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Abstract 

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) is the most 
common cause of chronic liver disease in the western world, with spectrum from 
simple steatosis to non-alcoholic steatohepatitis, which can progress to cirrhosis. 
NAFLD developments known to be affected by host genetic background. Herein, we 
emphasize the power of Collaborative Cross (CC) mouse for dissecting this complex 
trait, and revealing Quantitative Trait Loci (QTL) controlling hepatic fat accumulation 
in mice. 

Methods: 168 female and 338 male mice from 24 and 37 CC lines, respectively age 
of 18 to 20 weeks old, maintained on standard rodent diet, since weaning. Hepatic fat 
content was assessed, using dual DEXA scan in the liver. Using the available high-
density genotype markers of the CC line, QTL mapping associated with percentage 
liver fat accumulation was performed.  

Results: Our results revealed significant fatty liver accumulation QTL that were 
specifically, mapped in females. Two significant QTLs on chromosomes 17 and 18, 
with genomic intervals 3Mb and 2Mb, respectively, were mapped. A third QTL, with 
a less significant P value, was mapped to chromosome 4, with genomic interval of 
2Mb. These QTLs were named Flal1-Flal3, referring to Fatty Liver Accumulation 
Locus 1-3, for the QTLs on chromosomes 17, 18 and 4, respectively. Unfortunately, 
no QTL were mapped with males. Searching the mouse genome database suggested 
several candidate genes involved in hepatic fat accumulation.  

Conclusions: Our results show that susceptibility to hepatic fat accumulations is a 
complex trait, controlled by multiple genetic factors in female mice, but not in male. 

Five Keywords: NAFLD, High genetic diverse mouse population, Standard rodent 

diet, QTL mapping, Candidate genes. 
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Introduction 

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disorders associated 

with hepatic steatosis that is not due to significant alcohol consumption or other 

secondary causes (Masuoka and Chalasani 2013). This disorder encompasses a wide 

range of diseases, from simple steatosis, which is relatively benign, to hepatic 

inflammation, hepatocyte injury, and fibrosis, a syndrome referred to as non-alcoholic 

steatohepatitis (NASH) that can progress to cirrhosis (Masuoka and Chalasani 2013; 

Adams et al. 2005; Ekstedt et al. 2006; Ratziu and Poynard 2006). NAFLD has been 

diagnosed by the use of several tools including determination of levels of liver 

enzymes; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as 

non-invasive indicators of NAFLD; as well as histology and imaging (CT, MRI, US). 

Although elevated ALT is generally associated with histological NASH, some of 

those patients with normal ALT levels may also have NAFLD and even advanced 

fibrosis. Therefore, ALT activity alone cannot be used to rule out significant liver 

disease in patients suspected of having NAFLD, especially in those with 

hepatomegaly or Type 2 Diabetes (T2D), a metabolic disorder that is associated with 

elevated levels of blood glucose and insulin resistance (Vernon et al. 2011). 

In developed countries such as the United States, NAFLD has become the most 

common cause of chronic liver disease. The rate of NAFLD is increasing likely due to 

the rising prevalence of associated conditions in adults as well as children such as 

obesity and T2D, which together with dyslipidemia are the most important risk factors 

for NAFLD (Caldwell et al. 1999; Vardi et al. 2007).  It has been projected that, 

within the next two decades, NASH will become the predominant cause of cirrhosis 

requiring orthotopic liver transplantation (Charlton 2004; Charlton et al. 2011).   

While NAFLD is attributable to over-nutrition and sedentary life style (Cusi 2012; 

Larter et al. 2010), not all over-weight/obese people develop NAFLD and additional 

factor of individual susceptibility is required. Family studies, comparisons of NAFLD 

frequency between ethnic groups, and genome-wide association studies (GWAS) 

indicate that genetic predisposition underlines such individual susceptibility to 

NAFLD (Loomba et al. 2012; Romeo et al. 2008; Valenti et al. 2010), and also its 

severity (Chalasani et al. 2010). Ethnicity has a significant impact on the prevalence 

of NAFLD. In the Dallas Heart Study, the prevalence of hepatic steatosis was 45% in 
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Hispanics, 33% in non-Hispanic Caucasians, and 24% in African Americans 

(Browning et al. 2004). 

It remains a puzzle why some individuals with NAFLD have advanced histological 

features and develop cirrhosis whereas others with comparable risk factor profile have 

simple steatosis with minimal or no disease progression. A genetic basis for inter-

individual phenotypic variability is strongly speculated, but genetic studies are very 

limited to small number of individuals with histologically characterized NASH 

(Targher et al. 2006). 

A huge drawback in traditional linkage analysis is its low mapping resolution that 

rarely leads to gene discovery. A novel and promising mouse genetic reference 

population for high resolution mapping and subsequently identifying genes 

underlying the QTL is Collaborative Cross (CC) mouse genetic reference population 

(GRP).  

The CC population is created by a community (Churchill et al. 2004) effort of the 

complex trait consortium (CTC, www.complextrait.org). This unique genetic resource 

will eventually comprise a set of approximately 300-400 RIL that will be created by 

full reciprocal 8-way matings of 8 divergent strains of mice: A/J, C57BL/6J, 

129S1/SvImJ, NOD/LtJ, NZO/HiLtJ, CAST/Ei, PWK/PhJ, and WSB/EiJ. Controlled 

randomization and minimization of selection during the breeding process will 

recombine the natural genetic variation present in these inbred strains. The result will 

be a unique collection of RIL exhibiting a large phenotypic and genetic diversity, and 

bringing the tremendous genetic variation potential of the mouse inbred lines to 

phenotypic expression (Churchill et al. 2004; Keane et al. 2011). Full details of CC 

lines status and their power of mapping QTL with host susceptibility to complex traits 

are presented (Iraqi et al. 2008; Durrant et al. 2011; Aylor et al. 2011; Philip et al. 

2011; Mott et al. 2000; Iraqi et al. 2012; Welsh et al. 2012). Here, we show significant 

achievements of using of this unique mouse reference population to identify QTL and 

suggest candidate genes underlying these mapped QTL, which are associated with 

host susceptibility to NAFLD by assessing percentage of liver fat accumulation 

phenotype.  
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Materials and Methods 

Collaborative cross mouse lines 

In this study, a total of 168 female mice from different 24 lines (in average 7 mice per 

line) and and 338 males from 37 lines (in average 9.1 mice per line) of new developed 

CC mouse population were studied. The mice were developed and maintained at the 

Small Animal Facility at Sackler Faculty of Medicine, Tel Aviv University (TAU). 

The CC lines were at inbreeding generations F10-F18, minimum 90% homozygosity 

by extensive high-density genotyping. Full details of the development of these CC 

lines are given in previous reports (Iraqi et al. 2008; Iraqi et al. 2012; Welsh et al. 

2012). All experimental mice and protocols were approved by the Institutional 

Animal Care and Use Committee (IACUC) of TAU with numbers (M-10-073 and M-

14-007), which adheres to Israeli guidelines and follows the NIH/USA animal care 

and use protocols. Mice were housed on hardwood chip bedding in open-top cages 

under 12 hours light/dark cycle at 21-230C, given tap water and standard rodent chow 

diet ad libitum since weaning day (3 weeks old) until the age of 20 weeks old.  

 

Dual-energy X-ray absorptiometry (DEXA) scan 

DEXA scans were performed using the Lunar PIXImus Densitometer (GE Medical 

Systems) at the I. Meier Segals Garden for Zoological research, Tel Aviv University. 

With an image area of 80 mm x 65 mm, the PIXImus scan image reveals precise data 

about body composition for lean/fat and bone tissues. Following the full body DEXA 

scans, mice were dissected and liver DEXA scans were performed to assess hepatic 

fattiness. PIXImus Densitometer was calibrated before each testing using a quality 

control phantom with known values (BMD=0.0609g/cm2; and %Fat=11.8%) 

following the manufactures instructions. 

 

Statistical Analysis 

Data analysis was performed using a statistical software package SPSS version 22. 

One-way ANOVA was carried out for testing the significance of the difference 

between the recorded traits among the tested CC lines. Phenotype recorded data of the 



6 
 

different CC lines were analyzed by ANOVA and a P value of 0.05 or less was 

considered significant. 

Estimation of Heritability and Genetic coefficient of variation 

Heritability (H2) was estimated as the proportion of phenotypic variation explained by 

differences between CC lines in the ANOVA, i.e. H2=Vg/(Vg+Ve), as detailed in 

(Iraqi et al. 2014). The heritability statistic estimates the proportion of observed 

phenotypic variation that is due to genetic factors. However, it does not tell us 

whether the absolute amount of genetic variation generated by these genetic factors 

(the “genetic component of variation”) is great or small. In our previous study, we 

have discussed and addressed in full details and the estimation of the genetic 

coefficient variation for any given trait (Iraqi et al. 2014). Briefly, for our data, 

Genetic Coefficient of Variation (CVG) was estimated as: 

 SDG/Mean 

Where,  

SDG= the broad-sense genetic standard deviation among CC lines = VG
0.5 

Mean = mean trait value across all CC lines.  

 

CC lines genotyping data  

 High molecular genomic DNA of the CC lines were initially genotyped with the 

mouse diversity array (MDA), which consists of 620,000 SNPs (Yang et al. 2009). 

After about two 4-generation intervals of inbreeding, all the CC lines were re-

genotyped by mouse universal genotype array (MUGA-7,500 markers) and finally 

with MegaMuga (77,800 markers) SNP arrays to confirm their genotype status (Iraqi 

et al. 2012). Although the CC lines are not yet completely inbred, we have shown 

previously that using genotypes from a single representative from each line is 

sufficient for QTL mapping purposes (Durrant et al. 2011; Aylor et al. 2011; Philip et 

al. 2011; Vered et al. 2014). 
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QTL analysis 

The genome of each CC line is a mosaic of the inbred founders, which we 

reconstructed using a hidden Markov Model (HMM) HAPPY software (Mott et al. 

2000)  across the genotypes to compute probabilities of descent from the founders 

(setting the generation parameter to 7). In CC line k at SNP interval (locus) L, the 

HMM probability of descent from founder strain s is denoted by . The presence 

of a QTL at locus L is tested using a linear regression framework, in which the 

residual deviance from the mean probability of death Yk for an individual from line k 

is: 

 

 

Where the overall mean (incorporating any effects of batch and sex) is µ, and  is the 

effect of founder haplotype s at locus L.  

The presence of a QTL was assessed through an ANOVA test by comparing the fit of 

the model with that of a simpler model in which the  (the null hypothesis). Age 

was used as co-factor. Significance is reported as the minus log10 P value , as 

computed by the anova function in R. Genome-wide significance was estimated by 

permutation, where the CC line labels were permuted between the phenotypes. The 

median probability of death across replicates within each CC line was used in the 

QTL analysis. QTL effect sizes were estimated as the proportion of the log likelihood 

explained by the locus effects at the QTL.  

The confidence interval of the QTL was defined based on permutations, using similar 

approach as presented in our previous studies (Durrant et al. 2011; Vered et al. 2014)  

to take into account local patters of linkage disequilibrium. Permutation based FDR 

was calculated as follows: for a given P value threshold, the peaks above this 

threshold in the permutated datasets are considered as 'false positives' (FPs), and the 

peaks above this threshold in the real dataset are considered as 'positives' (P). Using 

these values, the permutation-based false discovery rate (FDR) was defined as  FP/P. 
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Results 

Liver Fat content by DEXA scan 

We assessed percentage of liver fat using DEXA-scanner of females (Fig. 1A) and 

males (Fig. 1B) from 24 and 37 CC lines, respectively, after maintaining them on 

standard rodents’ diet since weaning day at age of 3 weeks old until the age of 20 

weeks old. The one-way ANOVA for females data shows that the 24 female CC lines 

differed significantly (P value<0.05) in their tendency to liver fat accumulation. 

Among the females of 24 CC lines the mean ratio of percentage of liver fat is 54.35 

±2.01. Percentage of liver fat ranged between maximum value of 100% fat in line 

IL1513, and minimum level of 20.26% in line IL1488.  

The One Way ANOVA for males data shows that the 37 CC lines differed, 

significantly (P<0.05) as well, with their tendency to liver fat accumulation. Among 

the males of 37 CC inbred lines, the mean ratio of percentage of liver fat is 38.20 

(±2.01). While the maximum level of percentage of liver fat was 72.26% Fat (IL4141) 

and the minimum level was 16.60% (IL2141), 2.68 times under the CC population 

mean. 

Knowing that the CC lines have different genetic makeup, these results show the 

strong role of genetic background in determining the percentage of liver fat 

accumulation at standard environmental conditions. Notably, these results were 

obtained without western high fat dietary challenge, indicating that the original 

genetic predisposition indeed underlies the liver fat accumulation pattern. 

 

Broad-sense heritability and Coefficients of genetic variation 

As part of assessing the genetic effects underlying the observed inter-individual 

phenotypic variation, both the heritability (H2) and the genetic coefficient of variation 

(CVG) metrics were calculated (see Methods). We found that the heritability value is 

0.32 and the genetic coefficient of variation is 0.28 for liver percentage fat among 

females from the 24 CC lines, while for the males from the 37 CC lines heritability 

value is 0.22 and the genetic coefficient of variation is 0.29. 
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QTL mapping and founder effect 

We used the HAPPY software and QTL mapping method as previously described in a 

study of host susceptibility to Aspergillosis (Durrant et al. 2011)  and Klebsiella 

(Vered et al. 2014)  in CC lines, testing the percentage of liver fat as the quantitative 

trait.Initially, permutation tests for identifying and setting the genome wide significant 

thresholds were performed for the data. The threshold is presented in Figure 2 and is 

found to be minus log P value=5.5, with corresponding permutation-based FDR = 

0.17 (Methods). 

Data analysis for females’ cohort has shown two significant QTLs on chromosomes 

17 and 18. The QTL in Chr17 reached minus log P value of 5.618 at SNP 

JAX00431012, with genomic intervals between 8-11Mb (3 Mb). The QTL in Chr18 

reached minus log P value of 5.58 at SNP JAX00462266, with genomic interval 

between 64-66Mb (2 Mb). A third putative QTL was just slightly under the 

significance threshold (minus log P value=5.41). This peak was located at SNP 

JAX00548268 and mapped to chromosome 4: 35-37Mb (2 Mb). These resolutions of 

mapping are therefore high considering that the mapping population consisted of only 

24 CC lines.    We designated the three QTLs with names Flal1- Flal3 referring to 

Fatty Liver Accumulation Locus 1-3 for the QTLs on chromosomes 17, 18 and 4 

(respectively). 

Finally, we evaluated the effect of each founder haplotype on the percentage of 

females liver fat Estimation was conducted as deviation relative to the WSB/EiJ 

parental strain, which was arbitrarily assigned the baseline zero effect. Results of this 

analysis are presented for the two QTLs Flal1 and Flal2 (Fig. 3A and B, 

respectively).The two loci showed complex pattern of haplotype effects of the 

founders, with the wild-derived strains (mainly PWK) playing a role, although other 

strains also contributed to the overall QTL effect. 

Conversely, data analysis for males cohort did not reveal any significant QTL (Figure 

1 supplement), indicating that the differences of the male trait of liver fat 

accumulations under standard chow diet, is probably less associated with genetic 

background contribution.   

Candidate genes underlying the mapped QTLs 
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Following the QTLs mapping, the mouse genome database 

(http://www.informatics.jax.org/) was queried for suggested candidate genes within 

each of the mapped QTLs.  

The Flal1 region harbors the chemokine (C-C motif) receptor 6 (Ccr6), a gene that 

was previously identified as a liver-specific receptor and an activation-regulated 

chemokine (LARC), namely a C chemokine that is mainly expressed in the liver. 

LARC with CCR6 receptor may play roles in inflammatory and immunological 

responses, and also in the normal lymphocyte trafficking and microenvironmental 

homing that are essential for development and maintenance of various lymphoid 

tissues (Baba et al. 1997). 

The second gene is the T cell activation Rho GTPase activating protein (Tagap), 

which is a member of the Rho GTPase-activator protein superfamily. Tagap is 

involved in T-cell activation, where Tagap releases GTP from GTP-bound Rho and 

acts as molecular switch in cells. Therefore, polymorphisms in the Tagap gene have a 

key role in autoimmune diseases, including rheumatoid arthritis, Type 1 diabetes, 

celiac disease, and multiple sclerosis (Chen et al. 2011; Chatzikyriakidou et al. 2013; 

Eyre 2010)   

Furthermore, several of previously mapped QTLs - associated with inflammation, 

obesity and diabetes - were also identified in the same interval. This includes the 

obesity QTL 19 (Obq19) (Ishimori 2004)  and the insulin-dependent diabetes 

susceptibility 23 (Idd23) (Deruytter 2004). 

In the case of Flal2, our analysis revealed several candidate genes, including Nedd41 

(the neural precursor cell expressed, developmentally down-regulated gene 4-like)- a 

gene involved in insulin regulation pathways, and Akt (protein kinase B) and Sgk 

(serum- and glucocorticoid-dependent kinase), two components of the insulin 

signaling pathway (Lee et al. 2007). 

A number of previously mapped QTLs associated with inflammation and diseases 

related to NAFLD were also mapped to this region, including obesity 4 (Obsty4) 

(Cheverud et al. 2004)   T helper cell response (Thcr) (Zhang et al. 2003)  and insulin 

dependent diabetes susceptibility 21.2 (Idd21.2) (Hollis-Moffatt et al. 2005).  
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Discussion and Conclusions 

In this study, we have used Collaborative Cross  mice, both females and males, in 

order to identify QTLs and suggest candidate genes contributing to fat accumulation 

in the liver. The identification of common or sex-specific genetic resistant factors to 

this disease will help to understand the observed wide range of liver fat accumulation 

among individuals, and hopefully will suggest new prevention approaches as well. 

Our findings confirm the validity and accuracy of the application of dual X-ray 

absorptiometry (DEXA) in a mouse model for studying liver fat accumulation 

tendency under naïve standard conditions. Furthermore, this is the first report to 

present results of liver fat accumulation in the newly developed CC mouse resource 

population.   

Our cohort in this study consisted of 24 CC lines for females and 37 CC lines for 

males, imbalance due to nature selective and breeding differences among the CC 

lines. Despite a small number of CC lines (24 and 37 CC lines for females and males, 

respectively), data analyses showed significant differences between CC lines for both 

females and males, while only for females CC lines revealed QTLs that contribute to 

the liver tendency to accumulate less/more fat under naïve environmental conditions. 

Surprisingly, even with assessing of larger cohort male than female CC lines, our 

analysis could not identify QTL associated with the trait. This is strong evidence that 

the host genetic background has less effect on phenotypic variations of fat liver 

accumulations.  

Nevertheless, the highly significant differences in trait values among lines and trait 

heritability indicate that line genotype is an important determinant of the differences 

in values of liver fat content. As shown in our results, heritability value for liver fat 

accumulations was higher in females (0.32) than males (0.22). These results enabled 

the mapping of the most significant female-dependent QTLs to a presidential high-

resolution intervals, 3 and 2 Mb for Chromosomes 17 and 18 QTL, respectively, and 

identification of host genes that may control fat liver accumulation and inflammation 

pathways. These two significant QTLs were designated as Flal1- Flal2 referring to 

Fatty Liver Accumulation Locus 1-2. The third QTL mapped on chromosome 4 distal 

region was named Fatty Liver Accumulation Locus 3.  
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The high heritability (0.32) of the female tested trait has confirmed that this assessed 

phenotype is strongly controlled by genetic factors, which enabled us to map these 

QTLs with the limited number of CC lines. Furthermore, the genetic coefficient of 

variation of 0.28 has also confirmed the high genetic variations within the CC lines, 

which will allow identifying novel genetic variants that underlie the phenotype. It is 

believed  that the high genetic variations in the CC lines was introduced from the 

three wild-derived strains, CAST/Ei (M. m. castaneus), PWK/PhJ (M. m. musculus), 

and WSB/EiJ (M. m. domesticus)  (Churchill et al. 2004), but not segregating among 

classical strains descended from M.m.domesticus (most classical strains differ from 

the reference C57BL/6J at about 4 million SNPs, PWK and CAST each differ at about 

17 million SNPs, and WSB at 6 million (Keane et al. 2011; Beck et al. 2000)) . Over 

35 million SNPs segregate between the CC founders (Keane et al. 2011). Wild mice 

are constantly under environmental influence, and efficiency of their innate 

mechanisms of defense is under strong selective pressure.  

Liver is the central metabolic organ. In addition to its role in maintaining plasma 

glucose, the liver also processes, synthesizes, and secretes lipids, namely triglyceride 

(TG) and cholesterol. Under pathological conditions (e.g. obesity), the liver is also 

responsible for storing of excess lipids giving rise to NAFLD. Lipid processing in the 

liver and NAFLD play important roles in metabolic syndrome diseases and diabetes. 

We suggest through forward genetic screening in the mouse several novel genes or 

alleles that are associated with those processes. Furthermore, we found several 

previously mapped QTLs within our Flal QTLs interval that are involved in body 

weight, growth and susceptibility to diabetes. These results are in agreement with the 

well established relationships between fatty liver accumulation, obesity, and a variety 

of inflammatory diseases.  

This report and others (Durrant et al. 2011; Aylor et al. 2011; Philip et al. 2011; Vered 

et al. 2014)  demonstrate the utility of CC lines in the analysis of complex traits in 

mouse models of human disease. Our results underline the importance of the 

contribution of wild-derived alleles to the CC, where Flal1 and Flal2 are mainly 

driven by wild strain. The wild-derived founders may have different immune response 

mechanisms compared with the classical mouse strains. If so, we expect to identify 

novel response mechanisms to the variation of fat liver accumulation. This has two 



13 
 

consequences. First, we can identify more genes using populations in which these 

variants segregate than in classical populations. Second, only sequence variants 

segregating in the CC founders that follow the same strain distribution pattern can be 

causal for the QTL. Therefore having a complete catalogue of sequence variants in the 

founders is of great utility. The combination of high-density genotypes in the CC and 

the genome sequences of the CC founders yield an approximate reconstruction of the 

sequence of each CC line as a mosaic of fragments of the founders’ genomes. While 

this is currently limited to those regions of the genome that can be assembled from 

short-read sequence data, as sequencing technologies improve, we expect to generate 

a complete catalogue of variation in the CC model.  

Overall, dissection of the complex genetics underling liver fat accumulation ability 

was the goal of our study. Our results support our principal idea of mapping and 

identify QTLs involved in liver fat accumulation pathways by using small number of 

CC lines. These results illustrates the importance of a mouse model sources such as 

CC population for identifying genetic factors affecting host susceptibility or 

resistibility towards future development of NAFLD disease under high fat dietary 

environments. Once the genetic basis of liver fat accumulation pathways is 

understood, such information may be of preventive and therapeutic value for the 

NAFLD disease development. In future, we will study the gene expression variations 

using RNAseq approach in different CC mouse lines, which differently express the trait 

of % fat in the liver, and subsequently identify these genes. Expression levels differences 

will be co-localized with phenotypic QTL given in our study enabling the tracking of 

positional candidate genes with higher resolution. We will combining the current QTL 

findings with the RNAseq results for better identifying candidate genes, which later on 

can be assessed and confirmed its association with the disease using specific gene 

knockout approach.  As far, we know the reported QTLs in our study are new and were 

not linked, previously reported in any GWAS studies to liver diseases. 

In the very near future, over a hundred inbred and genotyped CC lines will be 

available to the research community. Using more lines will drastically improve the 

resolution of mapping and statistical power. Nonetheless, the current study shows that 

even a modest number of lines are useful, if there is sufficient replication within each 

line.  
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Figure legends: 

Fig. 1. Means of percentage of liver fat (±SEM) by DEXA scan analysis among 
different CC lines at age of 20 weeks old on standard rodents diet. (A) Means of 
percentage of liver fat (±SEM) for female CC lines. (B) Means of percentage of liver 
fat (±SEM) for Male CC lines. x axis – line number, representing the different CC 
lines. y axis – represents the percentage of liver fat values as monitored by DEXA. 
Significant variation was found between the different CC lines at P<0.05. 

Fig. 2. Genome scans for significant QTLs associated with percentage of liver fat 
across female CC lines. Two significant QTLs were mapped to chromosomes 17 and 
18 with female data. A less significant QTL was also mapped to chromosome 4.  
Experiment-wide thresholds of significance at 95% levels are minus log P value=5.5 
with corresponding permutation-based false discovery rate (FDR) = 0.17 (horizontal 
line). 

Fig. 3. Estimated haplotype effects at QTL for the percentage of liver fat on 
chromosomes 17 and 18. Plots A, B show the estimated haplotype effects on 
chromosome 17 and 18, respectively (y axis) across founder strains (x axis). Effects 
are shown as deviations relative to WSB/EiJ, which was arbitrarily assigned trait 
effect = 0. 

 

Supplement figure 1.  Genome scans for significant QTLs associated with percentage 
of liver fat across male CC lines. Experiment-wide thresholds of significance at 95% 
levels are minus log P value=5.5 with corresponding permutation-based false 
discovery rate (FDR) = 0.17 (horizontal line). 

 

Supplement figure 2. Microscopic apperance and hematoxylin and Eosin staining of 
mouse livers at diferent stages with fat liver accumopations, at 6, 8, 12 and 20 weeks. 
Picture was taken from http://www.psychogenics.com/ .        
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