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Recent advances in spatial and temporal networks have
enabled researchers to more-accurately describe many real-
world systems such as urban transport networks. In this paper,
we study the response of real-world spatio-temporal networks
to random error and systematic attack, taking a unified view of
their spatial and temporal performance. We propose a model
of spatio-temporal paths in time-varying spatially embedded
networks which captures the property that, as in many real-
world systems, interaction between nodes is non-instantaneous
and governed by the space in which they are embedded.
Through numerical experiments on three real-world urban
transport systems, we study the effect of node failure on a
network’s topological, temporal and spatial structure. We also
demonstrate the broader applicability of this framework to
three other classes of network. To identify weaknesses specific
to the behaviour of a spatio-temporal system, we introduce
centrality measures that evaluate the importance of a node as
a structural bridge and its role in supporting spatio-temporally
efficient flows through the network. This exposes the complex
nature of fragility in a spatio-temporal system, showing that
there is a variety of failure modes when a network is subject to
systematic attacks.

1. Introduction
Network science provides many powerful methods to study
a great variety of systems in society, nature and technology.
Modelling complex systems in terms of their network structure
allows researchers to understand, predict and optimize their real-
world behaviour [1,2]. Detailed data describing the interactions
and relationships in real-world systems have become increasingly
available, emerging from domains as diverse as transport [3],
biology [4,5], infrastructure [6,7] and sociology [8]. The ability
of network analysis to capture relationships and dependencies
between components makes it an essential tool for studying
system resilience [9–13]. It is known that local disruptions

2016 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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can have a significant impact on the global behaviour of a system [9,14]. The study of a network’s
vulnerabilities and its response to malfunction helps engineers design robust systems [7,14–18] and
scientists understand complex phenomena such as neurodysfunction [19,20], economic and financial
risk [21,22], and disease spreading [23].

Methods for robustness analysis generally assume that the system is represented by a network
composed of static links, focusing on the topological properties of a network subject to disruption.
Depending on the system and research question, a static representation may also incorporate weighted
and directed edges, allowing richer dynamics to be modelled. In many systems, however, edges are not
continuously active [24] and the quantities their weights represent may vary with time. Furthermore,
these time-varying systems may also be spatially embedded, and thus the ability for nodes to interact is
governed by the space in which they operate as well as their network connectivity.

Urban transport systems have a long history in network analysis [11,25–29] and are an exemplar of a
system that is temporal [24], spatial [30] and multilayer [31]. Examples of recent studies of transport
systems that account for time-varying and multilayer properties, either jointly or separately, can be
found in [11,25,29,32]. Furthermore, the resilience of such systems is of particular interest, with insights
from static network analysis enabling better-engineering of, for example, rail and metro systems [28,33].
Aside from transport systems, there are many classes of network that are spatial, temporal or both.
Engineering spatial network resilience in fixed communication networks has particularly received
attention over recent years, including new methods for identifying critical geographical regions [34–36]
and understanding spatial damage to fibre-optic networks [37]. Communication networks and cellular
nervous systems are just few examples of systems that can be represented by means of networks
embedded in space and time. Relying only on a static space-agnostic aggregation of such networks
over-simplifies the rich and complex relationships in the real systems they represent.

The consequences of ignoring the temporal and spatial constraints on networks have been
highlighted in recent surveys of spatial [30], temporal [24] and multilayer [31,38] networks. Advances
in temporal networks have provided researchers with a valuable framework that can be used to
understand the temporal structure of systems, and empirical measurements have demonstrated that
static representations often over-estimate the true connectivity of real-world temporal systems [39–42].
Furthermore, while static methods investigate purely topological measures of system vulnerability, such
as giant component size and network diameter, new methods allow researchers to additionally explore
temporal efficiency [43] and expose differences in the temporal function of the network when subject to
random error (Err) versus systematic attack [40,44].

However, temporal network models sometimes make the strong assumption that interactions are
instantaneous. For many types of spatially embedded system, this assumption ignores the influence
that space has in constraining the structure of the network. As an example, transit between stations
in a public transport system naturally incurs a time delay while a passenger travels, and the specific
delay depends on the speed of the service currently operating and distance between stations. In one
of the earliest works on temporal networks, Kempe et al. [45] propose a schedule-based analysis of
transport systems as a potential application of temporal network analysis; more-recent application
of time-respecting paths [45,46] to transport networks can be found in Pan & Saramäki [32], and
Gallotti & Barthelemy [25]. Critical nodes in such a system are those that not only bridge two
clusters in the network, but also act as a conduit for rapid flow between physically distant areas
of the system.

To study robustness in spatially embedded temporal systems, we apply a general framework
that is able to capture instantaneous and non-instantaneous types of interaction. We formulate a
model of spatio-temporal systems in which the interactions and relationships between components are
constrained by the space and time in which they are embedded (§2). The analysis of a network’s spatio-
temporal structure (defined in §2) provides the foundation to measure its topological, temporal and
spatial function. These measures are presented in §3, along with systematic attack strategies designed
to expose different weaknesses in the network. In order to validate our framework and show its utility
and flexibility, in this paper we explore the behaviour and resilience of six empirical examples of spatio-
temporal systems (described in §4); specifically, three urban transit systems, a national air travel network,
a biological neural network and a mobile phone communication network. Our empirical analysis in
§5 highlights a crucial distinction when examining the robustness of spatio-temporal systems: we
must consider the impact of disruption to a network’s temporal and spatial efficiency, in addition to
its topological structure. Furthermore, critical nodes play different roles in terms of their topological,
temporal and spatial utility, and therefore systematic attack strategies can differ in the damage they
cause to the network.

 on July 15, 2016http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


3

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160196

................................................
2. Connectivity in spatio-temporal networks
We start by introducing the notation and framework with which we define connectivity in a spatio-
temporal network. Our model follows a fundamental property of spatial networks: the space in which
the system is embedded acts as a constraint on the structure of the network [30]. In a spatio-temporal
setting, we can represent this constraint as the speed with which one node can interact with another.
This is a natural abstraction for many real-world processes that have previously been modelled as purely
static or temporal systems; for example, passenger transit in public transport systems, neurotransmission
in biological neural networks (e.g. [47]), shipping in multimodal freight networks (e.g. [48]), movements
in trade networks (e.g. [49]) and signal delay in telecommunications networks (such as the Internet). Our
approach mixes structure (i.e. topology), space and time, and allows for an exploration of the influence
of each dimension on the processes occurring in these networks.

We summarize the relevant notation introduced throughout §§2–3 and in table 1.

2.1. Time-varying spatially embedded systems
A time-varying network is conventionally represented as a time-ordered sequence of graphs
[24,45,50–52], with each graph corresponding to a snapshot of the network during a particular time
window. The time intervals are commonly finite and equally sized, and we refer to the interval duration
as the temporal granularity τ . We assume an overall observation duration that consists of T timesteps,
starting with an initial time t1.

More formally, let V denote the set of all nodes in the system under study, and let N = |V| be the
number of nodes in the system. We consider a temporal graph consisting of T discrete non-overlapping
windows, represented by the time-ordered sequence of directed graphs G[t1], . . . , G[tT]. A particular graph
G[t] = (V, E[t]) captures the topological state of the spatio-temporal system during the interval [t, t + τ ). It
is assumed that nodes are present throughout the lifetime of the system; that is, each graph has the same
node set V. For each graph G[t], where t = t1, . . . , tT, there exists a counterpart weight matrix S[t] ∈ R

N×N

that represents the weighted directed edges between nodes during the interval [t, t + τ ). The weight of
the edge from node v to node w at time t corresponds to the element S[t]

vw. In our model, S[t]
vw is a non-

negative scalar representing the speed of physical propagation from v to w in the corresponding time
interval. For example, in a public transport system, v and w are typically transit stations and S[t]

vw is the
average speed at which passengers are conveyed from v to w given the service operating during [t, t + τ ).
In the case that there is no connection from node v to w at time t, we have S[t]

vw = 0.
In a spatio-temporal system, the constituent entities naturally occupy a location in space, and this

location may vary over time. More formally, we assume nodes are embedded in a k-dimensional metric
space with physical distance function g. The embedding is dependent on the system; for example,
geographical networks are commonly represented in a spherical (or ellipsoidal) coordinate system
(where g is geodesic distance over the surface of the Earth) or projected on to a two-dimensional
Euclidian space. We write l[t]v to denote the physical position1 of node v during the interval [t, t + τ ),
noting that l[t]v ∈ R

k. For convenience, we collect the time-varying pairwise distances between nodes
in a physical distance matrix D[t], where D[t]

vw = g(l[t]v , l[t]w ) for each v, w ∈ V. We make the simplifying
assumption that multiple nodes in the network cannot occupy the same location. In real-world systems,
nodes represent physical entities, and thus cannot occupy the same space.

2.2. Model description
To apply classical network-theoretic concepts in a spatio-temporal system, we use the notion of space–
time constrained propagation between nodes. Paths through the spatio-temporal network are defined by
this process, and then form the basis for higher-order network measures such as connected components
and network distance. These paths obey the time-varying conditions of the system along their route.
This form of connectivity follows the same spreading process that is common in defining temporal
paths [50–52], with the modification that propagation from one node to another is constrained by the
speed of transmission between nodes and their physical distance. This framework’s explicit encoding of
time-varying speeds serves as an alternative to event-based representations of similar networks (e.g. as
applied to an air transport network in [32]).

1In practice, a non-stationary node may occupy many locations during this interval, and the method for choosing a single
representative location l[t]v depends on the system being studied.
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Table 1. Summary of notation used in this paper.

symbol description

τ window width
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G[t] graph for snapshot at time t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S[t] matrix of physical propagation speeds between nodes for snapshot at time t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D[t] matrix of physical distances between nodes for snapshot at time t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K [t] reachability set (dependent on implicit origin node v0 and start time t1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P[t] progress matrix (dependent on implicit origin node v0 and start time t1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ temporal efficiency
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς spatial efficiency
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S size of largest strongly connected component as fraction of all nodes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rλ(f ) temporal robustness at deactivation rate f
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rς (f ) spatial robustness at deactivation rate f
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We consider propagation as a discrete-time process starting at an origin node v0 and the initial
time t1, and progressing over each subsequent timestep t2, t3, . . . , tT. In the following description of the
propagation process, we treat the origin node v0 and start time t1 as implicit parameters. Modelling non-
instantaneous propagation in a time-varying system necessarily involves capturing partial propagation
between nodes, as well as the nodes that have been reached along a path. The process is represented by
two time-evolving structures: a reachability set K[t] and an N-by-N progress matrix P[t]. The reachability
set K[t] consists of nodes that have been reached from origin node v0 by the end of timestep t. The
progress matrix P[t] represents the distance accumulated during direct propagation between nodes; more
specifically, the element P[t]

vw gives the progress from node v to node w at timestep t measured as the
distance accumulated during propagation from v to w. A progress element represents the state of partial
propagation between the two nodes at the end of a timestep. In this process, progress from node v to
w is able to accumulate while the two nodes are continuously connected by an edge. The amount by
which progress is incremented in each timestep is governed by the propagation speed between the two
nodes. Given a sufficient period of continuous connectivity between v and w, progress can accumulate to
the point where it exceeds the physical distance between the two nodes, thereby representing complete
propagation from v to w.

To give an example, consider the case of a national rail network where the elements of the network
are cities and edges are transport links. Let us consider transportation with vehicles travelling between
two cities v and w at an average speed of 200 km h−1. If the distance between the cities is 150 km, after a
15 min time interval (indicated by τ = 15 min) the value P[t]

vw will be equal to 50 km. Thus, if the average
speed remains constant, then three timesteps must elapse before w is reachable from v.

Let us now consider the more-complex example in figure 1. Here we can see that source node A
reaches B and C in at most three subsequent timesteps. Specifically, full propagation from A to B is able
to occur in one timestep, arriving at timestep t2. Then, in the case of propagation from B to C, the distance
between the nodes is larger, and thus more time is required to complete the interaction. We therefore see
that there is an intermediate stage in timestep t3 where there is only partial propagation from B to C.
This completes in timestep t4. The example also demonstrates two failed propagation attempts between
A and D. In t3 propagation is set to zero due to the absence of an edge from A to D. The reappearance of
the edge in timestep t4 allows propagation to restart, but subsequently fails again at t6.

We now formalize the propagation process. The initial state of the process is such that origin node
v0 is the only reachable node and no progress has been made; that is, at the initial timestep t1 we have
K[t1] = {v0} and P[t1] is all zero. When progressing from timestep ti−1 to ti, where i ≥ 2, further propagation
from a reachable node v to an unreachable node w depends on whether an edge from v to w exists in
timestep ti. If these conditions hold, the distance by which we can increment progress from v to w is the
propagation increment τ · S[ti]

vw, where S[ti]
vw is propagation speed and τ is the window duration. We note that

the propagation increment may exceed the remaining distance required to propagate from v to w, which
we denote by q[ti]

vw. The quantity τ · S[ti]
vw therefore represents the maximum amount that may be added to
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Figure 1. Example of the constrained propagation process in a spatio-temporal system. Propagation begins with origin node A at
timestep t1. Nodes are positioned at integer locations on a Euclidian plane. Temporal granularity τ = 1 s. All edges have a propagation
speed of 1 m s−1. Membership of a node in the reachability set K [t] at the end of timestep t is represented by shading. The corresponding
distance matrix D[t] and progress matrix P[t] are shown below each network snapshot. Progress is also visually represented by shading
along an edge. For clarity, we omit from D[t] distances between pairs of nodes that are not connected in G[t].

the progress of v to w, while the actual increment is given by

min(τ · S[ti]
vw, q[ti]

vw). (2.1)

The remaining distance q[ti]
vw is obtained from the current physical separation distance D[ti]

vw and previous
progress P[ti−1]

vw as

q[ti]
vw = D[ti]

vw − P[j−1]
vw , (2.2)

or set to 0 if this quantity becomes negative due to a change in the pair’s positions between the two
timesteps.

Finally, we derive the progress matrix update rule. The value P[ti]
vw in timestep ti, where i ≥ 2, is

P[ti]
vw = P[ti−1]

vw + min(τ · S[ti]
vw, q[ti]

vw) (2.3)

if v ∈ K[ti−1], w �∈ K[ti−1], and edge (v, w) exists in G[ti]. In the other case that the system as no edge from v to
w at timestep ti, progress is reset and so P[ti]

vw is set to 0. Propagation from v to w is considered successful
in timestep ti if the cumulative progress P[ti]

vw between the nodes exceeds or equals their physical distance
D[ti]

vw. In such a case, w is regarded as reachable from source node v0 at timestep ti, and w is included
in the set K[ti]. More formally, the reachability set at timestep ti is expressed as

K[ti] = K[ti−1] ∪ {w | ∃v s.t. P[ti]
vw ≥ D[ti]

vw}. (2.4)

In the preceding equation, P[ti]
vw ≥ D[ti]

vw represents the case that sufficient time has elapsed for
propagation to complete, expressed in terms of the cumulative propagation distance P[ti]

vw with respect
to the current separation D[ti]

vw between the two nodes. Hence, the process models the effect of nodes
that may be non-stationary in their spatial embedding. This means that, for example, propagation is
accelerated when two nodes are moving towards one another.

To summarize, the spatio-temporal constrained propagation process is entirely described by the
time-evolution of three matrices: a physical distance matrix D[t] of spatial distances between nodes; a
propagation speed matrix S[t], which specifies the speed of transmission between pairs of connected
nodes; and a progress matrix P[t], which tracks incremental propagation between nodes and evolves
according to equation (2.3). Node-to-node propagation is successful only after sufficient time has elapsed,
and this duration is a result of the timestep width τ , the time-dependent distance between nodes and the
time-dependent speed between nodes.

As with discrete-time temporal network representations (e.g. [47,53–56]), the temporal granularity
τ represents a necessary trade-off between abstraction and fidelity. In our propagation process, finer
granularities minimize the amount of excess in the propagation increment on successful propagation
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(i.e. P[ti]

vw − D[ti]
vw). Too-coarse a granularity leads to under-estimation of the true propagation duration,

and over-estimation of the propagation distance. An upper bound for the quality of the choice of the
parameter τ can be obtained by considering the physical distances and speeds of the underlying system.
In particular, we find the minimum non-zero value of the product D[t]

vw · S[t]
vw over all t = t1, . . . , tT and

v, w ∈ V. For the given choice of τ , this quantity represents the minimum direct propagation duration
that exists in any of the system’s snapshots. If the minimum direct propagation time is greater than τ ,
it means that the representation is guaranteed to under-sample the temporal dynamics of the network.

We have so far considered propagation through the system from a single origin node v0, starting
at timestep t1, and proceeding through timesteps t = t2, t3, . . . , tT. For network analysis, this allows us
to construct spatio-temporal paths originating at v0. The main features from the propagation process
we consider are the time at which a node w was reached from v0, and the physical distance travelled
through intermediate propagation along the route from v0 to w. By repeating this process from each node
in V, we construct system-wide network connectivity in the time interval [t1, tT + τ ), thereby yielding
spatio-temporal paths starting at time t1.

2.3. Spatio-temporal paths and distance measures
In general, a spatio-temporal path from node v0 may visit multiple distinct vertices before reaching its
destination node. A spatio-temporal path consisting of n ≥ 0 hops, starting with origin node v0 at
timestep t1, is described as the sequence of n + 1 pairs

〈(v0, t1), (v1, t′arr1
), (v2, t′arr2

), . . . , (vn, t′arrn
)〉, (2.5)

where vj denotes the jth node visited on the path and t′arrj
denotes the time at which the path reached

node vj. Spatio-temporal paths are readily constructed by tracing the propagation process described in
the previous section.

In addition to the timestep t′arrj
in which the path arrives at a node vj, the propagation process also

captures the physical distance traversed in reaching vj from preceding node vj−1, given by the progress
matrix element

P
[t′arrj

]
vj−1vj . (2.6)

This quantity is useful for studying the distance travelled along the route. We also note that any such
path constructed from the propagation process also obeys the temporal-ordering condition

t1 < t′arr1
< · · · < t′arrn

. (2.7)

Furthermore, as is the case with temporal networks, reachability in spatio-temporal networks is non-
transitive and non-symmetric.

To illustrate an example, in figure 1 we can see that node A is able to reach nodes B, C and E. From
this, we can construct the spatio-temporal routes taken to reach each node from A. For example, to reach
E we can trace the path from A through nodes B and C and identify the total time taken as 5 s and overall
physical distance travelled along the path as 4 m.

Throughout the rest of the paper, our notation will omit the observation window [t1, tT + τ ) in which
the spatio-temporal paths are obtained from a spatio-temporal system, leaving it as an implicit parameter.
We stress, however, that the following measures we introduce are defined on the paths present in such
an interval.

Temporal paths are characterized by two notions of length [24,50]: the topological length, which is
the number of hops along the path,2 and latency, which is the time elapsed from source to destination.
In reference to the previous description of a spatio-temporal path (equation (2.5)), topological length
corresponds to n and latency is given by t′arrn

− t1. In the context of a spatio-temporal path, an additional
relevant feature is the spatial length of a path from v0 to vn, given by

n∑
j=1

P
[t′arrj

]
vj−1vj . (2.8)

These quantities allow us to explore connectivity in the network from topological, temporal and spatial
perspectives.

2Specifically, topological length is the number of hops along the (temporally) shortest path, which may not necessarily be a path with
the minimum number of hops between the two nodes.
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To study the robustness of the system, we focus on the shortest paths between nodes, as these

represent optimal routes within the system. Indeed, the typical length of such paths is assumed to be
representative of the overall efficiency of the network. As commonly defined in temporal networks
[24,50], a path from node v to w is a temporally shortest path if it has minimum latency. We extend
this definition to our spatio-temporal setting. Formally, a path from v to w is a spatio-temporally shortest
path if it is a temporally shortest path and has minimum spatial length.

Although multiple temporally shortest paths may exist from one node to another, it is a subset of these
paths that are spatio-temporally shortest, and all such paths share the same latency and spatial length.
Under this definition, notions of spatio-temporal distance in the network have a well-defined meaning.
Specifically, the temporal distance distλvw from v to w is the latency of the spatio-temporal shortest path
from v to w. Similarly, the spatial distance distςvw from v to w is the spatial length of the spatio-temporal
shortest path from v to w. In the case that w cannot be reached from v in the given time interval (and thus
no path exists between them) both distance quantities are set to ∞.

In practice, to compute spatio-temporal shortest paths in a network, we follow an epidemic (i.e.
breadth-first) approach, similar to the Brandes method [57] for computing betweenness centrality in
weighted static networks. As with the Brandes algorithm, we must enumerate shortest paths through
the network; however, due to the non-transitive and non-symmetric nature of temporal and spatio-
temporal paths, intermediate shortest paths cannot be re-used in the calculation of broader paths. Here
we construct a breadth-first shortest path tree for each node in the network. The tree is rooted at the given
node, and spatio-temporal shortest paths from the root are obtained according to the process defined in
§2.2. In our implementation, computing each tree can require a worst-case time of O(N2) where N is the
number of nodes. In our practical experiments (see datasets in §4), we parallelize this tree-construction
process, and find that it is feasible to extract shortest paths in networks up to a size of 400–450 nodes,
though note that runtime also depends on the sparsity of the network.

3. Random error and systematic attack
In order to study the resilience of a network we define different ways in which nodes are selected to fail.

Err refers to probabilistic models of node failure. In this paper, we consider uniform random failure,
where each node has an equal independent failure probability of f , yielding an expected number of node
failures f · N. Err allows us to measure the typical response of the network to random breakdowns. It
is also a useful comparison for systematic attack, as any intelligent attack strategy should be at least as
harmful to the network as Err.

Systematic attacks on networks rely on the ability to strategically identify and deactivate nodes that
are critical to the function of the system. Although many measures of node centrality are available to
define attack strategies [1], only a subset of these are effective in rapidly disrupting the behaviour of a
network [32,40]. Attack on spatio-temporal networks adds further complexity, as the importance of a node
can be evaluated in terms of its centrality in the topological, temporal and/or spatial structure of the
system, properties which are not necessarily correlated.

In the rest of this section, we introduce relevant centrality measures and formalize the attack strategies
we use to test the robustness of a spatio-temporal network. We also define the quantities with which we
measure the performance of a network.

3.1. Spatio-temporal centrality measures
A variety of formulations of closeness in temporal networks have been developed. Given the non-
symmetry of connectivity and latency in temporal networks, we must distinguish between in- and
out-closeness. In particular, common definitions include temporal out-closeness [32] and temporal in-
farness [40,44]. The latter has been proposed as a basis for a centrality measure in systematic attacks
on networks [40,44]. Here we present temporal in-closeness as the reciprocal of temporal in-farness.
Formally, given the giant temporal in-component Cv of node v, we can consider the average temporal
distance of nodes that reach v as

�v = 1
|Cv | − 1

∑
w∈Cv ; w�=v

distλwv . (3.1)

A node with low �v is considered more-central in the network. An unreachable node has no utility in
the network, and thus we set �v = ∞ if Cv is singleton. The temporal in-closeness of a node v is then
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Figure 2. Comparison of path betweenness (PB) and betweenness efficiency (BE). Although both shaded nodes have the same PB,
the bottom node has higher BE. Deactivating the bottom node has a larger impact on the overall temporal performance of the network.

given by

CTC
v = 1

�v
. (3.2)

Inverting in-farness simply reverses the ranking of nodes, ensuring high values for more-central nodes.
However, while closeness is useful for identifying nodes capable of rapidly reaching the rest of the

network (e.g. for fast patching of computer malware [58]), it does not directly measure the reliance of
the network on a node as an efficient connector, which is often a critical source of network fragility.
This notion is better represented by betweenness centrality [12], which we extend to our spatio-temporal
network as follows. First, we denote the set of spatio-temporally shortest paths from node w to node u
by σwu and let σwu(v) denote the subset of paths in σwu that pass through node v. Path betweenness (PB)
centrality is then defined for a node v as

CPB
v =

∑
w,u∈V; w�=u

|σwu(v)|
|σwu| . (3.3)

Although this quantity represents the importance of a node in supporting connectedness within the
network, it does not necessarily reflect a node’s potential role as a hub through which information can be
quickly transferred. Indeed, efficient temporal conduits such as these are especially important for rapid
transmission within a network (as recently highlighted in [55]), and deactivating these conduits can have
significant impact on the global efficiency of the network. We therefore define the betweenness efficiency
(BE) centrality of a node v as

CBE
v =

∑
(w,u)∈βv

1

distλwu
, (3.4)

where βv is the set of source–destination pairs for each path in σwu(v). The reciprocal distance 1/distλwu is
useful as a measure of the efficiency of the shortest path w to u, and is commonly used in evaluating the
network efficiency of static [59,60] and temporal [24,50,61] networks.

3.2. Attack strategies
We summarize our five chosen attack strategies as follows. Temporal closeness (TC) attack deactivates
nodes in decreasing order by temporal in-closeness centrality. This follows the order defined in the initial
(intact) network, similar to the approach in [40].

PB and BE attacks exploit PB and BE centralities, respectively. As shown in [12], the geodesic paths
in a network can significantly change after each failure. Thus, in both betweenness-based attacks, the
centrality ranking is recalculated after each node failure.

Figure 2 demonstrates the difference in how PB and BE attacks prioritize their node deactivations.
Deactivating either shaded node will have a similar effect on the network’s spatio-temporal connectivity;
however, the bottom node is supporting paths that have faster propagation flow. BE attack prioritizes
nodes which are bottlenecks with high temporal load.

Finally, we include two attacks based on the degree distribution of the intact network: in-degree (ID)
and out-degree (OD) attacks. Unlike the other three attack strategies, the ID and OD strategies do not
rely on global computation of the spatio-temporal paths in a system. Specifically, we extract IDs and
ODs from the unweighted static aggregate of the original temporal network.
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3.3. Vulnerability measures
The analysis of robustness depends on the indicators used to quantify network performance. Here we
introduce the measures we use to evaluate the topological, temporal and spatial vulnerability of a spatio-
temporal network. While there are many properties relevant to the study of the function of a network,
we are careful to select measures that do not confound these three properties.

An important property of real-world networks is the size of the largest strongly connected component,
as this represents the extent to which the network is mutually reachable. This is commonly used to
study topology in static and temporal contexts [9,12,44]. The notion of a connected component in a
spatio-temporal network follows from the temporal definition in [53]. Formally, a strongly connected
component A is a set of nodes where there exists a spatio-temporal path between all pairs of nodes
v, w ∈ A. The giant strong component size S is the size of the largest strongly connected component as a
fraction of the overall number of nodes N. The definition of giant weak component size follows similarly.
However, we focus our robustness analysis on strong component size as this measure is especially
relevant in many real-world systems; for example, the resilience of the giant strong component represents
the ability of a public transport system to retain mutual navigability when subject to station closures.
We note that in this paper we deal with giant components in finite-size real-world systems.

Efficiency [59,60] gives us a method to explore the overall spatial and temporal performance of a
network. For a chosen distance measure (i.e. temporal λ or spatial ς ), efficiency tells us how effective
a network is in supporting rapid transmission with minimum distance travelled. Formally, temporal
efficiency (first defined in [61]) is the average reciprocal latency over all pairs of nodes in the network,
expressed as

Eλ = 1
N(N − 1)

∑
v �=w

1

distλvw
. (3.5)

This quantity is normalized between 0 and 1. In our spatio-temporal framework, Eλ = 1 is achieved
if direct propagation between all pairs of nodes occurs in one timestep. On the other hand, Eλ = 0 if
propagation does not succeed between any nodes, which can occur if there are no transmission links,
or propagations speeds are insufficient to complete direct propagation between nodes.

Our examination of network vulnerability focuses on the system’s response to the failure of one or
more nodes, which has previously been measured in temporal networks using temporal robustness [40].
In this paper, we study the effect of complete deactivation of a node; i.e. where the failed node no longer
has any connections to or from the rest of the system. Consider a set of deactivated nodes D ⊆ V. We
denote the temporal efficiency of a network with deactivated nodes D by Eλ(D). The relative efficiency
is then given by Eλ(D)/Eλ. When evaluating a systematic attack, the choice of nodes D depends on the
chosen attack strategy. An effective strategy is one that can cause significant damage with few node
deactivations, thus we are particularly interested in the relative efficiency with respect to the fraction f
of nodes deactivated, f = |D|/N. Formally, we refer to this as the network’s temporal robustness Rλ( f ) after
the fraction f of nodes have been deactivated. In probabilistic failure models, such as uniform random
deactivation, Rλ( f ) represents the expected relative temporal efficiency given failure probability f . (In
general, measuring robustness through the relative decline in a global network quantity is sometimes
referred to as the R-value of that quantity [62].)

While temporal efficiency measures the latency of the network, its spatial counterpart, spatial efficiency
Eς , is calculated over the reciprocal spatial distances between nodes in the network. Node failure will
force paths to take alternative routes in the network, typically over longer physical distances, therefore
reducing spatial efficiency. We denote a network’s spatial robustness with respect to a given deactivation
rate f by Rς ( f ).

3.4. Computation of attack strategies and measures
In terms of computation, TC, PB and BE attacks all require calculation of spatio-temporal shortest paths
in the underlying network (see §2.3 for more information). Similarly, measurement of efficiency depends
on the shortest distances between each pair of node in the network. Owing to the non-transitive and non-
symmetric nature of spatio-temporal paths, in practice, we must use the affine graph method to compute
giant component sizes (see [53] for details), which is the basis for the giant strong component size
vulnerability measure. The two local-knowledge attack strategies (ID and OD) are simpler to compute,
requiring only knowledge of the aggregate degree distribution.
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4. Empirical spatio-temporal networks
In this paper, we analyse the spatio-temporal robustness of transport, biological and social systems
through six real-world networks. Here we detail how each network is constructed. Specific choices of
temporal granularity, number of snapshots and observation duration for each network can be found in
table 2. The table also includes descriptive summaries of each network’s properties. Further detail on
the data materials used in the preparation of each network can be found in the electronic supplementary
material. This also includes visualizations of the time-evolution of each network.

London Underground (London Metro). The London Underground is a rapid transit transport system
that covers much of Greater London. In our spatio-temporal construction of the Underground system,
we model the transits of passenger trains moving between each station along their timetabled routes.
Each node is a metro station. We build a fine-grained time-varying representation of station-to-station
transit speeds from the vehicles’ scheduled journey times and distances. In a given snapshot, we obtain
the propagation speed between two consecutive stops by averaging the speeds of trains serving those
stations during the corresponding time interval. We select the timetable of February 2015 and set the
observation start time to Monday at 00.00.

Paris Metro (Paris Metro). We obtain a spatio-temporal construction of the Paris Metro using the same
approach as for London Metro, resulting in a network consisting of 302 stations. We select the timetable
of December 2015 and set the observation start time to Monday at 00.00.

New York Subway (New York Metro). Our spatio-temporal construction of the New York City Subway
also follows the same approach as London Metro. We select the weekday timetable of December 2015
and an observation start time of Monday 00.00. Multiple stations comprising the same station complex
are unified into one node, yielding 417 subway stations active in the observation period.

US Domestic Flights (US Flights). The flights network is constructed from actual take-off and landing
times of domestic passenger flights in the USA in the month of February 2014. Each node is a US airport.
Our approach to extracting transit speeds is similar to London Metro. Time zones are normalized to EST,
and we start our observation window at Monday 00.00. Airports are spatially embedded on the WGS-
84 ellipsoid and physical distances are calculated using Vincenty’s equation. We note that, unlike the
London Metro dataset, the flight times are from reported data, rather than a priori timetables. Thus, the
flight durations reflect environmental conditions that may delay or hasten transits.

C. Elegans (C. Elegans). Caenorhabditis elegans (C. Elegans) is a nematode and the first organism to have
its entire cellular nervous system mapped [63], including its growth from embryogenesis [64,65], spatial
configuration [66] and wiring [5,67]. In our spatio-temporal construction of the C. Elegans network,
we study signalling among the neurons in the adult worm. Neuron spatial coordinates were collected
in [66] and are given in two-dimensions along the worm’s lateral plane. Missing neuron coordinates
were supplemented using the approach described in [64]. The topological structure of the system is
constructed using the synaptic connection data compiled in [5,67]. The connectivity data include the type
(chemical or electrical) and density of directed synaptic connections, allowing us to infer transmission
delay between neurons. The task of empirically measuring synaptic latency in C. Elegans is particularly
challenging and so far only a small number of synapses have been examined. State-of-the-art optogenetic
methods show that synaptic delay over chemical-only synapses is of the order of milliseconds [68],
and specifically in the range 10–30 ms (see sup. fig. 1 in [68]). We encode propagation speeds in our
network according to this range of baseline measurements, scaling speed values based on the synapse
type (chemical, electrical or both) and physical distance. Thus, we differentiate between these two types
of connection (i.e. electrical and chemical).

Dartmouth StudentLife Experiment (StudentLife). The StudentLife experiment [69] used continuous
smartphone monitoring to follow a cohort of students at Dartmouth College over one academic semester.
To study the information sharing potential of this network using our spatio-temporal framework, we
construct the patterns of communication between students via their SMS and phone logs. Each node
corresponds to a student participating in the experiment. Communication events between phones
correspond to opportunities for instantaneous information transmission between students. Contact
between two students in a particular timestamp maps to a link with infinite propagation speed. In
particular, calls are represented as bidirectional edges and SMS messages are treated as directed from
sender to recipient. Students’ mobility patterns are extracted from their GPS and wireless access point
geolocation logs. Our observation window covers six weeks from Monday 8 April 2013.

Our framework offers an alternative approximation of passenger transit (i.e. in London, Paris, New
York and US Flights) to other, space-agnostic temporal models. They capture the speed at which
passengers can be conveyed, as well as dependence on time-ordering. We note that the aggregated
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Figure 3. Influence of temporal horizon on the giant (strong) component size S. The temporal horizon h limits the observation window
during which spatio-temporal paths are extracted to (t1, t1 + h).

Table 2. Summary of the six spatio-temporal systems explored in this paper: timetabled London Underground transits (London Metro),
ParisMetro transits (ParisMetro), NewYork City Subway transits (NewYorkMetro), US domestic flights (US Flights), the nervous systemof
C. Elegans (C. Elegans) and mobile communications among university students (StudentLife). For each network, we show the number of
nodes N, number of directed edges |E∗| in the aggregate static graph, temporal granularity τ (also referred to as window size), number
of timesteps T , temporal duration, topological temporal correlation C [56], topological reciprocity r̄, weight reciprocity ρ̄, average radius
of gyration ȳgyr over all nodes, and median propagation speed over all edges. See appendices for definitions of reciprocity (appendix A)
and radius of gyration (appendix B) in a spatio-temporal system.

network N |E∗| τ T duration C r̄ ρ̄ ȳgyr Med. speed

London Metro 270 628 2 min 1440 2 days 0.526 0.77 0.71 0.00 m 8.39 m s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Paris Metro 302 705 2 min 1440 2 days 0.444 0.76 0.68 0.00 m 6.56 m s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

New York Metro 417 1058 2 min 1440 2 days 0.347 0.50 0.48 0.00 m 7.09 m s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

US Flights 299 3947 30 min 480 10 days 0.382 0.42 0.38 0.00 m 152.81 m s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C. Elegans 279 2990 10 ms 1200 12 s 1.000 0.47 0.45 0.00 m 0.44 mm s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

StudentLife 22 68 60 min 1008 42 days 0.007 0.78 0.78 18.9 km inst.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

directed versions of these two networks have over 99% reciprocity, whereas their average reciprocity
in the spatio-temporal representation is much lower (table 2). This highlights the loss of information
caused by time aggregation. The effect is especially pronounced in US Flights, where we see that
simultaneous inbound and outbound flights between two airports are rare. We also note the variation
in temporal correlation over the datasets. C. Elegans is the only network with a static topology, giving a
correlation of 1.

Figure 3 shows the growth of reachability in each spatio-temporal network as the temporal horizon
is extended. In the case of the two transport networks, we see the formation of spatio-temporal paths
during normal operating hours, contrasting with little or no growth during early morning. New York is
unlike the other two metro systems as it operates 24/7, with a slightly reduced night service between
midnight and 6.00. We also note the effect of different temporal and spatial scales present in each
network. The Underground reaches full coverage within a day, whereas neural network communication
is of the order of seconds. Although most of the US flight network is mutually reachable within 1 day, a
number of remote off-mainland airports with limited service are responsible for delaying full coverage
by up to a week. Owing to the presence of five isolated nodes in the reconstruction of the C. Elegans
nervous system we observe that the giant strong component in C. Elegans does not reach full coverage.
This is also observed in aggregate analyses of C. Elegans [67].
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5. Results and discussion
In this section, we use the framework outlined in §2 to compare the response of real-world spatio-
temporal networks (described in §4) when subject to the node failure models presented in §3. Before
considering systematic attack strategies, we first explore the response of each network to Err.

5.1. Tolerance to random error
Figure 4 shows the response of each robustness measure with respect to uniform random failure. We
used 1000 random realizations at each deactivation rate to obtain expected values for each quantity. The
London network is substantially less robust according to all three measures. In figure 4a, we see that
the network becomes highly fragmented after very few failures, and the giant component is effectively
eliminated (filling less than 5% of the network) at failure rates above 0.6.

In an ideal configuration, deactivating one node should have minimum effect in disconnecting other
nodes in the network. We see that US Flights and C. Elegans are much closer to this resilient behaviour.
When comparing the edge density of the directed aggregate networks (0.9% for London, 0.7% for Paris,
0.6% for New York, 4.4% for US Flights, 3.9% for C. Elegans and 14.7% for StudentLife) this may in part
be explained by more path redundancy in the high-density networks. Although the giant component size
in the intact StudentLife network is smaller, the profile of its relative decay is similar to that of US Flights
and C. Elegans. We also observe that C. Elegans is typically more resilient than US Flights, despite C.
Elegans having slightly lower density. C. Elegans also exhibits increasing giant-component vulnerability
in the f = 0.5–0.8 range, eventually becoming more fragmented than US Flights. Its temporal and spatial
robustness (figure 4b,c), on the other hand, do not exhibit the same behaviour.

Comparing figure 4b,c, we note that the spatial robustness of US Flights, C. Elegans, London and Paris
follow a degradation pattern similar to their temporal robustness. In these systems, spatio-temporal
paths are constrained by finite node-to-node propagation speeds. The propagation speeds in these
networks are also heterogeneous, with the amount of diversity depending on the particular system; for
example, longer track segments in London and longer flight paths in US Flights tend to have higher
average speeds (flight duration also depends on atmospheric conditions), and synaptic transmission
speeds in C. Elegans depend on the signalling mechanism. On the other hand, the homogeneous infinite
propagation speeds in StudentLife permit transmission to occur instantaneously, independent of the
physical separation between individuals, and thus we see very different behaviour in this network with
respect to spatial and temporal robustness (figure 4b,c).

5.2. Static spatial paths versus spatio-temporal paths
Of the three urban transit systems, we note that New York exhibits the greatest difference in response
to random failure between spatial and temporal robustness (figure 4b versus c; area under curve
comparison in table 3). In figure 5, we demonstrate the differing routes taken according to spatio-
temporal paths versus shortest paths in the equivalent aggregate spatial network. We find that
spatio-temporal distances tend to take longer routes through the network than purely spatial paths in
New York. Indeed, correlation between these pairwise distances is least in the New York network; that
is, minimum-latency routes tend to traverse longer distances in the New York transit system. We note
that the comparison in this figure is in the intact networks (i.e. without node deactivations), to highlight
the differences in the types of paths in these systems.

5.3. Tolerance to systematic attack
To study attack tolerance, we apply the deactivation strategies defined in §3 to each network, allowing
us to measure network performance after a fraction of nodes f are deactivated.

Although all attack schemes are generally more effective than Err, there is substantial variation in their
performance. In figure 6, we plot the effectiveness of each strategy at dismantling the giant component.
In US Flights, the damage caused by the four non-closeness attacks is very similar. We see some slight
variation in giant-component vulnerability with respect to each attack (figure 6d), and very similar
behaviour in temporal vulnerability (figure 7d). This contrasts with London and C. Elegans, where the
betweenness-based attacks follow substantially different profiles to the degree-based attacks.

The two betweenness attacks are very effective at dismantling the giant component in London up to
f = 0.05 (figure 6a). At this point (i.e. with 5% of the nodes deactivated), the nodes vital to connecting
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Figure 4. Vulnerability to randomnode failuremeasured by giant strongly connected component size S, temporal robustness Rλ, spatial
robustness Rς . Expected values for quantities were obtained through simulation of 1000 random realizations at each deactivation rate
and are represented by solid curves. Standard error (shaded region surrounding each curve) is negligible. (a) Giant component size,
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Table 3. Overall effectiveness of PB attack and BE attack measured by the area under each robustness curve. Areas are provided for two
vulnerability measures: giant strong temporal component size (S) and temporal robustness (Rλ). A lower value indicates an attack that
is more aggressive. Random failure (Err) is also included for comparison. Values in bold indicate the most-aggressive of the two attack
strategies shown.

area under robustness curve

S Rλ

Err PB BE Err PB BE

London Metro 0.195 0.035 0.039 0.134 0.042 0.034
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Paris Metro 0.224 0.043 0.043 0.136 0.030 0.030
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

New York Metro 0.221 0.031 0.031 0.110 0.024 0.022
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

US Flights 0.431 0.060 0.060 0.274 0.025 0.025
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C. Elegans 0.448 0.201 0.234 0.278 0.124 0.106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

StudentLife 0.244 0.132 0.152 0.287 0.202 0.190
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

London’s central core to peripheral Underground lines have been deactivated. A substantial proportion
of nodes (roughly 190 of 270 stations) belong to isolated clusters in this now-disconnected outer region.
There is more tolerance to failure in the remaining core, as we observe from the gradual decline in S from
f = 0.05, and the giant component is finally eliminated at f = 0.45. Interestingly, the threshold at which
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Figure 5. Three urban transport networks and the US flights network. Comparison of spatio-temporal paths to shortest spatial paths
in the aggregate spatial network, measured by spatial distance. Shortest spatial paths follow minimum spatial length. Each heatmap
compares the spatial distances between pairs of stations according to definitions of spatial path and spatio-temporal path. Pearson
correlation between these distances is 0.983, 0.952, 0.871 and 0.950 for London, Paris, New York and US Flights, respectively. (a) London
Metro, (b) Paris Metro, (c) New York Metro and (d) US Flights.

systematic attack eliminates the giant component in US Flights (figure 6d) is much lower; specifically,
this occurs at f = 0.16 for US Flights and at f = 0.45 for London.

Comparing figures 6 and 7, we observe how the two betweenness centralities attack reachability and
temporal efficiency differently. PB preferentially attacks nodes through which many geodesic paths flow,
whereas BE prioritizes nodes supporting temporally efficient paths. Thus, the giant component is harmed
more rapidly in the PB attack (figure 6), and temporal robustness declines more quickly under the BE
attack (figure 7). This difference is especially pronounced in C. Elegans (figures 6e and 7e).

To judge the overall effectiveness of a particular attack for a given performance measure, we also
consider the area under each robustness curve. Values for random failure and the two betweenness-based
attacks are provided in table 3. We see that these two attacks indeed preferentially degrade different
features of a network. Specifically, table 3 highlights that for London, C. Elegans and StudentLife, the
lowest overall S-robustness is achieved with the PB attack strategy and the lowest overall Rλ-robustness
is achieved with the BE attack strategy. We also find that in the other three networks (US Flights, New
York and Paris), the effect is much less pronounced, where both PB and BE have roughly the same effect
with respect to the two vulnerability measures (S and Rλ).

In general, we observe that both betweenness-based attacks harm each network more effectively
than the degree-based strategies. This is intuitive, as betweenness-based attacks are able to leverage
global network information to decide their targets. What is more surprising is that TC, which is also a
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Figure 6. Robustness of the giant strongly connected component when each system is subject to five systematic attack strategies: TC,
PB, BE, ID andOD. Vulnerability to random failure (Err) included for comparison. Shaded regions represent standard deviation (seefigure 4
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Figure 7. Robustness of temporal efficiency under systematic attack. Labels and colours same as figure 6. Shaded regions represent
standard deviation (see figure 4 for standard error). (a) London Metro, (b) Paris Metro , (c) New York Metro, (d) US Flights, (e) C. Elegans
and (f ) StudentLife.

global-knowledge attack, is ineffective at identifying vulnerabilities in the network, and is often unable to
out-perform the naive degree-based attacks. The same is true for the strategy’s effectiveness in attacking
the network’s temporal efficiency (figure 7). Temporal (in-)closeness specifically identifies ‘sink’ nodes
that are effective endpoints for information flow. These results show that such sinks do not tend to be
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Figure 8. Three urban transport networks and the US flights network. Comparison of the node deactivation order according to each
strategy in each network. Correlation is measured by the Kendall rank correlation coefficient (Kendall’s τ ). Attack strategies as follows:
PB, TC, ID, OD and BE. (a) London Metro , (b) Paris Metro , (c) New York Metro and (d) US Flights .

important centres on which other nodes rely, and therefore their deactivation has relatively little impact
on the performance of the network.

We see that C. Elegans is substantially more robust to systematic attack. Using the most-effective
strategy in each network as a comparison, we see the giant component in C. Elegans is highly resilient
(figure 6e), managing to remain at over 80% coverage up to f = 0.12, whereas other networks begin rapid
degradation at f = 0.01 or lower.

Finally, we compare the responses of the four transport networks to the most-aggressive attack
strategies. We see that temporal and giant component degradation for London (figures 6a and 7a,
respectively) both follow very similar patterns, indicating that mutual reachability declines at a similar
rate to the relative decline in temporal efficiency. This contrasts with US Flights, whose giant component
(figure 6d) is more resilient than its temporal robustness (figure 7d). This differing behaviour shows that
there is a period during systematic attack on US Flights where the network suffers increasing temporal
delay while its giant component remains almost intact.

5.4. Attack strategy correlations
To explore the attack strategies further, we compare the order with which each strategy preferentially
deactivates nodes (figure 8). Unsurprisingly, examples where we see the biggest difference in attack
performance are also where we see lowest correlation in deactivation order. For example, in Paris Metro
and US Flights we see high correlation among most pairs of strategies, and also observe that these
strategies have similar robustness profiles, especially in the case of US Flights. Comparing centrality
correlation between the two betweenness attacks (BE and PB) also offers insight. These are overall highly
correlated in all networks. Specifically, we observe correlation coefficients 0.732 for London Metro, 0.788
for Paris Metro, 0.613 for New York Metro, 0.961 for US Flights and 0.613 for C. Elegans (not plotted).
However, where we see less agreement between these two strategies, we also see the greatest differences
in their effectiveness at attacking the giant component (figure 6) versus temporal robustness (figure 7).
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Figure 9. Comparison of spatio-temporal attacks (PB and BE) and the pure-temporal path betweenness attack (PTPB). (a) LondonMetro
and (b) New York Metro .

This effect is most pronounced in C. Elegans and New York Metro, which also have the lowest PB–BE
correlation of the networks we studied.

5.5. Comparison with temporal centrality
Finally, we compare the two attack strategies based on spatio-temporal paths (PB and BE) to a purely
temporal counterpart. Here we explore whether a centrality measure based on temporally shortest paths
has the same effect as PB and BE. Specifically, we apply the temporal betweenness centrality introduced
in [50], which for convenience we refer to as PTPB (pure temporal path betweenness). In the calculation
of temporal betweenness centrality, a node’s betweenness is counted as the number of shortest temporal
paths through it, as opposed to the number of shortest spatio-temporal paths. In other words, these
temporal paths are not constrained by distance and propagation speed. (Equivalently, we can regard this
as the case where all propagation speeds are infinite.) We show the performance of these attacks for two
metro systems, London Metro and New York Metro, in figure 9. We see that the space-agnostic attack is
less effective than PB and BE in both systems.

6. Conclusion
The ability to explicitly represent non-instantaneous propagation that reflects the space and time in
which a network is embedded allows us to better understand the properties of real-world spatio-
temporal systems. In this paper, we develop a framework that combines these two dimensions,
constructing networks whose connectivity is constrained by the dynamics of the real-world systems they
represent. With this framework, we explore the resilience of these systems in terms of their topological,
spatial and temporal behaviour. The proposed approach is based on a constrained-propagation model
over a time-varying representation of interaction speeds between nodes and is a re-formulation of
previous discrete-time instantaneous-spreading models of temporal networks. Through numerical
experiments on empirical systems, we study the spatial, temporal and topological performance of spatio-
temporal networks when subject to Err and systematic attack. Our approach is particularly motivated by
the joint spatial and temporal nature of urban transport systems, while we additionally also test the
generality of the approach on other classes of network. We introduce global- and local-knowledge attack
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strategies, finding that attacks based on the betweenness of nodes perform better than other strategies.
Most saliently, we find that the spatial, temporal and topological responses of a system to node failure
can behave differently to the same attack strategy. In particular, we find that systematic attack based on
betweenness centrality is typically most effective at harming the temporal efficiency of a network, leading
to increased delays, whereas PB is most effective at eliminating mutual reachability within a network.

Data accessibility. Datasets [70] used in this research are available via the Dryad Repository (http://dx.doi.org/10.5061/
dryad.3p27r). Visualizations [71] of these networks are available via the Figshare Repository (https://dx.doi.org/10.
6084/m9.figshare.1452976). These datasets and visualizations are further described in this paper’s electronic
supplementary material.
Authors’ contributions. M.J.W. and M.M. designed and developed the research, performed the analyses, reviewed the
results and wrote the manuscript.
Competing interests. The authors declare that they have no competing interests.
Funding. This work was supported by LASAGNE (Multi-layer Spatiotemporal Generalized Networks), a European
Commission STREP project (grant no. 318132), and The Uncertainty of Identity, an EPSRC project (grant no. EP/
J005266/1).
Acknowledgements. The authors would like to thank Fani Tsapeli and Luca Canzian for their help in preparing the
StudentLife mobility data, Petra Vertes for insights in reconstructing the C. Elegans connectome, Manuel Zimmer
for advice on synaptic delay and Luca Rossi for fruitful discussions. Data processing and numerical experiments were
performed in part using the computational facilities of the University of Birmingham’s BEAR division.

Appendix A. Average reciprocity in a time-varying network
The reciprocity of a (single) directed graph characterizes the overall extent to which each edge in the
network is in some way balanced by an edge in the opposite direction. This measure is commonly defined
for binary graphs [72] and has more recently been adapted to study weighted graphs [73]. Here we
describe how we extend this measure to characterize the average reciprocity in a time-varying weighted
directed network represented by the sequence of weight matrices

S[t1], S[t2], . . . , S[tT]. (A 1)

First, let us consider a single weight matrix S[t] and obtain the global weighted reciprocity ρ[t] of this
(static) graph as defined by Squartini et al. [73]. That is, given the total weight of the graph

W[t] =
∑
v

∑
w�=v

S[t]
vw (A 2)

and the total reciprocated weight of the graph

W[t]
↔ =

∑
v

∑
w�=v

min(S[t]
vw, S[t]

wv), (A 3)

we obtain the global weighted reciprocity as

ρ[t] = W[t]↔
W[t]

. (A 4)

In the case that the graph is empty, we set ρ[t] = 1. Finally, as a diagnostic of the reciprocity in the whole
time-varying network, we define the weight reciprocity as the average weighted reciprocity

ρ̄ = 1
T

T∑
i=1

ρ[ti]. (A 5)

Weight reciprocity is normalized between 0 and 1. ρ̄ = 1 indicates that each edge in the network is
reciprocated by an identically weighted edge in the opposite direction, and thus the network is effectively
undirected. In the opposite case, where each edge in the network has no reciprocal counterpart, we have
ρ̄ = 0. We note that for the trivial case of an empty (edgeless) time-varying network we have ρ̄ = 1.

It is sometimes useful to ignore weights in the time-varying network and study reciprocity from a
purely topological viewpoint. We refer to this as the (average) topological reciprocity, denoted by r̄. This
quantity is the average reciprocity over the network’s sequence of binary adjacency matrices.
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Appendix B. Radius of gyration
To characterize the typical physical distance travelled by a node in a spatio-temporal system, we use
the average radius of gyration taken over all nodes in the system. We follow the same approach as
previous work that has adapted the classical mechanical definition of radius of gyration to discrete-time
trajectories of moving objects [74].

Recall that in our representation of a spatio-temporal system, nodes are embedded in a k-dimensional
metric space with physical distance function g. Given a node v and its trajectory represented by the
time-varying sequence of positions l[1]

v , l[2]
v , . . . , l[T]

v the radius of gyration of v is expressed as

yv
gyr =

(
1
T

T∑
i=1

g(l[i]v , yv
μ)2

)1/2

, (B 1)

where yv
μ is the centroid of the trajectory of v. Our summary of the mobility of the set of all nodes V in a

system is then given by the average radius of gyration

ȳgyr = 1
|V|

∑
v∈V

yv
gyr. (B 2)
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