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UK logistics fleets face increasing competitive pressures due to volatile fuel 

prices and the small profit margins in the industry. By reducing fuel 

consumption, operational costs and carbon emissions can be reduced.While there 

are a number of technologies that can reduce fuel consumption, it is often 

difficult for logistics companies to identify which would be the most beneficial to 

adopt over the medium and long term. With a myriad of possible technology 

combinations, optimising the vehicle specification for specific duty cycles 

requires a robust decision making framework.   This paper combines simulated 

truck and delivery routes with a metaheuristic evolutionary algorithm to select 

the optimal combination of low carbon technologies that minimise the GHG 

emissions of long haul heavy goods vehicles during their lifetime cost. The 

framework presented is applicable to other vehicles including road haulage, 

waste collection fleets and buses by using tailored parameters in the heuristics 

model.  
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1. Introduction 

The combustion of fossil fuels results in poor air quality and greenhouse gas (GHG) emissions. 

The link between carbon emissions and climate change is well established (Stern 2007; IPCC 

2013) and governments around the world are now defining policies and legislation that seek to 

mitigate the negative impacts.   The European Commission (2010a) aims to reduce its GHG 

emissions by 80-95% below 1990 levels by 2050 with intermediate climate and energy targets 

by 2020, which include a reduction in EU GHGs of at least 10% below 1990 levels for the 

transport sector (European Commission 2010b). By 2030, total GHG emissions should be 

reduced by 40% according to the 2030 policy framework for climate and energy signed in 2014 

(Commission 2014).  
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According to DECC (2014a), around 4.2% of all the UK anthropogenic GHGs 

emissions are produced by heavy goods vehicles (HGV). Commercial Transportation of food 

for UK consumption represents around 9% of the GHGs emissions of the food chain (Defra 

2011) and between 1.8% (FRPERC, The Grimpsby Institute, and University of Bristol 2010) 

and 2.5% (Garnett 2003) of all UK carbon emissions.  

The EU White Paper, ‘Roadmap to a Single European Transport Area’ (2011), suggests 

that it is possible to achieve a 60% reduction in GHGs emissions by 2030, with respect to 1990 

levels, by improving a vehicle’s efficiency through new engines, materials and designs and 

cleaner energy use through new fuels and propulsion systems. Internal combustion engines 

running on diesel based fuels dominate UK heavy goods vehicle fleets with emissions from 

refrigerated food vehicles being particulalry hightened due to energy consumption and gas 

leakage issues from transport refrigeration units (TRU).  

Typically, for the same type of vehicle, lower fuel consumption leads to lower operating 

costs and carbon emissions. When the additional capital expenditure of procuring more efficient 

technologies is kept to an optimal level, it is possible to achieve the lowest net present costs, 

resulting in the highest profits for specific operating conditions. This is of critical importance in 

the UK where fuel costs rose by 41% between January 2009 to 2013 (DECC 2013), 

representing almost 30% of the total operating costs for a 16-18t rigid vehicle (FTA 2013). Over 

the same period,  the Food Price Index rose by 47% (FAO 2013) increasing competitive 

pressures among food supply chains even further.  Despite this trend being recently reversed 

with Brent Crude oil and natural gas prices declining by 40% and 17% respectively over the 

past 12 months (Thomson Reuters 2016), those logistics firms that gamble against the volatility 

of oil prices through financial instruments (e.g. calls options) are at a higher risk if they do not 

forecast fuel prices volatility correctly.  

Logistics firms have to meet public policy targets regarding the carbon agenda. However, 

delivering freight sustainably is not only about reducing the negative environmental externatilities 

of transport but also undertaking logistics operations  in a cost efficient manner that meets 

customer expectations. . This paper proposes a sim-heuristics framework that can be used by 



procurement decision makers to address these issues by specifying the right combination of low 

carbon technologies (LCT) that minimise the total vehicle cost of ownership. The fleet renewal 

decision making method used in this framework is based on the net present value (NPV); a more 

applicable technique compared to the typical payback period as it considers the time-value of 

money, provides a monetary value that allows a clear comparison between available alternatives, 

emphasises cash flow measures and considers returns beyond the payback period (Burns and 

Walker 1997).   

The innovative framework developed in this research automates the selection of energy 

efficient technologies for road haulage vehicles. The approach taken is different and more 

powerful compared to exisiting models that can aid fleet managers calculate fuel savings and 

carbon emissions which currently require the users to pre-select the technologies they wish to 

investigate. The model created in this research automates the technology selection process  on 

behalf of the user in order to minimise the GHG output of their vehicles cost-efficiently, according 

to their duty cycle. In practice, evaluating all the potential combinations of low carbon 

technologies cannot realistically be achieved without the help of a mathematical model as the 

number of potential combinations can include millions of vehicle configurations. It is also not 

technically or economically feasible to expect a company to conduct real live trials to ascertain 

the fuel savings of each possible technology package. This research presents a framework that 

can help logistics companies narrow down the combinations of technologies that yield the highest 

net present cost savings by using a mathematically robust decision making methodology.  

Using a major fast food logistics provider as a case study, a framework has been created 

and applied to a real dataset to show the potential of the framework in action. HGV manufacturers 

will find the approach beneficial for tailoring the configuration of vehicles to the operating 

requirements of their customers whilst meeting vehicle efficiency standards such as the ‘Phase 2 

GHG Emissions Standards and Fuel Efficient Standards for Medium –and Heavy-duty Engines 

and vehicles (US EPA, US DOT, and NHTSA 2015) .  

2. Literature Review 



The ‘Carbon Intervention Modelling Tool’ developed by Heriot-Watt University (2011) 

is a decarbonisation prediction model that estimates how much CO2 can be reduced from freight 

transport operations by applying one or more decarbonisation measures as chosen by the user. 

The UK DfT developed the ‘Freight Best Practice Fuel Ready Reckoner’ that allows fuel 

savings to be estimated for different fuel saving techniques (DfT 2010). In this model, the user 

can understand the cumulative savings of each option alongside the inter-relations between 

technologies. The model indicates total fuel savings per annum; however, it is the user who has 

to select the technologies until the combination that yields the greater savings are identified. 

This model also calculates air quality emissions but only to Euro V and capital expenditure is 

not included in the analysis.  

The ‘Low Emission Toolkit’ was developed by the ‘Low Emissions Strategies 

Partnership of UK Local Authorities’ and helps to estimate the transport emissions associated 

with new technological developments. It also compares low emissions vehicle technologies on 

an individual vehicle basis, calculating emissions and benefits of lower carbon vehicles 

(Strategies.co.uk 2013).  The model includes eight LCT’s, not all of them available to HGV’s 

(fairings, shaped trailers, spray suppression, low rolling resistance tires, single wide tires, auto 

tyre pressure adjustment, predictive cruise control and vehicle platooning) in addition to driver 

behaviour improvements. In a similar approach to the one applied by Baker et al. (2009), this 

model looked at costs, technology maturity and limitations related to the lack of infrastructure. 

It also required the user to select the desired technologies in order to compute the likely carbon 

savings and uses the payback period. The model described in this paper considers the net 

present value (cost) as a more suitable investment appraisal technique for decision making than 

then payback period, as it allows the evaluation of specific rates of return, economic flows at 

different points in time, and a more realistic scenario analysis in combination to heuristics 

techniques for the optimisation of the vehicles’ configuration (Ashford, Dyson, and Hodges 

1988; Lefley 1996).  

The Lumped Parameter Model (US EPA 2015) is an application that estimates the CO2 

reduction of various technology combinations or packages for light-duty vehicles (as selected 



by the user), accounting for synergies between the technologies. This selection model cannot be 

applied to HGVs,  it does not consider driving cycles and does not provide an economic 

assessment of the technologies chosen by the user. 

There are many studies on low carbon technologies for heavy duty vehicles that inform 

decision makers of the fuel savings of individual or packages of technologies. This paper is 

novel in that it proposes a mathematical approach (sim-heuristics) to aid logistics companies 

choose the most optimal selection of low carbon technologies to reduce their carbon footprint 

cost-efficiently. Most  of the literature reviewing full vehicles is focus on U.S. (Cooper et al. 

2009; National Research Council 2010, 2012; Harrington and Krupnick 2012; Meszler, Lutsey, 

and Delgado 2015; Delgado and Lutsey 2015; Committee to Review the 21st Century Truck 

Partnership 2015) or European fleets (Baker et al. 2009; Connelly et al. 2011; Hill et al. 2011; 

Law, Jackson, and Chan 2012). The results of studies from different geographical areas can vary 

considerably due to differences in vehicle standards, regulations and legislation.  As an 

example, the typical medium duty truck undertaking urban deliveries in the UK is a 7.5t 2-axle 

rigid lorry whereas heavy duty (motorway work) is typically carried out by articulated vehicles 

with GVW over 32.5t  and 3-axles (Baker et al. 2009). Table 1 summarises the findings from 

the literature with regard to the main differences between EU and USA vehicle categories with 

regional deliveries being carried out by a mix of rigid and articulated vehicles.  There are also 

considerable differences in vehicle length which in the UK equates to a maximum length for 

rigid vehicles of 12 m and 16.5 m for articulated vehicles (or 18.75 for a lorry with a trailer). In 

the U.S., the total length of articulated vehicles can be as much as 21.3-22.9 m (Law, Jackson, 

and Chan 2012). As speed limits differ between the EU and US, so driving cycles employed in 

trials and simulations (Table 1).  Based on studies published by US EPA (2008),  Law, Jackson, 

and Chan (2012),  Gov.UK (2013) and Ecopoint Inc. (2013), Table 1 shows the main 

differences between US and EU HGV vehicles including operational data related to duty cycles 

and speed limits.  

 

 



Table 1. Typical baseline parameters for HGVs trials and simulations in EU and US low carbon 

technologies studies. 

Baseline 
Urban Delivery Regional Delivery Long-Haul 

EU US EU US EU US 

Engine 

Displacement (L) 

6.7 6.7 7.2 6.7 12.4 12.9 

GVW (kg) 7,500-

14,000 

7,257-

11,793 

7,500-

16,000 

11,794-

14,969 

16,000 

->40,000 

14,969-

36,364 

Annual Activity 

(km) 

40,000 32,187-

120,701 

60,000 40,234-

120,701 

80,778 75,000-

200,000 

Fuel Consumption 

(L/100km) 

21 20-47 25.3 29-59 30.6 31-59 

Vehicle Class N2 / O3 Class 

5/6 

N2-N3 / 

O3-O4 

Class 7 N3 / O4 Class 8 

Type Roads Built-up 

areas 

Resident

ial 

Dual 

Carriage

ways 

Other 

limited 

access 

roads 

Motorway

s 

Freeway 

(rural) 

Legal Speed limit 

(kph) 

48 Up to 56 Up to 96 Up to 

121 

96 Up to 1211        

Examples of 

Driving Cycles 

WHVC 

(Urban) 

EPA 

HD-

UDDS 

WHVC 

(Rural) 

CARB 

HHDDT 

WHVC 

(Motorwa

y) 

NESCAU

M /SwRI 

Studies conducted using US vehicles and operations suggest that fuel consumption 

reductions of 50% are possible in the period to 2020 (Cooper et al. 2009; National Research 

Council 2010, 2012). Based on Class-8 heavy-duty long-haul semi-trailers and following a 

California Heavy Duty Diesel Truck Drive Cycle, Cooper et al. (2009) simulated 32 low carbon 

technologies combined within 14 technology packages  and found that fuel consumption could 

be reduced by 20% in 2012 and by 50% in 2017 while providing net savings for the operator. 

This was possible by combining aerodynamic and lower rolling resistance improvements in 

hybrid powertrains with heat recovery and limiting speed to 60 kph.  Similarly, the National 

Research Council (2010) suggested that Class 8 vehicles could achieve 51% fuel consumption 

reduction (FCR) between 2015-2020 with a FCR of 20% coming from advanced engines, 11.5% 

from aerodynamic improvements, 11% from lower rolling resistance, 7% from transmissions 

and drivelines, 10% from hybrids and 1.25% from weight reductions. A medium duty class 6 

                                                 

1 Texas up to 137. 



box truck operating in regional haul (assuming 241 km/day at an average speed of 48 km/h) 

could achieve almost 50% FCR with the greatest potential coming from the use of hybrid 

powertrains (30% FCR) and waste heat recovery (14% FCR). There was less potential for 

lightweight materials and transmissions (4% FCR each), rolling resistance tyres (3%) and 

aerodynamic fairings (less than 1% FCR).  

The review of the SuperTruck program conducted by the National Research Council 

(2012) investigated advances in LCT for long-haul Class-8 HGVs and aimed at fuel savings of 

33%, identifying fuel saving opportunities from predictive cruise control (up to 5%), speed 

limiters (up to 3%), aerodynamic improvements (up to 12%), drivers training (over 1.9%) and 

allowing greater vehicle payloads through larger and heavier vehicles (up to 28%). In urban 

duty cycles, the main potential savings came from hybridisation (38%), intelligent transport 

systems (up to 15%) and driver training (up to 17%). Increasing size and weight also presented 

an opportunity to save up to 28% fuel on a unit payload basis for any cycle. In contrast, several 

other studies suggest fuel savings of around 10% can be achieved but these benefits are likely to 

diminish over time if training regimes are not maintained (Connelly et al. 2011; Hill et al. 

2011). In highway driving, the National Research Council (2012)  indicated considerable fuel 

savings from aerodynamic improvements (19%), waste heat recovery (almost 17% FCR) and 

single wide base tyres (15% FCR). 

Delgado and Lutsey (2015) focused on USA class 8 vehicles and the fuel savings that 

could be achieved in the 2020-2030 timeframe. The fuel savings expected in real world highway 

operations by 2017 compared to the 2010 baseline varied between 8% and 42%; by 2020 these 

could reach between 21% and 46%; and by 2030 as much as 48%-52% depending on the 

engine, transmission and tractor-trailer technologies (the latter included only aerodynamics and 

rolling resistance improvements). The results show that fuel economy in the U.S. for this type of 

HGV could increase from 2.33 km/L in 2010 (around 57.9 L/ 1000 ton-km) to 5.23 km/L 

(around 25.9 L/1000 ton-km) by 2030 by using hybrid systems with 60% braking regeneration 

efficiency). The savings from individual technologies ranged from 0.4% from friction reduction 

in transmissions to 22.2% for aerodynamic tractor-trailer improvements. An comprehensive 



evaluation of the cost-effectiveness of these technologies is given by Meszler, Lutsey, and 

Delgado (2015). 

In Europe, according to Baker et al. (2009), EU semi-trailers under long-haul duty 

cycles benefit most from vehicle technologies such as aerodynamic trailers (10%), electric 

bodies (e.g. cryogenic nitrogen trailer refrigeration) and vehicle platooning (10%). Both duty 

cycles can benefit considerably from the use of biofuels and alternative fuels. Medium duty 

trucks in urban deliveries benefit the most from powertrain technology improvements such as 

hybridisation (20%) or plug-in electric trucks (100% FCR at point of use). This study also 

covered the potential for reducing carbon emissions by using second generation biofuels (e.g. 

biomethane) and alternative fuels (e.g. natural gas) and it also covers trailer refrigeration 

technologies such as cryogenic systems. 

Hill et al. (2011) reviewed different low carbon technologies for informing potential 

policy actions. Their report suggested that urban operations could achieve 20-30% FCR by 

mainly improving powertrain efficiency improvements on long haul operations and targeting 

losses due to vehicle drag. The savings reported were lower than other sources because neither 

fuel technologies nor operational measures were taken into consideration.  

The University of Surrey designed a 40t 2-axle HGV concept capable of 12% FCR in 

medium duty and 8% in heavy duty motorway driving with a 10t load and whole life costs, 

£1,500 cheaper than the baseline vehicle (Connelly et al. 2011). This was possible by 

integrating a parallel mild-hybrid powertrain with regenerative braking as well as downsizing 

the engine to reduce weight, incorporating reduced rolling resistance, thermoelectric recovery of 

wasted heat and an aerodynamic shaped ‘teardrop’ trailer with aerodynamic fairings. With a 

payback of almost 5 years, the solution would most likely not be acceptable to businesses, as 

rigid vehicles have a life expectancy of 5 years. However, the payback could improve if the 

mileage would be more closely matched to reality. Consistent with all the literature, at high 

speeds (90% motorway driving) aerodynamic improvements represent the major contributor to 

fuel reduction while at low speeds; alternative powertrain (hybridisation) offers the greatest 

savings. In a rural cycle (a mix of high and low speeds), the contribution of both factors is 



similar. An additional 9% of fuel can be saved through a better management of auxiliary power 

(Connelly et al. 2011). 

Kay and Hill (2012) focused on carbon savings rather than FCR and highlighted the 

importance of alternative powertrains and fuels. Their study suggested 50% WTW carbon 

savings by using pure electric vehicles in urban deliveries and up to 65% GHG savings 

switching from diesel to biomethane in long haul operations.  

Electric trucks can save 100% GHG emissions at their point of use (Baker et al. 2009; 

Hausberger et al. 2012) which depending on the energy grid mix may lead to considerably 

lower Well-to-Wheel emissions; however, at the moment there are no plug-in electric 

articulated semi-trailers anywhere in the world beyond port drayage (also known as shunting) or 

trunking operations in distribution centres. A similar concept known as tram trucks (trolley 

trucks) are being trialled by Siemens in the US and Germany with their e-highway traction 

system (Siemens 2014), where electric rigid HGVs are powered by a catenary and are combined 

with hybrid powertrains to allow overtaking other vehicles. 

The impact of energy efficient technologies on reducing fuel consumption and GHG 

emissions focus on reducing the forces acting upon a vehicle, avoiding efficiency loses, allowing 

the use of decarbonised fuels and changing refrigerant gases for others with a lower global 

warming potential. Reducing the tractive power requirements of a vehicle to overcome forces 

acting upon it follows Newton’s second law of motion. The force required to overcome air and 

rolling resistance, acceleration resistance and gradient are shown in Equation 1 (road load power 

equation). As only 42% of the energy is transferred into breaking power (National Research 

Council 2010, 2012; Baker et al. 2009), technologies that improve engine efficiency are key to 

reducing fuel consumption; however, there is a limit to the efficiency achievable by diesel 

engines. The US DoE (2013) considers that depending on the casting materials and the engine 

design used, the approximate diesel and gas engine maxim theoretical efficiencies are under 55%. 

Examples of beneficial powertrain technologies include devices and chemicals that improve 

combustion, systems that reduce wasted heat, friction and auxiliary losses (e.g. oil/water pump, 

auxiliary power units). To obtain the power required to overcome the forces shown in Equation 



1, the resulting force has to be multiplied by the speed over time.  Equation 2 shows that mass, 

rolling resistance, drag coefficient, frontal area of the vehicle, gradient and speed are critical 

factors in energy consumption. All things being equal, as the shape of the U.S. and EU trucks 

differ, their different aerodynamic coefficients produce different energy consumption demands to 

overcome aerodynamic forces. Similarly, as speed is a common factor in all parameters in 

Equation 2, different transient driving cycles produce very different power requirements, even 

when the same vehicles are used over the same distances. From Equation 2 it can be concluded 

that at higher speeds, aerodynamic improvements can make the greatest contribution to fuel 

savings while at lower speeds, rolling resistance is more important to overcome the forward 

forces.  

Fres=(Froll+Fair+Facc+Fgrd) 

Equation (1). Driving resistances forces. Source: National Research Council (2010) 

Where:  

Fres= Resulting forces needed to propel a vehicle (Newtons). 

Froll=Rolling force  

Fair=Aerodynamic drag force 

Facc=Acceleration force 

Fgrd=Gradient force 

Pres=mgCrrv+½ϱaCDAFv3+mav+mg sin θ v 

Equation (2). Adapted from National Research Council (2010) and Hausberger et al. (2012). 

Where:  

Pres = Power demand to overcome tractive forces to propel a vehicle (Watt) 

m = Vehicle mass (kg)  

g = Gravitational constant (9.81 m/s2)  

Crr = Tyre rolling resistance coefficient (dimensionless) 

v = Speed (m/s)  

ϱa = Density of air (kg/m3)  

CD = Aerodynamic drag coefficient  



AF = Frontal area (m2)  

a = Acceleration (m/s2). This is dv/dt  

θ = Road gradient (degrees from horizontal) 

Reducing rolling resistance is possible by reducing mass, speed, or the rolling resistance 

coefficient of the tyres. This is possible by using low rolling resistance tyres or single wide base 

tyres. Aerodynamic vehicles with a lower drag coefficient, smaller frontal area and lower speed 

require less power. Predictive cruise control has also been suggested as a method for delivering 

fuel savings by influencing the energy required for overcoming the gradient factor of the power 

equation (Baker et al. 2009; Hill et al. 2011; Cooper et al. 2009). Climbing resistance is the 

factor that influences power requirements the most (Connelly et al. 2011) and for this reason, 

reducing mass and understanding clearly if the vehicle is going to run in relatively flat areas will 

help specify the most appropriate powertrain. 

Equation 2 represents the energy needed for the vehicle without considering energy 

losses and the efficiency of the powertrain. It also assumes energy recovery when going 

downhill, which is not realistic unless the HGV has a technology that benefits from this such as 

flywheels or regenative braking devices. This equation does not take into consideration the 

efficiency from engine maps and calculations would  suggest that the lower the speed the lower 

the energy required by the vehicle. For this reason, a 3D simulation system to test LCT 

providing more degrees of freedom provides a much more accurate estimate of fuel 

consumption.  

The fuel consumption of a vehicle is measured in litres per kilometre but this does  not 

allow for a fair comparison of vehicle energy intensity between different haulage fleets, and it is 

for this reason that fuel consumption is typically normalised by unit of payload (e.g. fuel 

consumption per tonne-km or per m3-km). This makes it possible to appraise certain 

technologies that increase fuel consumption per vehicle-km (e.g. double decker trailers or draw-

bar combination vehicles) due to their greater mass.  



3. Methodology 

The models found in the literature do not optimise the right combinations of LCT which 

highlights the importance and relevance of the framework presented here.  The framework 

includes four main stages (Figure 1): i) a techno-economic analysis of the literature on low 

carbon technologies; ii) a statistical analysis of the industrial sponsor operations necessary to 

produce simulations and trials, iii) building statistically representative duty cycles and other 

inputs needed in later stages; iv) modelling and simulating vehicles’ trips and technologies; and 

v) the application of a metaheuristics model for optimising the final vehicle specification 

according to the outputs generated in the previous stages. 

The analysis of the literature suggested suitable technologies that could reduce the fuel 

consumption of HGV’s, along with their respective advantages, challenges, synergies and 

constraints.  
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Figure 1. Structure of the methodology. 

 



3.1 Review of the Industrial Sponsor Operations 

Operational data from the fast food logistics provider  have been used to produce the inputs 

needed in the metaheuristics  model, and to build statistically representative duty cycles to 

simulate routes (e.g. speed, number of stops per trip). Dynamic analysis refers to the use of 

instrumenting software to monitor and collect data (Wieringa and Heerkens 2007) andvia a 

telematics system through which real time operating data are captured and processed to build 

driving cycles. This information is uploaded to a server that can be interrogated using the SOAP 

protocol (Simple Object Access Protocol) or recorded via a data logger following a 

communication specification such as the NMEA 0183. The parameters that are available from 

the ECU and telematics unit include among other values; time, date, GPS coordinates, vehicle 

speed, rpm of the engine, clutch and exhaust brake.  

The driving cycle, operational parameters and route coordinates are used to simulate 

vehicles and trips, allowing the evaluation of the FCR yield by different LCT. Several software 

packages can assist in the statistical analysis of driving cycles (e.g. Excel, NREL DRIVE, 

Matlab). Vehicle manufacturers can avoid this stage by using the standard driving cycles used to 

measure air quality emissions (e.g. ETC, US HDDT or the WHDC). To make like for like 

comparisons, once a driving cycle has been established, all simulations have to test different 

technologies using the same driving cycle.  

3.2. Generation of the ‘Fuel Consumption Reduction’ Parameter 

A virtual DAF CF-85 truck and trailer combination was modelled customising a baseline 

articulated semi-trailer included in the simulation environment (IPG Truckmaker) with 

parameters from technical DAF data sheets. The representative duty cycle from the previous 

stage and a real route were imported into the simulator. The digital road was built from the GPS 

coordinates of the telematics unit of the vehicles. A simulated driving style was selected based 

on the driving behaviour shown during a trial. The simulations replicated vehicle stops and 

weight reduction of the vehicles due to lower fuel load due to the fuel consumed during the 

trips. Once the FCR of a baseline control vehicle was simulated, a test vehicle was built 



incorporating the low carbon technology being evaluated. The differences in fuel consumption 

between the control and test HGV were attributed to the technology improvement. The 

parameter obtained,’FCR’ constitutes one of the main inputs to the metaheuristics optimisation 

model.  

The framework presented here encourages the use of simulations to avoid the issues associated 

with conducting live trials. Some technologies such as aerodynamic improvements that require 

computational fluid dynamics simulations are  difficult to simulate by non experts . In the cases 

when conducting simulations is not feasible, relying on secondary sources or conducting a real 

world trial is a valid alternative .  

3.3 Evolutionary Metaheuristic Model for Technology Selection 

The quantitative model developed in this research is in essence a combinatorial binary 

optimisation problem that yields complex, non-smooth and non-linear solutions. A bespoke 

metaheuristics mathematical model based on evolutionary algorithms (tabu search and scatter 

search) was developed to optimise the selection of low carbon technologies for different types 

of HGV. Metaheuristic algorithms are one of the most practical approaches to solve 

combinational optimisation problems (Yagiura and Ibaraki 2001; Laguna 2011). Evolutionary 

algorithms have been previously used for function optimisation of multiple parameters (Mitchell 

1998) and optimisation of engineering problems (Togun and Baysec 2010; Laguna et al. 2013) 

including technology selection that impacts on performance and economic parameters (Patel, 

Kirby, and Mavris 2006). Simple heuristic methods such as genetic algorithms (GA) can 

evaluate a large number of combinations within a reasonable time; however, due to their 

probabilistic nature, there is no guarantee that the solution found corresponds to a global 

optimum instead of a local optimum (Mitchell 1998).   On the other hand, Tabu search is a 

metaheuristic that guides a local heuristic search procedure to explore the solution space beyond 

local optimality (Glover 1996) by using adaptive memory and associated memory-exploiting 

mechanisms (Martí, Laguna, and Glover 2006). Scatter search is another metaheuristic 

optimisation method that uses strategies (rules) for diversifying and intensifying search rather 

than relying on randomisation (as genetic algorithms do) and it can join TS to take advantage of 



its adaptive memory (Martí, Laguna, and Glover 2006).  Using simpler GA techniques increases 

the probability of the optimisation becoming stuck in a local optimum and therefore TS and SS 

approaches are used in this framework in order to maximise the chance of finding the global 

optima. 

Taking an HGV as a baseline, the model uses OptQuest to find the optimal combination of 

LCT that minimise  the net present cost during its 5 years life expectancy while simultaneously 

reducing  its energy consumption and carbon emissions. OptQuest is an optimisation framework 

whose main optimisation engine uses tabu search and Scatter Search to obtain high quality 

solutions for non-linear non-smooth complex problems where a mix of continuous, integer, 

permutation, binary and other types of variables are allowed (Laguna et al. 2013).  

3.3.1 Objective function 

The model considers financial parameters such as the opportunity cost of capital; total costs of 

ownership of vehicles and LCT; taxation; fuels, refrigerant gases and carbon emissions prices 

over time based on fuels and gases emission factors; and economic growth trends under several 

scenarios to calculate the net present cost (NPC) of the lifetime of the HGV (equation 3). 

Operating parameters include the annual mileage and tonnage delivered as well as the specified 

duty cycle that is used to find out the FCR of each technology. Equation 3 minimises the NPC 

of a long haul refrigerated HGV and it does so by combining linear (e.g. addition of fixed 

maintenance costs) and non-linear equations (equation 4). The function includes capital and 

operating expenditure of the HGV and add-on technologies (decision variables). The objective 

function represents the fitness function of the evolutionary algorithm. 

𝑁𝑃𝐶 (£)  =  𝑅0 + ∑
𝑅𝑡

(1 + 𝑖)𝑡

𝑛

𝑡=0

 

Equation (3) 

Where: 

NPC is the net present cost of thevehicle (£)  

t is the lifetime in years of the HGV from 0 to n years 

R0 is the initial investment when procuring the vehicle 



Rt is the net cash flow (cost) at time period t 

i is the discount rate (also known as opportunity cost of capital) 

3.3.2 Decision Variables 

The FCR of a combination of technologies is non-linear and it is the product of the FCR of each 

individual technology selected (Equation 4) considering any potential constraint that excludes a 

particular set of technologies.  

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐹𝐶𝑅 (%)  = 100 × [1 − ∏(1 − 𝐹𝐶𝑅𝑖)

𝑛

𝑖=0

] 

Equation (4) 

Where: 

i is the number of technologies and 

FCRi is the fuel consumption reduction of technology i when this technology is chosen and it  

meets the constraints. 

FCR is the aggregated percentage of fuel consumption reduction from a combination of i 

technologies 

Due to different driving cycles, speed limits, weights, dimensions and aerodynamic 

characteristics among European and US HGV, to obtain better consistency the FCR inputs used 

in the model are the ones that appear in Table 2 and are mainly based on a the results published 

by Hill et al. (2011) amended according to information provided by Continental (2015); 

Frigoblock UK Ltd (2013); Centre for Low Carbon Futures (2014); GKN Hybrid Power (2015); 

MarshallWeb (Thermoking) (2015); Kevothermal (2015); Spraydown (2013, 2015)). Each 

technology in Table 2 is considered to be a binary variable that when selected, combines its 

FCR with that of other technologies yielding the optimal combination of technologies that 

contributes to minimising the objective function. This affects not only the fuel consumption but 

also the capital costs of the purchased HGV by adding additional cost for each selected 

technology and the costs associated with the carbon emissions. 

3.3.3 Constraints.  

The model potentially evaluates a total of 2n combinations, where n represents the number of 



independent technologies. As 21 technologies are currently included in the model, a total of 

2,097,152 combinations could be tested, reduced to 170,501 once all constraints are considered. 

At 30 technologies, over a billion combinations are created with multiple ‘if’ and ‘or’ conditions 

making this problem complex and time consuming to solve by other non-heuristic methods.  

A technical analysis revealed that some low carbon technologies were incompatible 

(e.g. hydraulic and electric hybridisation powertrains) or are mutually exclusive as they had the 

same function (e.g. aerodynamic trailers, irregular body shapes and aerodynamic fairings; new 

generation wide-base and lower rolling resistance tyres). Other constraints were more subtle; 3 

phase alternator unit refrigeration systems cannot work with stop-start mild hybrid trucks. 

Table 2. Costs and fuel consumption reduction for each technology applied to long haul HGV 

updated to 2015 prices.  

Low Carbon 

Technology 

Number Areas for improvement FCR Added 

Cost 

V
eh

ic
le

 T
ec

h
n

o
lo

g
ie

s 

Reduced 

Aerodynamic 

Resistance 

1 Aerodynamic Trailers 11.00% £3,242 

2 Aerodynamic Irregular body shape 5.00% £815 

3 Aerodynamic Fairings 0.40% £1,093 

4 Spray Reduction Mud Flaps 2.00% £172 

Reduced Rolling 

Resistance 

5 Low rolling resistance tyres 5.00% £324 

6 New generation wide-base single tyres 5.00% £1,204 

7 Automatic tyre pressure adjustment 3.00% £10,921 

Vehicle Mass 8 Lightweighting Materials 2.20% £1,482 

Intelligent VT 9 Predictive Cruise Control 5.00% £1,297 

Auxiliary 

Systems 
10 Controllable air compressor 1.50% £176 

P
o

w
er

tr
ai

n
 T

ec
h

n
o

lo
g

ie
s Exhaust Heat 

Recovery 

11 Heat Recovery (in general) 5.00% £10,717 

12 Electrical Drive Turbocompound 3.00% £6,484 

Transmissions 13 Automated Manual Transmission 5.00% £4,369 

Mild Hybrid 

14 Flywheels Hybrid 5.00% £5,465 

15 Stop-Start: Electric Hybrid 1.00% £871 

16 Pneumatic Booster - Air Hybrid 3.50% £741 

Alternative PT 
17 Full Hybrid: Series / Parallel - Electric 7.00% £22,232 

18 Series / Parallel - Hydraulic 0.00% £12,227 

R
ef

ri
g

er
at

i

o
n

 U
n

it
 

Refrigeration 

Technologies 

19 3 phase alternator Unit 100.00% £5,377 

20 Hybrid Refrigeration Unit 11.00% £3,226 

21 Vacuum Isolated Panels 5.00% £2,997 



Regarding vehicle technologies, it was assumed that aerodynamic trailers and irregular 

bodies (e.g. teardrop shape) were mutually exclusive as the latter also included aerodynamic 

fairings. This was also the case between low rolling resistance tyres and new generation single-

base wide tyres. With regards to powertrain technologies, it was considered that just one hybrid 

technology could be chosen as it would make no sense to have two or three powertrain systems 

duplicating the same function. For example, flywheel and electric and hydraulic hybrids have 

similar functions and all have a stop-start technology embedded that powers the battery, 

hydraulic compressor or the flywheel. The constraint specifies that 0 ≤ flywheels + stop-start + 

electric hybrid + hydraulic hybrid ≤1. Another of the powertrain technologies available is 

pneumatic boosters; a technology that injects compressed air from an auxiliary tank into a turbocharged 

internal combustion engine’s manifold which increases torque and fuel efficiency (Knorr-Bremse AG 

2012). This technology is therefore not compatible with electric engines; as it is a technology that 

works with internal combustion engines. However, it is compatible with hybrid powertrains as 

these also have an small internal combustion engine (typically downsized). As there are no 

battery electric long-haul HGV at commercial stage yet, electric trucks were excluded in the 

model. Regarding low carbon refrigeration technologies, it was assumed that a trailer could not 

have more than one TRU, as there is no space in a trailer to fit them and it would not make 

sense to duplicate the same function. The sum of the binary decision variables is constrained to 

up to 1 technology in total: 0 ≤ 3 phase alternator unit + hybrid unit ≤1. When using start-stop 

technology, three-phase alternator units could not be selected as these draw power from the 

engine. If a vehicle stops in congestion, the engine would switch off and after a while the cold 

chain would be broken.  For this reason, a constraint was added where: 0 ≤ stop-start + 3 phase 

alternator ≤1. Regarding refrigerant gases, conventional and hybrid TRUs were constrained to 

use R404A while 3 phase alternator refrigeration machines to R410A. Following the UK ‘2013 

Government GHG Conversion Factors for Company Reporting’ (Defra/DECC 2012),   15% of 

gas leakages for conventional and hybrid TRUS were assumed, while this was 7.5% for 

refrigeration units running with R410A gas (e.g. three phase alternator refrigeration units). 

3.3.4 Parameters 



Taking the 2015-2020 period as a baseline scenario, the model permits the impacts of different 

technology scenarios to be projected. Parameters that are considered include fluctuating year-

on-year national growth forecasts, energy prices (diesel, biodiesel and red diesel), carbon costs 

and GHG emission factors. Operating parameters include mileage forecasts, the fuel 

consumption of tractor and refrigeration units, the number of trips made per day, the working 

hours of the refrigeration unit per trip, refrigerant leakage rates, freight loads (e.g. cages, cases 

and tonnage) and maintenance costs. The cost of tyres per km and the percentage of diesel 

exhaust fluid (DEF) per litre of fuel are also considered. Examples of some of the parameters 

considered by the heuristics model are included in Table 3. Distances. Data regarding driving 

distances and trips per day have been provided by the case study company as appear in Table 3 

and it has been assumed that trips per vehicle and day rise year on year due to routing and 

scheduling software and personnel efficiency improvements.  

3.3.4.1 Financial Parameters. To calculate the net present costs, the rate of return used 

required by the operator was 9.7% and the vehicles life 5 years, as specified by the finance 

director of the logistics organisation on which this research is based. 

3.3.4.2 Emission Factors. The results presented in this paper used the official emissions factors 

suggested by DECC (2014b). This includes the EF of fuels and refrigerant gases leakages. The 

model considers only Scope 1 emissions as this emissions fall within the boundaries of the 

operator organisation. It is assumed that diesel average blend (B5) produces 2.58 kg CO2eq. per 

litre, Red diesel (mineral diesel 2.67 kg CO2eq. per litre and B100 total direct GHG emissions are 

0.0175 kg CO2eq. per litre.  

4 Results 

The technology specification that minimises the NPC for any articulated semi-trailer using any 

diesel or biodiesel mixture consists of aerodynamic trailers (e.g. deflectors, cab collar and 

fairings), the installation of a patented spray suppression mud-flap kit, low rolling resistance tyres, 

light weight tractor and trailer chasses (e.g. constructed from aluminium, composites, etc. ),  

 



Table 3. Baseline parameters considered in the heuristics model 

Scenarios 2015-2020 (common baseline parameters) 

Financial Parameters 

Rate of Return 9.70%                 

Period 5 years (Lifetime of the Investment) 

GDP Central growth (Bank of England Forecasts) 

Price DERV in 2015 £1.21                 

Price B100 in 2015 £0.84                 

Price Red Diesel in 

2015 
£0.72 

                

Price of Carbon £0.00                 

Vehicle Parameters 

Type of Vehicle Articulated DAF CF-85 

GVW 36t                 

Tires 295/80R22.5 

Axles 4                 

Refrigeration Unit Parameters 

Semi-Trailer 13.4/78.79 m3                  

Carrier Transicold Vector 1950 

Reefer                 

Refrigerant R-404A 

Operating Parameters Baseline Vehicle (before selecting technologies) 

Duty Cycle Long-Haul 

Km per year 175,723 

Tonnes delivered per 

year 
3,138 

                

                    

Scenarios 

Baseline 1 2 3 4 5 6 7 8 9 

Fuel Tractor Unit DERV B65 B100 DERV B65 B100 

FC (L/ 100km) 34.35 37.08 38.67 34.35 34.35 37.08 37.08 38.67 38.67 

FC Tractor (5 y) in 

'000s L 
301.8 325.8 339.7 301.8 301.8 325.8 325.8 339.7 339.7 

Refrigeration (hrs./year) 3,800 3,800 3,800 2,227 2,228 1,940 1,941 1,764 1,765 

FC Refrigeration Units 

(5 y) in '000s L 
77.9 77.9 77.9 45.7 45.7 39.8 39.8 36.2 36.2 

 

controllable air compressors (devices that avoid parasitic losses by eliminating the idling of the 

airbrake), and automated manual transmissions. Consistent with the literature (National Research 

Council 2010; Baker et al. 2009; Hill et al. 2011) the higher speed achieved in long-haul freight 

lends itself to aerodynamic technologies which yield the most improvements. The model focuses 

diesel engine technology for HGV and divides all LCTs into four categories: vehicle, powertrain, 



refrigeration and fuel technologies. The fleet used in this case study uses Euro V trucks capable 

of running on any diesel mix up to B100; however the average mix for the case study organisation 

is B65 and this is the reason that this was also included in the analysis.  

Table 4 shows 9 scenarios, where scenarios 1, 2 and 3 represent the choice of LCTs 

selected when the TRUs work 3,800 hrs/year. Scenarios 4 and 5, 6 and 7 and 8 and 9 show the 

sensitivity of the number of hours that a TRU has to work to trigger the selection of three phase 

alternator refrigeration units, instead of conventional gen-sets for each fuel. Over the specific 

amount of hours per year that appear in the scenarios, 3-phase TRUs are the recommended 

option over hybrid TRUs or mild hybridisation powertrains. Under this amount of working 

hours, air hybrid pneumatic boosters were selected by the metaheuristics model. This also 

considered the constraint that these TRUs cannot work with hybrid powertrains or with stop-

start devices. 

Compared to a baseline vehicle without LCT, in scenarios 1, 2 and 3 the model 

indicates that the optimal combination yields combined fuel savings (tractor and TRU) of 

38.8%, 38.2% and 37.9% respectively. As 3-phase alternator refrigeration units are selected, the 

avoidance of using red diesel for refrigeration purposes decreases GHG emissions by 39.2%, 

52.9% and 89.7% in each scenario. This considered a penalty in the fuel consumption of the 

tractor unit due to the additional power consumption of the alternator. The optimal vehicle 

specification leads to net present costs savings of around 17.6%, 17,4% and 17.2% over the 5 

years life expectancy of the vehicles, reducing costs by £90,058, £83,598 and £78,811 

respectively for scenarios 1 to 3. 



Table 4. Carbon emissions and NPC savings obtained by the evolutionary algorithm using different scenarios. 

    Scenarios 

  1 2 3 4 5 6 7 8 9 

Fuel Type DERV B65 B100 DERV B65 B100 

N. Technology Selection of Technology from the Heuristics Model 

1 Aerodynamic Trailers 1 1 1 1 1 1 1 1 1 

2 Aerodynamic Irregular body shape 0 0 0 0 0 0 0 0 0 

3 Aerodynamic Fairings 0 0 0 0 0 0 0 0 0 

4 Spray Reduction Mud Flaps 1 1 1 1 1 1 1 1 1 

5 Low rolling resistance tyres 1 1 1 1 1 1 1 1 1 

6 New generation wide-base single tyres 0 0 0 0 0 0 0 0 0 

7 Automatic tyre pressure adjustment 0 0 0 0 0 0 0 0 0 

8 Lightweighting Materials 1 1 1 1 1 1 1 1 1 

9 Predictive Cruise Control 1 1 1 1 1 1 1 1 1 

10 Controllable air compressor 1 1 1 1 1 1 1 1 1 

11 Heat Recovery (in general) 0 0 0 0 0 0 0 0 0 

12 Electrical Drive Turbocompound 0 0 0 0 0 0 0 0 0 

13 Automated Manual Transmission 1 1 1 1 1 1 1 1 1 

14 Flywheels Hybrid 0 0 0 0 0 0 0 0 0 

15 Stop-Start: Electric Hybrid 0 0 0 0 0 0 0 0 0 

16 Pneumatic Booster - Air Hybrid 0 0 0 1 0 1 0 1 0 

17 Full Hybrid: Series / Parallel - Electric 0 0 0 0 0 0 0 0 0 

18 Series / Parallel - Hydraulic 0 0 0 0 0 0 0 0 0 

Total FCR (Vehicle & Powertrain) 27.96% 27.96% 27.96% 30.48% 27.96% 30.48% 27.96% 30.48% 27.96% 

19 3 phase alternator Unit 1 1 1 0 1 0 1 0 1 

20 Hybrid Refrigeration Unit 0 0 0 0 0 0 0 0 0 

21 Vacuum Isolated Panels 0 0 0 0 0 0 0 0 0 

Total FCR (Refrigeration Unit) 100% 100% 100% 0% 100% 0% 100% 0% 100% 

Combined FCR (all technologies) 38.9% 38.2% 37.9% 26.5% 33.2% 27.2% 31.8% 27.6% 31.0% 

Carbon Emissions Baseline (t CO2 eq.) 969,243 526,405 234,037 882,922 882,977 424,335 424,389 122,308 122,363 

Carbon Emissions Solution (t CO2 eq.) 589,716 247,976 24,102 656,995 589,716 333,399 247,976 120,496 24,102 

Carbon Emission Savings (t CO2 eq.) 379,526 278,428 209,935 225,927 293,260 90,936 176,413 1,813 98,261 

Carbon Emissions Difference -39.2% -52.9% -89.7% -25.6% 33.2% -21.4% -41.6% -1.5% -80.3% 

Net Present Cost Baseline (£) 512,559 480,735 458,526 494,821 494,832 459,761 459,772 435,566 435,578 

NPC - Optimised Solution (£) 422,502 397,137 379,715 422,494 422,502 397,135 397,137 379,711 379,715 

NPC Savings (£) 90,058 83,598 78,811 72,327 72,331 62,626 62,635 55,856 55,863 

Net Present Cost Difference -17.6% -17.4% -17.2% -14.6% 14.6% -13.6% -13.6% -12.8% -12.8% 



In contrast to scenario 1, scenario 5 showed that when TRUs run over 2,227 hrs. /year (6 hrs. 16 

min/day) 3 phase TRUs represent good value for money and reduce carbon emissions from 

26.5% (scenario 4) to 33.2% despite applying a fuel consumption penalty on the tractor unit. 

Influenced by the differences in fuel prices, scenarios 6 and 7 show that HGV’s running on B65 

should fit 3-phase TRUs when they work over 1,940 hrs. /year (5 hrs. 28 min/day). Similarly, 

when running on B100 the sensitivity point appears at 1,764 hrs. /year (4 hrs.58 min/day).  

The costs that represent each pair of scenarios (4-5, 6-7 and 8-9) are very similar as the 

decrease in fuel consumption of red diesel in scenarios 5, 7 and 9 are mitigated by the lower 

taxation of this fuel and the increase on fuel consumption of the fuel of the tractor unit 

(scenarios 4, 6 and 8). However, as the GHG emission factors of red diesel are higher than 

DERV (assuming 5% biodiesel mix) and other higher biodiesel mixes, this explains that 

differences in fuel consumption are not proportional to carbon savings. This is even more 

visible among scenarios 8 and 9, where the already very low carbon emission of the baseline 

vehicle can decrease from 122,308 to 24,102 to CO2 eq. if no fuel is consumed by the TRU just 

for the marginal cost of running the TRU an additional hour at £11.38.  

LCTs that do not seem to be cost-efficient for long-haul trailers of the operating 

characteristics of the case study are automatic tyre pressure adjustment systems, exhaust heat 

recovery systems, mild hybrid powertrains (more typical in urban deliveries), full hybrids as 

these produce modest fuel savings at very high costs and vacuum isolated panels. The constraint 

between technologies 1, 2 and 3 shows that technology 1 represents better value than just 

fairings or tear-drop shaped trailers. The same occurs between technologies 5 and 6 where both 

yield the same FCR but at different costs.  Super single tyres are not allowed in the UK however 

if the model would have selected them it would have become relevant to policy maker to change 

EU regulations on this area. Technologies 14 to 20 are mutually exclusive and only one of them 

can be selected due to technical reasons (a flywheel cannot power a refrigeration unit for more 

than a few seconds). 



5 Discussion and Conclusions 

The findings show that long-haul refrigerated haulage fleets can reduce carbon emissions 

considerably regardless of the fuel used with the optimal combination of low carbon 

technologies while reducing their net present cost. Organisations using the sim-heuristics 

approach presented here can obtain a solution that yields carbon savings at the lowest cost, 

however, in some operations, there might be a critical point at which a marginal increase in cost 

yields considerably higher carbon savings. This highlights the importance of carbon pricing 

policies as a way to avoid this happening.   

For the same type of fuel and emission standard, lower consumption translates to lower 

GHG emissions and better air quality. This benefits human health, the environment and helps to 

reduce the impact of freight on climate change. Choosing the optimal combination of technologies 

can help logistics companies to improve their triple bottom line (people, planet, profits) which in 

turn strengthens the competitiveness of their supply chains.   

The selection of LCT not only depends on their cost and the fuel savings they can yield, but 

also on their operating conditions (mileage, duty cycle, temperature differential between inside 

and outside the refrigerating box), financial considerations, the capital costs of the vehicles and 

infrastructure required, losses related to poor technology reliability, carbon prices and quotas, and 

the costs of conducting simulations and/or trials.  

This framework also allows the impact of fuel prices on the cost effectiveness of low carbon 

technologies to be assessed and conclusions drawn on the most effective investment strategies. 

This research set out to fill a knowledge gap by developing a framework where consumers 

can assess quantitatively the benefits of each particular technology and optimal combinations of 

technologies according to the characteristics of their vehicles and operations. Given the large 

amount of LCTs, vehicle models and driving cycles, it is very difficult for companies to make 

rational investment decisions. Nowadays, there is little transparency regarding the testing 

standards and conditions under which each manufacturer reports the fuel savings of their 

technologies. There seems to be a need to produce global testing standards to facilitate the 

comparability of results between manufacturers of LCTs. Increasing transparency could 



eliminate one of the greatest barriers regarding the adoption of more energy efficient 

technologies: the knowledge gap. Decision makers do not have independent fuel consumption 

information and robust methods to assess the investment in HGV technologies. This is of 

special interest to smaller companies, as they do not normally have the resources required to 

research all the technologies available that may benefit them and conduct the trials to validate 

the claims of the manufacturers. By using reliable inputs (e.g. fuel consumption reduction) this 

model can support the decision making criteria of logistics firms by using  heuristics techniques 

while saving them high costs regarding preliminary low carbon technology trials.  The 

resultspresented relate to specific driving cycles, vehicles and operating conditions; however, 

the model can be used across other types of operation by amending the inputs.  This framework 

represents the best approach to help decision makers choose the optimal vehicle specification as 

no other model has been found to solve this particular problem. 

6 Recommendations for Future Research 

The results presented in this paper focus on long-haul diesel HGV. Further research to 

include regional and urban duty cycles is recommended. The framework could be easily 

adaptated to indicate the optimal specification of other types of heavy duty vehicle such as 

urban buses and coaches, refuse trucks, military and off-road heavy duty vehicles and their 

specific duty cycles. The model assumed that the vehicles consumed diesel, however expanding 

the model to other types of fuels (e.g. biomethane, bioDME) and alternative powertrain 

technologies (e.g. battery electric and fuel cell trucks) as a logical step forward is advocated. 

This would however require  new constraints and synergies to be considered e.g.   the thermal 

efficiency of spark ignition and compression ignition engines is different and as a result, the 

energy that can be recovered from the exhaust varies from one fuel to another (e.g. diesel vs. 

CNG); compounded aerodynamic impacts of several aerodynamic packages such as sprya 

suppression mudflaps with trailer undertray fairings. Also, some technologies may not be 

compatible (e.g. heat recovery and electrical turbo compound; automated manual transmissions 

with battery electric vehicles; battery electric vehicles and three phase alternator refrigeration 



units) and others may become redundant (e.g. electric and hydraulic hybridisation working 

simultaneously).  

Expanding the model to consider qualitative objectives such as the risk of technology 

maturity or specific limitations of use would be beneficial.   

As the financial model is based on the leasing of a vehicle, end-of-life carbon emissions 

have not been included, as the leasing company recovers the vehicle after 5 years. Further 

research regarding the carbon emissions from vehicle manufacturing and disposal could enrich 

the model by providing a complete whole lifecycle carbon assessment. The US GREET model 

attempts to do something similar for cars. Further research is needed to quantify the energy 

needed to produce, recycle and dispose of HGV’s and their parts, as well as their embedded 

GHG emissions. 
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