
Cost-Aware Compressive Sensing for
Networked Sensing Systems

Liwen Xu†, Xiaohong Hao†, Nicholas D. Lane‡, Xin Liu], Thomas Moscibroda‡
†Tsinghua University, ‡Microsoft Research,]U.C. Davis

ABSTRACT
Compressive Sensing is a technique that can help reduce
the sampling rate of sensing tasks. In mobile crowdsensing
applications or wireless sensor networks, the resource burden
of collecting samples is often a major concern. Therefore,
compressive sensing is a promising approach in such scenarios.
An implicit assumption underlying compressive sensing –
both in theory and its applications – is that every sample
has the same cost: its goal is to simply reduce the number of
samples while achieving a good recovery accuracy. In many
networked sensing systems, however, the cost of obtaining
a specific sample may depend highly on the location, time,
condition of the device, and many other factors of the sample.

In this paper, we study compressive sensing in situations
where different samples have different costs, and we seek to
find a good trade-off between minimizing the total sample
cost and the resulting recovery accuracy. We design Cost-
Aware Compressive Sensing (CACS), which incorporates
the cost-diversity of samples into the compressive sensing
framework, and we apply CACS in networked sensing systems.
Technically, we use regularized column sum (RCS) as a
predictive metric for recovery accuracy, and use this metric
to design an optimization algorithm for finding a least cost
randomized sampling scheme with provable recovery bounds.
We also show how CACS can be applied in a distributed
context. Using traffic monitoring and air pollution as concrete
application examples, we evaluate CACS based on large-
scale real-life traces. Our results show that CACS achieves
significant cost savings, outperforming natural baselines
(greedy and random sampling) by up to 4x.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design, Experimentation, Performance.

Keywords
Crowdsensing, Compressive Sensing, Resource-efficiency.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
IPSN ’15, April 14 - 16, 2015, Seattle, WA, USA.
Copyright 2015 ACM 978-1-4503-3475-4/15/04 ...$15.00.
10.1145/2737095.2737105.

1. INTRODUCTION
Fueled by the ever increasing sophistication and diversity of

sensors, there has been a significant growth and momentum
of networked sensing systems based on mobile devices and
sensor networks in recent years. Example applications of such
systems include traffic and road condition monitoring, noise
and ambiance watch, air quality and pollution monitoring and
social computing consumption. It is well-known that in such
large-scale systems, the sensor resource – i.e. energy cost,
computing power, and bandwidth consumption – imposes
a major obstacle. For example, most sensing applications
require location information and GPS is known for its high
power consumption. Therefore, such resource burden often
hinders the necessary participation and widescale adaption
of the targeting applications.

Thus, sampling is the natural method of choice for such
networked sensing scenarios. The goal of sampling is to
sample (i.e., collect, upload, and process) only a small subset
of the totally available data, and to then reconstruct the
underlying data or the desired aggregate information based
on this subset. In this context, a particularly promising
approach is Compressive Sensing(CS). The idea of compressive
sensing is to exploit the inherent sparsity and data redundancy
in these application scenarios in order to reduce the sampling
rate. Such data redundancy is indeed common and manifests
itself in numerous ways. For example, the traffic condition
in a given area/city typically exhibits strong temporal and
spatial correlation [33]. By leveraging this inherent correlation,
CS-based sampling and recovery techniques have the potential
to significantly lower the number of samples required, and
thus reduce the burden on the mobile devices.

One implicit assumption in the traditional compressive
sensing framework is that every sample has equal cost. The
goal of compressive sensing has been to reduce the number
of samples needed to achieve the desired recovery accuracy;
and therefore the question of which samples to take has
been viewed only with regard to its impact on the recovery
performance. This assumption that all sample costs are
equal is not surprising. Compressive sensing has been widely
used in fields such as image compression, medical imaging,
and geophysical data analysis in which indeed there is no
difference between the cost of one sample or another. Besides,
the mathematical foundation of compressive sensing is also
built upon the assumption that sample costs are identical.

In practical networked sensing systems, however, there
exists significant sample cost diversity, and this diversity
should be integrated into the compressive sensing framework.
The reasons for sample cost diversity are manifold. Sensors
are inherently diverse, and their conditions are time-varying
and location-dependent. For example, the energy consumption

of obtaining a GPS lock depends on many factors, including
location, atmosphere, and hardware conditions. The cost
of reporting a sample to a central server varies based on
the network condition, cellular data plan, distance to the
nearest cell tower, or other concurrent activities on the
device. In addition, in a mobile sensing system, the cost
may also depend on users’ perception: e.g. a user may not
mind contributing a sample normally, but would consider
the sample expensive when he is running out of battery.
In short, different samples can have vastly different costs
in networked sensing systems; and in order to leverage
its potential benefits, we must effectively incorporate cost-
diversity into the compressive sensing framework.

In this paper, we design a principled resource-efficient
solution to networked sensing systems based on Cost-Aware
Compressive Sensing (CACS). Our approach integrates cost
diversity into compressive sensing, and seeks to find a good
balance between the total sampling cost and the resulting
recovery accuracy. Doing so is challenging. For one, the
need to select samples who collectively have low total cost
fundamentally runs counter to the need to capture the sparse
structure no matter in randomized or deterministic ways in
CS. More generally, there is a trade-off between choosing
low-cost samples and achieving a sufficiently wide-spread and
balanced coverage of the entire signal space. For example,
a naive greedy approach that always selects samples with
low cost will necessarily result in a poor recovery of the
collected data: If GPS samples in a downtown area with
highrise buildings are expensive; the greedy algorithm will
avoid such samples all together and lose sufficient coverage
of the downtown area. Thus, the fundamental challenge is to
find a set of samples that are low-cost, and yet capture the
underlying data’s complex structure to allow for accurate
recovery.

The key technical ingredient of our approach is to formulate
Regularized Column Sum (RCS) as a practical metric for
predicting recovery accuracy. We prove that RCS provides
theoretical recovery guarantees while being easily computable.
This is in contrast to existing compressive sensing work, in
which provable recovery lower bounds have been based on the
sensing matrix and the so-called Restricted Isometry Property
(RIP). This classical approach is not practical in our setting,
because i) it is NP-hard to verify the RIP condition of a
sampling matrix, and ii) RIP only provides an insufficiently
loose lower bound on recovery accuracy. The key is that
RCS allows us to devise a novel convex optimization-based
approach (RCS-constrained Optimization) for finding the
least cost randomized sampling scheme using relaxation. This
can be done efficiently, and it can also be analyzed in terms
of its performance.

Finally, we present two methods to apply the Cost-Aware
Compressive Sensing framework in decentralized systems.
The two heuristics – Distributed Weighted Sampling and
Pairwise Sampling – are complementary in their approach
to cost-awareness. We evaluate our techniques using real-
life traces on air quality monitoring and traffic monitoring,
collected from a large metropolitan area over the course of
several weeks. Our results show that Cost-Aware Compressive
Sensing methods result in significant cost savings for the
same recovery accuracy. For example, they substantially
outperform the standard baseline algorithms (the naive greedy
algorithm by up to 4x; the classic cost-oblivious sampling
algorithm by 3x) in a large variety of settings.

2. COMPRESSIVE SENSING PRIMER
Compressive Sensing (CS), a recent breakthrough in the

signal processing community, is an efficient technique of
sampling high dimensional data that has an underlying
sparse structure. In particular, it is possible to sample at
a rate much lower than the Nyquist sampling rate, and
then nevertheless accurately reconstruct signals via a linear
projection in subspace. Generally speaking, CS first measures
a small group of linear projections of the target data, and then
reconstructs the original data via the incomplete information.
CS is particularly promising in practical applications that
exhibit spatiotemporal correlation and data redundancy.

Sparse Structure: Consider a target vector y ∈ Rn, and
let y be decomposed under a certain base Ψ, i.e. y = Ψx
where x is the coefficient vector. x is called k-sparse if it has
only k non-zero entries. Discrete Fourier base and discrete
cosine base are examples of typical choices for the sparsifying
base Ψ.

Formally, assuming Φ is a linear encoder which projects
an n-dimensional data into an m-dimensional subspace (m <
n), CS can accurately reconstruct y that has such sparse
structure from its linear measurements

s = Φy = ΦΨx (1)

even if m is as small as O(k log n
k

) [6]. Note that in order for
the recovery to be successful, ΦΨ has to satisfy the so-called
Restricted Isometry Property (RIP) [7]. Here Φ, Ψ and
A = ΦΨ are called sampling matrix, sparsifying matrix and
sensing matrix, respectively.

The RIP constant of a matrix A is defined as the smallest
positive δk that satisfies 1 − δk ≤ ‖Av‖2

‖v‖2
≤ 1 + δk for all

k-sparse vectors v. A small δk is the key to guarantee
the success of CS reconstruction. Importantly, randomly
structured A meet this requirement with high probability [6].

Intuitively, various types of signals in real-life, such as
temperature values [18], soil moisture [29] and traffic condition
on road networks [33] should be spatially correlated, and
also have high correlation and periodicity over time. These
signals usually inhere sparse structures, but not perfectly
sparse. Instead, they are called compressible because their
coefficients under the sparsifying base decay at exponential
rate when sorted by magnitude. Similar results also hold for
compressible signals in CS theory. Natural and compressible
signals are the main focus in this paper.

Random Sampling: Among the various possible designs
of the linear encoder Φ, the random partial identity matrix,
which implies random sampling, is one basic and popular
choice because of its stability in performance and simplicity
in practice. By applying an m× n random partial identity
matrix in (1), s is simply a random sample of y of size m.

Data Reconstruction: As for data reconstruction, CS
performs the `1-norm minimization (`1-min)

(P1) arg min
x̂∈Rn

‖x̂‖`1 , subject to ‖ΦΨx̂− y‖`2 ≤ e.

This replaces the NP-hard `0-norm minimization that directly
searches for the sparsest x̂. `1-min can be solved in polynomial-
time by linear programming, and has nice guarantees in terms
of recovery error [7]. Besides, various greedy algorithms
are also practical alternatives for `1-min, e.g. Compressive
Sampling Matching Pursuit (CoSaMP) [19].

3. Cost-Aware Compressive Sensing
Conventional CS makes the implicit assumption that all

samples have the same cost. This assumption is mostly valid
in existing applications domains of CS (e.g. image recovery),
however it is different in the context of networked sensing
systems, where the cost of taking and reporting samples can
vary significantly.

In the following, we first discuss the various types of
costs occurring in networked systems. Then we present the
challenges in incorporating costs into compressive sensing,
which motivate our effort in designing Cost-Aware Compressive
Sensing (CACS) for resource-efficient solutions in such cases.
The challenges in CACS mainly arise from two aspects: i)
the difficulty of balancing between recovery accuracy and
sampling cost, and ii) predicting recovery accuracy for a
given sampling strategy.

3.1 Cost Factors
In practice, different types of costs can occur in wireless

networks, including but not limited to 1) energy consumption;
2) data consumption; and 3) perception cost.

Energy Consumption. Because of limited battery
budget, energy consumption is critical in devices like sensor
nodes and mobile phones. Devices consume energy in both
measuring and reporting a sample (e.g. locate a GPS signal
and report position). This cost depends on the location as
well as the status of the device. The reporting cost may
depend on the network (i.e., WiFi, 2G, 3G or 4G), the signal
strength, variability to the network, and the congestion level.

Data Consumption. Meanwhile, the reporting may
incur cellular data cost when using cellular networks. As
discussed in [30], a major burden for emerging crowdsensing
applications may be network bandwidth.

Perception Cost. Finally, users may have different
perception of a given cost. For example, a user with a
cellphone with full battery may not consider the energy
consumption for GPS locating to be high, whereas other
users may be more sensitive to the same amount of energy
usage. Such perception-based cost adjustments should be
considered as they are important to user experience.

Spatial temporal Correlation. It is important to
observe that sampling costs are often spatially and temporally
correlated among devices/users. E.g. in an area with poor
cellular coverage, all users are likely to incur high transmission
cost. Furthermore, the battery status of users would show
high temporal correlation and more users are likely to have
low remaining batteries towards the end of the day. Such
correlations in general render naive cost-aware sampling
methods less effective as discussed next.

3.2 Challenge: Balancing Accuracy and Cost
According to CS theory, samples picked uniformly at

random will meet the requirement of high recovery accuracy
with high probability. Although randomness is not the
only way to ensure accurate recovery, random sampling is
employed most often in previous work because of its simplicity
and robustness in practice. On the other hand, to reduce
sampling cost, it is necessary to avoid the samples that are
more expensive, and the uniform randomness is inevitably
violated by favoring samples with lower cost. Naturally, we
would like to find a balance between these two opposing
forces – the need for keeping high recovery accuracy and the
desire of choosing lower cost samples. Thus, Cost-Aware

20% 30% 40% 50%
50%

60%

70%

80%

90%

100%

Total Sampling Cost

R
ec

ov
er

y
A

cc
ur

ac
y

Random Sampling
Greedy Sampling

(a) On i.i.d cost map, greedy strategy works well

20% 30% 40% 50%
40%

50%

60%

70%

80%

90%

100%

Total Sampling Cost

R
ec

ov
er

y
A

cc
ur

ac
y

Random Sampling
Greedy Sampling

(b) On spatially-correlated cost map, greedy fails

Figure 1: Motivation of CACS

Compressive Sensing(CACS) pursues the two-fold objective
of: {

max Recovery accuracy;
min Sampling cost.

CACS is a randomized sampling process. To clarify the
subsequent discussion, we first introduce the notations and
definitions in CACS. In a networked system containing n
nodes, y = {y1, y2, · · · , yn} is the signal of interest that are
separately held by different network nodes. y is compressible,
and has a sparse representation under the base Ψ, i.e. y =
Ψx, in our case Ψ is the Fourier base. Sampling costs
differ from node to node (or rather, from sample to sample),
and c = {c1, c2, · · · , cn} denotes the corresponding costs at
different nodes.

The CACS sampling process is conducted independently by
each node flipping a coin according to π = {π1, π2, · · · , πn},
0 ≤ πi ≤ 1 which are the probabilities assigned to the nodes.
Use Ω := {i|Xi = 1,Xi ∼ Bernoulli(1, πi)} to denote the
index set of a sample instance, and let m = E|Ω| =

∑
πi be

the expected sample size. Let x̂ and ŷ denote the recovery
of x and y respectively.

To better understand CACS we first consider two extreme
design points. At one end of the spectrum, we have uniform
random sampling, i.e. πi = m

n
when m nodes are to be

sampled. Uniform random sampling is agnostic to cost, as
in the existing CS literature. At the other extreme is greedy
sampling that selects one sample after another, always picking
the sample with lowest costs, i.e. πi = 1 if ci is among m
smallest and πi = 0 otherwise.

The following examples illustrates the limitations of these
two extremes and motivate the need for intelligent CACS.

We compare two scenarios: 1) costs are i.i.d among samples,
shown in Fig. 1(a); and 2) sample costs are spatially correlated
(typical case in sensor networks and crowdsensing), shown in
Fig. 1(b). In the figures, the left side illustrates the sampling
cost map, with lighter color indicating larger cost; and the two
scenarios have the same overall cost distribution. The right
side plots the cost-accuracy tradeoff of greedy and random
sampling, respectively. We observe that when the costs

are i.i.d., the greedy algorithm performs very well because it
anyway selects a set of samples with sufficient randomness. At
80% accuracy, its cost is only 20% of random sampling, and
only 5% of the total cost. However, when spatial correlation
exists, the performance of greedy significantly deteriorates;
the selected samples no longer allow an accurate recovery.
In fact, for the same accuracy, greedy sampling is actually
more expensive than random sampling (20% more at 80%
accuracy).

These examples show that it is non-trivial to design a
sampling strategy that is inexpensive and guarantees accurate
recovery in all cases. The greedy strategy favors low-cost
samples, and performs poorly in cases when the cost map
contains spatial correlation; random sampling only considers
recovery accuracy and disregards cost factors. Therefore, the
first challenge of CACS is to find the best possible balance
between these two extremes. Its design and implementation
is the focus of this paper.

It is worth noting that another potential approach is to
construct an RIP-satisfying sensing matrix via a deterministic
sampling strategy [9, 1, 4, 17], e.g. via sophisticated coding
techniques. While such an approach is beyond the scope
of this paper, we believe that such strategies are hard to
combine with sampling costs because it seems that either
RIP would be violated, or – for certain worst-case cost-maps –
deterministic sampling strategies can be extremely expensive.

3.3 Challenge: Predicting Recovery Accuracy
In order to balance recovery accuracy and sampling cost, we

need to quantitatively analyze these two factors. For a given
cost map, the benefit in cost saving of a sampling strategy
is easy to calculate. However, especially for compressible
signals, quantifying the recovery accuracy is often a posteriori,
and one typically needs the ground truth to determine the
exact accuracy.

RIP, as introduced in §2, is widely used to prove theoretical
guarantees on the recovery error for given recovery algorithms
(see [13]).

However, RIP has its limitations and is not a practical
mechanism to predict recovery accuracy in our case. First,
verifying RIP of a matrix is computationally inefficient and
has been proven NP-hard [2]. Secondly, the existing approach
to construct partial Fourier matrix that satisfies RIP only
provides an insufficiently loose lower bound on the recovery
accuracy. For example, it is shown that ∼ k log4 n samples
are required for accurate recovery, while only k log n typically
suffice in most practical scenarios [5].

Thus, a key challenge of CACS derives from the difficulty
to predict the recovery accuracy of a given sensing matrix,
let alone in an efficiently way. As a result, lowering cost and
simultaneously keeping recovery accuracy becomes a harder.
This challenge influences our design of CACS.

4. ALGORITHMIC FOUNDATIONS
In the following section, we detail the algorithmic under-

pinnings of CACS framework.

4.1 From RIP to Regularized Column Sum
Motivated by these challenges, we first have to find feasible

metric of a sensing matrix that can be use as an indicator
for recovery accuracy. Instead of the sophisticated RIP
conditions, [5] proposed the Statistical RIP (StRIP and
UStRIP condition), a probabilistic version of RIP, which

is much easier to verify and can still provide sufficiently good
performance guarantees in most practical scenarios. In [5],
three simple conditions are formulated to verify StRIP, i.e. 1)
orthogonality and zero-sum rows, 2) “pairwise multiplication”
condition, and the most important 3) bounded column sum
(see [5] for details). For Fourier ensembles, Condition 1 and 2
are naturally satisfied, and the bounded column sum plays an
essential role. We re-formulated the condition below under
the term Regularized Column Sum (RCS).

Definition 1. (Regularized Column Sum)
Let Ω ⊆ {1, · · · , n} denote the index set of a sample instance,
and |Ω| = m. Let FΩ = {fΩ(j)} denote the partial Fourier
matrix containing the rows indexed by Ω. The Regularized
Column Sum (RCS) of FΩ is

σ(FΩ) = max
j=2,...,n

logm

∣∣∣∣∣∑
i∈Ω

fi,j

∣∣∣∣∣
2

, (2)

where fi,j is the element in ith column, jth row of FΩ.

The next lemma explicitly recalls the main results of StRIP
and shows how the RCS and RIP conditions are connected.

Lemma 1. (Statistical RIP)
For a sensing matrix FΩ with η ∈ (0.5, 1], which satisfies

η ≤ 2− σ(FΩ), (3)

there exists a constant c > 0 such that, if m ≥(
c k logn

δ2

)1/η
, with probability 1− ε, 1√

m
FΩ satisfies RIP of

order ∀k < 1 + (n − 1)δ, with isometry constant δ, where

ε = 2exp
[
− [δ−(k−1)/(n−1)]2mη

8k

]
. The probability is with

respect to all k-sparse vectors uniformly drawn from the
space.

In Lemma 1, a smaller ε indicates a higher probability of
satisfying RIP. When the sparsity of the signal k is fixed, a
larger η implies a smaller ε. That requires a smaller σ(FΩ).
That is to say, a sensing matrix with a smaller RCS has
better chance to satisfy RIP.

By integrating Lemma 1 and Theorem 1 in [7], we have the
following theorem that bridges the recovery accuracy bound
and RCS when using `1-min as the recovery algorithm.

Theorem 1. (RCS-Recovery Bound)
A compressible signal in Fourier domain y = Fx, has a
bounded perturbation from a k-term signal yk = Fxk, i.e.
‖y − yk‖`2 ≤ e. For a partial Fourier matrix FΩ, |Ω| = m,
let x̂ = arg min

x̂∈Rn
‖x̂‖`1 , s.t.‖FΩx̂−yΩ‖`2 ≤ e. Then x̂ satisfies

‖x̂− xk‖`2 ≤
Cke√
m

with probability at least 0.99, there exists c > 0, ∀k < n
8

, if

σ(FΩ) < min{ 3
2
, A1, A2}, A1 = 2 − logm(4ck logn), A2 =

2− logm

[
678.19k

(
n−1

n−8k+1

)2
]

, the constant Ck only depends

on the RIP constant.

Theorem 1 states that for a given sparsity k, if σ(FΩ) is
small enough, with an overwhelming probability, the recovery
error in `2-norm is upper bounded. The theorem establishes
RCS as an indicator for recovery accuracy. Most importantly,

RCS of a matrix is easy to calculate, and Theorem 1 can be
verified in O(mn) time. The proof of the theorem can be
found in the Appendix, and the complete proof is presented
in the full version of this paper [31].

The recovery accuracy bound in Theorem 1 is given for
`1-min recovery algorithm, and similar results can also be
established for other recovery algorithms by setting proper
parameters.

4.2 CACS via Convex Optimization
According to Theorem 1, given a certain level of recovery

accuracy requirement, one can always find a constant α such
that when σ(FΩ) ≤ α, the required recovery accuracy is met
with high probability. Given this intuition, the next step is
to find a satisfying sampling matrix with the lowest cost.

However, for a given α, the computational complexity of
finding an exact sampling matrix Ω with minimal total cost
that satisfies the constraint σ(FΩ) ≤ α is exponential. To
address this challenge, we recall that CACS actually conducts
a randomized sampling process and thus we modify the
constraints to E[σ(FΩ)] ≤ α. Accordingly, this modification
leads to a probabilistic version of Theorem 1 via Markov
Inequality. This is equivalent to relaxing a (0, 1)-integer
program (finding π ∈ {0, 1}n) into a linear program (finding
π ∈ [0, 1]n). It is worth mentioning that plenty of works
have studied the gap between integer programming and its
linear relaxation [24]. However, our focus is the average
performance instead of worst case performance.

In summary, we formulate the following convex optimization
problem, called RCS-constrained Optimization (RO), to find
an optimal randomized sampling strategy π which satisfies
the given RCS constraint with the lowest cost.

(P) minimize
π

cTπ

subject to 1Tπ = m

(Re(F·j)
Tπ)2 + (Im(F·j)

Tπ)2 ≤ α2

0 ≤ πi ≤ 1, i = 1, . . . , n.

where c is the cost map, π is the sampling strategy, m
is the expected sample size, and Re(F·j) and Im(F·j)
denote the real and imaginary component of the jth

column in F respectively.

Note that lowering the sampling cost and RCS are conflict-
ing objectives. Therefore RO introduces a new constraint on
the expected sample size m, and employs it as the proxy to
balance RCS and the sampling cost. The output of RO is
a randomized sampling strategy π which also means only
the expected sampling cost is minimized while the expected
RCS is constrained. Although this is not as strong as a
deterministic guarantee, the recovery bound is still met with
high probability and the expected sampling cost reflects the
average performance of a sampling strategy, as we discussed
earlier. Attractively, RO can be solved in polynomial time
via standard interior point methods [16].

4.3 Performance Guarantee
The parameter α, representing the value of RCS, plays a

critical role in the performance of the sampling matrix: 1)
the bigger the value of α, the more greedily the algorithm

Figure 2: Expected RCS of Ransom Sampling and
Minimal RCS

behaves, 2) the smaller the value of α, the better the recovery
accuracy. Therefore, by adjusting the value of α, we can
control the behavior of RCS-constrained Optimization. Thus
a good choice for α should ensure the following points:

• There exists solutions to (P), i.e. α should be large enough
so that the problem is feasible.

• The recovery guarantee is no worse than uniformly random
sampling, i.e. α should not be too large or we lose too much
accuracy guarantee.

Figure 2 illustrates the changes in E[σ(FΩ)] of uniformly
random sampling (denoted by αH), and the minimal – found
via Simulated Annealing – RCS (denoted by αL) as functions
of the sample sizem with n = 256. Both curves monotonically
decrease regardless of the value of n. Therefore, one can
use m as a proxy to balance the tradeoff between recovery
accuracy and sampling cost. Furthermore, if we choose
α ∈ [αL, αH], it satisfies the above mentioned two conditions.

Theorem 2. (RO Performance Guarantee)
Given a sample size m and α ∈ [αL, αH], RCS-constrained
Optimization outputs a randomized sampling strategy π that
satisfies:

• The recovery error bound of π is no worse than that of the
uniform random strategy given the same sample size.

• The expected cost of π is the lowest among all randomized
sampling strategies that satisfies the RCS constraint.

Proof sketch. We need to show that, 1) the expected
RCS of output π is smaller than that of uniform random
sampling, thus making π achieving a better or equal recovery
accuracy bound according to Theorem 1; and 2) we can
always find a solution to (P) provided α ≥ αL, because
the solution space of the convex optimization is not empty.
Moreover the solution is with the least cost.

4.4 Tuning the Parameters
Theorem 2 provides performance guarantees of RO, but

does not quantify its cost-benefit or determine how α should
be set to obtain the solution. In this section, we illustrate
the impact of α on different types of cost maps and then
discuss how to choose a good value of α in practice.

Fig. 3 shows the cost-accuracy tradeoff of RO on three cost
maps when changing the values of α. The arrow shows the
change from αL to αH on each curve. We can observe that
RO behaves similarly to random sampling when α = αL,
and RO performs like greedy sampling when α grows to
αH . On i.i.d cost map, it is clear that greedy sampling is
the best since it spends least cost while achieving a best
recovery accuracy, and RO performs better as α grows. On

Monotonic

Figure 3: Impact of α

the spatially-correlated cost map, the sampling cost decreases
while the recovery accuracy almost remains at the same level
as α grows initially; and then beyond a certain point, the
accuracy drops quickly. Thus on spatially correlated cost
maps, RO is able to always find a sweet-spot between cost
and accuracy provided an appropriate value of α. On the
monotonic cost map (the cost increases monotonically from
one side of the map to the other), the recovery accuracy
rapidly decreases as α grows, which means it is difficult to find
a good balance between cost-efficiency and recovery accuracy.
This figure illustrates that the cost-accuracy tradeoff depends
on the spatial correlation of the cost map. Furthermore,
this tradeoff can be used as a good indication of average
performance.

In practice, natural signals often exhibit periodic correlation
(e.g., traffic conditions), which allows us to utilize historical
data for tuning parameters. In particular, a scatter diagram
containing cost-accuracy tradeoffs of different values of α can
be drawn and one can select an appropriate value of α to
achieve the desired balance of accuracy and sampling cost.

4.5 Distributed Heuristics
Although RO is attractive in many aspects, it is essentially

a centralized algorithm, and thus has practical limitations.
It requires the global information of the cost map to perform
its optimization; it may not be able to adapt fast to dynamic
cost maps; and it is difficult to be embedded into mobile
crowdsensing systems without a central controller.

For this reason, we design two decentralized, low complexity
sampling algorithms for distributed scenarios: Distributed
Weighted Sampling (DWS) and Pairwise Sampling (PW).
They are designed in a distributed fashion, and only require
partial information, local communication, and lightweight
computation. We also analyze their potential cost benefit
and their RCS performance.

4.5.1 Distributed Weighted Sampling
Inspired by the pioneering results in [27], we suggest a

more general Distributed Weighted Sampling (DWS) scheme
where the weights are set to be inversely related to the
corresponding sampling cost at different nodes. In this way,
we expect the final samples to preserve a certain degree of
randomness while samples with lower costs are nevertheless
favored. In particular, the probability of choosing a node is

πi ∝
c−βi∑
c−βi

,
∑
i

πi = m, (4)

where m is the expected sample size, and the weighing
parameter β balances accuracy and cost. Notice that when
β = 0, DWS becomes uniform random sampling, while when

Algorithm 1 Distributed Weighted Sampling

INPUT : Weighting parameters β, sampling threshold Θ, and
cost map {ci}
OUTPUT: Sample index set Ω
for node i do

ri = random(0, 1); ki = r
1/c
−β
i

i ;
if ki ≥ Θ then

Ω← Ω ∪ {i};
end if

end for

Return Ω.

50 100 150 200 250
0.2

0.4

0.6

0.8

1

Sample Size m

R
C

S

Random Sampling
i.i.d
Spatially-correlated
Monotonic

(a) DWS

50 100 150 200 250
0.2

0.4

0.6

0.8

1

Sample Size m

R
C

S

Random Sampling
Spatially-correlated

(b) PW

Figure 4: RCS of the Distributed Algorithms

β → ∞, it turns into greedy sampling. Therefore, we can
use β to balance cost and accuracy performance based on
the cost distribution.

The design of DWS is presented in Algorithm 1. The
distributed implementation of DWS follows the philosophy
of [12], in which an algorithm of weighted random sampling
without replacement is proposed. Generally speaking, each
node i first generates a random number ri ∼ U [0, 1], and

calculates the opportunity value ki = r
1/c
−β
i

i . In order
to obtain m samples according to the underlying weights
{c−βi /

∑
c−βi }, nodes with them largest ki should be sampled.

Instead of collecting ki from participating nodes, which leads
to heavy communication overhead, a sampling threshold Θ is
distributed to all nodes, and nodes that have ki ≥ Θ report
themselves as samples. In fact, Θ is an empirical value of the
mth largest opportunity value learned from historical data.

RCS: Fig. 4(a) shows the value of RCS as a function of
m for DWS (β = 1) in the three different cost maps. We
also plot the RCS of uniform random sampling as a baseline.
We note that in the figure, under the i.i.d cost map, RCS of
DWS is almost the same as that of random sampling; i.e.,
the preserved randomness among samples helps DWS keep a
comparable recovery guarantee to random sampling. In the
case of the spatially-correlated map, the gap is slightly larger
(while we expect lower cost of DWS as analyzed next). In
the case of the monotonic cost map which exhibits extreme
spatial correlation, it is natural to observe RCS is much
higher than random sampling because DWS favors lower cost
samples.

Cost Benefit: Assume that the cost map is i.i.d with
density function fc. The expected cost of random sampling
is ER(c) =

∫∞
0
xfc(x)dx, and thus the expected cost for a

sample is

EDWS(c) =

∫ ∞
0

x1−βfc(x)∫∞
0
y−βfc(y)dy

dx.

Table 1 summarizes the cost saving in percentage for two
representative cost distributions: uniform and exponential

Table 1: Cost Saving of DWS
β 0 0.1 0.5 1 5

U[1,100] 0% 5% 27% 57% 97%
Exp[1] 0% 5% 48% 84% 99.9%

distribution. The values provide intuition on the degree of
cost benefits in different scenarios. The savings are more
significant in the exponential case, which is due to the fact
that the exponential distribution has more samples with low
cost and thus provides more room for improvement.

4.5.2 Pairwise Sampling
DWS is a simple and intuitive sampling algorithm. However,

there are situations where its performance may be far from
optimal. Specifically, observe that DWS favors low-cost
samples. Therefore, when costs are strongly correlated, e.g.,
monotonically increasing in one direction spatially, the cost
saving benefits of DWS diminishes, because the randomness
in the selected samples is largely lost (see Fig. 7(a) in §6
as an example). To address this problem, we propose an
alternative sampling algorithm, Pairwise Sampling (PW)
that prioritizes recovery accuracy over lower cost.

PW generally follows 3 steps in its sampling process:
1) Pick 2m sample candidates uniformly at random; 2) Select
m pairs of candidates such that the candidates in each pair are
within each other’s local communication range r; 3) Choose
the candidate with lower cost in each pair as a sample. The
recovery accuracy is ensured by step 1 and 2, since pairs are
made according to local communication, uniform randomness
is preserved, thus leading to samples that resemble a uniform
random strategy. The cost-saving benefit is achieved in step
3 – the power of two choices.

However, in a distributed system, it is hard to form exactly
m pairs with only local communication. Therefore, we
slightly modify the original PW, as shown in Algorithm 2.
For each candidate, it will search for another candidate
within the local communication range. Pairs are formed
when a candidate first finds another unpaired candidate
within its local communication range. If there is no other
unpaired candidate in its local communication range, take
this candidate as sample with probability 50%.

RCS: Fig. 4(b) shows the value of RCS via PW in the
three cost maps compared with random sampling. We see
that the RCS of PW and random sampling are almost
identical, which is highly desirable. The RCS performance
of PW is consistent in different cost distributions. To better
distinguish the RCS curve of PW from random sampling,
we omitted RCS curves of PW in other distributions.

Cost Saving: We can study the sampling cost of PW
similarly as in the case of DWS. Supposing the costs are i.i.d.
and obey a certain distribution with density function fc, the
expected cost for one PW sample is

EPW(X) = 2

∫ ∞
0

xfc(x)

∫ h

x

fc(y)dydx.

Similarly, we find that the cost saving of PW is 33.3%
in uniform distribution U [0, 1], and 50% in exponential
distribution Exp[1] compared to random sampling.

4.5.3 Comparison between DWS and PW
Uniform random sampling and greedy sampling are two

extreme ways of dealing with sampling costs. DWS and
PW balance the two extremes from different angles. DWS is

Algorithm 2 Pairwise Sampling

INPUT : Cost map {ci}, and local transmission range r
OUTPUT: Sample index set Ω
Choose 2m seeds Ws ⊂ [n] uniformly at random.
for all i ∈ Ws do
Ri = {j ∈ Ws, distance(i, j) ≤ r}
if Ri = ∅ then

Ω→ Ω ∪ {i} with probability 0.5.
Ws →Ws − {i}

else
randomly pick j ∈ Ri
if Ci ≤ Cj then

Ω→ Ω ∪ {i}
else

Ω→ Ω ∪ {j}
end if
Ws →Ws − {i, j}

end if
end for

return Ω

a greedy-like method in which we give higher priority to
candidates with lower costs, i.e., the greediness is adjusted
by the parameter β. On the other hand, PW prioritizes
achieving lower RCS over cost saving, and thus, with the
same number of samples, it achieves a recovery accuracy
comparable to random uniform sampling. In summary,
the advantages of DWS are i) a naturally decentralized
implementation without local communication and ii) its cost
saving is significant when the cost distribution is not highly
correlated with the underlying data. The advantages of
PW are i) for a desired recovery accuracy, it is easy to
compute the number of samples needed and ii) it performs
better when costs have high spatial or temporal correlation.

5. SYSTEM IMPLEMENTATION
In this section, we conclude the description of CACS by

detailing the design of its prototype implementation.
Fig. 5 illustrates the current CACS implementation. It

consists of a mobile component, currently running on standard
Android devices, and a web component using .Net-based web
service.

5.1 Mobile Component
On the mobile side, sampling is triggered by sensor probe

and implemented by “Compressive Sensing Sampler” using
cost estimate obtained from “Mobile Cost Estimator”; and
then delivered by the network interface. In addition, a
participant uses the “User Configuration” module to flexibly
configure other modules to meet the needs under different
scenarios. The major modules are detailed as follows:

Sensor Probe. Operating as an event-driven Android
service, Sensor Probe wakes based on OS-level system events
that fire each time an application or daemon is initiated. A
probability threshold (φ) is used to regulate how often Sensor
Probe proceeds to waking Compressive Sensing Sampler,
which would then decide if a sensor sample is to be collected.

Compressive Sensing Sampler. A stream of sensor
sampling opportunities (as regulated by Sensor Probe) are
evaluated based on their associated resource costs and their
contribution to the randomness of the pool of previously
collected samples. As already described, DWS is an approach
based on weighing sampling opportunities using a candidate
weight function (4).

Sampling
Coordinator

External Sensing Application

CACS Web Service
Application Interface

Reconstruction
and Analysis Data Store

CACS Device Library

Network Interface

Network Interface

Compressive
Sensing
Sampler

User Configuration

Sensor Probe

Sensor Data
Delivery

Dynamic Cost
Estimators

Figure 5: CACS Implementation

Mobile Cost Estimators. We introduce a cost
estimation function into the process of CACS, which estimates
the value of sampling cost in absence of the real cost values.
Our current implementation supports the estimation of various
cost types (viz. GPS sensor, cellular transmission, battery
usage/perception).

Estimation of each cost type is performed by a separate
estimation module that relies on the same overall design.
Specifically, multi-factor regression models are trained for
each module to estimate the current cost of an operation
based on the recent energy costs of performing this same
operation[3]. The influence of prior cost observations is
discounted using an exponential decay function to allow
for the decrease of relevance as time elapses. This design
attempts to target the spatial and temporal relationship in
the cost of operations such as sampling sensors or transmitting
data. In addition to historical data, we use data like coarse
location (provided at low-energy cost from cell towers) and
categorical variables such as the type of wireless network
being used (e.g., 3G or WiFi) to further improve estimation
accuracy. Although our current estimator design is fairly
simple, we find in experiments they have acceptable level of
accuracy (see §6.3).

Sensor Data Delivery. Two modes of data delivery are
supported by CACS. First, a near real-time delivery mode
in which sensor data is transferred using either a cellular
or WiFi network interface soon after sampling. Under this
delivery mode the cost of transmission is already considered
by Compressive Sensing Sampler when the sampling decision
is evaluated. Second, a delay tolerant delivery mode is
implemented in which collected data is stored locally and
delivered when resource costs are minimized; specifically, a
heuristic is used that transfers when WiFi is available and
the phone is line-powered.

5.2 Web Component
When sampling data is delivered to the web service, it is

stored at the data storage module. The data is then processed
by the ”recons” to reconstruct the phenomena of interests. It
is also passed to the sampling coordinator module to further
guide data sampling on mobile devices.

Reconstruction and Analysis. As mentioned in §4.1,
recovery accuracy is guaranteed when using `1-min. However,
in practice, we instead employ Orthogonal Matching Pursuit

(OMP) to perform the reconstruction process because it is
faster (OMP – O(kmn) vs. `1-min – O(n3)). Furthermore,
we notice better practical performance of OMP compared
to `1-min despite the lack of theoretical guarantees of OMP.
The reconstructed data is stored for future analysis, e.g.
parameter tuning.

Sampling Coordinator. Sampling Coordinator is
executed upon the arrival of any data from participating
mobile devices. The parameter values (such as Θ and β in
DWS and r in PW) that need updates are propagated to
mobile devices within the ACK payload sent in response to
uploaded sensor data. As a result, mobile devices are updated
with negligible overhead; the only negative consequence being
that devices may operate with slightly different values of these
parameters for short periods of time.

6. EVALUATION
We evaluate the performance of CACS algorithms using

real-life data traces and experiments.

6.1 Methodology and Datasets
Two concrete application scenarios are considered to

evaluate the important aspects of CACS and our algorithms
thoroughly, including the performance, impact of different
cost maps, robustness, and impact of various parameters.

6.1.1 Datasets
We first consider an air pollution monitoring system in

Beijing that contains statically deployed sensors and a central
server which collects data readings from sensor nodes and
directs the behavior of them. The dataset of the Air Quality
Index (AQI) contains hourly snapshots of the air quality
map in the city covering an urban area of 32× 28 km over
several months in 2013. In each snapshot, 256 PM2.5 AQI
readings aligned in a 16× 16 equally spaced grid are used as
ground truth. Sensors report their data readings directly to
the central server via the 3G cellular network.

In this scenario, we use the 3G network transmission energy
consumption as cost. The cost map is shown in Fig. 6(a).
The central server decides the choice of sensors based on the
cost map and CACS, and the chosen sensors report their
data readings. After receiving the samples, the central server
recovers the air pollution map for the entire area. (Other
cost maps are also evaluated using synthetic data.)

Two weeks’ data is used for evaluation. Each algorithm
trains its parameters on the first week, and evaluates the
performance based on the second week’s data. The average
result of multiple rounds is presented.

The second scenario is traffic monitoring, a representative
mobile crowdsensing application. The dataset contains traffic
information over Beijing city for three weeks in May, 2009 [28].
There are more than 8500 moving devices (taxis) deployed
during the experiment period, where GPS and speed are
recorded every 60 secs. There are over 20 millions records in
each week.

Main roads in the urban areas are divided into small
segments with a length of 200m. The 30-min average speed
on each road segment during typical work hours in weekdays
(8am-9pm/Mon-Fri) are used as the ground truth. The
impact of different settings in this scenario are discussed
in [33].

Cost(J)

(a) 3G cost map

Cost (J)

(b) GPS cost map

Figure 6: 3G/GPS cost map

6.1.2 Cost Functions
Here we conduct outdoor measurements of GPS energy

consumption using a Google Nexus One devices at hundreds
of evenly distributed places across Beijing. Meanwhile we
also record the signal strength of 3G cellular network at
those locations, and approximated the corresponding energy
consumption based on the model in [10]. Fig. 6 illustrates
the 3G and GPS energy consumption map generated from
our experiments.

Furthermore, we use the battery traces of over 3000 mobile
phones over several months as the temporal cost data. The
remaining battery level of a device can be naturally considered
as a type of “perception cost” – the lower the remaining
battery, the more valuable it is, the higher cost it should be
assigned - i.e., a crowd based system should be more cautious
to sample devices with a low battery level.

We define Cost(b) = B1−b as the perception-based cost
function for the remaining battery, where b is the ratio of the
remaining battery, and B is a constant. In particular, as b
goes to zero, the cost is high and approaches B quickly. We
choose B to be comparable to the maximum GPS sampling
cost (B = 10 in our evaluation). The intuition is that when b
is large, users are not sensitive and thus other costs dominate.
On the other hand, when b is small, users are sensitive and
thus this factor dominates.

In many wireless sensor/mobile crowdsensing scenarios,
both location information and battery status are essential.
On the other hand, transmission latency (from minutes to
days) may be tolerable, depending on the specific application
scenario. Therefore, we choose a linear combination of spatial
cost maps and the battery penalty as the overall sensing cost.

6.1.3 Performance Metrics
We use recovery accuracy and sampling cost as performance

metrics to evaluate our proposed algorithms. First, we
employ the Normalized Mean Squared Error (NMSE) in
`2-norm as the accuracy metric. Specifically, supposing ŷ is
the recovery of data y, the NMSE is defined as:

NMSE(y, ŷ) =
‖y − ŷ‖2`2
‖y‖2`2

.

Furthermore, we use the cost ratio to measure sample cost,
which calculates the proportion of chosen samples’ cost over
the sum of cost of all candidates:

Cost Ratio =

∑
chosen i

ci∑
all i ci

.

6.1.4 Baseline Algorithms
Four alternative sampling strategies are also implemented

and evaluated as comparison baselines:

• Random: samples are uniformly randomly chosen, i.e.
πi = m

n
where m is the expected sample size.

• Greedy: samples with lowest cost are chosen, i.e. πi = 1
where ci is among the m lowest cost, and πi = 0 otherwise.

• Non-uniform CS (NCS): a state-of-the-art non-uniformly
random sampling strategy [27].

• CS-UTS: only for traffic monitoring scenario, a state-of-
the-art CS-based approach for traffic monitoring [33]. A
subset of the devices are chosen, and all records from them
are collected.

6.2 Overall Performance
The performance comparison is shown in Fig. 7, where

the cost ratio of achieving three different accuracy levels
(NMSE=10%/5%/2.5%, stands for adequate/high/extreme
accuracy) are presented. The 3G and GPS cost maps and
their combination are tested for AQI data, while for traffic
data, cost maps with or without battery penalty are evaluated.
The values of β in DWS are set to be optimal in each scenario
via the method discussed in §6.4.1.

As we can observe from the figure, RO outperforms all
baseline algorithms in all scenarios, e.g., in Fig. 7(b) at
NMSE=5%, RO is 63.0%, 52.4% and 54.5% lower compared
with random, greedy and NCS respectively. Generally, RO
saves 30% ∼ 70% cost in adequate/high accuracy levels, while
the cost benefit shrinks at extreme accuracy levels because
it requires a large number of samples to achieve this level.
For instance, in the traffic scenario, more than 60% of the
total cost is consumed and, in fact, more than 70% of nodes
are sampled. However in such cases, RO still outperforms
all baselines.

The two distributed algorithms also present considerable
cost savings under all scenarios. For example, in Fig. 7(e) at
NMSE=10%, DWS saves 35.7%, 57.1%, 25.0%, and 47.1%
cost compared with random, greedy, NCS, and CS-UTS
baselines. Similarly, in Fig. 7(a) at NMSE=2.5% PW costs
20.0%, 41.7%, and 17.6% lower than random, greedy and
NCS baselines respectively. Occasionally PW outperforms
RO because it can provide better recovery accuracy. Next,
we investigate the impact of different cost factors separately.

6.2.1 The Impact of Spatial Correlation
As discussed earlier, the performance of those algorithms

that make decisions highly based on cost, namely DWS and
greedy sampling, may deteriorate when cost map has high
spatial correlation, which leads to poorly conditioned sensing
matrices thus fail to accurately recover the original signal.
This is clearly shown in Fig. 7(a)∼7(d) where greedy sampling
performs poorly and DWS barely outperforms random
sampling, meanwhile the NCS baseline also suffers from the
same problem.

On the contrary, RO and PW have a much better ability
to balance cost and accuracy in such cases. Thus they
also exhibit much better performance, especially at high
accuracy levels. It is worth mentioning that even in such
cases DWS can still outperforms all baselines given properly
tuned parameters based on historical data.

Both the GPS and 3G energy cost map show clear spatial
correlation (Fig. 6). Further in those cases when only spatial

Co
st
Ra
tio

(a) AQI: 3G Cost. (b) AQI: GPS Cost. (c) AQI: GPS+3G Cost.

Co
st
Ra
tio

(d) Traffic: GPS+3G Cost. (e) Traffic: GPS+3G+Battery Cost. (f) Traffic: Battery Cost Only.

Figure 7: Performance Comparison

cost is considered, we can find DWS has better performance
when using the GPS cost map (∼ 10% improvement) because
the 3G cost map has stronger spatial correlation. This is
also supported by the fact that greedy sampling outperforms
random sampling occasionally in Fig. 7(b) at NMSE=10%
and 5%.

6.2.2 The Impact of the Battery Perception Cost
Different from the highly correlated spatial cost map, the

battery penalty cost in our scenario introduces a level of
independence among devices. In such scenarios, high cost-
dependency in battery traces helps greedy-like algorithms
in reaping the benefit of cost-awareness, and this explains
why in Fig. 7(e)∼7(f) greedy and DWS perform much better
than in the other cases. On the other hand, RO and PW can
also continuously provide stable high accurate recovery with
lower cost in these mixed-battery cases.

Especially in Fig. 7(f) where only battery cost is considered,
by taking the advantage of the inherent randomness within
the cost map, DWS , NCS and greedy sampling outperform
CS-UTS, PW and random sampling at all accuracy levels.
Among these three greedy-like algorithms, DWS still surpasses
the other two by 12%. In this case, PW falls behind due to
limited saving on cost.

It is worth mentioning that we have evaluated three different
cost functions, including log, linear, and exponential, and
observe similar performance trends. We believe that the
exponential one most accurately depicts users’ preference,
and thus omit other cases due to space limitations.

6.3 Robustness
In the previous experiments, all cost values are assumed

to be accurate. However in practice, it is possible that
error will be introduced when estimating or measuring cost
values. These errors affect the performance of the algorithms
that makes sampling decisions based on cost. Thus a good
CACS algorithm should maintain robust performance when
cost errors exist.

We introduce random noise of different levels (measured in
`2-norm) to various cost maps. RO, PW and DWS are tested

0 10% 20% 30%
0.15

0.17

0.19

0.21

0.23

0.25

Noise Level

C
os

t R
at

io

RO PW DWS

(a) AQI

0 10% 20% 30%
0.3

0.32

0.34

0.36

0.38

0.4

Noise Level

C
os

t R
at

io

RO PW DWS

(b) Traffic Monitoring

Figure 8: Robustness

over the noisy version of cost map while still using the true
cost values to calculate the cost ratio of each algorithm. Table
2 shows the estimation error for GPS+3G cost map.Fig. 8
shows the changes in cost ratio at NMSE=5% as noise grows.

In the AQI scenario with GPS+3G energy cost map in
Fig. 8(a), we can observe a slight increase in the cost ratio in
three CACS algorithms, and the total increments are within
10%. In other words, all algorithms remain stable against the
presence of noise in cost maps. Specifically, RO experiences a
slightly rapid increase when noise is introduced but this rate
later slows. PW has the largest growth in cost ratio, and
surpasses DWS at the 25% noise level, while DWS almost
keeps the cost ratio at the same level because the distribution
of cost values is not changed significantly.

In Fig. 8(b), we observe significant resilience in terms
of cost estimation errors in the proposed algorithms. In
particular, with estimation error as high as 20%, which
is higher than all estimation error in Table 2, we observe
negligible difference.

6.4 Impact of Parameters
We focus on the parameters in DWS and PW in this

evaluation in terms of both performance and practical impacts
in distributed environments.

Table 2: Cost estimating error
Sampling rate 20% 30% 40% 50%

GPS+3G 16.2% 15.4% 14.6% 13.9%

0 2 4 6 8 10
0

20%

40%

60%

80%

Value of 

C
os

t R
at

io

NMSE=10% 5% 2.5%

(a) β in DWS

2 4 6 8 10
90

105

120

Local Communication Range r

of

 L
oc

al
 C

om
m

un
ic

at
io

ns

(b) r in PW

Figure 9: Impact of Parameters

6.4.1 Weighting Parameter β in DWS
As discussed in §4.5.1, the weighting parameter β alters

the balance for DWS between randomness and greediness.
Three curves in Fig. 9(a) present the change in cost ratio of
DWS at NMSE=10%/5%/2.5% in the traffic scenario with
GPS+3G+Battery costs, respectively. We can see a rapid
decline in cost ratio, i.e. increase in performance, as β grows
from 0. After a certain value, the cost ratio becomes larger
as β increases. These curves demonstrate the impact of β on
the performance of DWS, as well as the process of searching
for the optimal choice of β. In addition, at different NMSE
levels, the best β value also differs from each other, e.g. β = 2
is the best at NMSE=2.5% while β = 3 performs better at
other levels.

6.4.2 Local Transmission Range r in PW
In Pairwise Sampling, the local transmission range r of

each node in the network impacts the pairing procedure.
This, in turn, has a direct impact on the overhead of local
communication of PW as discussed in §4.5.2. In this
evaluation, we present the change in local communication
overhead with different r, where the overhead is measured
as the number of local communications between nodes.

Fig. 9(b) illustrates the growth in local communications
when sampling 60 nodes in the air pollution scenario under
the GPS + 3G cost map applied. The local communications
occur more and more frequently as the transmission range r
grows. However, the increase slows down when r becomes
larger. This illustration clear shows the tradeoff between
PW efficiency and the local communication overhead.

7. DISCUSSION
We now discuss the generality of CACS, followed by the

future research directions.
Generality. Although our evaluation is based on two

specific scenarios, we anticipate CACS will also exhibit
similar performance under a variety of other applications.
Existing works have already shown that many modules
commonly used in sensing systems (e.g., the accelerometer [32]
and GPS [22]) have sparse representations. Furthermore,
our cost framework can easily accommodate a variety of
sampling costs other than those currently evaluated; e.g.,
costs associated with user attention and effort.

Future Directions. The proposed RCS-constrained
Optimization (RO) algorithm has practical limitations – it
assumes a static cost map with a central controller. Although
we have proposed two distributed heuristics, neither of them
has the theoretical performance guarantees. An improved

distributed version of RO is desirable as it would allow RO
to apply to a wider range of scenarios.

More broadly, RCS-based analysis only works for partial
Fourier matrices, while results of other types of bases are
not yet studied. We believe that it is important to develop
results for other bases widely used in CS-based applications,
especially for use in scenarios where the Fourier base is not
suitable. It also remains important to study the connection
between RCS and coherence, another alternative metric
whose relation with recovery accuracy has been studied [7,
1]. The challenge is that simple coherence is problematic to
apply in most practical scenarios.

Finally, Theorem 1 provides the worst case performance
guarantee. Analysis of the average performance is yet to
be done. Such an analysis is non-trivial and is absent from
the CS literature. However, progress in this direction is
important as it is likely to directly lead to improvements in
the resource efficency of CACS.

8. RELATED WORK
Our study of cost-sensitive compressive sensing, as applied

to networked sensing systems, touches upon a number of
active areas of interest. In what follows, we describe the most
salient related work in three key areas while also highlighting
the novel contributions being made by CACS.

Theory of Compressive Sensing. Ever since its
emergence [6, 11], a steady stream of compressive sensing
applications continue to arrive. Research on CS can be
divided into two categories. The first category focuses on the
construction of the sensing matrix. Randomized construction
is the mainstream [7, 5] approach. Several deterministic types
of construction have also been proposed in recent years [9,
17]. The second category focuses on recovery algorithms
such as BP and OMP [14, 19, 20]. CACS builds on these
principled approaches but with a focus on the practical
system challenges of the resource usage that is often lacking
in this work.

Sensor Networks and Crowd Systems. Within the
domain of network embedded systems, a strong body of work
has explored the use of compressive sensing in static sensor
networks, for example [18] and [29]. But as already explained
this work has neglected a number of important dimensions
related to resource costs when sampling.

Mobile crowdsensing is a relatively new emerging research
area. Recently, a wide variety of application domains of
mobile crowdsensing (e.g., [26, 23]) have been studied. Energy
is an important issue, and significant effort has been invested
in developing techniques to gather data in an energy-efficient
manner, e.g., [21, 15, 22]. More closely related to CACS,
traffic monitoring using CS has been explored in studies such
as [33]. But in [33] resource cost are not factored into the
process of sampling.

Compressive Sensing with Variable Sample Cost.
A key contribution of CACS is the design – from the ground-
up – of a CS framework that understands how costs can
fluctuate when collecting different sensor data samples. Work
is slowly building in CS that considers device costs, such as
those encountered in sensor network deployments [8]. A more
recent work has proposed methods for nonuniform sampling
for use within sensing systems [27]. However, it does not
quantitatively analyze the the tradeoff between energy-saving
and sensing accuracy. Similarly, [25] only assume costs are

fixed and known; as we have explained, CACS is designed to
cope with both static and dynamic costs.

9. CONCLUSION
In this paper, we present CACS – a cost-aware compressive

sensing framework for collecting large-scale sensor data from
contributing devices, that consumes much lower amounts
of resources (e.g., battery) than was previously possible.
In particular, CACS recognizes and is designed for the
wide fluctuations in resource costs that exist among sensor
sampling opportunities. As a result CACS proposes principled
algorithms for gathering sensor data with fewer high resource
cost samples, yet critically maintains an adequate level of
randomness to still support accurate data recovery under
compressive sensing.

We evaluate CACS under two representative networked
sensing scenarios – air quality and traffic monitoring – based
on real-world large-scale datasets. Our findings show, for
example, that CACS can achieve an 80% accuracy rate in
data reconstruction, while only requiring 10% of the energy
used by state-of-the-art compressive sensing approaches. Not
only are our results significant for the particular application
domains we study; but we also believe due to the strong
algorithmic foundations of our approach, CACS is likely
to generalize to a number of other domains of networked
sensing.

Acknowledgement: We thank our shepherd Wen Hu and
the anonymous reviewers for their insightful comments. This
work was supported in part by the National Basic Research
Program of China Grant 2011CBA00300, 2011CBA00301,
the National Natural Science Foundation of China Grant
61033001, 61361136003.

10. REFERENCES
[1] A. Amini, V. Montazerhodjat, and F. Marvasti. Matrices with

small coherence using-ary block codes. Signal Processing, IEEE
Transactions on, 60(1):172–181, 2012.

[2] R. G. Baraniuk. Compressive sensing. IEEE signal processing
magazine, 24(4), 2007.

[3] C. M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, August 2006.

[4] J. Bourgain, S. Dilworth, K. Ford, S. Konyagin, D. Kutzarova,
et al. Explicit constructions of rip matrices and related problems.
Duke Mathematical Journal, 159(1):145–185, 2011.

[5] R. Calderbank, S. Howard, and S. Jafarpour. Construction of a
large class of deterministic sensing matrices that satisfy a
statistical isometry property. Selected Topics in Signal
Processing, IEEE Journal of, 4(2):358–374, 2010.

[6] E. J. Candès. Compressive sampling. In Proceedings on the
International Congress of Mathematicians: Madrid, August
22-30, 2006: invited lectures, pages 1433–1452, 2006.

[7] E. J. Candes, J. K. Romberg, and T. Tao. Stable signal recovery
from incomplete and inaccurate measurements. Communications
on pure and applied mathematics, 59(8):1207–1223, 2006.

[8] C. T. Chou, R. Rana, and W. Hu. Energy efficient information
collection in wireless sensor networks using adaptive compressive
sensing. In LCN’09, pages 443–450, 2009.

[9] R. A. DeVore. Deterministic constructions of compressed sensing
matrices. Journal of Complexity, 23(4):918–925, 2007.

[10] N. Ding, D. Wagner, et. al. Characterizing and modeling the
impact of wireless signal strength on smartphone battery drain.
In SIGMETRICS ’13, pages 29–40, 2013.

[11] D. L. Donoho. Compressed sensing. Information Theory, IEEE
Transactions on, 52(4):1289–1306, 2006.

[12] P. Efraimidis and P. Spirakis. Weighted random sampling. In
Encyclopedia of Algorithms, pages 1–99, 2008.

[13] Y. C. Eldar and G. Kutyniok. Compressed sensing: theory and
applications, 2012.

[14] A. C. Gilbert, M. J. Strauss, et. al. One sketch for all: fast
algorithms for compressed sensing. In STOC ’07, pages 237–246,
2007.

[15] N. Lane, et al. Piggyback CrowdSensing (PCS): Energy
Efficient Crowdsourcing of Mobile Sensor Data by Exploiting
Smartphone App Opportunities. In SenSys ’13, 7:1–7:14, 2013.

[16] M. Grant and S. Boyd. CVX: Matlab software for disciplined
convex programming, version 2.1. http://cvxr.com/cvx. 2014.

[17] S. Li and G. Ge. Deterministic sensing matrices arising from
near orthogonal systems. Information Theory, IEEE
Transactions on, 60(4):2291–2302, 2014.

[18] C. Luo, F. Wu, J. Sun, and C. W. Chen. Compressive data
gathering for large-scale wireless sensor networks. In Mobicom
’09, pages 145–156, 2009.

[19] D. Needell and J. A. Tropp. Cosamp: Iterative signal recovery
from incomplete and inaccurate samples. Applied and
Computational Harmonic Analysis, 26(3):301–321, 2009.

[20] D. Needell and R. Vershynin. Uniform uncertainty principle
and signal recovery via regularized orthogonal matching pursuit.
Foundations of computational mathematics, 9(3):317–334, 2009.

[21] J. Paek, J. Kim, and R. Govindan. Energy-efficient
rate-adaptive gps-based positioning for smartphones. In MobiSys
’10, pages 299–314, 2010.

[22] P. Misra, W. Hu, et. al. Energy efficient gps acquisition with
sparse-gps. In IPSN ’14, pages 155–166, 2014.

[23] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan. Medusa: A
programming framework for crowd-sensing applications. In
MobiSys ’12, pages 337–350, 2012.

[24] P. Raghavan and C. Thompson. Randomized rounding: A
technique for provably good algorithms and algorithmic proofs.
Combinatorica, 7(4):365–374, Dec. 1987.

[25] R. Rana, W. Hu, and C. T. Chou. Energy-aware sparse
approximation technique (east) for rechargeable wireless sensor
networks. In Wireless Sensor Networks, pages 306–321, 2010.

[26] R. Rana, C. Tung Chou, et. al. Ear-phone: An end-to-end
participatory urban noise mapping. In IPSN ’10, pages 105–116,
2010.

[27] Y. Shen, W. Hu, R. Rana, and C. T. Chou. Nonuniform
compressive sensing for heterogeneous wireless sensor networks.
IEEE Sensors Journal, 13(6):2120–2128, 2013.

[28] Traffic Data. http://sensor.ee.tsinghua.edu.cn/download.php.
2014.

[29] X. Wu and M. Liu. In-situ soil moisture sensing: measurement
scheduling and estimation using compressive sensing. In IPSN
’12, pages 1–12, 2012.

[30] Y. Xiao, P. Simoens, P. Pillai, K. Ha, and M. Satyanarayanan.
Lowering the barriers to large-scale mobile crowdsensing. In
HotMobile ’13, pages 9:1–9:6, 2013.

[31] L. Xu, X. Hao, N. Lane, X. Liu and T. Moscibroda. Cost-aware
Compressive Sensing for Networked Sensing System. Microsoft
Tech Report. 2015.

[32] S. Yang and M. Gerla. Energy-efficient accelerometer data
transfer for human body movement studies. In SUTC ’10, pages
304–311, 2010.

[33] Y. Zhu, Z. Li, H. Zhu, M. Li, and Q. Zhang. A compressive
sensing approach to urban traffic estimation with probe vehicles.
Mobile Computing, IEEE Trans. on, 12(11):2289–2302, 2013.

APPENDIX
Proof of the Theorem 1.

Proof. Let η = 2 − σ(FΩ), ε4k = 2exp

[
− [δ−(k−1)/(n−1)]2mη

8k

]
,

and δ4k = 1
2 . In Theorem 1, assuming that all the constraints are

satisfied, then we have

1. If σ(FΩ) < 3
2 , we know 0.5 < η

2. If σ(FΩ) < 2− logm(4ck logn), we have m >

(
c k logn

δ2
4k

)1/η

3. If σ(FΩ) < 2− logm

[
678.19k

(
n−1

n−8k+1

)2
]
, we have

ε4k = 2exp

[
− [δ4k−(k−1)/(n−1)]2mη

8k

]
< 0.01

Finally from k < n
8 , we have 4k < 1 + (n − 1)δ4k. According

Lemma 1, the sensing matrix 1√
m

FΩ with probability at least 0.99

satisfies RIP of order 4k with restricted isometry constant δ4k = 0.5.
By applying `1-min recovery algorithm, the theorem holds.

http://cvxr.com/cvx
http://sensor.ee.tsinghua.edu.cn/download.php.

	Introduction
	Compressive Sensing Primer
	Cost-Aware Compressive Sensing
	Cost Factors
	Challenge: Balancing Accuracy and Cost
	Challenge: Predicting Recovery Accuracy

	Algorithmic Foundations
	From RIP to Regularized Column Sum
	CACS via Convex Optimization
	Performance Guarantee
	Tuning the Parameters
	Distributed Heuristics
	Distributed Weighted Sampling
	Pairwise Sampling
	Comparison between DWS and PW

	System Implementation
	Mobile Component
	Web Component

	Evaluation
	Methodology and Datasets
	Datasets
	Cost Functions
	Performance Metrics
	Baseline Algorithms

	Overall Performance
	The Impact of Spatial Correlation
	The Impact of the Battery Perception Cost

	Robustness
	Impact of Parameters
	Weighting Parameter in DWS
	Local Transmission Range r in PW

	Discussion
	Related Work
	Conclusion
	References

