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ABSTRACT  17 

This study aimed to evaluate the performance of the Unyvero P50 pneumonia assay, the first 18 

‘sample-in, answer-out’ system for rapid identification of pathogens and antibiotic resistance 19 

markers directly from clinical specimens. Overall, Unyvero P50 displayed very good sensitivity 20 

(>95%); however, specificity was low (33%) mainly due to the fact that 40% of the specimens 21 

were reported as normal flora. Specifically, one or more pathogens were identified in 28 of 22 

them. From a detailed analysis of 42 specimens selected at random, 76% of the additionally 23 

reported pathogens were confirmed present in primary specimens. Detection of selected 24 

resistance markers was compared to routine phenotypic susceptibility testing, supplemented 25 

with Checkpoints microarray system, PCR and sequencing. Concordance was mixed, primarily 26 

due to issues with panel’s choice of markers and detection of some intrinsic beta-lactamases. 27 

Finally, we offer a critical analysis of the assay’s microbial panel and resistance markers and 28 

provide suggestions for improvement.  29 
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INTRODUCTION 32 

Pneumonia is defined as consolidative infection of the lower respiratory tract causing 33 

significant morbidity and mortality worldwide. In the UK, (infectious and non-infectious) 34 

respiratory diseases accounts for 20% of deaths [1] and in 2006, the British Thoracic Society 35 

reported that pneumonia alone accounted for over 1/3 of these [1]. Pneumonia can be 36 

categorised as community-acquired (CAP) if acquired outside of the healthcare setting, or as 37 

hospital-acquired (HAP), when the onset of disease/clinical presentation occurs >48h after 38 

hospital admission [2]. In the clinical setting, of particular concern are patients undergoing 39 

intensive or critical care, who develop HAP or ventilator-associated pneumonia (VAP), often as 40 

a consequence of aspiration and prolonged hospital stay, or related to mechanical ventilation 41 

[3]. This prolonged stay along with the use of empirical broad-spectrum antibiotics may result 42 

in infection with multi-drug resistant organisms often associated with high mortality [4]. 43 

Pneumonia can be caused by a wide variety of bacteria, viruses or fungi that cannot easily be 44 

distinguished by clinical presentation [5]. Current routine diagnostic methods are mainly 45 

culture-based, which are limited by low sensitivity and unsuitability for detecting atypical 46 

pathogens. At present, turnaround times for routine culture and antimicrobial susceptibility 47 

testing range from 48-72h; in the meantime, the patient receives empirical antimicrobial 48 

therapy [6]. Such empirical therapy may be compromised by antimicrobial resistance or be used 49 

unnecessarily to treat infections caused by viruses or susceptible bacteria, thus driving the 50 

development of antimicrobial resistance [7,8]. Hence, a rapid test for detecting microorganisms 51 
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and their associated susceptibility profiles to direct therapy in pneumonia is urgently needed; 52 

both for better prognosis of patients [9] and improved antimicrobial stewardship [10].  53 

Although there has been an emergence of real-time PCR assays targeted towards respiratory 54 

diagnosis, a single method available for rapidly identifying the variety of pathogenic causes of 55 

pneumonia is lacking. Accordingly, we evaluated the Curetis Unyvero P50 Pneumonia assay, the 56 

first ‘sample-in and answer-out’ system capable of diagnosing pneumonia aetiology directly 57 

from clinical specimens. This test combines automated sample preparation with multiplex PCR 58 

for selected targets and microarray hybridisation for amplicon detection. It promises to detect 59 

16 bacteria and one fungus as well as 18 antibiotic resistance markers in around five hours 60 

(Table 1). 61 

  62 
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MATERIALS AND METHODS 63 

Specimen Collection and Analysis 64 

We collected anonymised respiratory specimens surplus to clinical requirements from adult in-65 

patients with suspected pneumonia at two tertiary care hospitals in London: the Royal Free 66 

(RFH) and University College London Hospitals (UCLH), from December 2014 to June 2015. 67 

Duplicate specimens from the same patient were excluded unless collected >6 days apart. Fresh 68 

specimens from patients with radiological confirmation of pneumonia were stored at 4°C until 69 

processing (within 48h). Curetis Unyvero P50 Pneumonia assay was run as per manufacturer’s 70 

instructions with a turnaround time of approximately 5h (30 min for mechanical and chemical 71 

sample lysis and homogenisation followed by 4h30 for DNA purification, multiplex PCR and 72 

microarray detection). Detailed information of the system and method can be found on the 73 

manufacturer’s website (www.curetis.com).  74 

 75 

Routine Clinical Microbiology 76 

Results were compared to those released by the routine clinical microbiology laboratories of 77 

the two participating hospitals. For the RFH, this comprised 1:1 v/v dilution with dithiothreitol, 78 

semi-quantitative cultures onto three agar plates (Columbia Blood Agar (CBA), Colombia agar 79 

with chocolated horse blood (CHOC) and cystine lactose electrolyte deficient agar (CLED)); 80 

identification MALDI-TOF MS (Bruker Microflex™ LT) and antimicrobial susceptibility testing 81 

(AST) with the BD Phoenix system or by disc diffusion following EUCAST guidelines [11]. For 82 

UCLH, undiluted specimens were cultured onto CBA, CHOC and CLED, organisms were identified 83 
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using MALDI-TOF or the BioMerieux VITEK2 system and AST was performed using the VITEK 2 or 84 

BSAC (British Society for Antimicrobial Chemotherapy) standardised disc susceptibility testing. 85 

Atypical species Chlamydophila pneumoniae, Legionella pneumophila and Mycoplasma 86 

pneumoniae are screened using an in house qPCR assay at RFH and by antigen testing or 87 

serology at UCLH. MycAssay® Pneumocystis (Myconostica) is used to detect Pneumocystis 88 

jirovecii at RFH, at UCLH it is detected by Grocott-Gomori's methenamine silver stain. 89 

 90 

Comprehensive Microbiological Analysis 91 

For a full comprehensive analysis, 42 specimens were chosen at random. A cross-sectional 92 

sweep of growth was taken from a fresh primary culture of the specimen on CHOC and stored 93 

in MicrobankTM vials at -80°C until analysis. Ten µL of neat and a 10-5 dilution in saline solution 94 

were plated onto CHOC, CBA, Brilliance UTI agar (UTI) and Columbia colistin-nalidixic acid agar 95 

(C-CNA) (Oxoid). CBA, UTI and C-CNA plates were incubated at 37°C in air for 18h while CHOC 96 

plates were incubated in 5% CO2 at 37°C for 18h. Representative bacterial colonies of different 97 

morphologies on each medium were identified using MALDI-TOF MS. 98 

For bacterial isolates identified during the comprehensive microbiological analysis, 99 

susceptibility to beta-lactam antibiotics was evaluated using the disk diffusion method on 100 

Mueller-Hinton agar following EUCAST recommendations [11]. The following antibacterial 101 

agents (Oxoid) were tested: Aztreonam (30µg), Piperacillin-tazobactam (10-6µg), Ceftazidime 102 

(10µg), Imipenem (10µg), Meropenem (10µg), Temocillin (30µg) for Enterobacteriaceae, 103 

Acinetobacter spp. and Pseudomonas spp.; Ertapenem (10µg), Ampicillin (10 µg), Amoxiclav (20-104 

10µg), Cefoxitin (30µg), Cefotaxime (5µg) were also tested for Enterobacteriaceae. Cefoxitin 105 
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(30µg) discs were used for identification of potential methicillin resistant Staphylococcus aureus 106 

(MRSA). Ciprofloxacin susceptibility testing was performed on P. aeruginosa and Escherichia coli 107 

using the gradient diffusion method (Etest®, Biomérieux), interpreted according to EUCAST 108 

guidelines (http://www.eucast.org/clinical breakpoints/). Both laboratories report predominant 109 

growth of potentially pathogenic species equivalent to 105 CFU/ml or above.  110 

Double disc diffusion for detection of beta-lactamases was performed using ROSCO Diagnostica 111 

kits. KPC/Metallo-beta-lactamase and OXA-48 Confirm Kit; KPC/MBL in P. 112 

aeruginosa/Acinetobacter and Total ESBL+AmpC Confirm kits were used according to 113 

manufacturer’s instructions. 114 

  115 

Sequence-based Detection of Resistance Mechanisms 116 

We extracted DNA from resistant bacteria using QIAmp DNA Mini Kit (Qiagen) following 117 

manufacturer’s instructions. The Check-MDR CT103XL test (Checkpoints, NL) was used for 118 

molecular detection and identification of genes encoding carbapenemase, AmpC and ESBL 119 

enzymes according to manufacturer’s instructions. All suspected ESBL, AmpC and 120 

carbapenemase positives were confirmed by PCR (HotStart Taq Mastermix, Qiagen). The 121 

presence of mecA among suspected MRSA and the quinolone resistance-determining regions 122 

(QRDR) of the gyrA and parC genes from fluoroquinolone resistant E. coli or P. aeruginosa were 123 

amplified by PCR. All PCR amplicons were sent for DNA sequencing using the Sanger method at 124 

Beckman Coulter Genomics and analysed using BioNumerics (Applied Maths) software and 125 

NCBI’s BLAST. All primers used in this study are listed in Table S1. 126 

 127 

http://www.eucast.org/clinical%20breakpoints/


 
8 

 

Data analysis 128 

The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and 129 

positive and negative likelihood ratios were calculated using MedCalc for Windows. Overall 130 

sensitivity and specificity were calculated considering a test result as true positive when both 131 

routine culture reported an organism and Unyvero P50 identified the same organism, 132 

regardless of additional organisms that may have been identified by Unyvero P50. False 133 

positives were specimens where one or more organisms detected by Unyvero P50 were not 134 

found by routine microbiology. False negatives were specimens where routine microbiology 135 

detected an organism that the Unyvero P50 missed and true negatives were specimens where 136 

neither method reported significant organisms. 137 

During analysis of resistance determinants, only genes considered potentially significant (Table 138 

1) were included; mecA was only considered significant when detected simultaneously with S. 139 

aureus, in such cases presence of MRSA was presumed. During comprehensive culture analysis, 140 

detections of S. mitis group bacteria other than S. pneumoniae were ignored.  141 
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RESULTS 142 

A total of 103 respiratory clinical specimens from hospital in-patients with pneumonia were 143 

tested using the CE-marked Unyvero P50 Pneumonia assay (Unyvero P50) and results were 144 

compared to those generated by the clinical microbiology laboratories.  145 

Unyvero P50 targets (Table 1) are distributed across eight independent PCR chambers. 146 

Complete test failure occurred for 6 specimens while partial test failures (where one or more of 147 

the chambers failed) occurred in 7 specimens. These specimens were excluded leaving a total of 148 

90 specimens for analysis from 84 patients; comprising 55 sputa, 32 endotracheal tubes (ETT) 149 

aspirates and 3 bronchoalveolar lavage (BAL). Radiologic and clinical confirmation of 150 

pneumonia was sought and the type of pneumonia was classified into HAP, VAP or CAP using 151 

standard definitions [2]. The vast majority of our specimens came from patients with HAP 152 

(n=49), while 21 and 20 specimens were from VAP and CAP patients respectively. 153 

On average Unyvero P50 identified a greater number of potential pathogens than routine 154 

microbiology per specimen (1.59 vs 0.59). The most common organisms reported by the culture 155 

laboratories were P. aeruginosa (n=13), S. maltophilia (n=6) and S. marcescens (n=6) whereas 156 

the most common organisms detected by Unyvero P50 were S. maltophilia (n=27), P. 157 

aeruginosa (n=19) and the S. mitis group (n=13) (Table 2, Table S2).  158 

 159 

The number of organisms detected per specimen varied, with routine clinical laboratory 160 

reporting more than one organism in only 5 specimens, whereas Unyvero P50 detected 161 
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polymicrobial flora in 44 specimens (48.9%) (Figure 1). Normal respiratory flora (NRF), non-162 

significant growth (NSG) or mixed growth of doubtful significance (MGODS) was reported for 39 163 

specimens (43%), whereas 3 specimens (3.3%) produced no growth. Unyvero P50, which is not 164 

a quantitative test, identified at least one organism in 74 specimens (82.2%) and was negative 165 

for 16 specimens (17.8%) including the 3 that produced no growth. Complete results for all 166 

specimens are shown in Table S2. 167 

Results from Unyvero P50 and standard microbiology culture were concordant in 59 specimens 168 

(65.5%) (Figure 2). Of these, negative results were concordant in 14 specimens, Unyvero P50 169 

identified only the same pathogen(s) as routine culture in 23 specimens, and the same 170 

pathogen and at least one additional species in 22 specimens. Non-concordant results occurred 171 

in the remaining 31 specimens, which included 28 specimens reported as NRF, NSG or MGODS. 172 

On the other hand, two specimens described negative by Unyvero P50 were found to contain a 173 

pathogen by the clinical laboratory: one specimen contained H. influenzae while the other was 174 

positive for E. faecalis, an organism not associated with pneumonia and not a target of Unyvero 175 

P50. A third specimen was reported by the laboratory as containing H. influenzae, whereas 176 

Unyvero P50 detected K. pneumoniae, P. aeruginosa and S. maltophilia.  177 

Overall clinical diagnostic accuracy metrics for Unyvero P50 indicates a sensitivity of 95.7% 178 

while specificity was 32.6% mainly due to the fact that over 40% of samples were reported as 179 

normal flora whereas Unyvero P50 reported an organism in the majority of samples. Positive 180 

predictive value was 60.8% while negative predictive value was 87.5%. 181 

 182 
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Detection of antimicrobial resistance 183 

The clinical laboratories reported a total of 53 organisms (Table S3), 36% of these were fully 184 

susceptible, 60% resistant to one or more antimicrobial classes and 39.6% multi-drug resistant 185 

(MDR) [12]. Unyvero P50, capable of detecting 18 antibiotic resistance markers, reported 71% 186 

of specimens with at least one resistance marker (including 6 from specimens where no 187 

organism was detected). Many of these markers (e.g. blaTEM, ermB and sul1) are highly 188 

prevalent, if not ubiquitous, among both pathogenic and commensal bacterial populations [13], 189 

hence their detection in mixed specimens, such as those from the respiratory tract, becomes 190 

extremely common.  191 

For this reason, we restricted our analysis to ESBLs, AmpC beta-lactamases, carbapenemases, 192 

presumptive MRSA, and fluoroquinolone resistance (FQR) among E. coli and P. aeruginosa only. 193 

Unyvero P50 identified 17 occurrences of these resistance markers whilst routine microbiology 194 

identified corresponding resistance phenotypes in 14 isolates. In 4 specimens where significant 195 

pathogens were detected by routine microbiology and a target of Unyvero P50 was confirmed 196 

present by independent molecular analysis, the test had identified the resistance marker 197 

correctly in 3 cases (Table 3). An additional 9 clinical bacterial isolates had phenotypic AmpC or 198 

carbapenem resistance not detected by Unyvero P50. In 6 cases the additional molecular 199 

analysis did not identify a cause for resistance (presumably due to overexpression of 200 

chromosomal AmpC enzymes or mutation of porins [14,15]) while A. baumannii producing 201 

OXA-23 carbapenemase was detected in 3 specimens. 202 
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Conversely Unyvero P50 identified several resistance markers, which were not detected by 203 

routine microbiology (Table 3). Two putative MRSA that had been missed by routine methods 204 

were detected (one sample was reported as NRF, the other was reported as containing A. 205 

baumannii). Unyvero P50 also identified a blaCTX-M in a specimen containing K. pneumoniae and 206 

S. maltophilia, whereas routine microbiology reported the specimen as NRF. For AmpCs, 207 

Unyvero P50 identified 3 blaEBC and 2 blaDHA genes. In 4 of the specimens, the clinical laboratory 208 

reported NRF and in the final specimen the clinical laboratory identified an E. cloacae isolate. 209 

For carbapenemases, Unyvero P50 identified 5 specimens with blaOXA-51, all containing A. 210 

baumannii whereas routine microbiology reported NRF for two of the specimens and OXA-23 211 

producing A. baumannii for the remaining three. For fluoroquinolone resistance, routine 212 

microbiology and Unyvero P50 both identified 2 E. coli with gyrA mutations resulting in 213 

ciprofloxacin resistance. For P. aeruginosa one FQR isolate with confirmed mutations in gyrA 214 

was however missed by Unyvero P50, whereas Unyvero P50 identified one P. aeruginosa with 215 

gyrA and parC mutations in a specimen reported as NRF.   216 

Resolution of discrepant results 217 

Culture of respiratory specimens is considered the ‘gold standard’ to identify the microbial 218 

aetiology of pneumonia caused by fungi and bacteria. Limitations of this method include the 219 

cut-off loads (typically 105 CFU/ml) and the subjective interpretation of results, which may vary 220 

among and between laboratories and individual staff members. For this reason, we performed 221 

a more comprehensive analysis for 42 specimens selected at random by identifying all 222 

organisms included on the Unyvero P50 panel that grew on the primary chocolate agar plate. 223 

Our comprehensive investigative culturing method detected one organism in 27 specimens and 224 
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2 organisms in 13 specimens, the remaining two specimens had 4 and 0 organisms respectively. 225 

In comparison, the routine laboratory reported one organism for only 23 of them, and two 226 

organisms for 1 specimen. The main species under-reported by the clinical laboratory were S. 227 

maltophilia (3 vs 12), P. aeruginosa (7 vs 15) and K. pneumoniae (0 vs 4).  228 

Of the 42 specimens analysed, results were concordant with Unyvero P50 in 36 specimens 229 

(85.7%) including an exact match for 25 specimens while Unyvero P50 detected extra 230 

organism(s) in 11 specimens. Conversely comprehensive culture revealed the presence of 231 

additional organisms for 4 specimens: K. oxytoca, S. maltophilia, S. marcescens and E. cloacae 232 

were not detected in one specimen each. Two specimens were found to contain polymicrobial 233 

flora with both methods but some of the reported organisms were discordant (Table S4).  234 

All isolated organisms were screened for relevant resistance phenotypes in order to verify 235 

concordance and control for the possibility of resistant organisms missed by both methods. It 236 

was unfortunately only possible to verify a portion of the discrepant resistance results. 237 

Comprehensive culture confirmed the presence of a CTX-M producing K. pneumoniae, a DHA 238 

producing M. morganii, and a FQR P. aeruginosa in specimens where routine microbiology 239 

reported only NRF. One detection of blaDHA was not verified by comprehensive analysis of the 240 

same specimen. Additionally, comprehensive culture detected an EBC producing E. cloacae and 241 

an MRSA, which had been missed by both routine microbiology and Unyvero P50. Two 242 

detections of EBC and two detections of MRSA, allegedly missed by the routine laboratory, 243 

could not be verified because these specimens were not included in the random selection 244 

(Table S5).   245 
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DISCUSSION 246 

Accurate microbiological diagnosis of lower respiratory tract infections (LRTIs) is notoriously 247 

difficult with as many as 70% of patients never receiving a microbiological diagnosis [16]. Deep 248 

lung specimens such as BAL have less contamination from the upper respiratory microflora and 249 

are therefore preferable for diagnosis, but due to economic and practical issues, sputa and ETT 250 

aspirates are most common in the UK. This study was conducted in order to evaluate the 251 

performance of the Curetis Unyvero P50 diagnostic test, the first “sample-in, answer-out” test 252 

available on the market for rapid diagnosis of LRTIs. The preceding prototype system was 253 

evaluated in a multi-centre study [17] and the full commercial system has been evaluated in 254 

Kuwait [18] and Germany [19]. However, this constitutes the first performance evaluation for 255 

this test in the UK, and more importantly, is the first study to include a detailed analysis of 256 

antimicrobial resistance detection and the first to use an additional method to resolve 257 

discrepancies between routine culture and Unyvero P50. 258 

The Unyvero P50 test successfully detected almost all organisms reported as significant by 259 

routine microbiology from 90 surplus specimens of patients with confirmed severe LRTI (overall 260 

sensitivity=95.7%). The exceptions were 2 organisms (E. faecalis and C. koserii) not included on 261 

the detection panel and 2 instances of H. influenzae. Conversely, the headline specificity of the 262 

test for pathogen detection was poor, with many specimens described as normal flora (NRF, 263 

NSG, MGODS) by routine microbiology.  264 

Test or system failures occurred for 12.6% of specimens, which is of concern. Approximately 265 

half of these were partial failures, whereby the test failed because of errors in one or more 266 
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reaction chambers. In such cases a result is still available but will exclude targets from the failed 267 

chamber(s). Currently, the system does not list these unreliable targets to the user who cannot 268 

therefore judge whether or not to make use of the valid results.  269 

A more in-depth culture-based analysis method was used for 42 randomly selected specimens 270 

to gain a better understanding of the reasons for discrepant results. This analysis revealed that, 271 

in this selection, 76% of cases where Unyvero P50 had reported additional organisms, these 272 

were genuinely present and viable in primary specimens. This still leaves a number of 273 

detections that cannot be explained this way. There are several possible reasons for this; such 274 

as presence of nucleic acid from non-viable organisms, uneven distribution of bacteria within 275 

the specimens or technical issues with the specificity and sensitivity of detection (i.e. errors 276 

relating to the sensitivity and specificity of the PCR assays or microarray detection). We found 277 

the comprehensive culture method a good way of further probing the specimens and would 278 

recommend its use in other similar evaluations.  279 

Analysis of the resistance results was more complex. Many of the resistance markers included 280 

on the Unyvero P50 panel are common among commensals of the respiratory tract. We 281 

therefore restricted our analysis to markers where resistance could reasonably be linked to a 282 

particular species (MRSA and FQR) or where we felt that their presence might impact 283 

treatment, regardless of the species of origin (ESBLS, plasmidic AmpCs and carbapenemases) 284 

(Table 1). A relatively large number of discrepancies in resistance detection were still noted. For 285 

example the Unyvero P50 detected 2 putative MRSA isolates, and a CTX-M producer in 286 

specimens reported to only contain normal respiratory flora. Comprehensive culture confirmed 287 
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a CTX-M producing K. pneumoniae was present in the latter, but unfortunately the presumptive 288 

MRSA specimens were not available for further study. It should be noted that the mecA assay of 289 

Unyvero P50 is not species specific and it is possible that the mecA genes in question originated 290 

from S. epidermidis rather than S. aureus [20].  During analysis, we only considered specimens 291 

where Unyvero P50 reported both S. aureus and mecA as potentially containing MRSA. 292 

Conversely, other discrepancies were potentially confusing. The majority of these related to the 293 

detection of chromosomal beta-lactamases. We suspect detection of chromosomal variants of 294 

AmpC enzymes (DHA in M. morganii and EBC (aka ACT/MIR) in Enterobacter spp [15]) in several 295 

cases; this is because there was no evidence for plasmidic AmpC enzymes in these specimens 296 

although the natural host species of these enzyme types were detected. Indeed, it can be 297 

difficult to develop PCR assays able to reliably distinguish certain plasmidic and chromosomal 298 

AmpC variants in their species of origin [21]. Five OXA-51 producing A. baumaniii were also 299 

detected; the OXA-51 enzyme is however intrinsic to A. baumannii and does not confer 300 

carbapenem resistance without an additional promoter provided by the insertion sequence 301 

ISAba1 [22]. Conversely, several A. baumannii isolated by routine microbiology carried blaOXA-23 302 

which is not a target of Unyvero P50.  303 

In our opinion, the composition of the resistance panel should be substantially redesigned to 304 

account for the common microflora of the respiratory tract and global distribution of beta-305 

lactamases. Several resistance genes, such as blaTEM, sul1 and ermB, are common among both 306 

pathogenic and commensal species found in the respiratory tract, and are therefore unusable 307 

unless their species of origin within the specimen is known. On the other hand, other resistance 308 
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genes causing concern globally, such as those encoding OXA-48, NDM and VIM type 309 

carbapenemases [23] are not included. 310 

Although the organism panel from the test is rather comprehensive, it could be further 311 

improved. Mycoplasma pneumoniae is not included as a target, and the test cannot 312 

differentiate between S. pneumoniae and other members of S. mitis group not relevant for 313 

respiratory tract infections [24] and should be replaced with an assay capable of detecting S. 314 

pneumoniae only. In addition, the complete lack of detection of viruses is a concern as viruses 315 

can account for a substantial amount of respiratory infections, especially during winter months. 316 

The manufacturer has recently released a new cartridge, the P55, addressing some of these 317 

issues. 318 

In summary, we find the sensitivity of detection of this test to be good, and therefore the 319 

treating clinician can be reasonably certain that if one of the targets of the test is absent, it is 320 

unlikely to be present, at least in significant numbers. Deciding which of the multiple organisms 321 

often detected in one specimen should be treated is another matter. As the specimens in this 322 

study all came from patients with known severe infections (42% were intensive care patients) it 323 

may be argued that many of the “additional” organisms detected by the test would have 324 

warranted treatment which could have improved outcomes for these patients, particular as the 325 

test is considerably faster than routine culture [19]. On the other hand, too many reported 326 

pathogens may unnecessarily confuse the physician’s choice of antimicrobial therapy, and may 327 

inadvertently lead to over-prescription of antimicrobials which would be detrimental to current 328 

efforts to improve antimicrobial stewardship worldwide [25]. Clinical studies evaluating the 329 
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potential effect on patient outcomes from use of technology such as the Curetis Unyvero P50 330 

are urgently required to establish the role this technology may play in the future microbiology 331 

laboratory.  332 

 333 

ACKNOWLEDGEMENTS 334 

We would like to thank the staff of the microbiology laboratories at Royal Free Foundation NHS 335 

Trust and University College Hospital (UCLH) for their co-operation and assistance. 336 

 337 

 338 

FUNDING STATEMENT 339 

This work has received funding from the European Union’s Seventh Programme for research, 340 

technological development and demonstration under grant agreement No 304865. Additionally, 341 

VG receives funding support from the UCLH Biomedical Research Centre. Curetis provided the 342 

two Unyvero machines, the P50 cartridges and technical support. 343 

 344 

CONFLICTS OF INTEREST: None  345 

ETHICAL APPROVAL 346 



 
19 

 

We adhered to a Governance framework with an overarching ethics agreement for the UCL 347 

Infection DNA Bank (Reference: 12/LO/1089), relating to the use of patient specimens surplus 348 

to clinical needs and anonymised patient data without consent. 349 

  350 



 
20 

 

References 351 

1. Hubbard R (2006) The burden of lung disease. Thorax 61 (7):557-558. doi:10.1136/thx.2006.066050 352 
2. Anand N, Kollef MH (2009) The alphabet soup of pneumonia: CAP, HAP, HCAP, NHAP, and VAP. Semin 353 
Respir Crit Care Med 30 (1):3-9. doi:10.1055/s-0028-1119803 354 
3. Rotstein C, Evans G, Born A, Grossman R, Light RB, Magder S, McTaggart B, Weiss K, Zhanel GG (2008) 355 
Clinical practice guidelines for hospital-acquired pneumonia and ventilator-associated pneumonia in 356 
adults. Can J Infect Dis Med Microbiol 19 (1):19-53 357 
4. Brusselaers N, Vogelaers D, Blot S (2011) The rising problem of antimicrobial resistance in the 358 
intensive care unit. Ann Intensive Care 1:47. doi:10.1186/2110-5820-1-47 359 
5. Enne VI, Personne Y, Grgic L, Gant V, Zumla A (2014) Aetiology of hospital-acquired pneumonia and 360 
trends in antimicrobial resistance. Curr Opin Pulm Med 20 (3):252-258. 361 
doi:10.1097/MCP.0000000000000042 362 
6. Masterton RG, Galloway A, French G, Street M, Armstrong J, Brown E, Cleverley J, Dilworth P, Fry C, 363 
Gascoigne AD, Knox A, Nathwani D, Spencer R, Wilcox M (2008) Guidelines for the management of 364 
hospital-acquired pneumonia in the UK: report of the working party on hospital-acquired pneumonia of 365 
the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother 62 (1):5-34. 366 
doi:10.1093/jac/dkn162 367 
7. Cooke J, Stephens P, Ashiru-Oredope D, Johnson AP, Livermore DM, Sharland M, Antimicrobial 368 
Stewardship Sub-Group of the Department of Health's Advisory Committee for Antimicrobial R, 369 
Healthcare Associated I (2014) Antibacterial usage in English NHS hospitals as part of a national 370 
Antimicrobial Stewardship Programme. Public Health 128 (8):693-697. doi:10.1016/j.puhe.2014.06.023 371 
8. Kollef MH (2004) Appropriate empiric antimicrobial therapy of nosocomial pneumonia: the role of the 372 
carbapenems. Respir Care 49 (12):1530-1541 373 
9. Niederman MS (2006) Use of broad-spectrum antimicrobials for the treatment of pneumonia in 374 
seriously ill patients: maximizing clinical outcomes and minimizing selection of resistant organisms. Clin 375 
Infect Dis 42 Suppl 2:S72-81. doi:10.1086/499405 376 
10. Davies S (2011) Annual Report of the Chief Medical Officer; Infections and the rise of antimicrobial 377 
resistance. Department of Health; London: 2013.  volume 2 378 
11. Matuschek E, Brown DF, Kahlmeter G (2014) Development of the EUCAST disk diffusion antimicrobial 379 
susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol 380 
Infect 20 (4):O255-266. doi:10.1111/1469-0691.12373 381 
12. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, 382 
Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, 383 
Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an 384 
international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol 385 
Infect 18 (3):268-281. doi:10.1111/j.1469-0691.2011.03570.x 386 
13. Roger Finch PD, Mark Wilcox, William Irving (2012) Antimicrobial Chemotherapy 6th edition. 6 edn. 387 
Oxford university Press. doi:10.1093/med/9780199697656.001.0001 388 
14. Pages JM, James CE, Winterhalter M (2008) The porin and the permeating antibiotic: a selective 389 
diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 6 (12):893-903. doi:10.1038/nrmicro1994 390 
15. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22 (1):161-182. 391 
doi:10.1128/CMR.00036-08 392 
16. Blasi F, Garau J, Medina J, Avila M, McBride K, Ostermann H, group Rs (2013) Current management 393 
of patients hospitalized with community-acquired pneumonia across Europe: outcomes from REACH. 394 
Respir Res 14:44. doi:10.1186/1465-9921-14-44 395 



 
21 

 

17. Schulte B, Eickmeyer H, Heininger A, Juretzek S, Karrasch M, Denis O, Roisin S, Pletz MW, Klein M, 396 
Barth S, Ludke GH, Thews A, Torres A, Cilloniz C, Straube E, Autenrieth IB, Keller PM (2014) Detection of 397 
pneumonia associated pathogens using a prototype multiplexed pneumonia test in hospitalized patients 398 
with severe pneumonia. PLoS One 9 (11):e110566. doi:10.1371/journal.pone.0110566 399 
18. Jamal W, Al Roomi E, AbdulAziz LR, Rotimi VO (2014) Evaluation of Curetis Unyvero, a multiplex PCR-400 
based testing system, for rapid detection of bacteria and antibiotic resistance and impact of the assay on 401 
management of severe nosocomial pneumonia. J Clin Microbiol 52 (7):2487-2492. 402 
doi:10.1128/JCM.00325-14 403 
19. Kunze N, Moerer O, Steinmetz N, Schulze MH, Quintel M, Perl T (2015) Point-of-care multiplex PCR 404 
promises short turnaround times for microbial testing in hospital-acquired pneumonia--an observational 405 
pilot study in critical ill patients. Ann Clin Microbiol Antimicrob 14:33. doi:10.1186/s12941-015-0091-3 406 
20. Ryffel C, Tesch W, Birch-Machin I, Reynolds PE, Barberis-Maino L, Kayser FH, Berger-Bachi B (1990) 407 
Sequence comparison of mecA genes isolated from methicillin-resistant Staphylococcus aureus and 408 
Staphylococcus epidermidis. Gene 94 (1):137-138 409 
21. Perez-Perez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC beta-lactamase genes in 410 
clinical isolates by using multiplex PCR. J Clin Microbiol 40 (6):2153-2162 411 
22. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, Pitt TL (2006) The role of 412 
ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 413 
258 (1):72-77. doi:10.1111/j.1574-6968.2006.00195.x 414 
23. Canton R, Akova M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, Livermore DM, Miriagou V, 415 
Naas T, Rossolini GM, Samuelsen O, Seifert H, Woodford N, Nordmann P, European Network on C (2012) 416 
Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol 417 
Infect 18 (5):413-431. doi:10.1111/j.1469-0691.2012.03821.x 418 
24. Kilian M, Poulsen K, Blomqvist T, Havarstein LS, Bek-Thomsen M, Tettelin H, Sorensen UB (2008) 419 
Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS One 3 (7):e2683. 420 
doi:10.1371/journal.pone.0002683 421 
25. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations, The Review on 422 
Antimicrobial Resistance Chaired by Jim O’Neill, December 2014  (2014).  423 

  424 



 
22 

 

TABLES 425 

Gram-positive 
Bacteria 

Gram-Negative Bacteria Fungus Resistance genes 

Staphylococcus aureus  
 
Streptococcus mitis 
group 

Acinetobacter baumanii, 
Escherischia coli, 
Haemophilus influenzae, 
Klebsiella oxytoca,  
Klebsiella pneumoniae,  
Moraxella catarrhalis,  
Morganella morganii,  
Pseudomonas aeruginosa,  
Serratia marcescens,  
Stenotrophomonas 
maltophilia,   
Chlamydophila pneumoniae,  
Legionella pneumophila,  
Enterobacter spp, 
Proteus spp 

Pneumocystis 
jirovecii 

blaCTX-M, blaDHA, blaEBC,  
ermA, ermB, ermC 
GyrA83, GyrA87, ParC 
blaKPC, blaoxa-51 
blaTEM, blaSHV,  
mefA, msrA, 
mecA,  
sul1 
int1 

Table 1. Pathogens and resistance markers detected by Unyvero P50. Resistance markers 426 

considered during our analyses are in bold.  427 
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Target Organism Routine 
laboratory 

UnyVero 
P50 

True Positive 
 (Routine and 
Unyvero P50) 

False Positive 
(Unyvero P50 
only) 

False Negative  
(Routine only) 

A. baumannii 3 10 3 7 0 

Enterobacter spp 3 9 3 6 0 

E. coli 5 8 5 3 0 

H. influenzae 3 7 1 6 2 

K. pneumoniae 3 11 3 8 0 

M. catarrhalis 3 6 3 3 0 

M. morganii 0 1 0 1 0 

Proteus spp 1 5 1 4 0 

P. aeruginosa 13 19 13 6 0 

S. marcescens 6 9 6 3 0 

S. aureus 5 11 5 6 0 

S. maltophilia 6 27 6 21 0 

S. mitis group* 0 13 0 13 0 

L. pneumophila 0 0 0 0 0 

C. pneumoniae 0 0 0 0 0 

P. jirovecii 0 0 0 0 0 

K. oxytoca 0 0 0 0 0 

E. faecalis 1 N/A 0 0 1 

C. koseri 1 N/A 0 0 1 

Negative 
specimens  

42 16 N/A N/A N/A 

Table 2. Frequency of organisms detected by routine microbiology and Unyvero P50 (n= 90 429 

specimens). Negative specimens include those classified by routine microbiology as NRF, NSG, 430 

MGODS or no growth. 431 

*S. mitis group is not considered significant by the routine microbiology laboratories, only 432 

confirmed detections as S. pneumoniae are reported. There were no reports of S. pneumoniae 433 

from these specimens. 434 
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 ESBL 
producer 

MRSA Fluoroquinolone 
resistance 

Carbapenemase 
producer 

AmpC producer 

 
Routine 
Microbiology + 
Checkpoints/PCR 

 
not detected 

 
n=1 

 
n=3  

 

1x P. aeruginosa 
(GyrA 83),  
2x  E. coli (GyrA 
83; GyrA 83 + 
GyrA 87) 

 
n=4 

 

3  A. baumannii      
(blaOXA-23) 
1  P. aeruginosa  
(no enzyme found) 

 
n=5 

 

3x S. marcescens  
2x E. aerogenes 
 

Presumed 
chromosomal AmpC 
upregulation 
 

 
Unyvero P50 

 

n=1 
blaCTX-M 

 

n=3* 
 

n=3  
 

1x  P. aeruginosa 
(GyrA83, ParC) 
2x  E. coli 
(GyrA83, GyrA83 
+ GyrA87) 

 

n=5 blaOXA-51 
 

2x  A. baumannii 
 

1x A. baumanii  
    + S. maltophilia 
 

2x  A. baumannii  
     + S. maltophilia  
     + S.aureus  

 

 

n=5 
 

2 x blaDHA 
 

1x M. morganii  
    + S. marcescens 
 

1x P. aeruginosa 
   + S. maltophilia 

 

            3 x blaEBC 
 

2x Enterobacter spp. 
 

1x Enterobacter spp                  
    + M. catarrhalis 

 

Concordance No 1/3 2/3 No No 

 436 

Table 3. Number of potentially significant resistance mechanisms detected by routine 437 

microbiology versus Unyvero P50 438 

*We assumed presence of MRSA when both S. aureus and mecA were detected in the specimen 439 
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FIGURES 441 

 442 

Figure 1. Distribution of the number of micro-organisms detected per specimen 443 

 444 
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445 
Figure 2 Summary of results  446 


