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Abstract. This is the third paper in a series establishing a quantitative relation between
inflationary scalar field potential landscapes and the relic perturbations left by the collision
between bubbles produced during eternal inflation. We introduce a new method for com-
puting cosmological observables from numerical relativity simulations of bubble collisions in
one space and one time dimension. This method tiles comoving hypersurfaces with locally-
perturbed Friedmann-Robertson-Walker coordinate patches. The method extends previous
work, which was limited to the spacetime region just inside the future light cone of the
collision, and allows us to explore the full bubble-collision spacetime. We validate our new
methods against previous work, and present a full set of predictions for the comoving curva-
ture perturbation and local negative spatial curvature produced by identical and non-identical
bubble collisions, in single scalar field models of eternal inflation. In both collision types,
there is a non-zero contribution to the spatial curvature and cosmic microwave background
quadrupole. Some collisions between non-identical bubbles excite wall modes, giving extra
structure to the predicted temperature anisotropies. We comment on the implications of
our results for future observational searches. For non-identical bubble collisions, we also find
that the surfaces of constant field can readjust in the presence of a collision to produce spa-
tially infinite sections that become nearly homogeneous deep into the region affected by the
collision. Contrary to previous assumptions, this is true even in the bubble into which the
domain wall is accelerating.

Keywords: Cosmic strings, domain walls, monopoles, cosmological perturbation theory,
inflation, initial conditions and eternal universe
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1 Introduction

In the well-studied “false vacuum” variant of eternal inflation, our universe is contained
inside one bubble among many, each nucleated from a metastable false vacuum. The relic
perturbations left by the collision between bubbles have been established as a quantitative ob-
servational probe of eternal inflation [1–41]. For a review of eternal inflation see refs. [42, 43];
for a big picture review of bubble collisions in eternal inflation, see refs. [4, 21].

This paper is the third in a series which has established a quantitative connection
between the scalar field Lagrangian underlying eternal inflation and cosmological observ-
ables [11, 12]. The first two papers in the series served as an important proof of principle
that bubble collisions can lead to quantitative constraints on the theory underlying eternal
inflation. These predictions have been used to forecast the ability of near-term cosmic mi-
crowave background (CMB) [44] and large scale structure [13] datasets to place constraints on
the theory underlying eternal inflation. Previous work has already constrained the presence
of bubble collisions using CMB data from the WMAP satellite [5–7, 10, 39, 40]. Unfortu-
nately, the method for extracting observables used in these previous works was limited to
computing perturbations in the vicinity of the collision boundary. This prevented an assess-
ment of observables far inside the spacetime region affected by the collision. In this paper, we
overcome this limitation by introducing a new method for computing observables in a bubble
collision spacetime that allows us to make predictions for all observers. This is accomplished
by tiling the reheating surface with a continuous set of cosmological coordinate patches. Our
new method allows us to address a number of outstanding questions regarding the overall
structure of the collision spacetime and the possibility of new observables for bubble collisions
in eternal inflation.

– 1 –
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2 Extracting cosmological observables for bubble collisions

To construct the bubble collision spacetimes, we use the simulation code described in ref. [11].
Within this framework, we assume the SO(2,1) symmetry of the collision space-time [34]
between two Coleman-de Luccia vacuum bubbles [45, 46], allowing us to perform simulations
in one space and one time dimension. For the single-field models we study, this has been
shown to be a good approximation in ref. [47].

Simulations are performed in the global foliation of the SO(2,1) symmetric collision
space-time:

H2
Fds

2 = −α(N, x)2dN2 + a(N, x)2 cosh2Ndx2 + sinh2N(dχ2 + sinh2 χdϕ2), (2.1)

where x is the simulation spatial variable (periodic with period 2π), N is a time variable
which roughly measures the number of e-foldings in the surrounding eternally inflating de
Sitter space, α and a are the simulated metric functions, and HF is the false vacuum Hubble
constant. In the false vacuum outside the bubbles, i.e. in de Sitter space, α = a = 1 for
all N . Generally, an observation bubble containing a phenomenologically viable epoch of
inflation and a collision bubble (which may or may not contain the same vacuum), are input
as initial conditions and then evolved using the coupled Einstein and scalar field equations.
The initial conditions are fixed by nucleation physics [45, 46] and choosing an (arbitrary)
reference frame, thus given a scalar field potential, the only free parameter in the simulation
is the initial separation ∆xsep between the colliding bubbles. The output is a complete
description of the collision spacetime in terms of φ(N, x), α(N, x), and a(N, x). In the

following, we measure φ in terms of MPl ≡ G−1/2N .

In order to make contact with observations, we define a coordinate system about each
position in the simulation that corresponds to a perturbed Friedmann-Robertson-Walker
(FRW) universe. The comoving gauge is most convenient, since the comoving curvature
perturbation is conserved on superhorizon scales. In ref. [11] this was accomplished by
evolving a set of geodesics through the simulation to construct a perturbed FRW universe
in the synchronous gauge. A linear gauge transformation was then used to determine the
comoving curvature perturbation from the metric perturbations in synchronous gauge. This
method was rather limiting, since the extracted comoving curvature perturbation was only
valid in the coordinate range where it was in the linear regime. In particular, it was impossible
to probe deep within the collision region.

In this paper, we introduce a new method which allows us to directly extract the comov-
ing curvature perturbation observed locally by any observer in the simulation. Conveniently,
for single-field models, the comoving gauge is defined by slices of constant field. As we now
outline, it is therefore possible to perform a coordinate transformation under which the in-
duced metric on slices of constant field deriving from eq. (2.1) is explicitly the perturbed
open FRW metric in comoving gauge.

2.1 Computing the comoving curvature perturbation

First, let us define a new variable u that labels proper distance along the comoving slice
(along which N is not necessarily constant):

u(x) =

∫ x

0

√
(a coshN)2 −

(
α
dN

dx

)2

dx′. (2.2)

– 2 –
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Note that N is not a function of x; dN/dx represents the change in N with x as one moves
along the slice. This results in the spatial metric

H2
Fds

2 = du2 + sinh2N(u)(dχ2 + sinh2 χdϕ2), (2.3)

where N(u) is defined as value of N obtained by moving the proper distance u along the slice.
We then define a new variable ξ that is a linear transformation of u,

u− u0 = a0(ξ − ξ0) (2.4)

with the constants u0, a0 and ξ0 as yet unspecified, such that eq. (2.3) can be written as

H2
Fds

2 = a20[dξ
2 + (1− 2B) cosh2 ξ(dχ2 + sinh2 χdϕ2)] (2.5)

where

1− 2B =
sinh2N(u)

a20 cosh2 ξ(u)
. (2.6)

When B = 0, eq. (2.5) has constant negative spatial curvature, and represents a constant-time
hypersurface in an anisotropic foliation of an open FRW universe (the anisotropic hyperbolic
coordinates described in ref. [11]) with scale factor a0. The metric function B defines a scalar
perturbation on top of an open FRW universe.

We can fix the constants ξ0 and a0 by requiring that at an arbitrary position u0 ≡ u(x0)
on the slice we have

B(u0) = 0,
dB

dξ
(u0) = 0 (2.7)

which yields

ξ0 = sinh−1
(

coshN0
dN0

du0

)
(2.8)

a0 =
sinhN0

cosh ξ0
, (2.9)

where N0 = N(u0). The choice B(u0) = 0 amounts to absorbing the local expansion into
the scale factor a0. The choice dB/dξ = 0 corresponds to requiring the observer to be at
rest with respect to the spatial slice (gradients of B would induce a peculiar velocity). The
constant ξ0 corresponds to the observer’s position in the anisotropic hyperbolic coordinates.

We now find the Ricci 3-scalar as a function of the perturbation B (neglecting the
conformal factor a0),

R(3) =− 6− 32B2(B2 − 1) +
4B

cosh2 ξ
(8B3 + 4B2 − 2B − 1)

− 4 tanh ξ(8B3 + 4B2 − 10B − 3)∂ξB

− 2(4B2 + 4B − 1)(∂ξB)2 + 4(2B + 1)∂2ξB.

(2.10)

Note that R(3) = −6 when B = 0, representing the overall negative spatial curvature of
comoving slices in unperturbed bubbles. The Ricci scalar can also be written in terms of the
scalar curvature perturbation R,

R(3)(ξ) = −6 + 4∇2R. (2.11)

– 3 –



J
C
A
P
0
7
(
2
0
1
6
)
0
2
0

Since R(3) is a function of ξ only, the perturbation R depends only upon ξ as well. The
Laplacian is then given by

∇2R =

(
∂2ξ +

2 tanh ξ − 2∂ξB

1− 2B
∂ξ

)
R. (2.12)

Plugging eq. (2.12) into the right-hand side of eq. (2.11), and eq. (2.10) into the left side
gives an elliptic differential equation for R in terms of B. This can then be integrated to
find R(ξ), with the integration constant fixed by R = dR/dξ = 0 at the observer position ξ0
(this corresponds to an observer at rest with respect to the spatial hypersurface).

Each position x0 on a slice of constant field defines a perturbed open FRW coordinate
patch characterized by a scale factor a0(x0) and curvature perturbation R(ξ|x0). We cover
the entire constant field spatial slice by the set of all such patches. The set of patches
characterize observables at each comoving position after inflation in the collision space-time.

2.2 Cartesian coordinates

Observables are most easily computed by going to Cartesian coordinates X,Y, Z and trans-
lating an observer at some fiducial point ξ0 to the origin, where the metric is given by

H2
Fds

2 = −dτ2 +

[
a(τ)

1− R2

4

]2 (
dX2 + dY 2 + dZ2

)
. (2.13)

This is convenient because the past light cones of observers projected onto a constant time
hypersurface are spheres centered on the origin of hyperbolic Cartesian coordinates. The
metric for anisotropic hyperbolic coordinates is given by

H2
Fds

2 = −dτ2 + a(τ)2
[
dξ2 + cosh2 ξ

(
dρ2 + sinh2 ρdϕ2

)]
. (2.14)

Finding the cartesian coordinates in terms of the anisotropic hyperbolic coordinates, we
obtain:

X =
2 sinh ξ

1 + cosh ξ cosh ρ
(2.15)

Y =
2 sinh ρ cosh ξ

1 + cosh ξ cosh ρ
cosϕ (2.16)

Z =
2 sinh ρ cosh ξ

1 + cosh ξ cosh ρ
sinϕ, (2.17)

or equivalently,

sinh ξ =
X(

1− R2

4

) , tanh ρ =

√
Y 2 + Z2(
1 + R2

4

) , tanϕ =
Z

Y
. (2.18)

The symmetry of the collision spacetime implies that different observers on the same
constant ξ slice are equivalent. We can therefore take any observer’s position to be at ρ = 0.
To move to a frame where the observer is at the origin of Cartesian coordinates, we perform
the following coordinate transformation:

sinh ξ′ = cosh ξ0 sinh ξ − sinh ξ0 cosh ξ cosh ρ, (2.19)

cosh ρ′ =
cosh ξ0 cosh ξ cosh ρ− sinh ξ0 sinh ξ

cosh ξ′
, (2.20)

ϕ′ = ϕ. (2.21)

– 4 –
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Figure 1. Constant FRW time hypersurfaces in the post-collision spacetime, represented in terms
of the hyperbolic Cartesian coordinates. The hyperbolic Cartesian coordinates are bounded between
0 < R < 2; the edge of the disc is an infinite proper distance from the center. Vertical solid lines
correspond to surfaces of constant ξ and horizontal solid lines surfaces of constant ρ in the anisotropic
hyperbolic foliation of open FRW. The symmetries of the collision spacetime imply that the collision
is independent of ρ. In the left panel, we show a collision spacetime for the reference point ξ0 = 0. In
the right panel, we show a collision spacetime with the reference point at ξ0 = 1 after a translation
in ξ that brings the reference point to the origin of Cartesian coordinates. In both cases, the shaded
region encloses the future light cone of a collision, and the red circle corresponds to the projection of
the past light cone of a hypothetical observer at the origin. For observers at large ξ0, the boundary
of the future light cone becomes somewhat curved.

Along ρ = 0 this corresponds to a translation of a point at ξ = ξ0 to ξ = 0. For more details
on these coordinate transformations, see ref. [11].

The observer position ξ0 is an output of the algorithm described in the previous section.
The main implication of the observer position is the shape of the surfaces of constant R in
Cartesian coordinates. This is illustrated in figure 1, which shows a constant-time hypersur-
face in the Poincare disc representation of an open universe. In the left panel, ξ0 = 0, and
the future light cone of a collision (the boundary is located at ξ = 0.2) is enclosed in the
shaded region. R is constant on lines of constant-ξ (black, vertical lines in the figure), and
the projection of a past light cone is denoted by the red circle (the observable portion of the
universe lying within the circle). The right panel shows the result for an observer located
at ξ0 = 1.0 who is translated to the origin of Cartesian coordinates, as well as the future
light cone of a collision whose boundary is located at ξ = 1.2. The distance in ξ between the
observer and collision is identical in both cases, but the observer at ξ0 = 1.0 sees surfaces
of constant R that are somewhat curved. The extent to which this surface looks curved is
determined both by the observer’s position and the size of his or her past light cone.

We quantify the departure from planar symmetry by computing the value of ξ along an
observer’s light cone at a constant time with radius R. With θ as the viewing angle along
the cone (by symmetry, there are no variations along the azimuthal angle), we find

ξ = sinh−1
(

4R cosh ξ0 cos θ +
(
4 +R2

)
sinh ξ0

4−R2

)
. (2.22)

In the limit where R and ξ − ξ0 are small, we recover ξ − ξ0 ' R cos θ. In the same limit,

– 5 –
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we see from eq. (2.18) that ξ − ξ0 ∼ X near the origin, another way of highlighting the
apparently planar symmetry of the collision.

2.3 CMB observables

In the absence of any bubble collisions, each bubble contains an infinite open FRW Universe
that undergoes an epoch of slow-roll inflation, followed by reheating and standard cosmolog-
ical evolution. We imagine that each bubble is populated by a set of hypothetical observers,
each of whom (by homogeneity and isotropy) would make identical observations. However,
once collisions are taken into account, the Universe inside each bubble is no longer homoge-
neous or isotropic, giving rise to classes of observers who would make qualitatively different
observations depending on their position. Before proceeding, it is therefore useful to outline a
set of terminology that will assist us in describing the various qualitatively different regions in
the collision space-time and the associated hypothetical observers in each. Summary figures
describing our terminology for the collision spaceime and associated observers are shown in
figure 2 and figure 3.

Figure 2 depicts 4 copies of a space-time diagram for a collision between two identical
bubbles, highlighting the various types of observers. One bubble is denoted as the “obser-
vation bubble,” and the other the “collision bubble.” In the case of the collision between
identical bubbles, whose interiors simply merge, there is no meaningful distinction between
the two. In the case of collisions between non-identical bubbles, whose interiors are separated
by a domain wall, the distinction is more important, with the observation bubble contain-
ing the hypothetical observers that we wish to describe and the collision bubble acting to
perturb the observation bubble interior. To the extent that the bubble walls are compact,
the collision is an event. The future light cone of the collision, the “collision boundary,”
splits the observation bubble into two regions: one that is outside the causal future of the
collision, and one that is inside the causal future of the collision. We denote the latter as the
“collision region.”

As depicted in figure 2, our proxy for an observer is a comoving geodesic originating
on the reheating surface and terminating at the present (e.g. defined by a constant-density
hypersurface). Each such observer has causal access to a different part of the surface of last
scattering, shown as the shaded past light cones in figure 2. Figure 3 shows a constant-time
hypersurface in hyperbolic Cartesian (comoving) coordinates, representing, for example, the
surface of last scattering. An observer type is specified by the region of the reheating surface
from which they were “born” and which region of the surface of last scattering they now have
causal access to. The various types of observers for identical bubble collisions are labeled in
figures 2 and 3.

To delineate the various observer types, we denote by “instanton-born” observers those
that originate in the undisturbed observation or collision bubble. An observer who does not
have causal access to the collision boundary on the surface of last scattering is “far-from-
boundary,” while an observer that does have causal access to the collision boundary on the
surface of last scattering is “near-boundary.” The “Overlap-born” observers originate in the
collision region. They may be near-boundary observers (so that they have causal access
to the collision boundary at last scattering) or “far-from-boundary” (where they never see
either undisturbed bubble). The far-from-boundary overlap-born observers may, for the case
of non-identical bubbles, be either on the observation bubble side (“observation-side”) or
collision bubble side (“collision-side”) of the domain wall between the bubbles. Thus, for
example, previous papers in this series treated near-boundary instanton-born observation-

– 6 –
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Observation Bubble Collision Bubble

Far-from-boundary instanton-born Near-boundary instanton-born

Near-boundary overlap-born Far-from-boundary overlap-born

reheating

last s
cattering

present

collision

boundary

observer

space

tim
e

bubble w
all

Figure 2. Spacetime diagrams depicting the collision between two identical bubbles: an observation
bubble that houses a set of hypothetical observers, and a collision bubble. The collision boundary is
the future light cone of the collision, which separates each bubble interior into the collision region (the
causal future of the collision) and a region unaffected by the collision. Hypothetical observers originate
on the reheating surface and follow comoving geodesics until the present (arrows). Each hypothetical
observer has causal access to a different part of the surface of last scattering (shaded past light cones).
Far-from-boundary instanton-born observers (top left) originate outside the collision region and do not
have causal access to the collision boundary at last scattering. Near-bounary instanton-born observers
(top right) originate outside the collision region, but have causal access to the collision boundary at last
scattering. Near-boundary overlap-born observers (bottom left) originate from the collision region,
and have causal access to the collision boundary at last scattering. Far-from-boundary overlap-born
observers (bottom right) originate from the collision region, and do not have causal access to the
collision boundary at last scattering.

side observers, but were not able to treat the near-boundary overlap-born observation-side
observers that originate just inside, rather than just outside, the collision boundary.

Each observer position defines a local open universe of some curvature with a nearly
planar-symmetric curvature perturbation. The locally-observed energy density in curvature
Ωk is related to the total expansion of the universe during inflation. Because collisions
change the cosmological evolution, there is a potentially large variation in Ωk. Instanton-

born observers all experience the same curvature Ω
(I)
k , which is determined by the number of

e-folds in the unperturbed portion of the collision space-time and the (unspecified) details of
reheating. Overlap-born observers at different positions x0 on the same constant-field surface

experience different curvatures Ω
(O)
k (x0), given by

Ω
(O)
k = Ω

(I)
k

(
a(I)

a0(x0)

)2

, (2.23)

where a(I) is the scale factor for instanton-born observers at the end of inflation and a0(x0)
is the scale factor at the end of inflation at position x0.

– 7 –
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collision boundary

far-from-boundary
instanton-born

near-boundary
instanton-born

near-boundary
overlap-born

far-from-boundary
overlap-born

Figure 3. A constant FRW time hypersurface in the post-collision spacetime, represented in terms
of the hyperbolic Cartesian coordinates. This diagram depicts the observation-side of the collision; an
identical diagram could represent the collision-side. Shading represents the various regions that con-
tain qualitatively different classes of observers. The thick solid line represents the collision boundary,
which separates instanton-born from overlap-born observers. Both classes of observers can be near-
boundary, where the observers have causal access to the collision boundary, or far-from-boundary,
where observers do not have causal access to the collision boundary.

Cosmological observables are determined by the comoving curvature perturbation at
the end of inflation R(ξ|x0), which is a function of position x0. In this paper, we will primar-
ily be interested in the imprint of bubble collisions on the CMB temperature anisotropies.
Given the comoving curvature perturbation as an input, the temperature and polarization
anisotropies are most accurately computed using a standard Boltzmann code such as CAMB;
this has been implemented in refs. [16, 20, 44] for near-boundary instanton-born observers.
Predictions for the CMB signature seen by near-boundary overlap-born observers are most
accurately computed in the same fashion. However, for far-from-boundary overlap-born ob-
servers (whose past light cones do not intersect the collision boundary) we can obtain an
accurate estimate for the temperature anisotropy in the Sachs Wolfe approximation.

For far-from-boundary overlap-born observers, the locally observed comoving curvature
perturbation is continuous in all its derivatives. We can therefore perform a Taylor series
expansion about an observer at ξ0 to obtain

R(ξ|x0) '
1

2
∂2ξR(ξ0|x0) (ξ − ξ0)2 +

1

3
∂3ξR(ξ0|x0) (ξ − ξ0)3 + . . . , (2.24)

where the constant and linear terms are zero by definition. For small curvature, we can use
ξ − ξ0 ' R cos θ to obtain

R(ξ|x0) '
1

2
∂2ξR(ξ0|x0) R2 cos2 θ +

1

3
∂3ξR(ξ0|x0) R3 cos3 θ + . . . (2.25)

– 8 –
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In the Sachs-Wolfe approximation, the CMB temperature anisotropies are related to
the projected comoving curvature on the surface of last scattering by

∆T

T
' R(Rls|x0)

5
. (2.26)

The distance to the surface of last scattering depends on the local value of the curvature,
given by

Rls(x0) = 2

√
Ω
(O)
k . (2.27)

Going to harmonic space
∆T

T
=
∑
`,m

a`mY`,m(θ, ϕ) , (2.28)

and identifying powers of cos θ with the spherical harmonics, the temperature quadrupole is
given by

a20 = Ω
(O)
k

8
√
π

15
√

5
∂2ξR(ξ0|x0) . (2.29)

For higher `, spherical harmonic coefficients are suppressed by a`0 ∝
(

Ω
(O)
k

)`/2
∂`ξR(ξ0|x0).

Thus unless higher derivatives of the comoving curvature grow faster than this curvature
suppression, all but the lowest multipoles will be negligible in the phenomenologically relevant
low-curvature regime. For far-from-boundary overlap-born observers, the leading observables

are therefore Ω
(O)
k and a20, both of which are determined in the simulation for observers at

all possible vantage points.

3 Numerical implementation

We have numerically implemented the above procedure for computing cosmological observ-
ables using the output of the simulation code introduced in ref. [11]. We concentrate on
single-field models below.

For single-field models, a spatial slice is defined by φ(x,N) = φ0 for some constant
φ0. Any choice of φ0 that is sufficiently far down the inflationary plateau for the comoving
curvature perturbation to freeze in is acceptable. We use the Brent method for root finding to
numerically calculate N(x) along the slice. Eq. (2.2) is numerically integrated to obtain u(x),
and the result used to compute ξ via eq. (2.4) defined about a point x0. With these quantities,
we compute B using eq. (2.6), and with B the three-curvature eq. (2.10). The local scale
factor a0 is computed from eq. (2.9). Comparing this to the scale factor in the unperturbed

portion of the bubble yields Ω
(O)
k /Ω

(I)
k from eq. (2.23). Finally, we integrate eq. (2.12) to

obtain the comoving curvature perturbation R(ξ|x0), which can be converted to multipoles
using eq. (2.29). This procedure is repeated for all points x0 on the constant-field slice.

4 Simulating collisions between identical bubbles

We begin by considering collisions between identical bubbles. In this case, each bubble
contains the same true vacuum, and the bubble interiors merge. This gives rise to a spacelike
hypersurface at late times that encompasses the interior of both bubbles. We cover late
time spacelike hypersurfaces by a set of cosmological patches using the method outlined in
section 2.
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Figure 4. Contour plots of φ(x,N) for the collision between two identical bubbles for initial separa-
tions ∆xsep = 1 (left panel) and ∆xsep = 2 (right panel). The red contour (φ = 10−4MPl) tracks the
bubble wall, successive hypersurfaces (φ = 0.005, 0.013, 0.03, 0.13MPl) are shown with blue to green
contours, and the corresponding contours in an unperturbed spacetime are shown in grey. Vertical
dashed lines denote the position of two sample observers, one near-boundary instanton-born observer
and one far-from-boundary overlap-born observer. The time evolution of the comoving curvature per-
turbation experienced by these two observers as a function of the anisotropic hyperbolic cosmological
coordinates is shown in figure 5.

We perform a simulation of identical colliding bubbles using the “quartic barrier” po-
tential of ref. [12] with parameters µ = 0.01, ω = 0.4, ∆φ = 8 × 10−4MPl, φ0 = 3MPl,
and ∆xsep = 1, 2. Contour plots depicting φ(x,N) in the collision spacetime are shown in
figure 4 for initial separations of ∆xsep = 1 (left panel) and ∆xsep = 2 (right panel). Con-
tours for φ = 10−4MPl (red) and φ = 0.005, 0.013, 0.03, 0.13MPl (blue to green) are shown,
encompassing roughly 5 e-folds of inflation. At late times, it can be seen that a continuous
hypersurface encompassing the interiors of both bubbles is formed. For reference, surfaces of
constant field in an unperturbed bubble (grey) are plotted as well.

In figure 4, we see that the perturbation from the collision propagates into each bubble,
travelling a fixed comoving distance. We re-cast this time evolution in terms of the anisotropic
hyperbolic coordinates surrounding a pair of observers in figure 5, where we plot R for the
collision with ∆xsep = 1 as a function of ξ on slices of φ = 0.005, 0.013, 0.03, 0.13MPl (blue
to green), matching the contours in figure 4. The left panel is centered on x0 = −0.9, and the
right panel is centered on x0 = 0.3; these positions are denoted by the vertical dashed lines
in the left panel of figure 4. In both cases, the perturbation propagates into the observation
bubble, quickly converging to a constant amplitude and position. As expected, the comoving
curvature perturbation is frozen in as inflation progresses. Because x0 = −0.9 lies outside the
collision boundary, this vantage is inhabited by an near-boundary instanton-born observer.
An observer at this position would have causal access to regions that are affected by the
collision and regions that are not. The position x0 = 0.3 corresponds to a far-from-boundary
overlap-born observer, who experiences a curvature perturbation that is non-zero everywhere
and nearly quadratic.
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Figure 5. R(ξ) on slices of φ = 0.005, 0.013, 0.03, 0.13MPl (blue to green) as seen by observers at
x0 = −0.9 (left panel) and x0 = 0.3 (right panel) for the collision depicted in the left panel of figure 4
with ∆xsep = 1. The comoving curvature perturbation propagates into the observation bubble (right
to left in the figure), freezing in after approximately 5 e-folds.

In the unperturbed portion of the bubble, the scale factor evolves as a0 ' sinh(HIt).
Defining the number of e-folds as Ne = arcsinh a0, the time slices shown in figure 5 correspond
to Ne = 0.5, 1.0, 2.0, 5.0 e-folds in the unperturbed portion of the bubble. In this example,
the curvature perturbation freezes in after approximately 5 e-folds, corresponding to φ0 ∼
0.13MPl. Therefore, choosing φ0 > 0.13MPl will give a valid representation of the late-time
comoving curvature perturbation. All models examined in this paper utilize the same slow-
roll potential, allowing us to make a single choice for the constant φ hypersurface, which we
set to be φ0 = 0.3MPl.

As a check of our method, in figure 6 we compare the comoving curvature perturbation
obtained using the new method introduced in this paper with the results for R(ξ|x0) obtained
using the geodesic method of ref. [11]. Recall that the geodesic method is only valid for
instanton-born observers, so we choose a reference point x0 outside the collision region. Very
near the collision boundary, the two methods display excellent agreement. Further from the
collision boundary, there is some visible disagreement between the two curves (at the percent
level). This can be accounted for by considering two effects: the definition of ξ at a given
spacetime point differs slightly between the two methods, and the geodesic method relies on
small slow-roll parameters to transform from synchronous to comoving gauge.

The advantage of the method used in this paper is our ability to explore cosmological
observables from any vantage point inside the bubble. In figure 7 we show the comoving cur-
vature perturbation in the vicinity of observation-side instanton-born observers (left panel),
observation-side and collision-side overlap-born observers (center panel), and collision-side
instanton-born observers, for ∆xsep = 1 (top) and ∆xsep = 2 (bottom). Instanton-born ob-
servers see a translated version of the comoving curvature perturbation. A subset of these
observers will have causal access to the collision at late times, and predictions for the comov-
ing curvature perturbation in these cases matches previous work [11, 12], as explicitly shown
in figure 6.
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Figure 6. Comparing the comoving curvature perturbation calculated using the older geodesic
method (dashed red lines) to the calculation with the new comoving method (solid blue lines).

Overlap-born observers experience a non-zero, approximately planar symmetric, curva-
ture perturbation everywhere. The shape of this perturbation is shown in the center panel of
figure 7. A subset of these observers, the near-boundary overlap-born observers, have causal
access to the collision boundary. From figure 7, these near-boundary overlap-born observers
see a nearly linear comoving curvature perturbation on one side of the collision boundary,
and a nearly quadratic comoving curvature perturbation on the other side of the collision
boundary, spreading the signal out over the whole CMB sky. This is in contrast to the near-
boundary instanton-born observers, who would record a zero curvature perturbation on one
side of the collision boundary, and a rising curvature perturbation on the other, as in the left
panel of figure 7. This gives rise to a localized signal on the CMB sky.

This result addresses several conjectures made in previous work [3–6, 14, 16, 19–21],
which argued that 1) the collision induces a very nearly linear curvature perturbation that
turns on at the collision boundary and consequently 2) that near-boundary overlap-born
observers1 would experience a comoving curvature perturbation that was a mirror image of
the perturbation experienced by instanton-born observers on the other side of the collision
boundary.2 The first conjecture was addressed in the second paper of this series [12], where we
showed that a previously neglected contribution from slow-roll inflation inside each bubble
gives rise to a curvature perturbation that is quadratic in the distance from the collision
boundary. Because a quadratic curvature perturbation cannot be gauged away, the signal
from a collision observed by overlap-born observers is not localized on the sky. Therefore,
instanton-born and overlap-born near-boundary observers do not record mirror-image signals.

Deep into the collision region, for the far-from-boundary overlap-born observers, only the
quadratic part of the perturbation is causally accessible. The leading observable for far-from-
boundary overlap-born observers is therefore a CMB quadrupole, as described in section 2.3.
Comparing the outcome for the two initial separations, we see that a larger ∆xsep yields

1In previous papers these were named “foreign-born”, while instaton-born observers were “native-born.”
2Let us briefly explain how the second conjecture follows from the first. A purely linear curvature pertur-

bation in an otherwise homogeneous Universe can be gauged away [48]. However, in the collision spacetime,
where a linear curvature perturbation is matched to a region with no curvature perturbation across the colli-
sion boundary, the curvature perturbation cannot be gauged away. Rather, the linear curvature perturbation
in the collision region can be gauged away at the expense of inducing a linear perturbation in the region
not affected by the collision. Observers an equal distance from the collision boundary on either side would
therefore see an identical perturbation.
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Figure 7. The comoving curvature perturbationR(ξ) for collisions with ∆xsep = 1 (top) and ∆xsep =
2 (bottom) for observation-side instanton-born observers (left), overlap-born observers (center), and
collision-side instanton-born observers (right). Curves from blue to green are for increasing values of
reference position x0. For collisions between identical bubbles, ξ0 need not increase monotonically with
x0. More specifically, on the top in the left panel we sample x0 = −0.90,−0.75,−0.60 corresponding
to ξ0 = −1.05,−0.83,−0.64, in the centre panel we sample x0 = −0.5, 0.5, 1.5 corresponding to
ξ0 = −0.56, 0.00, 0.56, and in the right panel we sample x0 = 1.60, 1.75, 1.90 corresponding to ξ0 =
0.63, 0.83, 1.00. On the bottom in the left panel we sample x0 = 0.10, 0.25, 0.40 corresponding to ξ0 =
0.10, 0.25, 0.40, in the centre panel we sample x0 = 0.5, 1.0, 1.5 corresponding to ξ0 = 0.33, 0.00,−0.34,
and in the right panel we sample x0 = 1.60, 1.75, 1.90 corresponding to ξ0 = −0.41,−0.25,−0.10.

steeper profiles for R(ξ). This is in agreement with previous work [12], where increasing
∆xsep was found to lead to an increasing slope of the comoving curvature perturbation as
seen by instanton-born observers. Here, we show that the same is true for overlap-born
observers.

In figure 8 we show the Ω
(O)
k and a20 measured by overlap-born observers for collisions

with kinematics ∆xsep = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0. The overlap-born region in each case has
finite extent (in proper distance). Different kinematics yield overlap-born regions of different
size. In addition, observables are symmetric about the position of the collision. For ease of

comparison, we therefore plot Ω
(O)
k and a20 as a function of the fractional distance in observer

positions ξ0 from the centre of the collision (the left hand side of each plot in figure 8) to the
edge of the overlap-born region (the right hand side of each plot in figure 8).

For small ∆xsep, the negative spatial curvature is larger than in the instanton-born
region, while for large ∆xsep the curvature is smaller. Comparing the contours of constant
field for increasing ∆xsep in figure 4, we see that they are convex in the overlap-born region
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Figure 8. Predictions for a20 (left) and Ω
(O)
k (right) seen by overlap-born observers in collisions

between identical bubbles. Curves correspond to initial separations ∆xsep = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
(blue, cyan, red, yellow, purple, green). We plot observables as a function of the fractional distance
in positions ξ0 from the centre of the collision (the left hand side of each panel) to the edge of the
overlap-born region (the right hand side of each panel).

for ∆xsep = 1 and concave for ∆xsep = 2. In the cases where the negative curvature is higher
than the instanton-born region, a20 is maximized at the center of the overlap-born region.
When the curvature is lower, a20 is minimized at the center of the overlap-born region. In
general, increasing initial separation yields a larger magnitude for a20. Note also that the
prediction is for a20 to be positive definite for identical bubble collisions.

A particular model of the scalar potential will yield an ensemble of correlated
quadrupoles and curvatures, corresponding to collisions with varying ∆xsep and varying
observer position. Importantly, not every region in this parameter space is covered by a
particular model. With further assumptions, one can put a prior on this parameter space.
In refs. [11], the prior over bubble separations was shown to be Pr(∆xsep) ∝ sin3 ∆xsep.
Roughly ∼ 95% of the prior falls between the 0.5 < ∆xsep < 2.5 curves in figure 8.

Let us briefly comment on the ability of overlap-born observers to constrain scalar field
models using observations of curvature and the CMB quadrupole. First, one can alter a

scalar field potential to add more e-folds of inflation, which scales down Ω
(I)
k to any desired

level. This can make a model that is compatible with a non-observation of curvature by
overlap-born observers. However, should negative curvature be observed, then one can make
useful statements about the hypothesis that we could be an overlap-born observer. It is
useful to use the ratio of the CMB temperature quadrupole and the spatial curvature as
a proxy, since this is independent of the unspecified instanton-born curvature parameter

Ω
(I)
k . We show the predictions for this ratio in figure 9 using our fiducial model. Assuming

that the contribution to the CMB quadrupole cannot be larger than the observed value
a20 ' 1.6×10−5,3 we can compare with different scenarios for an observed negative curvatures

3One possible explanation for the anomalously low observed CMB quadrupole is interference between a
contribution from pre-inflationary initial conditions and the subsequent contribution from fluctuations during
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Figure 9. Predictions for the ratio of a20 and Ω
(O)
k seen by overlap-born observers in collisions between

identical bubbles. Curves correspond to initial separations ∆xsep = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 (blue,
cyan, red, yellow, purple, green). The predicted values of this ratio using the observed magnitude of
the CMB quadrupole and hypothetical measurements of curvature in the range 10−3 < Ωk < 10−5

are shown as dashed horizontal lines.

ranging from 10−3 < Ωk < 10−5 (dashed lines in figure 9). If there is an intersection between
the predicted curves and the observed ratio, a particular model would be viable, and one
would obtain an estimate of the range of compatible ∆xsep in that model. In particular,
the example shown in figure 9 would be viable for any observed curvature in this range.
Predictions from other models may have no intersection with the observed ratio, in which
case one could rule out the possibility that we are an overlap-born observer in such a model.

5 Simulating collisions between non-identical bubbles

We now discuss collisions between non-identical bubbles. In this case, the colliding bub-
bles contain different vacua, and consequently, bubbles do not merge; instead a domain wall
that separates the bubble interiors must form after the collision. The dynamics of the post-
collision domain wall play an important role in determining the structure of the post-collision
spacetime. These dynamics are straightforward to assess in the thin-wall limit for vacuum
bubbles: for an observation bubble with Hubble parameter Ho, a collision bubble with Hub-
ble parameter HC and an inter-bubble domain wall with surface tension σCo, we have the
following relation:

H2
C −H2

o + 16π2σ2Co > 0, Wall accelerates into collision bubble

H2
C −H2

o + 16π2σ2Co < 0, Wall accelerates into observation bubble

When the surface tension is subdominant to the energy splitting, the conclusion is that the
bubble with a lower vacuum energy expands into the bubble with a higher vacuum energy.

inflation. Here, we are assuming that the two contributions are of the same order of magnitude, and do not
have any finely tuned cancelations.
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In the following, we do not consider vacuum bubbles, but rather consider bubbles with an
inflationary interior (as in the previous section). However, the qualitative results of the thin-
wall analysis hold since the Hubble parameter remains roughly constant during inflation.

Numerical analyses of the case in which the wall accelerates into the collision bubble
have been performed both with [9, 12] and without [3, 14] full GR in previous literature. In
ref. [12] the signature for instanton-born observers was determined. However, there are a
number of important questions left open regarding the overlap-born observers. In particular,
previous work [3–6, 14, 16, 19–21] speculated that overlap-born observers with causal access
to the collision boundary would have identical observables to their neighbouring instanton-
born cousins. In the last section, we have shown this to be false for collisions between identical
bubbles, and below we show it to be false for non-identical bubble collisions as well.

Another assertion made in previous work [3, 4] was that the reheating surface in the
overlap-born region would be everywhere spacelike, and infinite in spatial extent. It was
further argued that far-from-boundary overlap-born observers would experience a very nearly
homogeneous and isotropic universe. These assertions were made regarding the bubble away
from which the domain wall accelerates, and we find below using our simulations that there
is good evidence that these speculations are indeed true.

In all previous work on bubble collisions, the case where the wall accelerates into the
observation bubble was considered fatal, and thought to allow no viable observation-side far-
from-boundary overlap observers. Below, we show this assumption to be invalid, and that
the results are qualitatively similar to the case where the wall accelerates into the collision
bubble. The late-time surfaces of constant field during inflation inside the observation bubble
simply re-adjust so as to become everywhere spacelike.

5.1 Domain wall accelerates into the collision bubble

We first consider the case where the domain wall accelerates into the collision bubble. We
perform a simulation using the same quartic barrier potential as in section 4, but with initial
conditions containing the two different types of bubbles that can be nucleated from the false
vacuum. The observation bubble contains the same inflationary plateau as in the previous
section, while the collision bubble is a vacuum bubble with (large) positive cosmological
constant. In this case, a domain wall separating the interior of the two bubbles forms after
the collision. The domain wall quickly accelerates into the collision bubble, as can be seen in
the contour plot figure 10. Here, we show the same contours as figure 4. We also over-plot
contours for an unperturbed observation bubble.

Comparing with figure 4, there are two important differences of note between identical
and non-identical bubble collisions. First, the difference between the perturbed and unper-
turbed observation bubble is far smaller for the non-identical bubble collision shown here.
This is an example of a “mild” collision in the parlance of ref. [2], and is expected to have a
minimal effect on cosmological observables (which is indeed shown to be true below). Second,
the surfaces of constant field are advanced with respect to those in the unperturbed bubble,
while they were retarded in the identical bubble collisions studied above. This implies that
the sign of the comoving curvature perturbation will be opposite to that found for identical
bubble collisions, an observation made previously in refs. [9, 11, 12, 14, 19].

Extracting the comoving curvature perturbation on the φ0 = 0.3MPl hypersurface at
different positions, in figure 11 we sample near-boundary instanton- (left panel) and overlap-
(center panel) born observers, as well as far-from-boundary overlap-born ones (right panel).
Note that these are all observation-side observers. As expected, instanton-born observers
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Figure 10. A contour plot of φ(x,N) for the collision between non-identical bubbles with an initial
separation ∆xsep = 1. The red contours (φ = ±10−4MPl) tracks the bubble walls, successive hyper-
surfaces (φ = 0.005, 0.013, 0.03, 0.13MPl) are blue to green contours, and the corresponding contours
in an unperturbed spacetime are shown in grey.

at different positions see a translated version of the comoving curvature perturbation. In
this example, the comoving curvature perturbation has visible oscillations due to internal
breathing modes of the post-collision domain wall that are excited by the collision [12].
Comparing with the curvature perturbation obtained for identical bubble collisions in figure 7,
we see that here it takes the opposite sign and is nearly two orders of magnitude smaller in
amplitude. Near-boundary overlap-born observers see a nearly linear comoving curvature
perturbation across the collision boundary, and a non-zero, growing perturbation in the
opposite direction. Note that the structure seen in the comoving curvature perturbation due
to the internal wall modes is visible here as well. Moving deeper into the overlap region,
local FRW patches become increasingly homogeneous. Note that the oscillations are present
in this example fairly deep into the collision region, implying that the internal wall modes
take some time to ring down.

We now turn to an exploration deep into the collision region. Tracking the φ0 = 0.3MPl

hypersurface deep into the collision region, we find that it is everywhere spacelike in the
simulation. To determine if there are indications that the slice may become timelike at some
point outside the simulation, we find the quadrupole and spatial curvature at all reference
points on the φ0 = 0.3MPl slice. This is shown in figure 12. As one moves deeper into the
overlap-born region, the local FRW patch becomes increasingly homogeneous, as evidenced by
the decreasing magnitude of the observed quadrupole. The spatial curvature first decreases
slightly from its value in the instanton-born region, and then increases. The variation in
curvature is only at the percent level, and the curvature appears to asymptote to a constant
value deep into the collision region. If the local FRW patches had become increasingly
inhomogeneous, that would have been an indication that the constant-field hypersurfaces
might become timelike at some point outside the simulation. Extrapolating the results of
our simulation, it therefore appears that there is no obstruction to the far-from-boundary
overlap-born region being infinite in spatial extent.
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Figure 11. The comoving curvature perturbation R(ξ) for collisions with ∆xsep = 1 between non-
identical bubbles with a post-collision domain wall that accelerates into the collision bubble. Panels
correspond to near-boundary instanton-born observers (left), near-boundary overlap-born observers
(center), and far-from-boundary overlap-born observers (right). Curves from blue to green are for
increasing values of reference position x0. There is a one-to-one relation between x0 and ξ0 for non-
identical bubble collisions. In the left panel we sample x0 = −0.725,−0.700,−0.675 corresponding to
ξ0 = −0.79,−0.76,−0.73, in the centre panel we sample x0 = −0.575,−0.550,−0.525 corresponding
to ξ0 = −0.59,−0.57,−0.54, and in the right panel we sample x0 = 1.000, 1.025, 1.050 corresponding
to ξ0 = 1.38, 1.44, 1.50.

Figure 12. The CMB quadrupole (left) and spatial curvature (right) experienced by observers at
various positions in the collision spacetime. Deep into the collision region, locally the universe becomes
increasingly homogeneous with a constant value of the curvature.

The rapid variation of the locally observed quadrupole in figure 12 indicates that there

is information in higher multipoles as long as Ω
(I)
K is not too small. In figure 13, we show the

full projected temperature anisotropy in the Sachs-Wolfe approximation (eq. (2.26)) seen by

overlap-born observers at three different positions, for Ω
(I)
K = 0.001, 0.0005, 0.00025, 0.0001

(below current constraints, but possibly observable). In each, we overplot the tempera-

– 18 –



J
C
A
P
0
7
(
2
0
1
6
)
0
2
0

Figure 13. The temperature anisotropies seen by overlap-born observers with observed curvature

Ω
(I)
K = 0.001, 0.0005, 0.00025, 0.0001 (blue, green, red, cyan) at three positions: near the collision

boundary x0 = −0.55 corresponding to ξ0 = −0.20 (left panel), far from the collision boundary x0 =
1.0 corresponding to ξ0 = 1.5 (right panel), and at an intermediate position x0 = 0.5 corresponding
to ξ0 = 0.5 (centre panel). The locally computed temperature quadrupole (eq. (2.29)) is shown for
each curvature and observer position as dashed lines.

ture anisotropy given by the quadrupole moment as a dashed line. For observers near the
collision boundary, the wall modes leave a significant amount of visible structure in the tem-
perature anisotropies over this range of curvatures. It is only deep into the collision region,
or for smaller curvatures, that the quadrupole is a good characterization of the temperature
anisotropies. Overlap-born observers near enough to the collision boundary, and with large
enough spatial curvature, would see an observationally significant large angular scale contri-
bution to the temperature anisotropies from wall modes. Decomposing into multipoles, the
planar symmetry of the collision translates into an alignment of the low-` spherical harmonic
coefficients. It has not escaped the authors’ attention that this could be related to various
persisting low-` anomalies in the CMB such as the so-called “Axis of Evil” [49]. However,
we defer a more detailed exploration of wall modes to future work.

In contrast to the collision between identical bubbles, where the deviations from the
instanton region were nonzero for all overlap-born observers, there is strong evidence that
non-identical bubble collisions produce an infinite volume in which overlap-born observers
would see no trace of the collision. Only those in the vicinity of the collision boundary would
have the opportunity to access information about the collision in their past.

5.2 Domain wall accelerates into the observation bubble

When the collision bubble contains a lower energy phase, the post-collision domain wall
accelerates into the observation bubble. This would appear to be fatal, since the post-collision
wall would quickly accelerate to near the speed of light, obliterating everything in its path.
However, we saw in the previous section that the surfaces of constant field can re-adjust in
the presence of a post-collision domain wall, producing infinite spatial hypersurfaces. To
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Figure 14. Potentials used in the simulation of non-identical bubble collisions with a post-collision
domain wall that accelerates into the observation bubble. The depth of the collision bubble’s potential
minimum is controlled by the parameter µ, which is set to µ = 0.02, 0.1, 0.15, 0.25 (red, blue, green,
cyan). Increasing µ corresponds to increased depth of the minimum.

determine what happens, we ran simulations for a set of potentials with varying depth of the
collision bubble minimum. The depth of the minimum is controlled by the parameter µ (see
ref. [12] for a detailed description of the potential). The potentials, along with the instanton
endpoints, are shown in figure 14.

Contour plots of φ(N, x) for each of these potentials, with an initial bubble separation
of ∆xsep = 1, are shown in figure 15. The degree to which the post-collision domain wall
accelerates into the observation bubble increases with the depth of the collision bubble’s
potential minimum. Early constant-field hypersurfaces clearly are not everywhere spacelike,
as they bend back to follow the domain wall. However, at sufficiently large φ, (by φ0 =
0.13MPl in even the most extreme case) the surfaces of constant field do become spacelike.
It appears that just as in the case where the post collision domain wall accelerates out of
the observation bubble, here too the constant field surfaces re-adjust to become spacelike at
sufficiently late times.

Taking the particular example of µ = 0.15, we show the comoving curvature perturba-
tion at different positions along the φ0 = 0.3MPl hypersurface in figure 16. Instanton-born
observers (left panel) observe an initially decreasing comoving curvature perturbation. This
is in agreement with the fact that the surfaces of constant field in figure 15 are advanced
with respect to the unperturbed observation bubble. Comparing with the identical and non-
identical collisions studied above, the magnitude of the comoving curvature perturbation is
largest in this case. This makes intuitive sense, as the constant-field hypersurfaces are most
dramatically different from the unperturbed bubble here. Passing into the collision region,
overlap-born near-boundary observers again see a comoving curvature perturbation that is
everywhere non-zero and approximately linear on the other side of the collision boundary.
Deep into the collision region, overlap-born far-from-boundary observers see a universe that
is increasingly homogeneous with distance from the boundary.
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Figure 15. Contour plots of φ(N, x) for collisions between non-identical bubbles with a post-collision
domain wall that accelerates into the observation bubble. The corresponding potentials are shown
in figure 14. In each case, the red contour (φ = ±10−4MPl) tracks the bubble wall, successive
hypersurfaces (φ = 0.005, 0.013, 0.03, 0.13MPl) are blue to green contours, and the corresponding
contours in an unperturbed spacetime are shown in grey.

The spatial curvature asymptotes to a constant for overlap-born far-from-boundary
observers, as shown in figure 17. Comparing with the percent-level change in curvature
produced by a post-collision domain wall that accelerates into the collision bubble, the result
here is dramatic: the curvature can increase for large values of the potential parameter µ by
a factor of 103! From this, we can conclude that the acceleration of the post-collision domain
wall into the observation is detrimental to inflation, causing a larger observed curvature. For
a sufficiently large acceleration, we can speculate that inflation would be largely disrupted
for overlap-born observers, leading to a cosmology that would not be viable as a description
of our universe. A study of such models is unfortunately beyond the reach of our numerics
due to the large spatial resolution necessary to accurately track highly Lorentz-contracted
domain walls associated with large accelerations.
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Figure 16. The comoving curvature perturbation R(ξ) for collisions with ∆xsep = 1 between
non-identical bubbles with a post-collision domain wall that accelerates into the observation bub-
ble. Panels correspond to instanton-born observers (left), near-boundary overlap-born observers
(center), and far-from-boundary overlap-born observers (right). Curves from blue to green are for
increasing values of reference position x0. There is a one-to-one relation between x0 and ξ0 for non-
identical bubble collisions. In the left panel we sample x0 = −0.650,−0.625,−0.600 corresponding to
ξ0 = −0.70,−0.67,−0.63, in the centre panel we sample x0 = −0.56,−0.55,−0.54 corresponding to
ξ0 = −0.40,−0.14, 0.21, and in the right panel we sample x0 = −0.500,−0.460,−0.425 corresponding
to ξ0 = 1.9, 3.4, 6.6.

Figure 17. The spatial curvature as a function of ξ in collision spacetimes where the do-
main wall accelerates into the observation bubble. Curves correspond to potential parameters
µ = 0.02, 0.1, 0.15, 0.25 (black, red, green, blue), or equivalently, increasing depth of the collision
bubble potential minimum.

As described in section 4, models can be tested with the detection of negative spatial cur-
vature by comparing the observed and predicted values for the ratio of the CMB quadrupole
and the curvature parameter. The result for the models studied in this section is shown
in figure 18. For scenarios where curvature is detected at the level of 10−3 < Ωk < 10−5,
essentially all models could accommodate the observation. Recall that there were also col-
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Figure 18. Predictions for the ratio of a20 and Ω
(F)
k seen by overlap-born observers in collisions

between non-identical bubbles where the post-collision domain wall accelerates into the observation
bubble. Curves correspond to potential parameters µ = 0.02, 0.1, 0.15, 0.25 (black, red, green, blue),
or equivalently, increasing depth of the collision bubble potential minimum. The predicted values of
this ratio using the observed magnitude of the CMB quadrupole and hypothetical measurements of
curvature in the range 10−3 < Ωk < 10−5 are shown as dashed horizontal lines.

lisions between identical bubbles that could accommodate a possible detection of curvature
at this level. Although the variation in the magnitude of the quadrupole and curvature are
quite different in these two models, the ratio lies in the same range of magnitudes. There
is also an important question of distinguishability for overlap-born observers: many models
give identical predictions for observables. If the curvature is on the lower end of the allowed
values, it may be possible to measure higher multipoles associated with wall breathing modes
as described in the previous section.

Moving into the collision region, the overlap-born far-from-boundary observers expe-
rience an increasingly homogeneous universe. Extrapolating the results of the simulation,
we therefore conclude that the universe to the future of the collision is infinite in spatial
extent. This is a dramatic departure from the expectation that there should be no overlap-
born observers! Such collisions are not fatal. In fact, there is seemingly an infinite set of
overlap-born observers who live in a nearly homogeneous universe, blissfully ignorant of the
dramatic bubble collision in their past.

6 Implications for probabilities and measures in eternal inflation

In an eternally inflating Universe, any given bubble will experience an infinite number of col-
lisions [32]; any specific observer inhabiting a bubble has access to a subset of these collisions
due to the finite extent of their particle horizon. The expected number of collisions in the
causal past of an observer has been assessed in previous work [1, 17, 32] under the assumption
that the interior of the observation bubble remains undisturbed by bubble collisions.

An interesting conclusion of this exercise was that although “false vacuum” eternal
inflation has de Sitter space as a background, the cosmological boundary conditions required
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to (statistically) determine the bubble distribution also define a preferred reference frame
detectable in the collision distribution [50] accessible to a given observer. Thus even after an
“eternity”, there is a “memory” of initial conditions for eternal inflation.

These studies also revealed that the total number of collisions is formally divergent for
observers far “up the bubble wall”, which are infinitely boosted with respect to the preferred
frame. In a measure weighting by volume on spatial hypersurfaces inside the bubble, these
constitute essentially all observers [1].

Although other measures over inflationary spacetime can mitigate this divergence, we
can imagine it being regulated by including the effect of the collision on the bubble interior.
Indeed, for identical bubble collisions, colliding bubbles merge and this regulates the infinity
because the collision region has a finite extent in ξ, cutting off the exponentially growing
of volume at large ξ that is the source of the divergence. Neglecting the effect of overlap-
ping collisions and considering vacuum bubbles, Dahlen [51] computed the volume fraction
inhabited by observation-side instanton-born to overlap-born observers as f ∼ λH−4F H2

F /H
2
I

where HF is the Hubble constant in the false vacuum, HI is the Hubble constant in the true
vacuum, and λ is the nucleation rate per unit four-volume. We expect small corrections to
this result due to distortions to the geometry of the reheating surface, but otherwise, our
results support this conclusion.

For non-identical bubble collisions, the story is more complicated. The divergence
arises from collisions whose boundary is far from the observer, i.e. in overlap-born far-from-
boundary observers. As we found above, the only observable effect for such observers is the
rescaling of the locally observed spatial curvature; inhomogeneities are largely unobservable.
In the case where the post-collision domain wall accelerates out of the observation bubble,
it is a good assumption to postulate that the bubble interior is not disturbed, implying that
the results of previous work should be largely valid. Although we cannot simulate multiple
collisions, it is plausible to imagine that they have a cumulative effect. This would lead to a
correlation between the number of collisions and the level of spatial curvature. For some crit-
ical number of collisions, inflation in the observation bubble would be completely disrupted,
and the curvature would be order one.4 Beyond this, it is unclear that the bubble interior
could sustain an arbitrary number of additional collisions without the formation of curva-
ture singularities, or the constant-field hypersurfaces becoming spacelike. In cases where
the post-collision domain wall accelerates into the observation bubble, the story should be
similar, although the critical number of collisions will be far fewer due to the far larger effect
of each collision on the observed curvature. In both cases, it is plausible that the divergent
number of collisions is regulated due to back-reaction, as suggested in ref. [4].

Assessing the probability for observing different levels of curvature is beyond the scope
of this paper. The answer could have dramatic importance for the predicted level of curva-
ture from false vacuum eternal inflation, which appears to be largely uncorrelated with the

canonical prediction Ω
(I)
k for a measure incorporating volume weighting.

It is interesting in general that infinite spacelike surfaces in eternal inflation appear to
be not just generic [52], but also more robust than previously expected, as long as the intra-
bubble inflation is robust to small perturbations in the field. For example, an inflationary
bubble is safer than previously supposed, as our results show that — at least for the models

4This could be quite sensitive to the inflationary physics inside. For example, in “inflection point” small-
field models, we expect that inflation could be completely disrupted by even one collision, as suggested in [3].
We leave a more detailed study of different models for later work.
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we have considered — even an encroaching bubble would not invade our post-inflationary
spacetime and destroy our local universe.5

7 Conclusions

Using a new method for extracting observables from cosmological simulations, we have ex-
tended previous work on predicting observables from cosmic bubble collisions in eternal infla-
tion to the entire collision spacetime. This method amounts to a coordinate transformation
on comoving hypersurfaces which takes the metric around a point to the spatial section of a
perturbed FRW universe in comoving gauge. This allows us to directly extract the local scale
factor and comoving curvature perturbation in the neighbourhood of any point. Applying
this procedure to an ensemble of points yields predictions for cosmological observables from
any vantage point in the post-collision spacetime.

Our primary goal was to apply this new method to study cosmological observables
accessed by overlap-born observers: hypothetical observers who are comoving with respect
to the perturbed part of the collision spacetime. The study of instanton-born observers,
who are comoving with respect to the un-perturbed part of the collision spacetime, was the
subject of previous work. However, the methods employed in this previous work could not
be applied to overlap-born observers.

We studied observables for a single scalar field model of eternal inflation which al-
lows for collisions between identical or non-identical bubbles. In single field models, we can
identify the comoving hypersurfaces with surfaces of constant scalar field. Identical bub-
bles merge when they collide, forming smooth spacelike constant field hypersurfaces at late
times spanning the interior of both bubbles. Contrary to previous assumptions in the litera-
ture [3–6, 14, 16, 19–21], instanton- and overlap-born observers near the collision boundary
do not see the same cosmological signature. Overlap-born observers near the collision bound-
ary experience a curvature perturbation that is everywhere non-zero in their neighbourhood.
Moving deeper into the collision region, overlap-born observers in collisions between identical
bubbles would experience an observable universe containing a very nearly quadratic planar
comoving curvature perturbation. The leading observable in this case would be a CMB
quadrupole and a spatially varying negative curvature.

The collision between non-identical bubbles is qualitatively different, since the interiors
of the colliding bubbles are separated by a domain wall produced in the collision. This
domain wall can accelerate into or out of the observation bubble, depending on the structure
of the scalar field potential. Rather remarkably, after a few e-folds of inflation, the surfaces
of constant field re-arrange themselves to be everywhere spacelike, although the geometry
of these hypersurfaces is quite different from what it would have been in the absence of
a collision. Moving deep into the collision region, the universe accessible to overlap-born
observers becomes increasingly homogeneous. Therefore, in contrast to the collision between
identical bubbles, when non-identical bubbles collide, there is an infinite class of overlap-born
observers who would not have access to any observables indicating that there was a bubble
collision in their past. Only those observers in the neighbourhood of the collision boundary
would have any hope of detecting traces of the collision.

The internal degrees of freedom of the post-collision domain wall produced in the colli-
sion between non-identical bubbles can be excited by the collision, producing an additional
oscillatory contribution to the curvature perturbation. Some overlap-born observers have

5Though, alas, decay of our vacuum still could.
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access to these wall modes, which would contribute an aligned set of contributions to their
low-order CMB multipoles.

Our results suggest a few possible modifications of the observational search strategy
for cosmic bubble collisions. Clearly it does not make sense to treat the overlap-born ob-
servers in the neighbourhood of the collision boundary the same as the instanton-born ob-
servers. To a good approximation, such overlap-born observers experience a matched linear
and quadratic comoving curvature perturbation. Deeper into the collision region, where
overlap-born observers have access to a smooth comoving curvature perturbation varying on
long wavelengths, the observable signature is not as distinctive. In this case, it is possible
that an observation of negative spatial curvature could rule out some models over some range
of initial bubble separations. However, it is clear that many models could be consistent with
any level of observed negative spatial curvature and the observed CMB quadrupole. It may
however be possible to include CMB polarization and large scale structure to determine the
level of planarity of the large-scale curvature perturbation in our universe. This could pro-
vide suggestive, although certainly not definitive, evidence that we could be a overlap-born
observer in a collision spacetime.

We also considered how our results may affect the probability for observing various
bubble collsion signatures. Previous work identified a divergence in the predicted number
of collisions for most observers, nearly all of whom would be of the overlap-born far-from-
boundary type. As we found in this paper, overlap-born far-from-boundary observers inhabit
a homogeneous universe with a re-scaled spatial curvature. Considering the cumulative effect
of multiple collisions, it is plausible to conjecture that the divergence is regulated by back-
reaction, and that multiple collisions act to further re-scale the curvature. Important work
remains to be done computing the measure over observed curvature implied by this result.
Work remains to be done on incorporating multiple scalar fields as well, which undoubtedly
have a far richer phenomenology.
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