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ABSTRACT
How can we know whether one classifier is really better than
the other? In the area of text classification, since the publi-
cation of Yang and Liu’s seminal SIGIR-1999 paper, it has
become a standard practice for researchers to apply null-
hypothesis significance testing (NHST) on their experimen-
tal results in order to establish the superiority of a classifier.
However, such a frequentist approach has a number of inher-
ent deficiencies and limitations, e.g., the inability to accept
the null hypothesis (that the two classifiers perform equally
well), the difficulty to compare commonly-used multivariate
performance measures like F1 scores instead of accuracy, and
so on. In this paper, we propose a novel Bayesian approach
to the performance comparison of text classifiers, and ar-
gue its advantages over the traditional frequentist approach
based on t-test etc. In contrast to the existing probabilistic
model for F1 scores which is unpaired, our proposed model
takes the correlation between classifiers into account and
thus achieves greater statistical power. Using several typical
text classification algorithms and a benchmark dataset, we
demonstrate that the our approach provides rich information
about the difference between two classifiers’ performances.

Keywords
Bayesian inference; hypothesis testing; performance evalua-
tion; text classification

1. INTRODUCTION
Text classification (aka categorisation) [25] is a fundamen-

tal technique in information retrieval (IR) [19]. It has many
important applications, including topic categorisation, spam
filtering, sentiment analysis, message routing, language iden-
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tification, genre detection, authorship attribution, and so on.
In fact, most modern IR systems for search, recommenda-
tion, or advertising contain multiple components that use
some form of text classification.

How can we know whether one classifier is really better
than the other? Is it possible that they perform equally
well? Sure we should be able to evaluate their classification
performances on some benchmark datasets using some per-
formance measures. However, given any finite amount of test
results, we can never be completely certain that one classi-
fier works better than the other or vice versa: the observed
difference between their performance scores do not neces-
sarily reflect their intrinsic qualities. The central question
here is how to reliably tell if classifier A indeed outperforms
classifier B, given a set of test results. Perhaps the simplest
solution is to apply k-fold cross-validation [21] and then cal-
culate the sample variance of performance scores over mul-
tiple “folds” of the dataset. This method tends to yield poor
estimations though: the sample variance can approximate
the true variance well only if we have a large number of
folds, but when the dataset is divided into many folds, the
size of each fold is likely to be too small to give a meaning-
ful performance score (especially for complex multivariate
performance measures like F1 [26]). Hence it is desirable to
derive the uncertainty of performance scores directly from
all the atomic document-category classification results.

To address this problem, Yang and Liu defined in their
seminal SIGIR-1999 paper [27] a suite of null-hypothesis sig-
nificance testing (NHST) methods which aim to verify how
strongly the experimental results support the claim that one
particular classifier is more accurate than another classifier.
That paper has been influential within and beyond the realm
of text classification. Since its publication, it has received
about 3,000 citations (according to Google Scholar). Today,
it is almost compulsory for researchers to validate the su-
periority of their proposed text classification algorithms by
means of NHST and report the p-values in their papers.
Although NHST has proven to be useful in assessing text

classifiers and its adoption has greatly improved the rigour
of performance evaluation in IR, such a frequentist approach
has many inherent deficiencies and limitations which we
shall elaborate on later. In this paper, we propose a novel
approach to performance comparison of text classifiers based



on Bayesian estimation [15], and argue its advantages over
the traditional frequentist approach based on t-test etc. Us-
ing a few representative text classification algorithms and a
benchmark dataset, we demonstrate that the our approach
provides rich information about the difference between two
classifiers’ performances.

2. RELATED WORK

2.1 Frequentist Performance Comparison
The traditional frequentist approach to comparing clas-

sifiers is to use NHST [21]. The usual process of NHST
consists of four steps: (1) formulate the null hypothesis H0

that the observations are the result of pure chance and the
alternative hypothesis H1 that the observations show a real
effect combined with a component of chance variation; (2)
identify a test statistic that can be used to assess the truth of
H0; (3) compute the p-value, which is the probability that a
test statistic equal to or more extreme than the one observed
would be obtained under the assumption of hypothesis H0;
(4) if the p-value is less than an acceptable significance level,
the observed effect is statistically significant, i.e., H0 is ruled
out and H1 is valid.

Specifically for performance comparison of text classifiers,
the usage of NHST has been presented in detail by Yang and
Liu in their SIGIR-1999 paper [27]. In summary, on the doc-
ument level (micro level), sign-test can be used to compare
two classifiers’ accuracy scores (called s-test), while unpaired
t-test can be used to compare two classifiers’ performance
measures in the form of proportions, e.g., precision, recall,
error, and accuracy (called p-test); on the category level
(macro level), sign-test and paired t-test can both be used
to compare two classifiers’ F1 scores [26] (which are called
S-test and T-test respectively).

In spite of being useful and influential, such a frequen-
tist approach unfortunately has many inherent deficiencies
and limitations [14, 15]. First, NHST is only able to tell us
whether the experimental data are sufficient to reject the
null hypothesis (that the performance difference is zero) or
not, but there is no way to accept the null hypothesis. If we
fail to reject the null hypothesis, we cannot conclude that it
is true, but only recognise that the null hypothesis is a pos-
sibility. That is to say, it is impossible for us to use NHST to
confidently claim that two classifiers perform equally well .
Second, NHST will reject the null hypothesis as long as the
experimental data suggest that the performance difference is
non-zero, even if the performance difference is too slight to
have any real effect in practice. Third, complex performance
measures such as the F1 score can only be compared on the
category level but not on the document level, which seri-
ously restricts the statistical power of NHST as the number
of categories is usually much much smaller than the number
of documents. Fourth, using sign-test, those pairs of identi-
cal classification outcomes are completely discarded, which
is undesirable because the probability that the two classi-
fiers are essentially equal would be substantially underesti-
mated. Fifth, using unpaired t-test, the correlation between
the classifiers in comparison are totally ignored, which is
unreasonable because in reality both classifiers are likely to
do well on “easy” test documents, and badly on “difficult”
test documents, not to mention that those classifiers could
be just different versions of the same machine learning algo-
rithm.

The other NHST methods that have been applied to com-
pare classifiers include ANOVA test [10], Friedman test [24],
McNemar’s test [6], and Wilcoxon signed ranks test [4]. Due
to their frequentist nature, no matter which specific test they
use, more or less they suffer from the above mentioned perils
(especially the first three).

2.2 Bayesian Performance Comparison
It has been loudly advocated in recent years that the

Bayesian approach to comparing two groups of data has
many advantages over the frequentist NHST [14, 15]. How-
ever, to our knowledge, almost all the existing models of
Bayesian performance comparison deal with continuous val-
ues (that can be described by Gaussian or t distributions)
but not discrete classification outcomes, and they produce
estimations for simple statistics (such as the average differ-
ence between the two given groups) but not complex perfor-
mance measures (such as the F1 score).

Probably the most closely related work is that of Goutte
and Gaussier [8]. Their F1 score model constructed using a
couple of Gamma variates is not as expressive and flexible
as ours. For example, generalising their model to the Fβ

measure (β ≥ 0) [19, 26] with β �= 1 would end up with a
complex equation involving three Gamma variates, but that
would be trivial in our approach. It seems that their model
is restricted to a single F1 score for binary classification with
two classes only, due to its reliance upon the special proper-
ties of the Gamma distribution. In contrast, our approach
is a probabilistic graphical model [13] which opens up many
possibilities for adaptation or extension (see Section 5).

Our previous work on this topic [28, 29] has ignored any
possible connection between the predictions from the two
classifiers in comparison. Although this is totally fine when
those two classifiers are evaluated separately each on a differ-
ent test dataset, it is not the optimal solution in the common
situation when those two classifiers are evaluated on exactly
the same test dataset. In this paper, we extend such a sim-
plistic “unpaired”model to the more general “paired”model
which takes the correlation between classifiers into account,
and demonstrate that the former has much less statistical
power than the latter (see Section 4.1).

3. OUR APPROACH

3.1 Probabilistic Models
Let us consider a text classifier which has been tested

on a collection of N labelled test documents, D. For each
document xi (i = 1, . . . , N), we have its true class label yi
as well as the predicted class label ŷi.

If this classifier is actually a Bayesian model, in princi-
ple there should be a direct way to assess the suitability of
model M in explaining the experimental data by computing
Pr[M|D] ∝ Pr[M]

∫
Θ
Pr[D|Θ,M] Pr[Θ|M]dΘ. However,

here we would like to consider the general situation where
the true and predicted class labels are the only information
presumed to be available.

In the most basic setting, binary classification, a docu-
ment belongs to either the positive class or the negative
class. Without loss of generality, we use integer 1 as the ID
of the positive class and integer 0 as the ID of the negative
class. Furthermore, for the sake of clarity, we will also denote
the true positive and negative classes using notations + and



Table 1: The classification results from one binary classifier.

yi ŷi

+ μ
1 ρ+

0 1− ρ+

− 1− μ
1 ρ−
0 1− ρ−

− respectively which should be regarded as interchangeable
synonyms of class IDs 1 and 0.

The test documents can usually be considered as “inde-
pendent trials”, so we regard both their true class labels yi
and their predicted class labels ŷi as independent and iden-
tically distributed (i.i.d.) random variables.

Table 1 lists all the possible classification results and their
corresponding probabilities for a test document using one
binary classifier. It is worth noting that in our model a
classifier is allowed to exhibit different prediction accuracies
on documents from different true classes. This flexibility is
necessary to reflect the reality and facilitate the estimation
of complex performance measures that take class imbalance
into account.

Given a test document xi, we use μ to represent the prob-
ability that its true class label yi is positive. Obviously the
probability that yi is negative would therefore be 1 − μ.
This means that yi follows a Bernoulli distribution with pa-
rameter μ: yi ∼ Bern(μ), i.e., Pr[yi|μ] = μyi(1 − μ)1−yi . It
would then be convenient to use the Beta distribution (which
is conjugate to the Bernoulli distribution) as the prior dis-
tribution of parameter μ. More specifically, μ ∼ Beta(β),

i.e., Pr[μ] = Γ(β+,β−)

Γ(β+)Γ(β−)
μβ+−1(1− μ)β

−−1 where the hyper-

parameter β = (β+, β−) encodes our prior belief about each
class’s proportion. If we do not have such knowledge, we
can simply set β = (1, 1) that yields a uniform distribution,
as we did in our experiments.

When a test document xi with true class label yi is clas-
sified, we anticipate that it will be classified as positive with
a certain probability ρyi , i.e., Pr[ŷi = 1|ρyi ] = ρyi . For
example, ρ− is the probability that a negative (−) docu-
ment is classified to be positive (1). Hence we can say that
ŷi follows a Bernoulli distribution with parameter ρ+ when
yi is positive and ρ− when yi is negative. In other words,
ŷi ∼ Bern(ρ+) if yi = + and ŷi ∼ Bern(ρ−) if yi = −.
It would then be convenient to use the Beta distribution as
the prior distribution of parameter ρ+ and ρ−. More specifi-

cally, ρ+ ∼ Beta(α+), i.e., Pr[ρ+] =
Γ(α+

1 ,α+
0 )

Γ(α+
1 )Γ(α+

0 )
ρ+

α+
1 −1

(1−
ρ+)α

+
0 −1 where the hyper-parameter α+ =

(
α+
1 , α

+
0

)
en-

codes our prior belief about the classifier’s prediction accu-
racy on positive test documents. In the same way, we have
ρ− ∼ Beta(α−), where α− =

(
α−1 , α

−
0

)
. If we do not have

any prior knowledge, we can simply set α+ = α− = (1, 1)
that yields a uniform distribution, as we did in our experi-
ments.

Once the parameters μ, ρ+ and ρ− have been estimated, it
will be easy to calculate the contingency table of “expected”
classification results: true positive (tp), false positive (fp),
true negative (tn), and false negative (fn). For example, the
anticipated number of true positive predictions of the clas-
sifier should be the number of positive test documents Nμ
times the rate of being predicted by the classifier as positive

N

β
μ

ρ−

ŷiyi

ψ

ρ+
α−α+

(a) original

μ

n+ n−c+

ψ
β

ρ−

N

ρ+
α−

c−

α+

(b) compact

Figure 1: The probabilistic graphical model for a binary text
classifier’s performance.

ρ+. The equations to calculate the contingency table for a
classifier are listed as follows.

tp=Nμρ+ fp=N(1− μ)ρ−

fn=Nμ(1− ρ+) tn=N(1− μ)(1− ρ−)

With the contingency table for a classifier available, we
can compute not only the accuracy, but also more complex
performance measures such as the F1 score for that classifier.
The precision P , recall R, and their harmonic mean F1 score
could be computed as follows.

P =
tp

tp+ fp
=

μρ+

μρ+ + (1− μ)ρ−

R =
tp

tp+ fn
=

μρ+

μρ+ + μ(1− ρ+)
= ρ+

F1 =
2PR

P +R

It can be seen that N is cancelled out in the calculation of
the precision, the recall, and the F1 score.
Such a model is quite general to accommodate various

performance measures (see Section 5), though in this paper
we focus on the F1 score only to illustrate the usage of our
model. Let ψ denote the chosen performance measure, then
it is simply a function that depends on μ, ρ+ and ρ− only:
ψ = f(μ, ρ+, ρ−).
This model describes a generative mechanism of a clas-

sifier’s test results. It is summarised as follows, and also
depicted in Figure 1a as a probabilistic graphical model [13]
using common notations.

μ ∼ Beta(β)

yi ∼ Bern(μ) for i = 1, . . . , N

ρ+ ∼ Beta(α+) ρ− ∼ Beta(α−)

ŷi ∼
{
Bern(ρ+) for i = 1, . . . , N if yi = +

Bern(ρ−) for i = 1, . . . , N if yi = −
ψ = f(μ, ρ+, ρ−)



In the above model, each true class label yi is regarded
as an individual sampling event, and each prediction ŷi is
treated as an individual sampling event too. If we aggre-
gate the occurrences of such individual sampling events into
the counts of their occurrences, the model could be greatly
simplified.

Let n+ represent the total number of positive test doc-
uments and n− = N − n+ represent the total number of
negative test documents, then n+ is known to follow the
Binomial distribution with parameters N and μ: n+ ∼
Bin(N,μ), i.e., Pr[n+|N,μ] =

(
N
n+

)
μn+

(1 − μ)N−n+

where(
N
n+

)
= N !

n+!(N−n+)!
is the Binomial coefficient.

Let c+ represent the count of positive predictions (ŷi = 1)
produced on positive test documents (yi = +), then c+

is known to follow the Binomial distribution with param-
eters n+ and ρ+: c+ ∼ Bin(n+, ρ+), i.e., Pr[c+|n+, ρ+] =(
n+

c+

)
ρ+

c+

(1 − ρ+)n
+−c+ . In the same way, we have c− ∼

Bin(n−, ρ−).
The parameters μ, ρ+ and ρ− are the same as before and

their prior distributions remain the same. The deterministic
variable ψ also stays unchanged.

This compact model is equivalent to the original model,
but it will be computationally much more efficient due to
the drastic reduction of sampling events. So hereafter the
compact model will be used instead of the original model for
our work on performance comparison.

The compact model is summarised as follows and depicted
in Figure 1b.

μ ∼ Beta(β)

n+ ∼ Bin(N,μ) n− = N − n+

ρ+ ∼ Beta(α+) ρ− ∼ Beta(α−)

c+ ∼ Bin(n+, ρ+) c− ∼ Bin(n−, ρ−)

ψ = f(μ, ρ+, ρ−)

The usage of conjugate priors (e.g., Beta for Bernoulli or
Binomial) is not obligatory in our model. Actually any rea-
sonable probability distribution can be used as the prior of
μ, ρ+ or ρ−. If we insist on using conjugate priors, it is pos-
sible to simplify the model even further by computing the
posterior probability distributions of our model parameters
analytically and then sampling from the posterior probabil-
ity distributions directly. However, this will only bring mod-
erate improvement to computational efficiency, and more
importantly it will make the model less flexible as some ex-
tensions to the model (such as hierarchical modelling) will
be obstructed. So we shall not go down that direction in
this paper.

3.1.1 Unpaired Model
In the unpaired model for performance comparison, the

predictions from the two classifiers A and B being compared
are assumed to be independent with each other [28,29]. Ac-
tually the two classifiers could be evaluated each on a dif-
ferent test dataset as long as the data come from the same
distribution (e.g., with the same proportion of positive test
examples). So we can simply pool the two probabilistic mod-
els for those two classifiers together, and introduce a deter-
ministic variable δ to capture the difference between their
performance scores ψA and ψB.

δ = ψA − ψB

· · ·

μ

n+A

ψB

n−Ac+A

ψA

β

ρ−A

NA

· · · · · ·

ρ+A

δ

α−A

c−A

α+A

Figure 2: The unpaired model for performance comparison.

ψA

β

ψB

α−

N
c− n−

δ

θ−
α+

μ

n+ c+

θ+

Figure 3: The paired model for performance comparison.

The unpaired model consisting of two separate sub-models
for two classifiers A and B is depicted in Figure 2, where
most of the sub-model for B is omitted as it is symmetric to
that of A.

3.1.2 Paired Model
Although the unpaired model is simple and effective, its

underlying assumption that the predictions from two clas-
sifiers A and B are independent of each other is unrealistic
when those two classifiers are evaluated on the same test
dataset. In contrast to the existing work for classification
performance comparison (see Section 2), we would like to
avoid this unrealistic assumption by modelling the two clas-
sifiers’ predictions jointly as pairs. This is indeed crucial to
assessing the real significance of the two classifiers’ perfor-
mance difference, as we demonstrate later in our experiments
(see Section 4.1).

Considering two classifiers A and B evaluated on the same
document collection, we have for each document xi (i =
1, . . . , N) a prediction outcome pair oi = (ŷA

i , ŷ
B
i ) where

ŷA
i and ŷB

i are the predicted class labels given by A and B
respectively.

Table 2 lists all the possible classification results and their
corresponding probabilities for a test document using two
binary classifiers. Since for each of the two possible yi values
there are four possible oi values {(1, 1), (1, 0), (0, 1), (0, 0)},
this table has 2× 4 = 8 entries in total.
When a test document xi with true class label yi is clas-

sified by the two classifiers A and B, we anticipate that each
possible prediction outcome pair oi will occur with a certain
probability θyioi , i.e., Pr[oi|θyi ] = θyioi . For example, θ+(0,1) is

the probability that a positive (+) document is classified
to be negative (0) by the classifier A and positive (1) by



Table 2: The classification results from two binary classifiers.

yi ŷAi ŷBi oi

+ μ

1 1 (1,1) θ+
(1,1)

1 0 (1,0) θ+
(1,0)

0 1 (0,1) θ+
(0,1)

0 0 (0,0) θ+
(0,0)

− 1− μ

1 1 (1,1) θ−
(1,1)

1 0 (1,0) θ−
(1,0)

0 1 (0,1) θ−
(0,1)

0 0 (0,0) θ−
(0,0)

the classifier B. If we let θ+ denote the vector of parame-
ters θ+oi

and similarly let θ− denote the vector of parameters

θ−oi
, then we can say that oi follows a Categorical distribu-

tion with parameter θ+ when yi is positive and θ− when
yi is negative. In other words, oi ∼ Cat(θ+) if yi = +
and oi ∼ Cat(θ−) if yi = −. It would then be conve-
nient to use the Dirichlet distribution (which is conjugate to
the Categorical distribution) as the prior distribution of pa-
rameter θ+ or θ−. More specifically, θ+ ∼ Dir(α+), i.e.,

Pr[θ+] =
Γ(

∑
k α+

k
)

∏
k Γ(α+

k
)

∏
k θ

α+
k
−1

k where the hyper-parameter

α+ =
(
α+
(1,1), . . . , α

+
(0,0)

)
encodes our prior belief about

the classifier’s prediction accuracy on positive test docu-
ments. In the same way, we have θ− ∼ Dir(α−), where

α− =
(
α−(1,1), . . . , α

−
(0,0)

)
. If we do not have any prior

knowledge, we can simply set α+ = α− = (1, . . . , 1) that
yields a uniform distribution, as we did in our experiments.

Let c+ =
(
c+(1,1), . . . , c

+
(0,0)

)
represent the counts of differ-

ent types of prediction outcome pairs produced on positive
test documents, then c+ is known to follow the Multinomial
distribution with parameters n+ and θ+: c+ ∼ Mult(n+,θ+),

i.e., Pr[c+|N,θ+] = n+!

c+
(1,1)

!...c+
(0,0)

!

∏
k θ

c+
k

k =
Γ((

∑
k c+

k )+1)
∏

k Γ(c+
k
+1)

∏
k θ

c+
k

k .

In the same way, we have c− ∼ Mult(n−,θ−).
Once the parameters μ, θ+ and θ− have been estimated, it

will be easy to calculate, for each classifier, the contingency
table of“expected”classification results as before by noticing
the following facts:

ρ+A=θ+(1,1) + θ+(1,0) ρ−A=θ−(1,1) + θ−(1,0)
ρ+B=θ+(1,1) + θ+(0,1) ρ−B=θ−(1,1) + θ−(0,1)

Thus the performance scores ψA and ψB, as well as their
difference δ could be estimated.

The paired model is summarised as follows and depicted
in Figure 3.

μ ∼ Beta(β)

n+ ∼ Bin(N,μ) n− = N − n+

θ+ ∼ Dir(α+) θ− ∼ Dir(α−)

c+ ∼ Mult(n+,θ+) c− ∼ Mult(n−,θ−)

ψA = f(μ,θ+,θ−) ψB = f ′(μ,θ+,θ−)

δ = ψA − ψB

3.2 Decision Making

3.2.1 Bayes Factor
Given a probabilistic model of the chosen performance

measure, we can consider the comparison of two classifiers
as a model selection problem and utilise the Bayes factor to
address it [1, 2].

In our context, the Bayes factor is the marginal likelihood
of classification results data for the null model Pr[D|M0]
(where two classifiers perform equally well) relative to the
marginal likelihood of classification results data for the al-
ternative model Pr[D|M1] (where one classifier works better
than the other classifier): BF = Pr[D|M0]/Pr[D|M1]. As
the BF becomes larger, the evidence increases in favour of
model M0 over model M1. The rule of thumb for interpret-
ing the magnitude of the BF is that there is “substantial”
evidence for the null model M0 when the BF exceeds 3, and
similarly, “substantial” evidence for the alternative model
M1 when the BF is less than 1

3
[11].

Although for simple models the value of Bayes factor can
be derived analytically as shown by [1,2], for complex mod-
els it can only be computed numerically using for exam-
ple the Savage-Dickey (SD) method [5]. The SD method
assumes that the prior on the variance in the null model
equals the prior on the variance in the alternative model
at the null value: Pr[σ2|M0] = Pr[σ2|M1, δ = 0]. From
this it follows that the likelihood of the data in the null
model equals the likelihood of the data in the alternative
model at the null value: Pr[D|M0] = Pr[D|M1, δ = 0].
Thus, the Bayes factor can be determined by considering
the alternative hypothesis alone, because it is just the ra-
tio of the probability density at δ = 0 in the posterior
relative to the probability density at δ = 0 in the prior:
BF = Pr[δ = 0|M1,D]/Pr[δ = 0|M1].

3.2.2 Bayesian Estimation
Instead of relying on the Bayes factor which is a single

value, we can make use of the entire posterior probability
distribution of δ, the performance difference between two
classifiers, for their comparison. This Bayesian (parameter)
estimation approach to performance comparison is said to
be more informative and more robust than using the Bayes
factor [14,15].

Given the posterior probability distribution of δ, we can
then reach a discrete judgement (decision) about how those
two classifiers A and B compare with each other by exam-
ining the relationship between the 95% Highest Density In-
terval (HDI) of δ and the user-defined Region of Practical
Equivalence (ROPE) of δ [14, 15]. The 95% HDI is a useful
summary of where the bulk of the most credible values of
δ falls: by definition, every value inside the HDI has higher
probability density than any value outside the HDI, and the
total mass of points inside the 95% HDI is 95% of the distri-
bution. The ROPE of δ, e.g., [−0.05,+0.05], encloses those
values of δ deemed to be negligibly different from its null
value for practical purposes. Using the HDI together with
the ROPE, the performance comparison decisions could be
made as follows:

• if the HDI sits fully within the ROPE (as illustrated
in Figure 6), A is practically equivalent (≈) to B;

• if the HDI sits fully at the left or right side of the
ROPE, A is significantly worse (�) or better (�)
than B respectively;



Figure 4: An example trace plot.

• if the HDI sits mainly though not fully at the left or
right side of the ROPE, A is slightly worse (<) or
better (>) than B respectively, but more experimental
data would be needed to make a reliable judgement.

The need to specify the ROPE may sound like an extra bur-
den on users compared to NHST, but in fact it is only mak-
ing a hidden problem — how much performance difference
would really matter for practical purposes (such as customer
satisfaction and business profit) — explicit. The determina-
tion of the ROPE requires only knowledge about the appli-
cation domain but not expertise in statistics. When the HDI
is far away from or tightly surrounding the null value, the ex-
act ROPE is inconsequential as any reasonable ROPE would
lead to the same decision. Furthermore, in many situations,
the exact ROPE can be left indeterminate. By reporting
the HDI and other summary information about the full pos-
terior distribution of δ, readers can apply whatever ROPE
appropriate for them to make their own decisions.

3.3 Software Implementation
The purpose of building these models for classification re-

sults is to assess the Bayesian posterior probability of δ —
the performance difference between two classifiers A and B.
An approximate estimation of δ can be obtained by sam-
pling from its posterior probability distribution via Markov
Chain Monte Carlo (MCMC) [15] techniques.

We have implemented our models with an MCMC method
Metropolis-Hastings sampling [15]. The default configura-
tion is to generate 50,000 samples, with no “burn-in”, “lag”,
or “multiple-chains”. It has been argued in the MCMC liter-
ature that those tricks are often unnecessary: it is perfectly
right to do a single long sampling run and keep all sam-
ples [13, 18]. In fact, the approximation accuracy of our
program is very high: its Monte Carlo error (MC error)
was usually close to 0 and never went beyond 0.002 in all
our experiments (see Section 4). Figure 4 shows an exam-
ple MCMC trace of our program in the experiments which
clearly demonstrates the convergence of MCMC sampling.

In order to calculate the Bayes factor using the SD method
(see Section 3.2.1), we approximate the posterior density
Pr[δ = 0|M1,D] and the prior density Pr[δ = 0|M1] by fit-
ting a smooth function to the corresponding MCMC samples
via kernel density estimation (KDE).

The program is written in Python 3 utilising the module

PyMC31 [22] for MCMC based Bayesian model fitting. The
source code is made open to the research community as on-
line supplementary material2. It is free, easy to use, and
extensible to more sophisticated models (see Section 5).

We should mention that this program for Bayesian perfor-
mance comparison runs much slower than standard frequen-
tist NHST techniques. On a machine with Intel x64 Core i7
CPU 2.30GHz, a sign-test or t-test would normally finish in
less than 0.02 seconds, but our program could take up to 20
seconds for one comparison. Most of the time is spent on the
computationally expensive MCMC sampling as it does re-
quire a decent number of samples to achieve high-fidelity ap-
proximation of probability distributions. Nevertheless, such
a speed should be perfectly acceptable for the purpose of
comparing classifiers because the classification experiments
would usually take much longer time. Therefore the pro-
gram is still very practical. Moreover, the program would
be greatly accelerated if GPUs could be used by Theano, the
underlying computational engine for PyMC3.

4. EXPERIMENTS

4.1 Synthetic Data
To demonstrate the advantage of our paired model over

unpaired model, we perform power analysis using simula-
tions. The statistical power is the probability of achieving
the goal of a planned empirical study, if a suspected under-
lying state of the world is true [15]. As the power increases,
there are decreasing chances of a Type II error aka the false
negative rate β since the power is equal to 1− β.
We consider the following two scenarios where the two

hypothetical classifiers A and B are somewhat correlated.
The scenario (a):
Pr[+] = μ = 0.5
Pr[(1, 1)|+] = θ+(1,1) = 0.3, Pr[(1, 0)|+] = θ+(1,0) = 0.3,

Pr[(0, 1)|+] = θ+(0,1) = 0.2, Pr[(0, 0)|+] = θ+(0,0) = 0.2,

Pr[−] = 1− μ = 0.5
Pr[(1, 1)|−] = θ−(1,1) = 0.2, Pr[(1, 0)|−] = θ−(1,0) = 0.2,

Pr[(0, 1)|−] = θ−(0,1) = 0.3, Pr[(0, 0)|−] = θ−(0,0) = 0.3,

It is easy to see that FA
1 = 0.6 while FB

1 = 0.5, so the goal
here is to detect “A� B”.
The scenario (b):
Pr[+] = μ = 0.5
Pr[(1, 1)|+] = θ+(1,1) = 0.3, Pr[(1, 0)|+] = θ+(1,0) = 0.2,

Pr[(0, 1)|+] = θ+(0,1) = 0.2, Pr[(0, 0)|+] = θ+(0,0) = 0.3,

Pr[−] = 1− μ = 0.5
Pr[(1, 1)|−] = θ−(1,1) = 0.3, Pr[(1, 0)|−] = θ−(1,0) = 0.2,

Pr[(0, 1)|−] = θ−(0,1) = 0.2, Pr[(0, 0)|−] = θ−(0,0) = 0.3,

It is easy to see that FA
1 = 0.5 and FB

1 = 0.5, so the goal here
is to detect “A ≈ B”. Please note that this goal is infeasible
using the frequentist NHST.

The power analysis results are shown in Table 3 and also
Figure 5, which clearly indicate the superiority of the paired
model to the unpaired model in terms of statistical power.

The reason why the unpaired model does not have as
much statistical power as the paired model is because the
former cannot tell whether the prediction differences (or

1http://pymc-devs.github.io/pymc3/
2http://www.dcs.bbk.ac.uk/˜dell/publications/dellzhang
sigir2016 supp.html



Table 3: The power analysis of our models.

scenario goal dataset-size
power

unpaired paired

(a) A� B

500 0.26 0.30
1000 0.41 0.52
1500 0.70 0.76
2000 0.79 0.84
2500 0.87 0.90
3000 0.92 0.94
3500 0.96 0.97

(b) A ≈ B

500 0.00 0.00
1000 0.01 0.22
1500 0.26 0.58
2000 0.63 0.81
2500 0.72 0.87
3000 0.88 0.96
3500 0.92 0.99

agreements) between the two classifiers are consistent or not
while the latter can. Inconsistent prediction differences yield
a larger variability than consistent ones, and consequently
more are required to exhibit statistical significance. Sup-
pose that classifier A has a higher F1 score than classifier B.
If A almost always makes better predictions than B when
they disagree, a relatively small amount of such consistent
differences could give us enough confidence to assert statis-
tical significance, which is recognised by the paired model
but not the unpaired model.

4.2 Real-World Data
We have conducted experiments on a standard benchmark

dataset for text classification, 20newsgroups [16], of which
the results are reported here. In order to ensure the re-
producibility of our experimental results, we choose to use
not the raw document collection, but a publicly-available
ready-made “vectorised” version3, as in [28, 29]. We have
also done experiments on other “vectorised” datasets includ-
ing the classic Reuters-21578 [27], but due to the space
limit those experimental results are reported only as online
supplementary material together with our program’s source
code (see Section 3.3).

In the experiments, we have applied our proposed ap-
proach to carefully analyse the performances of two well-
known supervised machine learning algorithms that are widely
used for real-world text classification tasks: Naive Bayes
(NB) and linear Support Vector Machine (SVM) [19]. For
the former, we consider its two common variations: one with
the Bernoulli event model (NBBern) and the other with the
Multinomial event model (NBMult) [20]. For the latter, we
consider its two common variations: one with the L1 norm
penalty (SVML1) and the other with the L2 norm penalty
(SVML2) [7, 30]. Thus we have four different classifiers in
total. Obviously, the classification results of NBBern and
NBMult would be highly correlated, and those of SVML1

and SVML2 as well. Among them, SVML2 is widely re-
garded as the state-of-the-art text classifier [17,25,27]. It is
also worth to notice that the NB algorithms will be applied
not to the raw bag-of-words text datasets as people usually
do, but on the vectorised 20newsgroups dataset which has

3http://scikit-learn.org/stable/datasets/twenty
newsgroups.html

already been transformed by TF-IDF term weighting and
document length normalisation.

We have used the off-the-shelf implementation of these
classification algorithms provided by a Python machine learn-
ing library scikit-learn4 in our experiments, again for the
reproducibility reasons. The smoothing parameter α for the
NB algorithm and the regularisation parameter C for the
linear SVM algorithm have been tuned via grid search with
5-fold cross-validation on the training data for the macro-
averaged F1 score. The optimal parameters found are: NBBern

with α = 10−14, NBMult with α = 10−3, SVML1 with
C = 22, SVML2 with C = 21.

Table 4 shows the results of performance comparison be-
tween NBBern and NBMult, based on which we can confi-
dently say that for most of the target categories, NBBern is
outperformed by NBMult. Such results confirm the finding
of [20] on this harder dataset.

Table 5 shows the results of performance comparison be-
tween SVML1 and SVML2, based on which we can confi-
dently say that for most of the target categories, SVML1

and SVML2 have no practical difference on classification ef-
fectiveness as measured by the F1 score (given the ROPE
[−0.05,+0.05]), though the former may have its advantages
in terms of sparsity. Such results are complementary to
those reported in [30].

Table 6 shows the results of performance comparison be-
tween NBMult and SVML2 — the better performing classi-
fiers from the NB and SVM camps. It can be clearly seen
that for most of the target categories, the competition be-
tween NBMult and SVML2 is too close to call: more test
data would be needed to make a reliable judgement which
one works better. Nevertheless, for six out of the eight target
categories on which we can indeed make reliable judgements,
NBMult and SVML2 are practically equivalent (given the
ROPE [−0.05,+0.05]). This phenomenon somewhat sup-
ports the claim of [23] that NBMult, if properly enhanced
by TF-IDF term weighting and document length normalisa-
tion, can reach a comparable performance as SVML2.

On the micro (document) level, no NHST method exists
for the comparison of F1 scores. So in the above tables we
show the results of using NHST to compare classification
accuracies instead: the column “sign-test” and “t-test” con-
tain the two-sided p-values of micro level sign-test (called
s-test in [27]) and unpaired t-test (called p-test in [27]) re-
spectively. The symbol 	 indicates that the accuracy differ-
ence between A and B is statistically significant (p < 0.05)
according to NHST. When NHST fails to reject the null hy-
pothesis that the two classifiers work equally well, no con-
clusion can be drawn from the comparison.

In all those tables, our proposed Bayesian performance
comparison method has offered rich information about the
difference between two classifiers’ F1 scores: in addition to
the final judgement (“decision”), we have shown the pos-
terior “mean”, standard deviation (“std”), the Bayes factor
estimated by the SD method (“BFSD”), the percentage lower
or greater than the null value 0 (“LG pct”), the percentage
covered by the ROPE (“ROPE pct”), and the 95% “HDI”.
By contrast, the frequentist NHST would lead to a far less
complete picture: it has only the p-values (and maybe also
the confidence intervals) to offer. Furthermore, note that
the judgements made by the Bayesian estimation on sev-

4http://scikit-learn.org/stable/



(a) example scenario: A� B. (b) example scenario: A ≈ B.

Figure 5: Comparing the statistical power of paired and unpaired models.

Table 4: The results of performance comparison between NBBern and NBMult.

category
frequentist Bayesian

sign-test t-test mean std BFSD LG pct ROPE pct HDI decision

0 � 0.000 � 0.008 −0.081 0.021 � 0.003 100.0%<0<0.0% 6.6% [−0.125,−0.041] <
1 � 0.000 � 0.000 −0.114 0.017 � 0.000 100.0%<0<0.0% 0.0% [−0.148,−0.080] �
2 � 0.000 � 0.000 −0.400 0.028 � 0.000 100.0%<0<0.0% 0.0% [−0.456,−0.345] �
3 � 0.000 � 0.003 −0.095 0.016 � 0.000 100.0%<0<0.0% 0.2% [−0.126,−0.062] �
4 � 0.000 � 0.000 −0.249 0.019 � 0.000 100.0%<0<0.0% 0.0% [−0.286,−0.211] �
5 � 0.000 � 0.000 −0.101 0.017 � 0.000 100.0%<0<0.0% 0.1% [−0.135,−0.069] �
6 � 0.000 � 0.000 −0.136 0.016 � 0.000 100.0%<0<0.0% 0.0% [−0.168,−0.105] �
7 � 0.000 � 0.001 −0.092 0.016 � 0.000 100.0%<0<0.0% 0.4% [−0.123,−0.061] �
8 � 0.000 � 0.000 −0.144 0.017 � 0.000 100.0%<0<0.0% 0.0% [−0.178,−0.111] �
9 � 0.000 � 0.001 −0.080 0.013 � 0.000 100.0%<0<0.0% 0.8% [−0.105,−0.055] �
10 � 0.000 � 0.000 +0.108 0.017 � 0.000 0.0%<0<100.0% 0.0% [+0.074,+0.142] �
11 � 0.000 � 0.002 −0.092 0.016 � 0.000 100.0%<0<0.0% 0.4% [−0.125,−0.061] �
12 � 0.000 � 0.002 −0.097 0.020 � 0.000 100.0%<0<0.0% 0.8% [−0.137,−0.058] �
13 � 0.000 � 0.000 −0.115 0.016 � 0.000 100.0%<0<0.0% 0.0% [−0.147,−0.084] �
14 � 0.000 � 0.000 −0.109 0.016 � 0.000 100.0%<0<0.0% 0.0% [−0.139,−0.079] �
15 0.064 0.178 −0.027 0.016 � 3.132 95.7%<0<4.3% 92.2% [−0.059,+0.004] <
16 � 0.024 0.151 −0.105 0.019 � 0.000 100.0%<0<0.0% 0.1% [−0.141,−0.068] �
17 � 0.000 � 0.000 −0.102 0.016 � 0.000 100.0%<0<0.0% 0.1% [−0.134,−0.070] �
18 � 0.000 � 0.034 −0.088 0.020 � 0.007 100.0%<0<0.0% 2.9% [−0.128,−0.049] <
19 � 0.000 � 0.011 −0.040 0.030 2.389 91.3%<0<8.7% 62.9% [−0.097,+0.022] <

eral cases are different from those made by the frequentist
NHST (e.g., at the significance level 0.05). So even if in
some researchers’ opinion the superiority of the former over
the latter is still debatable, there is no doubt that the former
can at least be complementary to the latter.

Figure 6 illustrates the visualisation of Bayesian perfor-
mance comparison results produced by our program: the
“posterior plot” sub-graph shows the posterior probability
distribution of the performance difference variable δ; and
the“factor plot”sub-graph shows the estimation of the Bayes
factor by the SD method.

5. EXTENSIONS
The proposed Bayesian approach to performance compar-

ison has been described above in the most basic setting for
concreteness and simplicity, but it is in fact readily extensi-
ble to the following more general scenarios.

Multiple classes. It would be straightforward to extend
our model to multi-class classification (either single-label or

multi-label): we will need one μ parameter and a pair of
θ parameters for each class. Thus we are able to measure
each classifier’s overall performance using micro-averaged or
macro-averaged F1 scores [27], and compute their difference
as the deterministic variable δ in the model [28]. Note that
here δ is estimated using a large number of prediction out-
comes for all test documents, rather than just a small num-
ber of F1 scores for test categories as in [27] (see Section 2.1).
It would be promising to go further to develop a Bayesian hi-
erarchical model [15] where the classifier’s parameters θj for
different classes are governed by a higher-level overarching
hyper-parameter η (e.g., representing the overall probabil-
ity of making correct predictions) and thus able to “share
statistical strength” [29]. A potential problem, though, is
the explosive growth of possible prediction outcome combi-
nations along with the increase of class numbers, which in
the worst situation may force us into backing off to the as-
sumption of independence between classifiers so as to keep
the model computationally tractable.

Other performance measures. To compare classifiers



Table 5: The results of performance comparison between SVML1 and SVML2.

category
frequentist Bayesian

sign-test t-test mean std BFSD LG pct ROPE pct HDI decision

0 � 0.049 0.299 −0.027 0.018 � 3.399 93.6%<0<6.4% 89.9% [−0.063,+0.008] <
1 0.523 0.706 −0.011 0.013 � 9.427 80.6%<0<19.4% 99.9% [−0.038,+0.014] ≈
2 0.632 0.774 −0.007 0.014 � 12.058 68.3%<0<31.7% 99.8% [−0.035,+0.020] ≈
3 0.270 0.542 −0.020 0.014 � 4.593 92.3%<0<7.7% 98.5% [−0.047,+0.007] ≈
4 0.247 0.524 −0.022 0.014 � 3.781 94.8%<0<5.2% 97.4% [−0.049,+0.005] ≈
5 1.000 0.960 −0.009 0.014 � 12.206 73.2%<0<26.8% 99.8% [−0.035,+0.019] ≈
6 � 0.000 � 0.031 −0.053 0.013 � 0.011 100.0%<0<0.0% 41.9% [−0.078,−0.029] <
7 � 0.000 � 0.000 −0.133 0.017 � 0.000 100.0%<0<0.0% 0.0% [−0.166,−0.098] �
8 0.221 0.457 −0.015 0.014 � 8.165 84.4%<0<15.6% 99.3% [−0.042,+0.014] ≈
9 � 0.000 � 0.000 +0.126 0.017 � 0.000 0.0%<0<100.0% 0.0% [+0.094,+0.160] �
10 0.515 0.657 −0.013 0.011 � 9.261 87.7%<0<12.3% 99.9% [−0.035,+0.009] ≈
11 0.771 0.837 −0.005 0.013 � 12.937 64.0%<0<36.0% 100.0% [−0.030,+0.021] ≈
12 0.061 0.298 −0.033 0.016 1.209 98.2%<0<1.8% 84.7% [−0.066,−0.003] <
13 0.264 0.463 −0.019 0.015 � 5.513 90.2%<0<9.8% 97.9% [−0.050,+0.009] ≈
14 0.733 0.814 −0.011 0.014 � 10.671 79.3%<0<20.7% 99.7% [−0.036,+0.018] ≈
15 0.192 0.448 −0.035 0.013 � 0.330 99.6%<0<0.4% 86.9% [−0.062,−0.011] <
16 0.065 0.355 −0.030 0.014 1.225 98.7%<0<1.3% 92.1% [−0.057,−0.003] <
17 0.105 0.333 +0.014 0.014 � 6.589 15.7%<0<84.3% 99.3% [−0.015,+0.041] ≈
18 � 0.014 0.192 −0.014 0.016 � 8.065 82.0%<0<18.0% 98.7% [−0.045,+0.017] ≈
19 � 0.033 0.265 +0.008 0.022 � 7.488 36.5%<0<63.5% 96.9% [−0.035,+0.051] >

Table 6: The results of performance comparison between NBMult and SVML2.

category
frequentist Bayesian

sign-test t-test mean std BFSD LG pct ROPE pct HDI decision

0 0.314 0.536 −0.001 0.022 � 8.542 50.5%<0<49.5% 97.7% [−0.043,+0.042] ≈
1 0.386 0.521 +0.028 0.018 � 3.128 6.2%<0<93.8% 89.0% [−0.007,+0.063] >
2 0.056 0.205 −0.028 0.021 � 3.739 91.2%<0<8.8% 84.5% [−0.069,+0.013] <
3 1.000 1.000 +0.030 0.018 2.966 5.1%<0<94.9% 86.8% [−0.006,+0.066] >
4 0.840 0.853 +0.006 0.018 � 9.533 37.6%<0<62.4% 99.0% [−0.031,+0.040] ≈
5 � 0.017 0.089 +0.051 0.017 � 0.075 0.2%<0<99.8% 48.0% [+0.017,+0.083] >
6 0.057 0.188 +0.013 0.016 � 8.805 20.6%<0<79.4% 99.1% [−0.017,+0.046] ≈
7 0.180 0.312 +0.031 0.018 2.566 4.4%<0<95.6% 85.1% [−0.005,+0.067] >
8 1.000 1.000 +0.007 0.018 � 9.551 35.9%<0<64.1% 98.9% [−0.028,+0.042] ≈
9 � 0.000 � 0.000 +0.215 0.019 � 0.000 0.0%<0<100.0% 0.0% [+0.180,+0.253] �
10 � 0.000 � 0.000 −0.115 0.017 � 0.000 100.0%<0<0.0% 0.0% [−0.149,−0.082] �
11 � 0.024 0.102 −0.016 0.017 � 7.016 84.0%<0<16.0% 98.1% [−0.048,+0.017] ≈
12 � 0.000 � 0.001 +0.073 0.020 � 0.008 0.0%<0<100.0% 12.4% [+0.034,+0.113] >
13 � 0.000 � 0.009 +0.060 0.016 � 0.004 0.0%<0<100.0% 26.1% [+0.029,+0.090] >
14 � 0.038 0.129 +0.050 0.017 � 0.194 0.2%<0<99.8% 50.7% [+0.016,+0.082] >
15 � 0.009 0.064 −0.009 0.014 � 10.473 74.6%<0<25.4% 99.8% [−0.037,+0.021] ≈
16 0.213 0.430 +0.041 0.017 0.650 0.8%<0<99.2% 71.1% [+0.007,+0.074] >
17 � 0.010 0.070 +0.053 0.016 � 0.058 0.0%<0<100.0% 43.2% [+0.023,+0.085] >
18 0.119 0.349 +0.015 0.019 � 6.927 22.2%<0<77.8% 96.5% [−0.023,+0.053] >
19 � 0.021 0.179 −0.061 0.031 0.825 97.6%<0<2.4% 36.0% [−0.119,+0.001] <

using a performance measure different from the F1 score,
we would only need to replace the function f(μ,θ+,θ−) for
computing ψ, as long as that performance measure could be
calculated based on the classification contingency table alone
[12]. For example, it would be straightforward to extend our
model to handle the more general Fβ measure (β ≥ 0) [19,26]
with β �= 1: we just need to substitute the Fβ formula for
the F1 formula in the function of ψ. For another example,
the Area Under the ROC Curve (AUC) is essentially the
proportion of correctly ranked document pairs [9, 12], so it
could be modelled in a similar way.

Other tasks. More generally, the idea of building a
Bayesian probabilistic graphical model to make comprehen-
sive performance comparison could be applied to not just
classifiers, but also search systems (see the ICTIR-2015 best
paper [3]), recommender systems, and advertising systems.

6. CONCLUSIONS
This paper tries to address the problem of comparing text

classifiers’ performances by appealing to Bayesian reason-
ing. Although we ourselves believe that Bayesian statistics
is “the way it should be”, we understand that not everyone is
a Bayesian or wants to become a Bayesian. Our argument
is not whether being a Bayesian is philosophically better
than being a frequentist, but that our Bayesian estimation
based approach to performance comparison of text classifiers
avoids all the aforementioned practical weaknesses of NHST
(see Section 2.1) and it provides much richer information
about the difference between two classifiers’ performances
than NHST does, therefore it can supersede or at least com-
plement the currently popular frequentist approach.



(a) posterior plot (b) factor plot

Figure 6: A ≈ B — NBMult is practically equivalent to SVML2 for target category 8.
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