification. One problem that the CPS
community faces is verifying specifications of complex real-
time systems, e.g., automotive control. ISO 26262 [39] (or
the more general IEC 61508) is an example of functional
safety standards for experts of such systems. Model check-
ing is a common technique in CPS, to automatically verify
interactions among system processes and physical environ-
ment components. Henzinger et al. [9] introduced hybrid
automaton to precisely describe these interactions by com-
bining finite state machines and sets of ordinary differential
equations. Bu et al. [11] later tried to lower the verification
overhead from having precise hybrid models. While model
checkers typically stop when one counter-example (w.r.t. a
specification) is found, recent efforts [10] tried to efficiently
discover all offending locations in precisely specified models.

However, in the case of IoT where users are typically non-
expert, precise and complete models and user intents can
be difficult to obtain. The main challenge lies in formulat-
ing the verification problem for IoT apps in terms of formal
model checking. SIFT provides tools for easily specifying
and efficiently checking key IoT app safety properties: app
rule conflicts and policy violations.

Declarative Queries for Sensor Networks. TinyDB
[24] views a sensor network as a declarative database, and
Declarative Sensor Network [16] is a declarative language,
compiler and runtime for programming a range of sensornet
applications. Both TinyDB and DSN require users to have
some level of knowledge of the underlying physical infras-
tructure and data stream properties. Semantic Streams [37]
allows users to issue queries over semantic values without
concerning raw sensor data streams or operations. However,
SIFT offers a more complete development support with tools
for recommending and verifying app rules.

Automation and Ease of Use. While different commer-
cial approaches to orchestrating devices have recently gained
popularity [3, 5, 7], these systems behave as black boxes and
do not integrate well with devices from other manufacturers.
Complex interfaces to configure device interactions and the
lack of integration flexibility can present significant barriers
for users to fully utilize the potential of IoT devices [14].

In making the programming of cross-device interactions
more approachable, research suggests rule-based paradigms
(e.g. trigger-action pairs) as a very natural mental model [20]
that is also surprisingly flexible and powerful [30, 31]. More
recently, Blase et al. [34] examined trigger-action program-

ming in the form of IFTTT-like structures, from a user point
of view. To target non-expert users, SIFT builds on these
findings and adopts an IFTTT-style programming model.

9. CONCLUSION
In this paper, we study a fundamental piece in the emerging
puzzle of IoT safety, security, and privacy: understanding
the key programming support necessary for non-expert users
to build safe IoT apps. We present a first-of-its-kind IoT de-
velopment support platform – SIFT. Under SIFT, the effort
and attention from non-expert users in producing safe IoT
apps are lowered with automated techniques for verifying
two key safety criteria: app rule conflicts and policy viola-
tions. SIFT formulates the verification problem of IoT apps
as formal model checking, enabling the efficient checking of
these safety properties. Given the demonstrated usefulness
and power of SIFT, we plan to next address user-focused ca-
pabilities, e.g., assistance for fixing imprecisely defined user
intents and for handling complex interactions between large-
scale collections of user requirements and devices.

10. REFERENCES
[1] AllJoyn. https://www.alljoyn.org/.

[2] ConcepNet 5. http://conceptnet5.media.mit.edu/.
[3] Home Automation Systems. HomeSeer.

http://www.homeseer.com/.
[4] IFTTT - Put the Internet to Work for You.

http://ifttt.com.
[5] SmartThings. http://www.smartthings.com/.

[6] Thread. http://threadgroup.org/.

[7] Wemo. http://www.belkin.com/us/Products/home-
automation/c/wemo-home-automation/.

[8] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB
Standard: Version 2.0. Technical report, Department of
Computer Science, The University of Iowa, 2010.
http://www.SMT-LIB.org.

[9] T. A. Henzinger. The Theory of Hybrid Automata. In Proc.
of the 11th Symposium on Logic in Computer Science
(LICS), pp 278–292. IEEE, 1996.

[10] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and
R. Majumdar. Generating Tests from Counterexamples. In
Proceedings of (ICSE), pp 326–335. ACM, 2004.

[11] L. Bu, et al. Toward online hybrid systems model checking
of cyber-physical systems’ time-bounded short-run
behavior. In ACM SIGBED Review 8 (2), pp 7-10. 2011.

[12] C. M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[13] A. Boulis, C.-C. Han, and M. B. Srivastava. Design and
implementation of a framework for efficient and
programmable sensor networks. In MobiSys, pp 187–200.
ACM, 2003.

[14] A. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and
C. Dixon. Home automation in the wild: challenges and
opportunities. In ACM CHI, pp 2115–2124. ACM, 2011.

[15] C.-J. M. Liang et al. Caiipa: Automated Large-scale Mobile
App Testing through Contextual Fuzzing. In Mobicom, pp
519–530. ACM, 2014.

[16] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis,
S. Shenker, and I. Stoica. The design and implementation
of a declarative sensor network system. In SenSys, pp
175–188. ACM, 2007.

[17] CNET. Car hacking code released at Defcon.
http://www.cnet.com/news/car-hacking-code-released-
at-defcon/, 2013.

[18] CNN. Why it’s so easy to hack your home.
http://www.cnn.com/2013/08/14/opinion/schneier-

hacking-baby-monitor/, 2013.

[19] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver.
In Tools and Algorithms for the Construction and Analysis
of Systems, pp 337–340. Springer Berlin Heidelberg, 2008.

[20] A. K. Dey, T. Sohn, S. Streng, and J. Kodama. iCAP:
Interactive prototyping of context-aware applications. In
Pervasive Computing, pp 254–271. Springer, 2006.

[21] C. Dixon, R. Mahajan, S. Agarwal, A. B. Brush, B. Lee,
S. Saroiu, and P. Bahl. An operating system for the home.
In NSDI, pp 337–352, 2012.

[22] Gartner. Internet of Things Installed Base Will Grow to 26
Billion Units By 2020.
http://www.gartner.com/newsroom/id/2636073.

[23] HP. Internet of Things Security: State of the Union, 2014.
http://www.hp.com/go/fortifyresearch/iot.

[24] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: an acquisitional query processing system
for sensor networks. ACM Transactions on database
systems (TODS), 30(1):122–173, 2005.

[25] T. L. M. Kasteren, G. Englebienne, B. J. A. Krøse. Human
Activity Recognition from Wireless Sensor Network Data:
Benchmark and Software. In Activity Recognition in
Pervasive Intelligent Environments, Vol. 4 (2011), 165-186.

[26] P. J. Marrón, A. Lachenmann, D. Minder, J. Hahner,
R. Sauter, and K. Rothermel. Tinycubus: a flexible and
adaptive framework sensor networks. In EWSN, pp
278–289. IEEE, 2005.

[27] C. M. Medaglia and A. Serbanati. An overview of privacy
and security issues in the internet of things. In The
Internet of Things, pp 389–395. Springer, 2010.

[28] S. Munir and J. A. Stankovic. DepSys: Dependency Aware
integration of Cyber-Physical Systems for Smart Homes. In
ICCPS. ACM, 2014.

[29] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu. Finding and reproducing heisenbugs in
concurrent programs. In OSDI, pp 267–280, Berkeley, CA,
USA, 2008. USENIX Association.

[30] M. W. Newman, A. Elliott, and T. F. Smith. Providing an
integrated user experience of networked media, devices, and
services through end-user composition. In Pervasive
Computing, pp 213–227. Springer, 2008.

[31] J. F. Pane, C. Ratanamahatana, B. A. Myers, et al.
Studying the language and structure in non-programmers’
solutions to programming problems. International Journal
of Human-Computer Studies, 54(2):237–264, 2001.

[32] SICStus. SICStus Prolog. Technical report, 2014.
https://sicstus.sics.se/.

[33] N. Tillmann and J. de Halleux. Pex - White Box Test
Generation for .NET. In Proceedings of Tests and Proofs
(TAP’08). Springer Verlag, 2008.

[34] B. Ur, E. McManus, M. P. Y. Ho, and M. L. Littman.
Practical Trigger-Action Programming in the Smart Home.
In CHI. ACM, 2014.

[35] P. A. Vicaire, Z. Xie, E. Hoque, and J. A. Stankovic.
Physicalnet: A generic framework for managing and
programming across pervasive computing networks. In
Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp 269–278. IEEE, 2010.

[36] Z. Wang, S. Elbaum, and D. S. Rosenblum. Automated
generation of context-aware tests. In ICSE, pp 406–415.
IEEE, 2007.

[37] K. Whitehouse, F. Zhao, and J. Liu. Semantic Streams: A
Framework for Composable Semantic interpretation of
Sensor Data. In EWSN. Springer, 2006.

[38] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun.
Supporting concurrent applications in wireless sensor
networks. In SenSys, pp 139–152. ACM, 2006.

[39] ISO. ISO 26262 – Road vehicles - Functional safety.
http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=68383, 2011.

