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ABSTRACT 

Plastic changes in neurons are widely considered to underpin the formation and maintenance of 

memory. The mechanisms of induction and expression of plasticity are, therefore, crucial to our 

understanding of the capacity of information storage that neurons possess. Using two-photon 

glutamate uncaging and whole-cell electrophysiological recordings, I demonstrate that dendrites 

of neurons are capable of preferentially storing specific spatiotemporal sequences, and describe 

the physiological properties of this new form of plasticity. Such plastic changes are dependent on 

Ca2+ influx through NMDA receptors, which is consistent with previous reports regarding 

induction of potentiation. Using two-photon Ca2+ imaging, I demonstrate that spatiotemporal 

plasticity is a result of a distinct homogeneous spatial increase in Ca2+ influx of different 

spatiotemporal sequences. Using the NEURON simulation environment, I used my experimental 

findings to perform simulations of synaptic plasticity rules. I found that homogeneous increases 

in synaptic strength across the dendrite can result in the spatiotemporal plasticity that I empirically 

observed. Moreover, I employed a genetic optimization algorithm and parallelized simulations to 

show that such changes are within physiological parameters observed in cortical neurons. My PhD 

therefore describes a novel form of plasticity, and proposes that dendrites are capable of more 

extensive information storage than was previously assumed. 
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1 INTRODUCTION 

The complexity and magnitude of information stored by neuronal dendrites is a fundamental 

question in neuroscience. Dendrites are the primary site of input in neurons and their ability to 

undergo plastic changes has been an active area of research for more than a century. Any review 

of dendritic plasticity needs to evaluate two, sometimes disparate, fields - dendritic information 

processing, and molecular mechanisms of plasticity. I will first evaluate historical and current 

research in the dendritic integration field. Second, I will consider the mechanisms of plasticity 

induction and maintenance. Finally, I will evaluate how plasticity of dendrites affects the 

integration of synaptic inputs. I will offer unanswered questions in the field and suggest new 

avenues for future research.  

1.1 DENDRITIC INFORMATION PROCESSING 

1.1.1 Historical perspective 

Many major neuroscience texts pay tribute to the father of the discipline, Santiago Ramón y Cajal. 

Cajal, using light microscopy and the neuronal staining technique developed by Camillo Golgi in 

1873, was able to draw neurons, their dendrites and axons in a remarkable detail for his time 

(Figure 1.1). Speculating purely on the basis of anatomical reconstructions, Cajal was able to make 

key insights as to the nature of information processing in neurons. Cajal was a proponent of the 

“cell” or “neuron” doctrine that was originally proposed by Theodor Schwann and Matthias Jakob 

Schleiden in the 19th century. Cajal argued that neurons are separate anatomical and processing 

units of the brain, a claim in which he famously disagreed with his colleague, Camillo Golgi, with 

whom he shared his Nobel Prize in 1906. Cajal proposed the direction of transmission that is 

currently known as the “law of dynamic polarization”. He argued that information flows from the 

protoplasmic branches (or dendrites) to the nerve expansion (or axons). Cajal further conjectured 
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that memory or “cerebral gymnastics” could modify patterns of connections in the psychic cells 

(currently known as pyramidal cells) by means of morphological changes in axons and dendrites 

(Berlucchi & Buchtel, 2009).  

 

 

Figure 1.1 Ramón y Cajal's drawing of Layer 5 pyramidal cell in the cortex 

Ramón y Cajal’s drawing based on Golgi-stained Layer 5 pyramidal cell of cortex. (a) – axon, (d) 

– dendrite, (c) – collateral, (e) -  spines. Note the prominent spines at both apical and basal part of 

the dendritic tree and aspiny axon and collaterals. Source: Museo Cajal Madrid, artattler.com. 

1.1.2 Cable Theory and its application for synaptic integration 

The theory of electric conduction in neurons and the cable theory that inspired it a similarly long 

history. The initial studies demonstrating electric nature of nerve conduction were performed by 

Galvani and Volta in the 18th century (Rall, 2011). Cable theory dates back to the mid-19th century 

and stemmed from the published correspondence of William Thomson (or Lord Kelvin) and 
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Professor Stokes (Thomson, 1854), which provided a mathematical formulation for the placement 

of submarine cable at the time. The empirical verification of cable theory in neurons depended on 

the development of equipment capable of fine electrical measurements. It was therefore not 

verified until 1946, when Hodgkin and Rushton (1946) used cable theory to accurately estimate 

values for membrane capacitance in 75 µm diameter axon from walking leg of lobster (1.3 µF cm-

2). Currently, the accepted value for membrane capacitance is considered to be 1 µF cm-2 or 0.65-

0.7 µF cm-2 for the lipid moiety itself (Jack et al., 1975; Shepherd, 2008a).    Later studies by Hodgkin 

and Huxley (1952) opened doors for computational description of neuronal membrane properties.  

Hodgkin and Huxley chose squid giant axon as an appropriate model as the physical size of the 

cable allowed easy access for electrical recordings. Dendrites in the CNS of most mammalian 

species are much thinner and until recently, direct measurements of synaptic responses were not 

technically feasible. Since dendrites resemble leaky electrical cables, cable theory provided a useful 

approximation to obtain a mechanistic understanding of current flow along passive neurites. 

Most early work that employed Cable Theory in dendritic integration was done under the 

assumption that dendrite is a passive cable with no active or non-linear conductances, such as 

voltage-gated sodium channels, present in the membrane. As a result of such theoretical work, 

several important insights emerged that were later on verified empirically. For example, dendrites 

can be described as “leaky cables” due to their relatively low specific membrane resistance. This 

“leak” results in voltage attenuation from the source of the current (i.e. synapse or synaptic event) 

to its readout (usually the soma).  

Since dendrites taper with distance from soma, it follows that voltage attenuation is asymmetrical 

and favours propagation towards narrower parts of the dendrite or away from the soma (Rall & 

Rinzel, 1973; Rinzel & Rall, 1974). Whilst these equations hold analytically for a single-cable 

neuron under the steady-state condition, finding an analytical solution for a physiological neuron 

would be prohibitive due to numerous bifurcations, variations in diameter (Abbott et al., 1991) and 
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presence of non-linear conductances. Therefore, compartmental models were developed which 

split the neuron and its dendritic tree into a multitude of segments. Within the segments spatial 

non-uniformity is neglected. Such multi-region boundary problem can then be solved as a system 

of ordinary differential equations (Rall, 1964). Compartmental models confirmed the uneven 

voltage propagation in various cell types such as CA1 pyramidal cells (Golding et al., 2005), CA1 

interneurons (Emri et al., 2001), Purkinje cells (Roth & Häusser, 2001) or neocortical pyramidal 

cells (Stuart & Spruston, 1998). Locally, synaptic events would be larger in distal portions of 

dendrite due to increased input impedance due to tapering and due to end-effects. Nevertheless, 

the significant attenuation, greater than 100-fold in some cases (Stuart & Spruston, 1998; Williams 

& Stuart, 2002; Nevian et al., 2007), results in smaller amplitude distal excitatory post-synaptic 

potential (EPSP) compared with proximal EPSPs in passive systems. Apart from amplitude 

attenuation, the filtering properties of dendrites result in slowing of the time-course of distal 

EPSPs with an increase in time-to-peak (Rall, 1964, 1967). This has been verified in experiments 

in layer 5 pyramidal cells (Sjöström & Häusser, 2006) and CA1 pyramidal cells (Magee & Cook, 

2000).  

Cable theory also provided predictions on the influence of clustered and distributed input on 

eliciting action potential at the soma. In a purely passive system, cable theory predicts that co-

localized synaptic events will result in a local reduction of driving force as a result of a decrease in 

membrane resistance (Rall, 1964). Maximal (linear) summation can be achieved when synapses are 

separated sufficiently in spatial or temporal dimension. These predictions have been verified 

experimentally (Polsky et al., 2004).  

One important upshot of cable theory application to synaptic integration, was the realization of 

the complexity of information that is integrated at the level of dendrites. Even in purely passive 

systems, the location of synaptic events on the dendritic tree could be resolved from its amplitude 

and time-course. Furthermore, the degree of clustering of inputs, through local reduction in 
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driving force influences the likelihood of action potential induction at the soma. Cable theory 

predicted even more complex processing such as direction sensitivity to spatio-temporal inputs. 

Rall (1964) theoretically demonstrated that centripetal, temporally staggered input produces greater 

peak depolarization at the soma than is the case of the centrifugal input. Furthermore, the peak of 

centripetal input was predicted to occur at a later time following stimulation than the peak of 

centrifugal input. The amplitude and peak time differences occur because dendrites act as a delay 

line for incoming signals. This enables the resolving of spatiotemporal activation of individual 

inputs based on the time-course and amplitude of the recorded somatic voltage trace.   

Further increase in complexity comes from the fact that both excitatory and inhibitory synapses 

dot the membrane of neurons. The primary inhibition that was described by Rall (1964) was 

shunting inhibition or a change of the overall conductance level with no effect on the membrane 

voltage. In his work, he realized that the location of the source of inhibition was important in the 

magnitude of the effect it exercises over somatic voltage. Rall (1964) discovered that a single 

inhibitory synapse centred on the incoming excitatory input or between somatic region and the 

site of the input (“on-path”) is more effective than in the “off-path” condition. The more efficient 

shunting by “on-path” inhibition was verified in computational models (Koch et al., 1983; Hao et 

al., 2009). Rall (1964), himself, realized that his predictions hold in a passive, single-cable model 

with a single inhibitory synapse. More complex results are obtained when branching and active 

dendrites are considered. When non-linearities in dendrites are taken into account, “off-path” 

inhibition is more efficient at shunting dendritic spikes as a result of larger synaptic conductance 

in distal dendrites close to sealed ends and a smaller spatial attenuation for distal sites due to their 

distance from somatic sink (Gidon & Segev, 2012).  

The theory based on passive cable properties provides a strong foundation or skeleton for 

understanding of the complexity of dendritic integration. Active properties of the membrane of 

the cell conferred by the variety of different channels and receptors cannot be ignored in a full 
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account of dendritic information processing. A large source of variance between different neuronal 

cell types, for example, comes from the types of channels expressed and their respective spatial 

profiles. 

1.1.3 Active conductances in dendrites 

Studies in alligator Purkinje cells first demonstrated that active conductances, typically associated 

with soma and axon are also present in the dendrites of cells (Llinás et al., 1968; Llinás & Sugimori, 

1980). The presence and role of active conductances in dendrites depends on, among others, the 

stage of development, cell-type, type of dendrite and its distance from the soma (Magee, 1998; 

Migliore & Shepherd, 2002; Shepherd, 2008b; Gazina et al., 2010). The expression pattern of 

channels and receptors along the dendrite is a key influence on such properties as threshold for 

dendritic spike induction, action potential backpropagation or synaptic scaling.  

1.1.3.1 Na+ channels 

The transient Na+ current has the greatest importance in action potential generation and 

backpropagation. In the apical dendrites of CA1 pyramidal cells and nigral dopaminergic neurons 

(based on the full-amplitude bAP propagation), the Na+ channel density is high and present 

relatively uniformly across the dendritic tree (Stuart & Sakmann, 1994; Magee & Johnston, 1995; 

Häusser et al., 1995). However, in Purkinje cells and thalamocortical neurons, the density of 

voltage-gated Na+ channels decreases rapidly with distance from the soma (Stuart & Häusser, 1994; 

Williams & Stuart, 2000a). The expression pattern of voltage-gated Na+ channels also depends on 

the development, with expression of Nav1.1, Nav1.2, Nav1.3 and Nav1.3 channels peaking at 

around P15 in the mouse in cortex, cerebellum, thalamus and hippocampus (Gazina et al., 2010). 

1.1.3.2 K+ channels 

K+ channels are possibly the most diverse population of voltage-gated conductances with over 100 

different subunits being identified so far (Coetzee et al., 1999). The most prominently studied in 
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the field of dendritic integration are the A-type, G-protein coupled inwardly-rectifying K+ (GIRK) 

channels and K-type K+ channels. A-type K+ channels are responsible for repolarization of the 

cell-membrane following action potential. A-type K+ channel expression seems to be more 

modulated with distance from the soma. In CA1 pyramidal cells and in rat mitral cells, the A-type 

K+ channel expression increases with the distance (Hoffman et al., 1997; Bischofberger & Jonas, 

1997). In neocortical neurons, both A-type and K-type channels are relatively uniform across the 

dendritic tree (Korngreen & Sakmann, 2000; Bekkers, 2000). GIRK channels are present in most 

several cell types including CA3, CA1 pyramidal cells, neocortical pyramidal cells and substantia 

nigra cells in the brain (Takigawa & Alzheimer, 1999; Lüscher & Slesinger, 2010; Makara & Magee, 

2013). In neocortical pyramidal cells, there is a notable increase in the expression of GIRK 

channels from soma to dendrites (Takigawa & Alzheimer, 1999). 

1.1.3.3 Ca2+ channels 

The distribution of voltage-gated calcium channels (VGCCs) in dendrites of cells is less-studied as 

compared to other channels. Magee and Johnston (1995) used dendrite-attached patches and 

discovered that high-voltage activated low conductance (HVAl) channels were restricted to 

proximal 50 µm of CA1 neurons, whilst high-voltage activated medium conductance channels 

(HVAm) and low-voltage activated (LVA) were fairly constant across the dendritic tree. In 

neocortical cells, the spatial distribution of VGCCs is less well researched. To my knowledge, 

outside-out patches or dendrite-attached patch-clamp experiments from different parts of the 

dendritic tree to evaluate VGCC expression are yet to be done in neocortical pyramidal cells. 

Calcium imaging experiments studying backpropagation of action potentials suggest a relatively 

uniform distribution of VGCCs, consisting primarily of the L-, N- and R-type (Markram et al., 

1995). Using a pharmacological and numerical peeling procedure, Almog and Korngreen (2014) 

predict a decrease in conductance of HVA and medium-voltage activated (MVA) channels along 

the dendrite, but an increase in permeability of MVA channels between 400-600 µm from the 
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soma. This is consistent with reports of a calcium initiation hotspot in layer 5 cells which is 

activated when critical frequency of action potential is reached (Larkum et al., 1999a). In Purkinje 

cells, HVA channels (P/Q-type) are the major source of Ca2+ ion entry (Usowicz et al., 1992). 

Whilst detailed information about the conductance gradients of the channels is missing as well, 

calcium imaging experiments hint at a relatively uniform expression along the dendritic tree (Lev-

Ram et al., 1992). 

1.1.3.4 Ih channels 

(Hyperpolarization-activated cyclic nucleotide-gated) HCN channel based current (Ih) was first 

described in sinoatrial myocytes as a “funny” inward current that is hyperpolarization activated 

and enhanced upon the application of adrenaline ultimately resulting in an increased heart rate 

(Brown et al., 1979). In the central nervous system (CNS), “funny” current is usually termed as a 

hyperpolarization activated non-specific cation current, or Ih, and in many cell types performs 

important functions in synaptic scaling and action potential backpropagation. In CA1 pyramidal 

cells, the current density increases more than sixfold from soma to distal (350 µm) dendrites 

(Magee, 1998). This gradient was found to normalize temporal summation in distal dendrites 

(Magee, 1999).  The Ih gradient is also present in the apical dendrites of the layer 5 pyramidal cells. 

The exact nature of the gradient is contested – linear (Williams & Stuart, 2000b) or exponential 

increase after 400 µm (Berger et al., 2001). In both of these studies, Ih, similarly to CA1 pyramidal 

cells, contributes to EPSP normalization. Ih also importantly affects the non-linear processing in 

dendrites, increasing the threshold for coincidence detection and induction of dendritic spikes 

(Berger et al., 2003). HCN channels that underlie Ih current, were found to be importantly 

modulated by neuromodulators, especially adrenaline and dopamine presumably via cAMP 

pathway (Rosenkranz & Johnston, 2006; Wang et al., 2007a). 



19 | P a g e  
 

1.1.3.5 Voltage-activated channel interactions in dendrites 

At least two Na+, six Ca2+ and seven distinct K+ currents have been described so far in the literature 

(McCormick, 2008). This number of channel types is most likely an underrepresentation as many 

more are present on the membrane of the cell (Coetzee et al., 1999; Kullmann, 2010). As a 

consequence of this channel expression, non-linear interactions between channel types occur, 

often resulting in cell-type specific dendritic integration as well as distinct action potential initiation 

and propagation profiles. Also commonly physiological models of neuronal behaviour usually 

employ only a small subset of available channels (Almog & Korngreen, 2014). Despite their relative 

simplicity, theoretical models have been very successful in predicting features of dendritic 

integration and action potential propagation in different cell types across the brain.  

1.1.4 Propagation in active dendrites 

Two aspects of sub-cellular neuronal behaviour received substantial attention in the past decades 

of neuroscience research. The first, is action potentials propagation through axons, which has been 

a well understood phenomenon since the research of Hodgkin and Huxley (1952). However, the 

converse propagation, back into the dendrite from the soma, was demonstrated fairly recently 

following the development of the patch-clamp method and its application to dendritic membranes 

(Stuart & Sakmann, 1994). The second aspect to receive attention was the role of the active 

properties of dendrites in the integration of synaptic inputs. For example, it was discovered that 

distal synapses can cooperate to produce dendritic spikes to overcome unfavourable voltage 

propagation (Llinás et al., 1968; Schiller & Schiller, 2001; Major et al., 2008; Branco & Häusser, 

2011). As I will discuss in this introduction, both action potential backpropagation and non-linear 

properties of synaptic integration are important in the plasticity processes.  

1.1.4.1 Action potential backpropagation in CNS neurons 

The advent of dendritic patch clamp enabled the detailed study of the role of dendritic processing 

in neuronal function (Stuart et al., 1993; Stuart & Sakmann, 1994; Stuart & Häusser, 1994). Whilst 
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antidromic action potential propagation had been observed previously in cerebellar Purkinje cell 

dendritic recordings with sharp microelectrodes (Llinás & Sugimori, 1980), the properties of action 

potential backpropagation were only fully elucidated with dendritic patch-clamp studies.  

One of the early discoveries in the field was the realization that morphology (see Figure 1.2) is an 

important determinant of the extent of backpropagation into dendritic tree. More complex 

dendritic architecture is associated with a reduced degree of backpropagation into dendrites (Vetter 

et al., 2001). 

 

Figure 1.2 Diversity of dendritic morphologies in the brain. 

Reconstructions shown are from: A) alpha motor-neuron of cat spinal cord, B) spiking interneuron 

from mesothoracic ganglion of locust, C) neocortical layer 5 pyramidal neuron of rat, D) retinal 

ganglion cell in cat, E) amacrine cell from retina of larval salamander, F) cerebellar Purkinje cell in 
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human, G) relay neuron in basoventral thalamus of rat, H) granule cell from olfactory bulb of 

mouse, I) spiny projection neuron from striatum of rat, J) nerve cell in nucleus of Burdach of 

human foetus, K) Purkinje cell of mormyrid fish. Sources: Spruston et al. (2012) and Mel (1994). 

Consistently, the most limited action potential backpropagation is observed in the cerebellar 

Purkinje cells (Stuart & Häusser, 1994) which feature arguably the most complex dendritic 

architecture in the brain. The extensive arborisation of the tree and small steep decreasing gradient 

of Na+ channel expression results in a steep voltage attenuation. ctive condunctances such as Na+ 

channels open during backpropagation of action potential and thus boost spatial extent of back-

propagating action potential (bAPs). In comparison, Layer 5 cells do express Na+ channels in their 

apical dendrites (Stuart & Sakmann, 1994; Almog & Korngreen, 2014) and their dendrites are not 

as complex as those of Purkinje cells. As a result, single action potential backpropagation fails only 

at distal sites of layer 5 pyramidal neurons. Higher frequency inputs overcomes this distal 

attenuation by reaching a calcium initiation hotspot in the distal apical tuft (Larkum et al., 1999a, 

2009). In basal dendrites of layer 5 pyramidal neurons, backpropagation is aided by the presence 

of sodium channels, but nevertheless the bAPs are attenuated more than threefold at a distance of 

150 µm from the soma (Nevian et al., 2007). In the CA1, two populations of pyramidal cells were 

discovered with distinct differences of bAP attenuation, mostly due to the potassium and sodium 

channel expression in the membrane (Golding et al., 2001). Finally, dopamine cells in substantia 

nigra and olfactory mitral cells show probably the most robust propagation with little attenuation 

in the distal dendrites (Häusser et al., 1995; Bischofberger & Jonas, 1997). These results are due to 

the compact dendritic architecture of the cells and sodium channel expression throughout the 

arbor. 
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Figure 1.3 Backpropagation of action potentials in different cell types of the brain. 

A schematic of the backpropagation efficacy as measured by distance from the soma in 5 

representative neuronal morphologies coded by color. Source: Adapted from a figure by Stuart et 

al. (1997).   

Multi-compartmental simulations confirmed that morphology and channel expression are key 

determinants (see Figure 1.3) of the extent of backpropagation (Vetter et al., 2001; Roth & Häusser, 

2001; Schaefer et al., 2003). The morphology of dendritic arbors of neurons in the brain is very 

diverse, (Häusser et al., 2000; Klausberger & Somogyi, 2008; DeFelipe et al., 2013) often even within 

the same subtype of a cell – i.e. pyramidal or retinal ganglion cells (Dacey et al., 2003; Spruston, 

2008; Gee et al., 2012). Dendritic morphology was also found to be critically important in 

determining the firing pattern of neurons (Mainen & Sejnowski, 1996; Graves et al., 2012). In the 

model by Mainen and Sejnowski (1996), this was at least partly dependent on the presence of slow 

active channels in dendrites. In layer 5 pyramidal cells, bAPs coupled with dendritic depolarization 

results in burst firing of the cell that is called back-propagation activated Ca2+ (BAC)-firing 

(Larkum et al., 1999b, 2001). The current injection needed to elicit firing is timing dependent with 
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a very similar time-course to that observed in spike-timing dependent plasticity protocols 

(Markram et al., 1997; Bi & Poo, 1998; Sjöström et al., 2001).  

Whilst such studies were very influential because of their simple and powerful prediction on the 

extent of backpropagation, in physiological settings, the situation becomes much more complex. 

Backpropagation was found to influence and be influenced by the activation history of voltage-

gated channels.  Trains of action potentials can lead to inactivation of Na+ channels and the 

reduction of bAP amplitude in CA1 cells (Spruston et al., 1995). In contrast, depolarization of the 

dendrite enhances the backpropagation into the dendrite by increasing the likelihood of opening 

Na+ and Ca2+ conductances (Stuart & Häusser, 2001). On the other hand, hyperpolarization of the 

dendrite or increasing the shunt level (for example by inhibition) decreases extent of back 

propagating action potential invasion (Tsubokawa & Ross, 1996; Larkum et al., 2001; Schaefer et 

al., 2003). In cat neocortical neurons in vivo, the high conductance state, due to a barrage of on-

going synaptic activity, causes a significant (up to five-fold) drop in input resistance (Paré et al., 

1998; Destexhe et al., 2003). Although input resistance in rat layer 2/3 cells in vivo is similar to that 

seen in vitro (Waters et al., 2003), reductions in input resistance  are expected to result in a decrement 

of backpropagation due to an increase in the leakiness of neuron. Finally, the physiological state 

of the neuron is profoundly affected by neuromodulation. In the substantia nigra, dopamine 

reduces backpropagation by tonic hyperpolarization as a result of increased availability of A-type 

K+ channels (Gentet & Williams, 2007). Nevertheless, the role of neuromodulators like dopamine 

in the excitability of cells is controversial (Gulledge & Stuart, 2003) and the effects are often more 

complex than a simple hyperpolarization or depolarization of membrane (Seamans & Yang, 2004). 

Whilst there are many state-dependent variables influencing the propagation of action potentials 

into dendrites, bAPs are also powerful modulators of neuronal integration processes. Coincident 

action potential (AP) and EPSPs result in supra-linear summation of synaptic input and Ca2+ entry 

into the dendrite (Stuart & Häusser, 2001; Nevian & Sakmann, 2004, 2006). Following bAP, 
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suprathreshold events at the dendrite are less likely to occur than before (Remy et al., 2009). Such 

“resets” of dendritic activity are postulated to place a limit on the number of patterns that can be 

stored with dendritic spikes and/or how frequently they can be retrieved by the dendrite (Branco 

& Häusser, 2009).  

The result of dendritic integration is not necessarily only passed to the soma but dendrites 

themselves may act as outputs. Multiple molecules have been shown to be released from dendrites 

ranging from typical neurotransmitters like glutamate and gamma-amino butyric acid (GABA) 

(Ludwig & Pittman, 2003) to neurotrophic factors like brain-derived neurotrophic factor (BDNF) 

(Kuczewski et al., 2009). The release is Ca2+ dependent and relies on vesicle exocytosis machinery 

(Branco & Häusser, 2010). bAPs are involved in the release of BDNF (Kuczewski et al., 2008) and 

are hypothesized to have a role in other cells like magnocellular hypothalamic cells, provided the 

bAP propagation does not fail (Ludwig & Pittman, 2003).  

1.1.5 Synaptic integration and dendritic spikes 

Apart from the propagation of action potentials, voltage-gated channels allow generation of supra-

linear synaptic integration in the form of dendritic spikes. Neurons vary widely in the number of 

synapses that are present on the membranes with the estimated range being between 1,000 and 

300,000. The primary focus of the dendritic integration field is to answer how inputs, when 

converted into graded synaptic potentials, result in the output of the neuron in form of action 

potentials.  

1.1.5.1 The role of distance and synaptic scaling 

I have already discussed that Cable Theory predictions followed by experimental verification 

postulated that all synapses are not equal in terms of their influence on action potential generation. 

Distance is a major factor, especially in cells with dense dendritic arbors such as Purkinje cells or 

layer 5 pyramidal cells,  which determines the strong attenuation of distal synaptic inputs (Spruston 

et al., 1994; Stuart & Spruston, 1998; Roth & Häusser, 2001; Nevian et al., 2007). If distal synapses 
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are less efficient at inducing action potentials, it is tempting to question their importance for 

neuronal processing. One answer to this question is that some cells, such as CA1 pyramidal cells, 

show distance dependent scaling of synaptic responses (Magee & Cook, 2000). Synapses farther 

away from soma have an increased α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid  

(AMPA) conductance (Andrasfalvy & Magee, 2001) and tufts of these neurons have an increased 

N-methyl D-aspartate (NMDA)/AMPA ratio (Bittner et al., 2012). The theory posits that the 

synaptic strength is “scaled” to equalize the voltage attenuation deficit of distal synapses. These 

findings gave rise to the theory of “synaptic democracy” (Häusser, 2001) which postulates that 

each of the synapses is equally heard at the soma. In its more stringent form, inputs are also 

expected to be distributed along the dendrites to ensure their independent and linear integration 

(Cash & Yuste, 1999; Yuste, 2011, 2013). The scaling argument is controversial, however. For 

instance, augmentation of synaptic strength was not observed in neocortical cells (Williams & 

Stuart, 2002). Furthermore, the increase in synaptic conductance as would be expected under in 

vivo conditions would result in a breakdown of such scaling-based synaptic democracy (London & 

Segev, 2001). These authors also noted that even if scaling could be obtained with a steeper 

gradient, small changes in the state of network statistics would quickly result in its disruption. It is 

possible that voltage attenuation is a feature rather than a “bug” of neuronal processing. Due to 

filtering properties of the dendrite, EPSP time course is slowed from more distal synapses. 

Although this results in lower likelihood of eliciting AP, it also prolongs the time course of 

integration enabling distal dendrites to be rate coding integrators. When active channels are also 

involved, dendritic morphology strengthens this effect. Due to high local input impedance of distal 

dendrites, fewer inputs are necessary to bring about a supra-linear NMDA and VGCC-mediated 

response and these inputs are integrated for longer time-scales in cortical neurons (Branco & 

Häusser, 2011). In the computational model of this study, it was observed that distal dendrites are 

surprisingly more efficient at driving AP output than proximal dendrites. This particular model 

does not depend on the inputs being located in close proximity. Nevertheless, it was argued in 
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other work that clustered synapses can amplify distal inputs by opening active conductances in the 

membrane and eliciting dendritic spikes (Larkum & Nevian, 2008; Kastellakis et al., 2015).  

1.1.5.2 Morphology of spines and electric compartmentalization 

The extent to which synaptic inputs on a single dendrite are clustered and to which integration at 

soma relies on dendritic non-linearities is a subject of some controversy. As I mentioned above, 

one view argues that synapses summate mostly linearly (Yuste, 2011, 2013). The argument rests 

on two propositions both of which received some support in recent experimental literature. To 

ensure linear summation, enhancement of compartmentalization of individual inputs is desirable. 

If dendritic spines possessed high resistance necks, this would aid electrical compartmentalization 

on a single dendritic branch (Segev & Rall, 1998). Because spines are small, inaccessible structures 

for direct observations, past studies of spine compartmentalization as a function of neck 

morphology were indirect and their estimates vary (Grunditz et al., 2008; Harnett et al., 2012; 

Tønnesen et al., 2014). In a study on CA1 pyramidal neurons, spine neck resistance was estimated 

by calibrating voltage-gated Ca2+ signal resulting from propagation of voltage from dendritic 

injection into the spine (Harnett et al., 2012). Using this method, Harnett and colleagues (2012) 

were able to estimate that spine neck resistance is around 500 MΩ, high enough to allow for the 

compartmentalization required by the linear integration theory. However, it is known that spine 

morphology of both heads and necks can be very variable and malleable to plasticity processes 

(Majewska et al., 2000; Noguchi et al., 2005; Grunditz et al., 2008; Araya et al., 2014). Experiments 

using FRAP measurements result in a fairly wide range & of spine neck resistance with reported 

values ranging from 55 MΩ (Tønnesen et al., 2014) to 1.2 GΩ (Grunditz et al., 2008). Both of these 

studies report a significant variance (interquartile range from 1 MΩ to 1 GΩ) as would be expected 

given the variability in spine head and neck morphologies. Despite the diversity, it is reasonable to 

expect thin-necked spines to have high resistances required for passive electrical 

compartmentalization of signals. However, many spine-heads are studded with active 
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conductances primarily of NMDA and VGCCs type (Zito et al., 2009). In active case, high spine 

neck resistance would result in non-linear response to synaptic input which would favour 

cooperativity between spines on a single dendrite (Harnett et al., 2012). Similar to my argument in 

synaptic democracy discussion, spines are very variable structures and their degree of electrical 

compartmentalization will be a function of their morphology, the input impedance of the parent 

branch and their expression of conductances - especially of the active kind.  

1.1.5.3 Distribution of synaptic inputs on a dendrite 

It is currently controversial whether synapses on dendrites in neurons are distributed randomly or 

whether similar inputs are clustered in space. A requirement for linear integration is the relatively 

uniform distribution of synapses along the dendritic tree. On the other hand, clustered input would 

favour the involvement of active conductances (if present) and the generation of dendritic spikes. 

The uniform distribution requirement for linear integration is important to minimize the shunting 

due to an increase in conductance as a result of active synapses on the dendrite. Such arrangement 

of synapses known as Peters’ rule is expected if the connectivity of neural circuits is determined 

purely by the overlap of dendrites and axons. Several in vivo studies in the neocortex following 

auditory, visual or whisker stimulation suggested that synapses can be tuned to random input 

features (Jia et al., 2010; Chen et al., 2011a; Varga et al., 2011). Despite these studies, computational 

models suggest that clustered representation leads to enhanced information storage in dendrites 

(Poirazi & Mel, 2001; Kastellakis et al., 2015). Several recent studies demonstrated clustering of 

inputs both in vivo and in vitro. Druckmann (2014) observed that connectivity between CA3-CA1 

neurons is more clustered than would be observed by chance which can be seen both in neurons 

and dendrites. In CA1 pyramidal cells of organotypic slices, Kleindienst (2011) showed that 

clusters of active synapses are seen following bursts of synaptic activation. These clusters depend 

on neuronal activity and NMDA receptors. In layer 5 neurons of the mouse motor cortex, 

practicing a novel forelimb task lead to the formation of spine clusters that are more persistent 
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than non-clustered counterparts (Fu et al., 2012). A different motor learning task also leads to 

clustering on different dendrites and such clustering is enhanced by sleep post-training (Yang et 

al., 2014). In layer 2/3 neurons in somatosensory cortex in vivo, neighbouring spines display an 

increased concentration of GluA1 receptor in comparison to animals with their whiskers trimmed 

(Makino & Malinow, 2011). Clustering can also be seen in other animal models. In barn owls that 

were prism reared during their development, the presynaptic contacts are selectively sculpted. The 

prism-adapted side showed a reduced inter-contact distance (i.e. enhanced clustering) compared 

to non-adapted side or controls (McBride et al., 2008). Finally, in the monkey prefrontal cortex, a 

preference for spatial clusters of spines was found that to be branch specific. Branches with higher 

degrees of clustering were found to be richer in mushroom and stubby synapses suggesting active 

plasticity processes (Yadav et al., 2012). As I will describe below, many plasticity processes are 

biochemically constrained and are thus primarily local in their nature. As a result, they tend to 

favour generation of clustered formation or stabilization of spines on the dendrite.  

1.1.5.4 Dendritic spikes  

In a clustered representation, dendritic spikes are seen to perform an important role in neuronal 

processing (Branco & Häusser, 2010; Antic et al., 2010; Major et al., 2013). Dendritic spikes can be 

further subdivided into three major classes based on the type of non-linear conductance that 

underpins them – sodium spikes (Losonczy & Magee, 2006), Ca2+ spikes (Llinás & Sugimori, 1980; 

Amitai et al., 1993) and NMDA spikes (Schiller et al., 2000). The roles that dendritic spikes play in 

neuronal processing are versatile. It is well established that non-linear units enhance the 

computational capacity of neurons (Poirazi & Mel, 2001; Poirazi et al., 2003; Häusser & Mel, 2003). 

In a detailed biophysical model, it was shown that a point neuron is much worse than a 2-layer 

neuron with sigmoidal units at predicting the firing rate of a distributed set of excitatory synapses 

(Poirazi et al., 2003). Dendritic nonlinearities with slower time-courses (such as NMDA-receptor 

dependent spikes) may be particularly effective at compensating for filtering properties of 
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dendrites. Distal dendrites, with their higher input impedance, are more likely to elicit dendritic 

spike (Branco et al., 2010). Such dendritic spike are then likely to propagate to soma where they 

were found to induce spiking more reliably than proximal synapses (Branco & Häusser, 2011). As 

mentioned above, dendritic spikes coupled with bAPs push layer 5 cells in the cortex into burst 

firing mode (Larkum et al., 2001).  

As dendritic spikes provide a prolonged depolarization, often with a Ca2+ component, it is likely 

that they play a major role in eliciting long-term potentiation in dendrites. In CA1 cells, dendritic 

spikes were found sufficient to induce LTP (Golding et al., 2002). In the same neurons, single burst 

dependent on VGCC and NMDARs were found to elicit LTP (Remy & Spruston, 2007). In 

contrast, in layer 5 pyramidal neurons, single dendritic spikes can induce LTD (Holthoff et al., 

2004). Whilst some authors found greater difficulty in linking NMDA spikes to induction of 

plasticity (Gordon et al., 2006), recently it was found in an in vivo study that sensory stimulation 

elicits NMDA spikes which in turn cause long-term plasticity in layer 2/3 cortical neurons 

(Gambino et al., 2014). The likelihood of a single branch eliciting a dendritic spike can be enhanced 

by down-regulation of A-type K+ channels in what has been termed branch-strength potentiation 

(Losonczy et al., 2008) and this effect is observed preferentially in animals housed in enriched 

environments (Makara et al., 2009). Such branch strength potentiation “protects” against the 

effects of inhibition further enhancing the coupling between dendrites and the soma (Müller et al., 

2012).  

As described above, dendrites are capable of releasing neurotransmitters of their own. As this 

process is Ca2+ dependent, it is quite likely that dendritic spikes play a role in eliciting release 

(Branco & Häusser, 2010). In mitral tufted cells, subthreshold depolarizations were shown to 

induce local release of glutamate that was dependent on group I metabotropic glutamate receptors 

(mGluRs) (Castro & Urban, 2009). An A17 amacrine cell in the retina is specific in having 

a varicose like structure of dendrite leading to an effective compartmentalization of electrical 
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signals (Grimes et al., 2010). As a result, hundreds of compartments in the dendrites send and 

receive signals in parallel. Whilst parallel computation on this scale is most likely specific to that 

particular cell, many cells are known to release neurotransmitters from the dendrite (Ludwig & 

Pittman, 2003). Given the highly localized nature of Ca2+ following dendritic spikes, it is tantalizing 

to expect dendrites to perform complex local computations.  

Finally, up until recently, the role of dendritic spikes in sensory processing and behaviour was 

largely unknown. NMDA spikes occur spontaneously or as a result of whisker or hindlimb 

stimulation in layer 2/3 neurons (Palmer et al., 2014; Gambino et al., 2014). Blocking NMDARs 

decreases the sensory evoked output from neurons (Palmer et al., 2014) and in layer 2/3 and 4 

neurons preferentially decreases response to a tuned angular input following visual or whisker 

stimulation (Lavzin et al., 2012; Smith et al., 2013). Direct dendritic recordings from layer 2/3 

neurons combined with simultaneous Ca2+ imaging confirmed that visually evoked NMDA spikes 

were local (Smith et al., 2013). Computer model based on the data further confirmed that favorable 

conditions for eliciting NMDA spikes are when inputs are spatially clustered (Palmer et al., 2014). 

1.1.5.5 Models of integration 

In the simplest model of dendritic integration, the “point neuron”, all inputs are propagated to the 

soma where an action potential is generated when somatic voltage crosses threshold (see Figure 

1.4A). This view was primarily represented in the traditional neural network models where soma 

is the only (nonlinear) filter of inputs in neuron (McCulloch & Pitts, 1943). In this view, dendrites 

are considered to be nothing more than passive propagators of signals. However, local integration 

of signals by dendrites and local computation, for example by dendritic spikes, was shown to 

enhance the information capacity of neurons (Poirazi et al., 2003). This theory argues that the 

integration in dendrites is independent from other dendritic subunits or from the soma (see Figure 

1.4B). More complex integration models were proposed for some neurons with complex dendritic 

morphology. For example, apical tufts of deep neocortical pyramidal cells are postulated to have 



31 | P a g e  
 

several compartmental zones which has been sometimes represented in a three- or multi-layer 

structure of integration (Häusser & Mel, 2003; Larkum et al., 2009). A further missing component 

in single and multi-layer models of dendritic integration is the assumption of signal flow from 

dendrites to soma. As I mentioned above, dendrites are capable of releasing neurotransmitters 

(Ludwig & Pittman, 2003) on their own and their integration properties are fundamentally affected 

by backpropagating action potentials (Branco & Häusser, 2009; Remy et al., 2009) or the coupling 

from other dendrites (Remme et al., 2010). These “near-instantaneous” models of dendritic 

integration also fail to account for the individual histories of the computational subunits. A more 

accurate representation of the dendritic integration contains, for each computational subunit, a 

temporally-sensitive component corresponding to the summed influences from other areas of the 

neuronal tree (see Figure 1.4C). Such model is required to adequately address the recent findings 

showing spatiotemporal input sensitivity of dendrites. 

 

Figure 1.4 A schematic of different models of dendritic integration.  

A) In the ‘point neuron’ representation all dendritic inputs are integrated at the soma, with an 

output (red arrow) generated when somatic voltage crosses threshold. B) In the two-layer network 

representation (Poirazi et al., 2003), synaptic inputs are integrated locally in dendritic subunits each 

of which sums the local inputs and applies a thresholding non-linearity (i.e. a dendritic spike)  to 

generate final output (red arrow). C) Inputs are first integrated in a pattern-dependent manner 
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(Branco et al., 2010) (green circle) following which a thresholded non-linearity is applied and passed 

to the soma where an output is generated. Alternatively or concurrently, dendritic release of 

neuromodulators and neurotransmitters allows local output to be generated. Finally, there is a 

bidirectional communication between individual subunits and the soma. Figure modified from 

Branco and Häusser (2010). 

1.1.5.6 Spatiotemporal integration in dendrites 

In his original works on passive properties of signal propagation, Rall (1964) suggested that 

dendrites are capable of resolving different spatiotemporal inputs. Such capacity would be useful 

as it was demonstrated in several studies that sensory systems are capable of resolving neural 

stimuli that would be too fast for rate codes (Thorpe et al., 2001). In sensory systems, spike timing 

was shown to correspond to features of stimuli (Meister et al., 1995; deCharms & Merzenich, 1996; 

Johansson & Birznieks, 2004). In principle, sensitivity to spatiotemporal sequences would greatly 

enhance the computational capacity of neurons. Recently, Branco and colleagues (2010) confirmed 

that dendrites are capable of resolving patterned sequences of uncaged glutamate (see Figure 1.5). 

This is a result of the impedance gradient of dendrites that results in an unequal activation of 

NMDAR conductance when different spatiotemporal patterns are presented to the dendrite. 

Centripetal activation of inputs results in a greater recruitment of NMDAR conductance and 

concurrently a greater likelihood for inducting action potentials (see Figure 1.5I,J) than centrifugal 

due to high input impedance in the distal regions of the dendrite. This effect is substantially 

diminished with the application of NMDAR blockers. 
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Figure 1.5 Dendrites are sensitive to the direction and velocity of synaptic input patterns. 

A) Layer 2/3 pyramidal cell filled with Alexa 594 dye; yellow box indicates the selected dendrite. 

B) Uncaging spots (yellow) along the selected dendrite. C) Average individual uncaging responses 

at the soma. D) Somatic responses to IN (red) and OUT (blue) directions at 2.3 µm/ms (averages 

denoted by bold lines). E) Plot comparing peak amplitudes for IN and OUT sequences at the 

optimal velocity for direction selectivity [green circle example shown in D)]. F) Direction-selective 

responses at different velocities. G) Relation between peak voltage and input velocity (values 

normalized to the maximum response in the IN direction for each cell, N=15). Error bars indicate 

SEM. H) Relation between direction selectivity and input velocity (N=15). I) Direction selectivity 
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of spike probability; population data shown in J) (**p = 0.0013, N=7). K) Relation between spike 

probability and velocity (N=7, average of both directions). Source: Branco et al. (2010). 

 

Ca2+ influx through NMDA receptors is tightly linked to the induction of plasticity. Since different 

spatiotemporal sequences show unequal recruitment of NMDA spikes, it is an open question 

whether they can result in an unequal induction of plasticity. This thesis is primarily concerned 

with answering this question. 

1.2 PLASTICITY IN NEURONS AND DENDRITES 

1.2.1 Historical perspective 

Whilst Donald Hebb (1949) is often considered the father of the plasticity field due to his work 

Organization of Behaviour, the term and concept of plasticity has a much longer history, one that 

Hebb readily acknowledged in his correspondence (Berlucchi & Buchtel, 2009). The term plasticity 

was probably coined by Ramón y Cajal in a paper in Spanish following from his Croonian Lecture 

(Cajal, 1894; DeFelipe, 2006). Nevertheless, the concept of neuronal changes as a result of learning 

was postulated since William James (1890) in his Principles of psychology. The Italian neuropsychiatrist 

Eugenio Tanzi (1893), inspired by Cajal’s Neuron Doctrine, hypothesized that the connections 

between neurons, which were termed synapses 4 years later, constituted a barrier for the 

transmission of signals. As a result, Tanzi (1893), in what was later termed “synaptic resistance 

theory”, argued that the reduction in the efficacy of such barrier was lowered as a result of 

repetitive activity between neurons. Donald Hebb’s work was instrumental because of his 

operationalization of the general principles of plasticity described above. Hebb’s 

neurophysiological postulate states that cells that are simultaneously and persistently coactive result 

in a metabolic process in which (at least) one of the cells efficiency is increased (Hebb, 1949; 

Sjöström et al., 2008). This rule was later popularized by Carla Shatz (1992) as “neurons that fire 
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together wire together”. In 1964, Kandel and Tauc (1964) showed that pairing a subthreshold 

EPSP in one pathway of abdominal ganglion cells with spike train in the second pathway 

sometimes results in facilitation of the EPSP for up to 20 minutes.  

The experimental confirmation of Donald Hebb’s theory was provided by the famous experiments 

by Tim Bliss and Terje Lømo (1973). They discovered that repetitive stimulation of the perforant 

path in the anaesthetized rabbit leads to an increase of the amplitude of EPSP and the reduction 

of the latency of population spike. Such enhancement of responses was termed long-lasting or 

long-term potentiation. It became quickly apparent that if the only mechanism for the induction 

of plasticity were potentiation, the circuit would quickly tend towards runaway excitation. In their 

theoretical work that was later termed BCM model, Bienenstock, Cooper and Munro (1982) argued 

that low-frequency activity of presynaptic neurons should result in depression of the synaptic 

strength and that the converse should occur with high frequency activity, consistent with Bliss and 

Lømo (1973) results. The depression aspect was later confirmed by Dudek and Bear (1992) who 

discovered that prolonged low-frequency stimulation of the Schaffer collaterals resulted in the 

reduction of the EPSP amplitude. Several other forms of long-term modifications have since been 

described to account for the runaway excitation or depression problem. A prolonged reduction of 

firing rate (by means of Na+ blocker Tetrodotoxin (TTX) or AMPA receptor blocker 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX)) leads to the up regulation of synaptic glutamate receptors, 

whilst increase in excitation (by means of GABAA blockade via bicuculline) leads to the converse 

(Turrigiano et al., 1998). This firing rate adaptation was later termed homeostatic synaptic plasticity 

(Turrigiano & Nelson, 2004; Turrigiano, 2011).  

1.2.2 Spike-timing dependent plasticity 

In 1996, several theoretical models argued for the role of action potential timing relative to the 

input in the induction of plasticity (Abbott & Blum, 1996; Gerstner et al., 1996). Non-linear 

summation of EPSPs and bAPs was found in hippocampal cells (Markram et al., 1995; Magee & 
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Johnston, 1997). Markram er al. (1997) were the first to show in neocortical cells that synapses are 

potentiated if the EPSP precedes the AP by few milliseconds, whilst depression is observed if the 

timing is reversed. Bi and Poo (1998) then quantified the timing requirements in the induction of 

timing-dependent long-term potentiation (t-LTP) or timing-dependent long-term depression (t-

LTD) in hippocampal CA1 cells.  

Since the initial studies, spike-timing dependent plasticity has become an important field of the 

neuroscience on its own, informing multitude of theoretical models of plasticity (Clopath & 

Gerstner, 2010; Gerstner, 2010; Markram et al., 2011), experimental studies (Sjöström et al., 2008; 

Caporale & Dan, 2008; Markram et al., 2012) and critiques (Lisman & Spruston, 2005, 2010). Spike-

timing dependent plasticity has been described in a number of cell types (see Figure 1.6) – 

pyramidal cells of the cortex (Markram et al., 1997; Feldman, 2000; Sjöström et al., 2001), CA1 

hippocampal cells (Bi & Poo, 1998), GABAergic cells in the ventral tegmental area (VTA) 

(Kodangattil et al., 2013), fusiform cells of the dorsal cochlear nucleus (Tzounopoulos et al., 2004), 

and medium spiny neurons in the striatum (Fino et al., 2005; Pawlak & Kerr, 2008).  

In cortical cells, the mode of t-LTD and t-LTP induction differs. The locus of t-LTD is located 

on the pre-synapse and is dependent on CB1 (Sjöström et al., 2003) and pre-synaptic NMDA 

receptors (Rodríguez-Moreno & Paulsen, 2008; Rodríguez-Moreno et al., 2010). In fact, a purely 

presynaptic patterned activation (burst of three spikes followed by a spike) is sufficient for LTD 

induction in what is called the pattern-dependent LTD (Rodríguez-Moreno et al., 2013). On the 

other hand, t-LTP is dependent on the post-synaptic receptors (Sjöström et al., 2003, 2008).  

There are several roles that are hypothesized for spike-timing dependent plasticity in neural 

circuits. Computationally, spike-timing dependent plasticity (STDP) learning rules are expected to 

reduce the latency with which the presynaptic cell drives the postsynaptic cell (Song et al., 2000). 

Due to its spike-timing sensitivity,  STDP is postulated to be involved in temporal coding learning 

(Gerstner et al., 1996). Furthermore, STDP was shown in a computational model to underlie 
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receptive field development and remapping after injury (Song & Abbott, 2001). Such changes in 

receptive field remapping were observed in visual cortex (Schuett et al., 2001; Meliza & Dan, 2006; 

Pawlak et al., 2013), somatosensory (Celikel et al., 2004; Jacob et al., 2007; Gambino & Holtmaat, 

2012) and in auditory cortex after STDP-like pairing of tones with nucleus basalis stimulation 

(Froemke et al., 2007, 2012).  

The basic STDP learning rule appears to be conserved across several animal species (see Figure 

1.6C) and it was demonstrated in developing retinotectal synapses of Xenopus tadpoles (Zhang et 

al., 1998), Kenyon cells of locusts (Cassenaer & Laurent, 2012), visual cortex of cats (Frégnac et 

al., 1988), corticospinal synapses of macaques (Nishimura et al., 2013) and in M1 cortex of humans 

following transcranial magnetic stimulation (Müller-Dahlhaus et al., 2010). 

STDP learning rules gained popularity due to their relative simplicity, biological plausibility and 

relative stability (Paulsen & Sejnowski, 2000; Song et al., 2000; van Rossum et al., 2000) compared 

to other models such as Hebbian plasticity, which suffers from the runaway excitation. 

Nevertheless, STDP remains mostly a phenomenological model of learning and the biochemical 

mechanism for the observed bidirectional plasticity remains to be elucidated. 
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Figure 1.6 Spike-timing dependent plasticity is cell-type dependent 

Schematic of observed spike-timing dependent plasticity curves in the literature. A) Principal cells 

of the cortex and hippocampus show largely Hebbian STDP. Suffixes: (a) – adult, (d) – 

development. B) Anti-Hebbian STDP in cortical interneurons, cortico-striatal cells and 

cerebellum. C) Hebbian and anti-Hebbian STDP in non-mammalian species. Suffix: (oct) – 

octopamine application. (Bell et al., 1997; Zhang et al., 1998; Holmgren & Zilberter, 2001; Woodin 

et al., 2003; Birtoli & Ulrich, 2004; Fino et al., 2005, 2008; Haas et al., 2006; Wittenberg & Wang, 

2006; Kampa et al., 2006; Safo & Regehr, 2008; Zilberter et al., 2009; Cassenaer & Laurent, 2012; 

Itami & Kimura, 2012) 
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1.2.3 Plasticity induction 

LTP is a catch-all term for a substantial number of different potentiation mechanisms that have 

been observed in a variety of cell-types. The mechanisms of induction, such as the type of receptors 

required, the site of modification (i.e. pre- or post-synaptic membrane) and the nature of 

modification (i.e. upregulation of synaptic receptors, or change in intrinsic conductances) can vary 

considerably (Malinow & Malenka, 2002; Sjöström et al., 2008). As a result of this “embarrassment 

of riches” of LTP-types (Malenka & Bear, 2004), I will restrict the discussion to primarily NMDA-

dependent LTP in hippocampal cells and pyramidal cells of cortex.  

1.2.3.1 Role of calcium in plasticity induction 

In its canonical form, LTP is dependent on Ca2+ entry through NMDA receptors (Collingridge et 

al., 1983; Bliss & Collingridge, 1993). Buffering of Ca2+ using a slow ethylene glycol-bis(β-

aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) or fast 1,2-bis(o-aminophenoxy)ethane-

N,N,N',N'-tetraacetic acid (BAPTA) buffer results in a block of plasticity induction (Lynch et al., 

1983; Nevian & Sakmann, 2006; Lee et al., 2009). Whilst it is clear that Ca2+ elevation is important 

for both LTP and LTD, it is not clear what spatial or temporal profile of Ca2+ increase is required 

for the differential induction.  

One of the most popular is the so-called Ca2+ control hypothesis (Lisman, 1989; Lee et al., 2000) 

in which the magnitude of Ca2+ influx activates either kinases or phosphatases to phosphorylate 

or dephosphorylate AMPA receptors and thus determine the sign of plasticity. Large increases in 

Ca2+ are expected to lead to potentiation primarily by the recruitment of Ca2+/calmodulin-

dependent protein kinase II (CaMKII) (Lisman et al., 2002). This Ca2+ influx is sensed by the 

calmodulin domain of CaMKII and is autophosphorylated at the T286 site which results in its 

persistent activity (Lisman et al., 2012). Following such an event, CaMKII is upregulated and 

translocates specifically to the potentiated spines during LTP (Lee et al., 2009), where it 

phosphorylates AMPA receptor and increases its conductance (Barria et al., 1997), binds to NR2B 
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subunit of NMDA receptor (Barria & Malinow, 2005) and binds to F-actin and α-actinin (Hell, 

2014). CaMKII interaction with actin and actin-binding proteins is consistent with the role of actin 

in structural plasticity (Dillon & Goda, 2005a; Cingolani & Goda, 2008). Furthermore, the growth 

and maintenance of spines observed in vivo during learning is dependent on the phosphorylation 

at the T286 site (Wilbrecht et al., 2010) and the level of CaMKII activity is predictive to whether 

synapses will persist after monocular deprivation (Mower et al., 2011). The sensor for moderate or 

small increases of Ca2+ , which are required for the induction of NMDAR dependent form of 

LTD, is presumed to be protein phosphatases as this was demonstrated demonstrated for both 

CA1 and cortical cells (Lisman, 1989; Mulkey & Malenka, 1992; Kirkwood & Bear, 1994).  

Despite these simple rules, both LTP and LTD come in many forms with induction parameters 

differing based on the type of synapse (i.e. CA1, mossy fiber), receptor type responsible (i.e. 

NMDAR, mGluR) or the type of biochemical cascade (Malenka & Bear, 2004). For example in 

the case of t-LTD in the cortex, the mechanism is more complex due to the role of pre-synapse 

and astrocyte network in depression of synaptic efficacy (Sjöström et al., 2003; Bender et al., 2006; 

Min & Nevian, 2012). Support for Ca2+ control hypothesis has come from rate-based induction 

protocols in cortex and in cerebellar granule cells (Ismailov et al., 2004; Gall et al., 2005). EPSP-AP 

pairings were found to result in EPSP enhancement in electrophysiological recordings, in 

simulations and in supralinear rise of Ca2+ (Stuart & Häusser, 2001; Nevian & Sakmann, 2006; 

Kampa et al., 2006; Kampa & Stuart, 2006). Nevertheless, t-LTD induction protocols were found 

to have indistinguishable peak Ca2+ influx from protocols that resulted in t-LTP  (Nevian & 

Sakmann, 2006).  

There are several methodological problems that frustrate the study of the profile of Ca2+ in 

plasticity induction. Firstly, Ca2+ dyes are Ca2+ buffers, and, as has been shown above, Ca2+ buffers 

prevent the induction of plasticity. As a result, few studies have attempted to measure plasticity 

magnitude at the same time as measuring Ca2+ influx. Secondly, physiological Ca2+ buffers tend to 
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be immobile as compared to synthetic dyes or genetically encoded calcium indicators (Higley & 

Sabatini, 2008). Thus, if the Ca2+ role in plasticity induction happens in a micro- or nano-domain 

(Berridge, 2006), our current dyes may not able to capture this. Finally, the dye’s affinity for Ca2+ 

needs to be taken into account. The difference in Ca2+ influx between a small amplitude EPSP and 

high-frequency AP-EPSP pairing can span several orders of magnitude. High affinity dyes saturate 

at high levels of Ca2+ entry, thus underestimating the Ca2+ influx, whereas low affinity dye may not 

detect the small events. Whilst Ca2+ entry is clearly necessary for plasticity induction, the 

relationship between Ca2+ profile and magnitude or sign of plasticity is unknown. Nevertheless, 

several electrophysiological, biochemical and morphological processes have been shown to 

account for plastic changes that I will briefly discuss below.  

1.2.3.2 Changes in synaptic receptor content 

One of the first identified mechanisms of the expression of canonical LTP was via the change in 

AMPA receptor conductance at the synapse. Following an LTP induction protocol, it was shown 

that AMPA-receptor conductance was increased (Benke et al., 1998). One already discussed means 

of increasing conductance is via phosphorylation of AMPA receptors, which was demonstrated to 

happen via PKA (Banke et al., 2000) or CaMKII (Barria et al., 1997), resulting in an increased 

channel opening of the AMPA receptor (Kristensen et al., 2011; Derkach, 2011). Another source 

of conductance increase is through the trafficking of AMPA receptors to the synapse (Malinow & 

Malenka, 2002; Bredt & Nicoll, 2003). Such trafficking into membrane is dependent on the 

interaction between the AMPA receptor GluA1 subunit C-tail with the PDZ domain proteins (Shi 

et al., 1999, 2001; Hayashi et al., 2000). The delivery of AMPA receptors can happen through 

exocytosis (Park et al., 2004; Kopec et al., 2006) or lateral diffusion from extrasynaptic sites (Ehlers 

et al., 2007; Makino & Malinow, 2009), the importance of each of these modes is currently an area 

of active research. Despite the importance of C-tail interaction with PDZ in traditional LTP 

induction protocols (Shi et al., 2001; Kessels & Malinow, 2009), it was recently found that any 
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receptor subunit, even artificially expressed kainate receptors, is capable of LTP induction 

(Granger et al., 2013). Apart from kainate receptors, NMDAR-dependent currents were found to 

be potentiated following LTP induction protocol (Watt et al., 2004). The full review of the plasticity 

of synaptic receptors is beyond the scope of this introduction, however, the results from these 

studies suggest that several synaptic conductances can be modified in parallel following induction 

stimulus.  

1.2.3.3 Structural plasticity 

Spines on which most of the synapses are located are motile and can increase in size following 

LTP stimuli (Matsuzaki et al., 2004). Furthermore, new spines may emerge following LTP 

induction (Engert & Bonhoeffer, 1999; Kwon & Sabatini, 2011). Despite their size, spines are very 

complicated structures both structurally and biochemically (Hering & Sheng, 2001; Dillon & Goda, 

2005b; Cingolani & Goda, 2008; Bramham, 2008; Rochefort & Konnerth, 2012). Similarly, 

multiple good reviews have been written on the topic of structural plasticity of spines in cortex 

and hippocampus (Matus, 2000; Segal, 2005; Alvarez & Sabatini, 2007; Holtmaat & Svoboda, 2009; 

Kasai et al., 2010; Bourne & Harris, 2011; Colgan & Yasuda, 2014). In this introduction, I will 

restrict my discussion to the interaction between electrophysiological and structural correlates of 

potentiation.  

Observing morphological changes of spines as a proxy for LTP is mostly useful in in vivo settings 

where direct electrophysiological recordings are difficult or impossible due to the time required 

for recording. Experience-dependent changes were reliably found to induce spine turnover, 

growth and maintenance or persistence of spines for different tasks or deprivation protocols, in 

different animal models and in several regions of the brain (Trachtenberg et al., 2002; Holtmaat et 

al., 2005; Hofer et al., 2009; Xu et al., 2009; Yang et al., 2009; Roberts et al., 2010; Wilbrecht et al., 

2010). Increase in the spine head size is associated with an increase in AMPA receptor content 

(Matsuzaki et al., 2004; Zito et al., 2009). Other structural modifications are possible such as 
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widening or increasing the length of the spine neck and thus modulating the level of spine-dendrite 

compartmentalization (Grunditz et al., 2008; Tønnesen et al., 2014; Araya et al., 2014). Nevertheless, 

whilst structural plasticity is often correlated with its functional counterpart, morphological 

changes do not necessarily imply electrophysiological changes. One proposed reason for this 

discrepancy is that the post-synaptic density (PSD) region where synaptic receptors are located 

and which is close to the area of vesicle fusion is relatively small (Cingolani & Goda, 2008). An 

increase in spine volume head therefore would not lead to functional plasticity if it is not followed 

by changes in the receptor content of the PSD. Similarly, if the presynaptically released glutamate 

fails to saturate receptors in their basal state, increasing spine size and receptor content would not 

necessarily lead to an enhancement of synaptic strength. At present, it is unclear whether reported 

dissociation between functional and structural changes at the synapse (Sdrulla & Linden, 2007; 

Wang et al., 2007b) is due to insufficient receptor content, the size of PSD or the amount of released 

glutamate.   

1.2.3.4 Intrinsic excitability plasticity 

Despite the changes in synaptic conductances described above, plasticity can also lead to changes 

in intrinsic excitability of a cell. These can be either local or global changes of excitability. LTP 

induction protocols have been found to enhance overall excitability of cells in cerebellar granule 

cells (Aizenman & Linden, 2000), visual cortical cells (Cudmore & Turrigiano, 2004) and in Xenopus 

tadpole optic tectum (Aizenman et al., 2003). These changes were found to be dependent on Ca2+ 

influx or were dependent on Ca2+ permeable receptors. In fact, changes in global intrinsic 

excitability are common across different species and have been described for a range of vertebrate 

and invertebrate animal models (Zhang & Linden, 2003). The nature of the excitability changes 

can vary considerably as well, such as by modifying Na+ (Ganguly et al., 2000) , K+ (Sourdet et al., 

2003), VGCC (Su et al., 2002) or HCN based currents (Fan et al., 2005).  
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1.2.4 Plasticity in dendrites 

Apart from the mode of plasticity expression being variable, dendrites also exert an important 

influence on its induction. I will discuss two aspects that received substantial attention here – the 

location of the synapses and the degree of clustering’s influence on the magnitude and sign of 

plasticity observed. 

1.2.4.1 Location and plasticity induction 

As I described above, propagation of voltage signals such as EPSPs and bAPs are spatially 

regulated in dendrites. Therefore, it has been proposed that the STDP rule should be influenced 

by the location of synapses to be potentiated or depressed (Sourdet & Debanne, 1999). Proximal 

dendrites, where APs back-propagate efficiently, express typical STDP. Nevertheless, the 

magnitude of potentiation shows a distance-dependent gradient, even switching into depression at 

distant synapses (Froemke et al., 2005; Sjöström & Häusser, 2006; Letzkus et al., 2006; Gordon et 

al., 2006). Such distance-dependent LTD can be rescued by either enhancing cooperativity between 

inputs via strong extracellular stimulation or by boosting backpropagation of action potential via 

dendritic current injection (Sjöström & Häusser, 2006). This depolarization dependency of 

potentiation was also found for the proximal dendrites, presumably depending on the voltage-

dependence of the Mg2+ unblocking from NMDA receptors (Kampa et al., 2004). Alternatively 

exogenously applied BDNF was found to also rescue distal failure of potentiation (Gordon et al., 

2006). Whilst some studies did not observe this switch into depression at positive EPSP-AP 

intervals (Froemke et al., 2005), the preference for depression at distal synapses is consistent. This 

is presumably due to the more compact dendritic tree of layer 2/3 cells (Froemke et al., 2005) 

compared to layer 5 cells where bAP propagation does not reach to the farthest extents of the 

apical tree (Häusser et al., 2000). Such location dependence of potentiation rules is expected to 

enhance the computational capacity of neurons (Froemke et al., 2010). 



45 | P a g e  
 

1.2.4.2 Spatial extent of plasticity 

One fundamental aspect of plasticity predicted by Donald Hebb is the synapse specificity of 

potentiation. In his view, only synapses that are repeatedly involved in driving postsynaptic cell 

firing should undergo potentiation. However, we now know that there is a breakdown of synapse 

specificity at short distances. Harvey and Svoboda (2007) discovered that a subthreshold pairing 

protocol induces structural potentiation if a nearby spine (> 10 µm) undergoes LTP pairing. 

Surprisingly, the small guanosine triphosphate Ras spreads approximately the same distance 

following an uncaging LTP pairing protocol (Harvey et al., 2008). An influential theory of plasticity, 

the synaptic tagging hypothesis, postulates that potentiation protocols set a “tag” at a synapse 

which then attracts a group of translated plasticity-related proteins, resulting in a late-phase LTP 

(Frey & Morris, 1997, 1998). Although the initial hypothesis stated that the translation occurred at 

the soma, it is more likely that local translation plays an important role in the maintenance of 

plasticity in dendrites (Kang & Schuman, 1996; Sutton & Schuman, 2006), and this has been 

recognized in the updated version of the theory (Redondo & Morris, 2011). According to Clustered 

Plasticity Hypothesis, local protein translation and the synaptic tagging hypothesis should naturally 

lead to the dendritic branch becoming an integrative unit of plasticity induction (Govindarajan et 

al., 2006), a theory which was indirectly supported in a structural plasticity study in a culture 

(Govindarajan et al., 2011). The support for clustering of synapses in plasticity was also found in 

vivo (Makino & Malinow, 2011; Gambino et al., 2014). Surprisingly, the hypothesis that plasticity 

results in clustering is much less controversial than the presence of clustered synaptic inputs in the 

basal state (see above), despite the fact that the results predicted are the same.  

1.2.4.3 Spatiotemporal plasticity 

What other integration modalities are dendrites capable of? We know that dendrites are sensitive 

to distinct spatiotemporal patterns (Branco et al., 2010) and that the timing of afferent input in 

CA1 cells can influence the sign of plasticity (Kwag & Paulsen, 2009).  
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Nevertheless, it is uncertain whether neurons can learn to decode such patterns. Neurons can 

respond to stimuli that are timed only milliseconds apart (VanRullen et al., 2005; Gollisch & 

Meister, 2008; Gütig, 2014). Learning to respond to a particular spike input pattern has been the 

subject of numerous computational studies. Utilizing reinforcement learning to change the release 

probability of synapse depending on their recent actions, a neural network of integrate-and-fire 

neurons learned to accurately perform as a XOR function for four input patterns (Seung, 2003). 

These so-called “hedonistic synapses” perform stochastic gradient descent learning that is, 

however, typically slower than direct gradient approaches (Gütig, 2014). Utilizing a direct gradient 

descent approach, Gütig and Sompolinsky (2006) derived the tempotron-learning rule which 

minimizes the distance between maximal postsynaptic voltage and the neuron’s firing threshold.  
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Figure 1.7 The tempotron learning rule. 

A) Spike times (thick vertical lines) of ten afferents in two schematic input patterns ⨁ (black) and 

⊝ (gray). B) Resulting postsynaptic voltage traces 𝑉(𝑡). Maximal voltages are reached at 𝑡𝑚𝑎𝑥
⨁  and 

𝑡𝑚𝑎𝑥
⊝

 (thin solid vertical lines), respectively. Because 𝑉(𝑡𝑚𝑎𝑥
⨁ ) < 𝑉𝑡ℎ𝑟 < 𝑉(𝑡𝑚𝑎𝑥

⊝ ) with 𝑉𝑡ℎ𝑟 

(dashed horizontal line) denoting the spike threshold, both patterns generate an error. Inputs 

arriving after a threshold crossing (gray trace) are shunted. Black and gray thick vertical lines 

indicate the cost terms 𝑉𝑚𝑎𝑥 − 𝑉𝑡ℎ𝑟 and 𝑉𝑡ℎ𝑟 − 𝑉𝑚𝑎𝑥 associated with the ⨁ and ⊝ patterns 
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respectively. C) Resulting synaptic changes (in units of maximal change, 𝜆) depend on presynaptic 

spike times (circles) relative to the corresponding voltage maximum. Thin dashed vertical lines in 

(a-c) mark presynaptic spike times. Source: Gütig and Sompolinsky (2006). 

Compared to other decoders, the tempotron-learning model was shown to be able to quickly 

classify various complex visual features and be robust to spike-time jitter (Gütig et al., 2013). 

Surprisingly, the number of patterns that a single neuron can store was a multiple (up to 3x under 

some conditions) of the number of synapses. Nevertheless, the tempotron model is based on a 

simplified model of integrate-and-fire neuron. As a result, inputs do not have a spatial component 

that is present in a morphologically realistic neuron. Despite their simplicity, such models are can 

encode precise spike-timing inputs and have practical utility in categorization tasks. It is currently 

unclear whether realistic neurons are capable of learning to encode arbitrary spatiotemporal inputs. 

The existence of spatiotemporal plasticity is currently an unknown tantalizing frontier of 

neuroscience.   

1.3 AIM OF THE THESIS 

The main aim of the thesis is to explore the capability of cortical neurons to potentiate specific 

spatiotemporal patterns of activity, and investigate the underlying mechanisms for such pattern 

storage. To analyse such enhancement of spatiotemporal read-out, glutamate uncaging is a useful 

method. Uncaging of MNI-glutamate was previously used in plasticity experiments (Matsuzaki et 

al., 2004) and spatiotemporal activation of synapses (Branco et al., 2010). The method allow precise 

control of synaptic activation on a micrometer scale (Harvey & Svoboda, 2007; Harvey et al., 2008) 

with sub-millisecond temporal precision. As a result, glutamate uncaging is a natural candidate for 

such experiments to be carried out. However, currently most widely used compound, MNI-

glutamate was also found to block inhibition (Maier et al., 2005) which plays a significant role in 

the induction of plasticity. RuBi-glutamate was previously found to reduce the degree of inhibition, 

however, the reduction was partial (Fino et al., 2009). To my knowledge, no uncaging compound 
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exists at the moment that would prevent GABA blockage. However, it is currently unclear what 

the appropriate physiological conditions are during the induction of plasticity. UP states in cortex 

which are associated with greater excitatory drive and thus expected increase in plasticity 

occurrence can result from a decrease in tonic inhibitory drive. Consistently with this view, many 

experimental setups use blockers of GABA(A) receptors to enhance the likelihood of induction 

of plasticity (Magee & Johnston, 1997). 

The role of inhibition is well established in plasticity literature. Generally, a decrease in inhibition 

is associated with an increased likelihood of induction of plasticity (Buonomano & Merzenich, 

1998). There are two known modes of inhibition in the cortex. Phasic is transient, recruited at a 

millisecond scale often following excitatory stimulus. Under basal state, this form of inhibition can 

be seen in spontaneously occurring miniature post-synaptic currents (mIPSCs). Tonic inhibition 

is longer acting, initially discovered by the decrease of holding current required to clamp cells at a 

given membrane potential (Kaneda et al., 1995). It is likely that both of these modes of inhibition 

are recruited in the modulation of plasticity although their relative roles are yet to be elucidated. 

Phasic inhibition could serve as a gating mechanisms for the induction of plasticity, preventing the 

development of the plasticity during induction. On the other hand, tonic inhibition could serve to 

set the “tone” or the level of plastic changes in the cortex. This would be consistent with the 

important role of inhibition in setting up critical periods in cortex. Tonic inhibition was found to 

be important before maturation of synapse formation takes place (Farrant & Nusser, 2005). 

Furthermore, maturation of inhibition was linked with the end of critical period and reduction of 

the intracortical inhibition was found to re-activate critical period for ocular dominance plasticity 

(Sale et al., 2007; Harauzov et al., 2010). As a result, inhibition is expected. 

In Chapter 1, I will explore potentiation induction using two-photon glutamate uncaging. I will 

describe the induction of spatiotemporal dependent plasticity in basal dendrites of layer 5 neurons 

in the rat from the electrophysiological standpoint. 



50 | P a g e  
 

In Chapter 2, I will employ pharmacology to explore the requirements for induction of 

potentiation. I will also explore the kinetics of Ca2+ using two-photon calcium imaging to further 

characterize the properties of spatiotemporal plasticity. 

In Chapter 3, using compartmental modelling and a genetic optimization algorithm, I will isolate 

the key parameters for potentiation. I will show that the potentiation of distinct spatiotemporal 

sequences is possible with physiological constraints partly derived from my calcium imaging 

experiments. 

Finally, I will discuss what these findings suggest for future research on the topic of spatiotemporal 

plasticity, and the implications for neural circuit function. 
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2 METHODS 

2.1 ELECTROPHYSIOLOGY 

2.1.1 Slicing and experimental solutions 

All experiments were performed in acute parasagittal slices (300 µm) containing both visual and 

somatosensory cortices prepared from P14-21 Sprague-Dawley rats in accordance with national 

and institutional guidelines. Rats were anaesthetized with isoflurane, decapitated and the brain 

quickly removed and placed in ice-cold artificial cerebrospinal fluid (ACSF) (in mM: NaCl 125, 

KCl 2.5, glucose 25, NaH2PO4 1.25, NaHCO3 26, MgCl2 1, CaCl2 2 (pH 7.3 when bubbled with 

95% O2 and 5% CO2)). Slices were cut on a Leica Vibratome (Leica VT1200S). Slices were 

transferred to ACSF at 36 °C for approximately 10-30 minutes and allowed to cool to room 

temperature for another 30 minutes. Slices were disposed of after 6 hours post-slicing. Recordings 

were done at 32-35 °C. When required, 50 µM D-APV was added to the regular ACSF solution 

and to the uncaging solution (see below) to block NMDA receptors. During experiments, slices 

were placed in an experimental chamber and were constantly perfused with carbonated ACSF.  

2.1.2 Whole-cell recordings  

Somatic whole-cell recordings were obtained from layer 5 pyramidal cells of somatosensory cortex 

with a Multiclamp 700B amplifier (Molecular devices) and data was acquired at 50 kHz using 

custom-written software in MATLAB interfacing with a National Instruments board. Patch 

pipettes had a resistance of 4-7 MΩ and were filled with internal solution containing (in mM): K-

Gluconate 125, KCl 20, HEPES 10, MgATP 4, NaGTP 0.3, Na-Phosphocreatine 10 (pH 7.2-7.4 

adjusted with KOH to fit). 20 µM Alexa-594 was added to the solution for visualization purposes 

and 100 µM of Fluo-5F for calcium imaging. The series resistance of recordings was less than 30 

MΩ.  
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2.2 TWO-PHOTON IMAGING AND UNCAGING 

 

Figure 2.1 Schematic of the two-photon uncaging and imaging setup used in experiments.  

Specimen (SPE) or MNI-glutamate is excited with Ti:sapphire laser at a wavelength 810 nm 

(imaging laser) and 730 nm respectively. The 730 nm and 810 nm pass a separate set of scan lens 

(SL) and tube lens (TL) and are filtered using dichroic mirror (DM) to minimize crosstalk. Epi- 
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and trans-flourescence are collected using objective (OB) and condenser (CO) respectively. 

Fluorescence photons are reflected by dichroic mirrors into detection systems composed of 

collection lenses (CL) that image the respective back apertures onto photomultiplier tube detectors 

(PMT). Dichroic mirrors and bandpass filters (BF) separate the signals from red and green 

fluorophores. Furthermore, the laser light passing through the sample is collected through a Dodt 

tube and is detected by photodiode (PD) to enable gradient contrast microscopy. The figure is 

inspired by a similar schematic in Yasuda et al. (2004) and adjusted to correspond to my 2-photon 

uncaging and imaging setup. 

2.2.1 MNI-glutamate uncaging and calcium imaging 

Simultaneous two-photon imaging and uncaging was performed using a dual-galvanometer based 

scanning system (see Figure 2.1) using two Ti:sapphire pulsed lasers with one tuned to 810 nm for 

calcium and cell morphology imaging, and another tuned to 730 nm for photolysis of the caged 

MNI-L-glutamate (24 mM, Tocris). MNI-L-glutamate was dissolved in (in mM): NaCl 125, KCl 

2.5, HEPES 10, CaCl2 2, MgCl2 2, glucose 25. The uncaging solution was delivered with a glass 

pipette with a large opening using Picospritzer III (Parker Instrumentation). Uncaging exposure 

time was 500 µs. Recordings were rejected from analysis when they developed signs of 

excitotoxicity (see Figure 2.2) Calcium imaging was performed by selecting arbitrary trajectories 

defined by the dendritic trajectory at 500 Hz. All data were acquired using custom written software 

in MATLAB. 
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Figure 2.2 Uncaging induced photodamage in dendrites. 

A) A sample Layer 5 pyramidal cell from which recording was made (Scale bar: 20 µm). B) Sample 

whole-cell recordings following compound uncaging stimulus. Top: Standard recording non-

indicative of photodamage. Bottom: Failure to re-polarize is indicative of photodamage. C) Time-

lapse example of photodamage to dendrite following over-stimulation (Scale bar: 10 µm). 

To minimize the influence of drift on the quality of recordings, a baseline image was collected at 

the beginning of the recording. Subsequently, images of dendrite were sampled at regular intervals 

(~5 minutes) and offset in position of the dendrite was corrected manually to correspond with the 

baseline image.  

2.3 LONG-TERM PLASTICITY INDUCTION PROTOCOLS 

2.3.1 Uncaging-based LTP induction protocol 

A giga-ohm seal was obtained from a neuron after which a whole-cell recording was established. 

4-24 synapses were selected on a dendrite manually based on the position of putative spines. Unless 

noted otherwise, a baseline measurement was obtained by stimulation of all synapses at a variable 

inter-spine interval (in a range of 0.6-8 ms) for 6 minutes at a rate of 1 compound stimulation per 

minute. A negative current pulse (-25 pA) was injected after the EPSP to measure 𝑅𝑁. The cell 

was rejected from analysis if the mean of the first half of baseline measurement deviated by more 

than 10% from the second half. Following baseline measurements, LTP was induced by pairing 

spike trains with EPSPs consisting of five spikes at a desired frequency (20-100 Hz). The pairing 

was performed 15 times at 0.1 Hz. Paired spikes were induced using 3 ms current injection (1-1.8 

nA) and followed the onset of compound stimulation (EPSP) by a variable time interval (30-130 

ms). After the induction, the responses were monitored for as long as possible. The degree of 

potentiation was measured as the average response following induction until the end of recording 

divided by the initial response obtained during baseline recording. Recordings where the puffing 
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pipette delivering MNI was visibly blocked were removed from analysis. Recordings were not 

included in the analysis if they were shorter than 15 minutes post-induction. Unless otherwise 

noted, recordings were also excluded from the analysis if the input resistance changed by more 

than 30% compared to baseline measurement. 

 

Figure 2.3 Methodology for uncaging-based induction of plasticity. 

A) Layer 5 pyramidal neuron filled with Alexa 594 dye; yellow box indicates selected basal dendrite 

for uncaging. B) Uncaging spots (yellow) along the selected dendrite. C) Uncaging pulses with 

spike trains with current injection to elicit action potentials at variable Δt. Sample recording during 

induction is shown on the top. 
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Figure 2.4 Sample compound EPSPs during induction protocol in absence of current 

injection. 

Example compound EPSPs during induction protocol. Example baseline EPSP generated with 

(A) a single sequential uncaging pattern (IN or OUT), (B) 20 Hz train of uncaging pattern and (C) 

50 Hz train of uncaging pattern. 

2.3.2 Sequence-dependent induction 

In the sequence-dependent induction plasticity protocol, the compound stimulation consisted of 

two interleaved ordered sequences of synaptic activation – centripetal for the IN sequence and 

centrifugal for the OUT sequence as described previously (Branco et al., 2010). During the 

induction protocol, only a single sequence was paired with spikes IN/OUT. The degree of 

sequence dependent potentiation was then measured as the average response to the particular 

ordered sequence of activation (IN/OUT) divided by its respective baseline. As the degree of 

postsynaptic membrane depolarization determines the magnitude of LTP induction and also 

enhances induction at distal synapses (Sjöström & Häusser, 2006), a 25 pA depolarizing pulse was 

injected during the spike-sequence pairing protocol. 

2.4 CALCIUM IMAGING ANALYSIS 

As described above, induction of plasticity required a burst of compound uncaging stimuli paired 

with action potential induction at the soma. As a result, artefacts resulting from uncaging laser 
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stimulation contaminated the traces resulting from calcium imaging. I developed an algorithm to 

identify and minimize the contamination described in (Chapter 4). I first calculated mean of all 

traces in a given recording and performed principal component analysis on the result. The principal 

components are ordered by explained variance. I tested whether principal components contained 

information about the underlying artefact. I then performed dimensionality reduction taking the 

first 10 principal components, unrolled the resulting matrix and selected values which were above 

an arbitrary threshold value (1 standard deviation above the mean) restricted within the time-frame 

in which uncaging was occurring. The values fulfilling this criterion were eliminated from the 

original matrix containing calcium imaging data and the missing values were linearly interpolated. 

Example imaging traces were filtered using 1st order Savitzky-Golay filter or two-dimensional 

Gaussian blurring (in the case of spatial Ca2+ profile plot).  

2.4.1.1 Elimination of the uncaging-induced artefact 

To remove the uncaging-induced artefact, Ca2+ imaging was performed as described above and a 

subsequent masked trial was recorded. In the masked trial, imaging was performed in the absence 

of current injection and MNI-glutamate. I then generated an average image from the masked trials 

(Figure 2.5B) and performed principal component analysis (Figure 2.5C). Principal component 

analysis allows identification of the largest sources of variance in the image. Unrolling the top 10 

principal components and selecting the outliers identified the image location of the underlying 

uncaging artefact (Figure 2.5D). I eliminated pixels that corresponded to the outliers and linearly 

interpolated to obtain the corrected trace (Figure 2.5E).   
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Figure 2.5 Principal Component Analysis method for elimination of uncaging artefact. 

A) Original line-scan analysis with uncaging artefact. B) Calcium imaging performed in the absence 

of MNI-glutamate or action potential induction at the soma (mask) is used to extract principal 

components of the underlying artefact. C) The dimensionality reduction of the mask input based 

on the first ten principal components from the Principal Component Analysis. D) Elimination of 

unrolled pixels that correspond in time to the uncaging artefact and are at least one standard 

deviation above the mean (red line corresponds to threshold of acceptance). E) Adjusted image 

following PCA-based correction. Scale bar: x-axis: 5 µm, y-axis: 100 ms. 
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2.5 COMPARTMENTAL MODELLING 

2.5.1 Model cell parameters and NEURON environment 

Simulations were performed in the NEURON simulation environment using a detailed 3D 

reconstruction of layer 2/3 cell from a previous study (Branco et al., 2010). Passive parameters 

were 𝐶𝑚 = 1 𝜇𝐹/𝑐𝑚2, 𝑅𝑚 = 10 000 Ω ∙ 𝑐𝑚2, 𝑅𝑖 = 150 Ω ∙ 𝑐𝑚. As previously described, this 

yields a somatic input resistance of 110 𝑀Ω. In basal and apical oblique dendrites, 𝐶𝑚 was doubled 

to account for the presence of dendritic spines. AMPA receptor-mediated conductances were 

modelled as a sum of two exponential functions (𝜏𝑟𝑖𝑠𝑒 = 0.1 𝑚𝑠, 𝜏𝑑𝑒𝑐𝑎𝑦 = 1 𝑚𝑠). NMDA 

receptor mediated conductances were modelled using a 10-state kinetic model (Kampa et al., 2004) 

with unbinding and desensitization rates adjusted to physiological temperatures (Cais et al., 2008), 

opening and closing rates from Lester and Jahr (1992) and Mg2+ unbinding rates to produce a time 

constant of ~10 ms (Vargas-Caballero & Robinson, 2003). Maximal peak conductances for both 

AMPA and NMDA were varied depending on the simulation experiment in the range of 0-1.5 nS 

and 0-24 nS respectively. All simulations were performed at a resting membrane potential of -75 

mV unless otherwise stated.  

2.5.2 Genetic algorithm and simulation 

It was previously shown that genetic optimization can be useful in constraining the vast parameter 

space commonly encountered in when using the NEURON simulation environment (Keren et al., 

2005; Almog & Korngreen, 2014). A genetic algorithm is an optimization algorithm that is loosely 

based on the mechanisms of Darwinian evolution. The use of random point mutations and 

crossover operations result in breeding better models, or solutions, compared to the original 

starting population. I started with 100 vectors drawn from a uniform random distribution, each 

vector describing a parameter set. The population was sorted according to a fit score defined by a 

cost function (see below). To prevent genetic drift, the best individual was preserved unchanged 
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for the next round of optimization. The modification of the rest of the individuals was done, first, 

by introducing a random point mutation to vectors (with probability of mutation equal to 0.1 per 

parameter). The mutated parameter was exchanged for a random one drawn from a uniform 

distribution. The point mutation was followed by a crossover operation in which 0.2 vectors 

randomly swapped one parameter. The iterations were run until a termination criterion was met 

or if 2,000 generations were reached. Depending on the computational complexity of the task, the 

optimization protocol was run for a defined number of iterations usually lasting up to 4 days on a 

LINUX cluster utilizing 32 cores or on a personal computer utilizing up to 4 cores.  

2.5.2.1 Cost function 

Previously, it was shown that asymmetric cost functions can be efficient in optimization problems 

(Silva et al., 2010). The asymmetric cost function was a reasonable approach as the algorithm was 

required to discover parameters that would reproduce results of the sequence induction plasticity. 

As a result, simulations that lead to greater sequence potentiation than empirically tested were 

penalized less than simulations that resulted in a smaller sequence potentiation or in a sequence 

depression.  

The default asymmetric cost function used in genetic algorithm optimization parameters was set 

as follows: 

𝑐𝑜𝑠𝑡 =

{
 
 

 
 

∑ (
𝑃𝑚𝑎𝑥

𝑁𝑃𝑚𝑎𝑥
)
2

{𝐼𝑁,𝑂𝑈𝑇}

𝑃

, (
𝑃𝑚𝑎𝑥

𝑁𝑃𝑚𝑎𝑥
) < 0

∑ (
𝑃𝑚𝑎𝑥

𝑁𝑃𝑚𝑎𝑥
)

{𝐼𝑁,𝑂𝑈𝑇}

𝑃

, (
𝑃𝑚𝑎𝑥

𝑁𝑃𝑚𝑎𝑥
) ≥ 0

 

Where 𝑃𝑚𝑎𝑥 and 𝑁𝑃𝑚𝑎𝑥 correspond to the maximal amplitudes of simulated EPSPs of preferred 

and non-preferred spatiotemporal sequence of activation of modelled synapses. 𝑃 corresponds to 

the preferred type of the spatiotemporal sequence (i.e. IN or OUT).  



61 | P a g e  
 

2.6 DATA ANALYSIS 

The data was captured by a custom software written in MatLab as described previously (Branco et 

al., 2010). The recorded data was then converted using NumPy and SciPy libraries of Python. The 

statistical analysis was performed by using the statistical libraries contained in SciPy and scikit-

learn libraries of Python. The plotting was performed using Matplotlib library and further 

visualisation improvements were performed in Adobe Illustrator.  

2.6.1 Statistical analysis 

Statistical significance in comparisons of different groups was tested using Student’s paired or 

independent groups t-test or the non-parametric equivalents depending on the number of data 

available and the likelihood of normality assumption violation. In comparisons of multiple groups 

one-way or repeated measures ANOVA or its non-parametric equivalent Friedmann χ2 was used. 

Statistical significance was defined as p < 0.05. Data are presented as mean ± SEM unless 

otherwise noted.  

 



62 | P a g e  
 

3 INDUCTION OF SPATIOTEMPORAL PLASTICITY IN BASAL DENDRITES OF 

LAYER 5 PYRAMIDAL NEURONS 

3.1 INTRODUCTION 

Several theories consider dendrites as the local units of computation and plasticity (Govindarajan 

et al., 2006; Branco & Häusser, 2010). Recently, in vivo studies have suggested that a single dendritic 

branch can act as a separate unit for plasticity and that such plasticity was generally dependent on 

NMDA receptors (Makino & Malinow, 2011; Yang et al., 2014; Gambino et al., 2014; Cichon & 

Gan, 2015). NMDA receptors are also required to enhance spatiotemporal sensitivity in dendrites 

(Branco et al., 2010). Since modulation of NMDA receptors is tightly linked to plasticity in cortical 

cells and different spatiotemporal patterns result in differential NMDAR recruitment, it is natural 

to enquire whether plasticity can also be spatiotemporally modulated. Such plasticity, if found, 

would have profound implications for the complexity of information that single dendrites are 

capable of storing.  

Induction of plasticity is location-dependent and may fail or result in depression if dendrites 

experience insufficient depolarization (Sjöström & Häusser, 2006; Letzkus et al., 2006). 

Furthermore, induction also depends on the frequency of action potentials (Sjöström et al., 2001). 

To elicit spatiotemporal plasticity, an uncaging-based protocol is required. However, most 

literature to date of uncaging-induced plasticity used spine morphology as a proxy for underlying 

electrophysiological changes. Nevertheless, previous work in hippocampal CA1 cells showed that 

pairing uncaging stimulation of a dendritic branch with application of the cholinergic agonist 

carbachol or theta-pairing protocol (2-3 bAPs) resulted in an enhancement of branch strength that 

was dependent on the intrinsic excitability changes via the downregulation of A-type K+ currents 

(Losonczy et al., 2008).  
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3.1.1 Aims of the chapter 

I was, therefore, interested whether similar branch potentiation to that observed in CA1 cells 

(Losonczy et al., 2008) can be induced in Layer 5 cells of pyramidal neurons. Upon induction of 

potentiation, I looked at the properties of potentiation and how they relate to the potentiation 

observed in other cell types and induction protocols. Furthermore, upon confirming properties of 

this potentiation, I looked at whether pairing specific spatiotemporal uncaging patterns influences 

the outcome of induction.  

3.2 RESULTS 

3.2.1 Uncaging-induced whole-branch potentiation 

3.2.1.1 Induction of branch potentiation 

I used two-photon MNI-glutamate uncaging at multiple-synapses to evoke gluEPSPs recorded at 

the soma in the whole-cell patch clamp configuration. Glutamate uncaging is an appropriate 

method due to its highly specific nature of synapse activation (see Figure 3.1). 

 

Figure 3.1 MNI-uncaging activates single synapses with high spatial precision. 

A) Example colour coded uncaging sites that were stimulated with the same power laser-light. B) 

Example whole-cell patch clamp recordings from soma at different spatial distances from the 
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stimulated spine. C) EPSP amplitude is dependent on the distance from the spine receiving 

uncaging stimulus. 

The mean compound EPSP recorded during the baseline measurements was 4.6 ± 1.1 mV (N = 

32). As glutamate uncaging is known to potentially affect the integrity of the dendrite, care had to 

be taken to avoid damage of the dendrite due to photodamage (see Figure 2.2) which was 

previously found to be sufficient to perturb current flow in the dendrite (Hirase et al., 2002). As a 

result, each baseline measurement was recorded at 1 minute intervals instead of customary 0.1 Hz 

used in traditional electrophysiological studies. The mechanisms of uncaging-induced plasticity in 

dendrites of layer 5 neurons has not yet been explored extensively by previous studies. Modes by 

which plasticity is induced can be variable such as changes in receptor content (Malinow & 

Malenka, 2002; Watt et al., 2004) or local intrinsic excitability (Frick et al., 2004; Losonczy et al., 

2008). It is therefore important that the initial investigation of the plasticity does not rule out either 

of these, such as by rejection of cells whose input resistance changed significantly from baseline 

after induction which is a common requirement (Sjöström et al., 2001). I initially tested AP bursts 

at two frequencies 20 and 50 Hz. To enhance backpropagation in the lower frequency condition, 

we applied a subthreshold current injection (25 pA). At these frequencies, it would be predicted 

that, irrespective of timing conditions, LTP would predominate (Sjöström et al., 2001). I observed 

LTP at both frequency pairings (see Figure 3.2, LTP 20 Hz: N=37, 1-sample t = 3.4, p < 0.01, 

LTP 50 Hz: N=22, 1-sample t=2.5, t <0.05). Although the 50 Hz condition was not significantly 

different from the 20 Hz condition (independent t-test t=-1.7, p > 0.05), the absolute magnitude 

of potentiation from baseline was comparable to the potentiation observed in other studies 

(Sjöström et al., 2001). Another likely reason for smaller difference was the presence of depolarizing 

pulse that was injected to prevent distance-dependent LTD (Sjöström & Häusser, 2006). 
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Figure 3.2 Uncaging-induced long-term potentiation in basal dendrites of Layer 5 

pyramidal neurons. 

A) Schematic of two LTP induction patterns. (Left) Multi-site uncaging was paired with action 

potentials elicited at the soma at variable intervals at 20 Hz coupled with subthreshold 

depolarization (40 pA, 500 ms). (Right) Multi-site uncaging was paired with action potentials 
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elicited at variable intervals at 50 Hz in absence of subthreshold depolarization. B) (Left) An 

example multi-site uncaging compound EPSP recording during the baseline and post-induction 

periods (20 Hz protocol). (Right) Example time-course in a cell showing significant potentiation 

of peak EPSP amplitude post-induction. C) Branch dendritic potentiation at two different EPSP-

AP pairing frequencies 50 Hz and 20 Hz with subthreshold depolarization. Both frequency 

pairings result in significant potentiation that is not significantly different. (Right) A recording that 

developed putative non-linear integration following 50 Hz pairing is marked in red. The presence 

of this outlier did not affect results of the statistical tests.    

I was further interested in whether there is a difference between dendritic compartments in the 

magnitude of potentiation induction. I performed whole-branch induction protocol on apical 

oblique and apical trunk branches (apical condition) and on basal branches (basal condition) using 

the 50 Hz pairing protocol described above. There was no difference in magnitude of induction 

between apical and basal branches (Mann-Whitney U: 240.0, p > 0.05). Nevertheless, only basal 

branches were significantly different from baseline (see Figure 3.3, Basal: N=16, Wilcoxon 19.0, p 

< 0.05, Apical: N=5, Wilcoxon 4.0, p > 0.5). This is presumably due to the existence of outliers in 

the apical condition and relatively low number of trials. More apical trials are required to evaluate 

the difference between apical and basal branches and their relative propensity for plasticity 

induction.  
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Figure 3.3 Comparison of uncaging-induced LTP between apical and basal dendrites. 

A) Schematic layer 5 neuronal morphology colour-coded based on the dendritic site – (magenta) 

apical trunk and oblique dendrites, (cyan) basal dendrites. B) and C) In both apical and basal 

dendrites the 50 Hz induction protocol was associated with an enhanced EPSP amplitude post-

pairing. C) Selected data point in red shows switch to supra-linear integration of synaptic inputs 

post-pairing. The presence of the outlier did not significantly affect the results of the statistical 

tests.  

The uncaging-induced plasticity therefore exhibited similar properties to the electrophysiological 

plasticity reported previously using traditional protocols (for further confirmation regarding 

pharmacology and Ca2+ dependence, see Chapter 2).  

3.2.2 Spatiotemporal potentiation induction 

Next, I examined whether specific spatiotemporal sequences of inputs can be preferentially 

potentiated. 8-20 synapses were selected on basal dendrites of layer 5 pyramidal cells. A stable 

baseline for the two tested sequences (IN and OUT) was first recorded, with IN being consecutive 

activation of synapses from distal to proximal and OUT being the converse (both at a time delay 

of ~2 ms between synapses). In baseline simulations, I found that the IN sequence was 
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significantly larger than the OUT sequence (Figure 3.4, Paired t-test: 2.8, p<0.01) which is 

consistent with previous findings (Branco et al., 2010). In total, 22 out of 32 recordings showed 

greater magnitude of IN sequence EPSPs as compared to OUT with the rest predominated by 

OUT sequence. Following baseline recordings, spatiotemporal potentiation was induced by 

repeated pairing of one sequence - IN for the IN-pairing, OUT for the OUT pairing. Afterwards, 

the potentiation was tested in comparison to the baseline level of each individual sequence type 

(IN/OUT). I found that spatiotemporal potentiation induction results in a preferential 

potentiation of the sequence being paired with action potentials (OUT pairing: N = 17, Wilcoxon 

ranked-sum test: 30, p<0.05, IN pairing: Wilcoxon ranked-sum test: 30, N = 15, p<0.05). 

Following the IN-pairing protocol, the IN sequence showed greater potentiation compared to the 

OUT sequence and I found converse following the OUT-pairing protocol (Figure 3.4, IN vs. OUT 

EPSP change: Paired t-test: 3.3, p < 0.01, OUT vs IN EPSP change: Paired t-test: 2.4, p < 0.05, 

IN-pairing vs. OUT-pairing potentiation change independent t-test: 4.0, p < 0.001). I also 

compared magnitude of potentiation of IN-IN and OUT-OUT sequences from IN-pairing and 

OUT-pairing protocols. IN and OUT sequences were larger in IN- and OUT-pairing protocols 

respectively but this did not reach statistical significance (IN-IN pairing: N=15,17, Independent t-

test: 1.34, p>0.05; OUT-OUT pairing: N=15,17, Independent t-test: 1.34, p>0.05).  Finally, the 

magnitude of potentiation was correlated with the degree of spatiotemporal potentiation, 

calculated as the difference between paired and non-paired sequence potentiation (Figure 3.5, 

N=31, R2 = 0.19, p < 0.05). 
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Figure 3.4 Potentiation of sequences in Layer 5 pyramidal neurons. 

A) Sample selection of uncaging points on a dendrite. B) Schematic of induction protocol. 

Uncaging pulses of a single sequence (IN or OUT) were paired (15x) with action potentials at 

variable Δt. C) Example EPSP recording of the layer 5 pyramidal dendrite before and after IN 

pairing. D) Example cell showing preferential plasticity of the IN sequence following IN pairing 

during induction. E) The spatiotemporal pattern of synapse activation during induction results in 

a preferential potentiation of that pattern. IN pairing results in the preferential potentiation of the 
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IN sequence (N = 15), OUT pairing results in the preferential potentiation of the OUT sequence 

(N = 16). F) The magnitude of potentiation of IN sequence is preferentially potentiated after IN-

pairing (purple shaded region) whilst the magnitude of potentiation of the OUT sequence is 

preferentially potentiated after OUT-pairing (turquoise region). G) and H) Spatiotemporal 

plasticity induction results in a significant difference between IN-potentiation and OUT-

potentiation that favours the paired sequence.  (*p<0.05, **p<0.01, ***p<0.001, scale bar = 10 

µm). 

 

 

Figure 3.5 Magnitude of potentiation is correlated with the degree of spatiotemporal 

plasticity 

A) In baseline condition, peak IN sequence is of greater magnitude than OUT sequence (N=31, 

*p<0.05). B) The magnitude of spatiotemporal potentiation calculated as the difference in 

potentiation of paired and non-paired sequence is correlated with the magnitude of overall 

potentiation. The linear regression of EPSP change to normalized amplitude is shown in green 

(N=31, p < 0.05). 
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3.2.2.1 EPSP amplitude and spatiotemporal potentiation 

I then investigated other properties of the spatiotemporal plasticity. It was previously discovered 

that the initial size of EPSP determines the magnitude of plasticity observed, events below 2.4 mV 

were found incapable of inducing LTP (Sjöström et al., 2001) . In my experiments, I did not observe 

such dependence on the magnitude of potentiation (Figure 3.6A, N=31, R2 squared = 0.0003, p > 

0.05). There was a trend towards lower potentiation with higher amplitude EPSPs but this did not 

prove significant (Figure 3.6B, N=31, R2 squared = 0.03, p > 0.05). Also there was no difference 

in the magnitude of spatiotemporal plasticity evaluated as a difference between the respective 

potentiation of IN and OUT sequences that would depend on the magnitude of baseline EPSP.   

 

Figure 3.6 Baseline EPSP size does not significantly affect uncaging-induced LTP or 

spatiotemporal LTP. 

A) Mean EPSP peak size in baseline condition is not correlated with the difference between 

preferred and non-preferred pairing sequence. The linear line of best fit is shown in green (ns). B) 

Mean EPSP peak size is not correlated with the magnitude of potentiation post-pairing. The linear 

regression fit is shown in green (ns).  
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3.2.2.2 Action-potential timing and spatiotemporal potentiation 

In traditional STDP-induction protocols, the timing of action potentials relative to EPSP 

determines the sign of plasticity. However, only frequencies at 20 Hz and below were found 

capable of inducing LTD (Sjöström et al., 2001). In my experiments, I observed only a weak, non-

significant relationship between the timing of the action potentials and the onset of uncaging-

induced EPSPs (Figure 3.7B, N=31, R2 = 0.04, p > 0.05). The time-window of integration for 

LTP was also slightly wider than previously reported (Feldman, 2012). There was also no 

relationship between the EPSP-AP timing and the magnitude of spatiotemporal plasticity 

induction (Figure 3.7C, N=31, R2 = 0.01, p > 0.05). 

 

Figure 3.7 AP-EPSP timing does not significantly affect the magnitude or sign of 

uncaging-induced plasticity. 

A) Schematic of the timing of uncaging at the defined set of synapses coupled with action 

potentials. B) Mean EPSP change from baseline was not correlated with the EPSP-AP timing. B) 

and C) The linear regression fit is shown in green (ns). C) Difference between preferred and non-

preferred sequence is not correlated with spike timing.  

3.2.2.3 Role of clustering in spatiotemporal plasticity 

Previous reports indicated that the degree of synaptic clustering influences induction of plasticity 

in cortical cells (Harvey & Svoboda, 2007). I used inter-spine distance as a measure of clustering 

on the dendrite. The range of inter-spine distances in my experiments was 1.7-8.7 µm with a mean 
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of 3.7±0.3 µm. Whilst there was a trend of preferential enhancement of paired sequence with 

increased inter-spine distance, this did not reach significance (Figure 3.8B, N=31, R2=0.09, p > 

0.05). Similarly, there was no linear relationship between the magnitude of potentiation and inter-

spine distance at these ranges of clustering (Figure 3.8C, N=31, R2=0.04, p>0.05). 

 

Figure 3.8 Clustering of spines does not significantly affect spatiotemporal plasticity 

A) Inter-spine distance was calculated as a direct line along the dendrite between the neighbouring 

spines (schematic). B) Difference of preferred and non-preferred pairing protocols is not 

correlated with inter-spine distance. B) and C) The linear regression fit is shown in green (ns). C) 

The magnitude of EPSP change is not correlated with inter-spine distance.  

3.2.2.4 Role of distance in spatiotemporal plasticity 

I injected subthreshold depolarizing current (see Methods) to normalize the relative magnitude of 

plasticity induction. As a result, if there is a role of distance in plasticity induction, it is expected to 

be diminished in my data. Consistent with this view, there was no linear relationship between 

distance and magnitude of EPSP change following induction (Figure 3.9B, N=31, R2 = 0.04, p > 

0.05). Also, I did not observe a linear relationship between the magnitude of spatiotemporal 

plasticity and the distance of the dendrite from the soma (Figure 3.9C, N=31, R2 = 0.08, p > 0.05). 
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Figure 3.9 Distance from the soma does not significantly affect the induction of 

spatiotemporal plasticity. 

A) Distance was calculated from the mid-point of the dendrite on which uncaging was performed 

to the center of soma (schematic). B) Increasing distance from the soma does not decrease the 

magnitude of EPSP change. B) and C) The linear regression fit is shown in green (ns). C) The 

magnitude of difference between preferred and non-preferred pairing is not dependent on the 

distance.  

3.2.2.5 Induction of branch potentiation can result in spike-like supra-linear events 

The clustered enhancement of synaptic strengths is expected to increase the likelihood of dendritic 

spike occurrence. I expected such enhancement to manifest as a potentiation over-and-above that 

normally observed in other induction paradigms. In one recording, I observed an increase that was 

approximately 8-fold from baseline (see Figure 3.10). This recording was labelled as an outlier and 

statistical analysis was verified on a set in which the outlier was excluded. Nevertheless, it is an 

interesting example of single-branch clustered potentiation. This finding is also consistent with the 

previous report in vivo of enhanced dendritic spike likelihood following whisker sensory-evoked 

LTP (Gambino et al., 2014). 
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Figure 3.10 Putative supra-linear enhancement of EPSP post-induction 

A) Selected dendrite for uncaging and branch plasticity induction. Uncaging spots are shown in 

yellow. B) (Left) Example averaged EPSP following uncaging with a 2 ms interspine interval. The 

baseline condition is shown in light grey, post-induction EPSP trace is shown in black. (Right) 

Example recording that resulted in putative supra-linear integration after pairing. 

3.3 DISCUSSION 

In this chapter, I discuss a novel form of plasticity that is sensitive to the spatiotemporal pattern 

of induction. Pairing either a centrifugal or a centripetal spatiotemporal sequence with action 

potentials results in a specific potentiation of that particular sequence. This novel form of plasticity 

is expected to considerably improve the information storage available to the cell. 

I also verified that plasticity on a dendritic branch can be elicited by pairing action potentials with 

EPSPs in layer 5 pyramidal neurons of the rat cortex. Consistently with previous studies, higher 

frequency pairing resulted in a greater magnitude potentiation. I also performed a direct 

comparison between the relative magnitudes of long-term potentiation between apical and basal 

dendrites of layer 5 pyramidal neurons. I did not observe significant differences between the basal 

dendrites and dendrites of apical trunk. It is possible that tuft dendrites, which are often considered 

a separate integrative unit of layer 5 dendritic tree (Larkum et al., 2009), exhibit differential 

plasticity. For example, the distance dependence of potentiation is well-recognized (Sjöström & 
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Häusser, 2006) as is the existence of calcium spike initiation zone in the tuft (Larkum et al., 1999a) 

which may support the induction of plasticity.  

Previous studies have demonstrated the sensitivity of EPSP readout to spatiotemporal input 

sequences (Branco et al., 2010) and the ability of synapses to encode temporal information at 

synapses in hippocampus (Kwag & Paulsen, 2009). My work provides an important extension to 

these studies. To my knowledge, the experiments presented in this chapter are the first 

demonstration of the ability of dendrites to encode spatiotemporal sequences. I observed a 

relationship between the spatiotemporal pattern of uncaging stimulation and the plasticity read-

out in the post-induction phase. Pairing a specific spatiotemporal sequence with action potentials 

resulted in a preferential potentiation of that sequence. In cortex, such spatiotemporal plasticity 

mechanisms could be important in many feature binding tasks where millisecond precision was 

shown to be required (Johansson & Birznieks, 2004; VanRullen et al., 2005). Spatiotemporal 

plasticity could also underpin the reverberation of visually evoked cortical activity observed in rat 

visual cortex following the repeated presentation of a given visual stimulus (Han et al., 2008) and 

could play a significant role in circuit refinement. Whilst this study was primarily focused on the 

layer 5 pyramidal cells, it is tempting to conclude that such a plasticity mechanism could play a 

major part in refining other circuits of the brain encoding spatiotemporal information. 

Spatiotemporal sequence discrimination was shown to be a robust general feature of neurons 

which possess NMDA receptors such as dentate gyrus granule cells, CA1 pyramidal cells and 

substantia nigra dopamine neurons (Branco et al., 2010). Moreover, previous studies showed that 

dendrites of CA1 pyramidal cells can show robust plasticity (Losonczy et al., 2008; Govindarajan 

et al., 2011) that is modified by the regulation of A-type K+ current. In Chapter 5, I will describe 

how even uniform modulation of recruited synaptic conductance at the dendrite (such as by 

changes in A-type K+ channels) can result in spatiotemporal plasticity. 
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Following the establishment of the spatiotemporal plasticity rule, I proceeded to evaluate the 

parameters involved in induction. Interestingly, timing of action potentials relative to EPSPs did 

not importantly determine the magnitude or sign of plasticity. One potential explanation for this 

is the subthreshold depolarization which was previously shown to enhance the likelihood of 

plasticity induction (Kelso et al., 1986; Sjöström & Häusser, 2006). Also, the frequencies at which 

pairings were made were usually quite high, and this is generally not permissive for the induction 

of LTD (Sjöström et al., 2001). Furthermore, previous studies did not have control over dendrites 

on which stimulated synapses were located. When synapses are distributed along multiple 

dendrites, plasticity induction mechanics change (Govindarajan et al., 2011). Finally, several recent 

in vivo studies have shown that action potential firing is not necessary for plasticity induction 

(Gambino et al., 2014; Cichon & Gan, 2015).  

A key further step in the evaluation of spatiotemporal plasticity is to verify what changes are 

observed at the level of individual synapses. The advantage of the uncaging method is that it allows 

precise spatial control of stimulation. Nevertheless, the increased likelihood of phototoxicity of 

the spines makes such experiments challenging. Another possibility is employing calcium imaging 

in dendrites. Calcium imaging allows fine spatial resolution and further insights into the local 

hotspots of Ca2+ influx as well as time-course of the induction. 

A further reason to evaluate single synapse input is because it is currently controversial whether 

uncaging method produces physiologically valid stimulation of individual synapses (both 

stimulated and not).  Uncaging method can potentially activate extrasynaptic sites. Both AMPA 

and NMDA extrasynaptic receptors were found to be important in the induction of plasticity (Lau 

& Zukin, 2007). Lateral diffusion of synaptic receptors becomes restrained following the release 

of glutamate (Ehlers et al., 2007). Whilst the relative role of extrasynaptic diffusion in the induction 

of plasticity is currently controversial (Choquet & Triller, 2013), the recent findings in organotypic 

slices of CA1 show that diffusion is clearly an important component in maintaining and enhancing 
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synaptic strength (Makino & Malinow, 2009). Furthermore, previous reports have shown changes 

in the likelihood of plasticity induction for spines that were spatially close to the induction site 

(Harvey & Svoboda, 2007). The spread of Ras is a likely candidate for mechanisms of induction 

(Harvey et al., 2008). As a result, it is important to evaluate the spatial spread of glutamate following 

uncaging stimulus.  In my work, I have used the same approach that was described in previous 

work by Branco et al. (2010) where mean reported amplitude for a single synaptic site was 0.58 

mV. In my work, I have generally employed even lower stimulation amplitudes (~0.3 mV) to limit 

photodamage which would result in even lower unitary gluEPSP amplitude. These values 

correspond well to empirically observed mEPSPs in the literature for basal dendrites of cortical 

neurons (Nevian et al., 2007).  

Another avenue for further research into spatiotemporal plasticity is the role of specific AMPA 

and NMDA subunits in enabling it. Previous research has confirmed the diversity of both AMPA 

and NMDA subunits (Cull-Candy et al., 2001; Malinow & Malenka, 2002; Shepherd & Huganir, 

2007). The subunits contained in NMDA receptors importantly determine their physiology. For 

example, deactivation kinetics of NMDA receptors following 1 ms pulse of glutamate vary widely 

from time constants of 100 ms in GluN2A containing receptors to 4s of GluN2D receptors. 

Banerjee and colleagues (2009) discovered that the type of NMDA subunit importantly modulates 

the sign of plasticity in layer 2/3 – layer 4 synapses. Specifically, GluN2C/D subunit containing 

NMDA receptors were required for the induction of t-LTD and this form of plasticity was only 

present early in development. However, GluN2A was found to be required for the induction of t-

LTP instead. The relative composition of NMDA subunits and deactivation kinetics is expected 

to have an important effect on spatiotemporal plasticity as well. The longer deactivation kinetics 

of GluN2D receptors could prolong the time-window of integration required for induction of 

plasticity. Faster deactivation kinetics, could be responsible for a finer temporal discrimination in 

the induction. In some aspects, AMPA receptors are even more diverse than NMDA receptors. 

Depending on the presence of GluA1 subunit, AMPA receptors gain or lose their Ca2+ permeability 
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(Cull-Candy et al., 2006). Given the requirement of Ca2+ to induce plasticity (Lynch et al., 1983), 

GluA1 containing receptors could be an important modulator of the spatiotemporal plasticity as 

well. Furthemore AMPA receptors are powerfully influenced by transmembrane AMPA receptor 

regulatory proteins (TARPs) by affecting insertion into the membrane and modulation functional 

properties of the receptor (Nicoll et al., 2006; Milstein & Nicoll, 2008; Jackson & Nicoll, 2011). 

The precise distribution and types of synaptic and extrasynaptic receptors in basal dendrites of 

layer 5 neurons is currently unknown. Both AMPA and NMDA receptor modulation was found 

to importantly affect induction of plasticity (Benke et al., 1998; Malinow & Malenka, 2002; Watt et 

al., 2004). Spatiotemporal plasticity is, likewise, expected to be affected by the complex interaction 

of synaptic proteins with the regulatory elements at the synapse by for example deactivation 

kinetics, Ca2+ permeability and insertion to or removal from synapse. Further research and 

computational studies are required to tease out the precise role of synaptic receptor types in 

influencing spatiotemporal plasticity. 

A further question is the role of NMDA spikes in eliciting plasticity in general and spatiotemporal 

plasrticity in particular. It has been previously demonstrated that NMDA plateau potentials are 

sufficient for induction of plasticity and that this induction occurs in vivo conditions  (Gambino et 

al., 2014). Substantial evidence exists for recruitment of NMDA-dependent non-linear processing 

in vitro and in vivo (Schiller et al., 2000; Schiller & Schiller, 2001; Lavzin et al., 2012). To what extent 

a thresholding event (a spike) is necessary for recruitment of NMDA receptors is currently an open 

and active area of research. In this thesis, I presented examples of individual recordings that 

tentatively display such thresholding behaviour (see Figure 3.4). Further research is required to 

verify whether this is indeed an all-or-none instance or a more gradual recruitment of NMDA 

conductance that underlies these non-linear events.  

In this chapter, I described a novel form of spatiotemporal plasticity. Previous computational 

studies suggested that the existence of such plasticity would enhance the computational capacity 
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of neurons (Gütig & Sompolinsky, 2006; Gütig, 2014). In these computational studies, the number 

of patterns stored was discovered to be a multiple (2-3x) of the number of synapses on the 

dendritic tree. Due to the methodological limitations of the uncaging method and whole cell patch-

clamp technique, it is not feasible to attempt a multiple spatiotemporal pattern storage experiment. 

The Tempotron model is a strong example of the utility of the spatiotemporal learning (Gütig et 

al., 2013), however physiological neurons exhibit certain properties that are not shared with 

tempotrons. The trained tempotron is allowed to only fire a single spike per input pattern and it is 

assumed that learned input patterns are isolated from other inputs (Florian, 2008). The tempotron 

model also requires monitoring of the time when postsynaptic potential was maximal. This is 

especially problematic when neuron incorrectly spikes to an input pattern as at the time membrane 

potential is reset, compromising the ability to monitor postsynaptic potentials (Florian, 2008). 

Finally, tempotron uses a gradient descent learning rule which, whilst efficient, is not a 

physiologically valid representation of how neurons adjust their synaptic weights.  

My findings build upon a vast theoretical background on the role of dendrites in neuronal 

computation (Poirazi & Mel, 2001; Poirazi et al., 2003; Häusser & Mel, 2003). These studies 

importantly adjusted our view on the theoretical computational capacity enhancement in neurons 

with active dendrites. Spatiotemporal plasticity further enhances the number of possible patterns 

that can be stored in the dendrite. The number of patterns that a single dendrite can store is an 

important next step for both empirical and theoretical work. The complexity of the problem is 

potentially daunting as the approach needs to account for the spatial extent over which patterns 

are stored (i.e. single dendrite or the whole tree) and the degree of interaction between the spatial 

units of pattern storage. 

To my knowledge, this study describes, for the first time, the storage of specific spatiotemporal 

patterns under physiological conditions. Spatiotemporal plasticity is a promising candidate for 
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storage and refinement of neural circuits and likely greatly enhances the complexity of information 

that the dendrite is capable of representing.  
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4 PHARMACOLOGY AND CALCIUM DYNAMICS OF SPATIOTEMPORAL 

PLASTICITY 

4.1 INTRODUCTION 

Following the discovery of spatiotemporal plasticity in the basal dendrites of layer 5 pyramidal 

cells, I was interested in describing the underlying mechanisms. Practically all forms of plasticity 

in cells depend on Ca2+ influx. The canonical form of LTP was shown to depend on the entry 

through the NMDA receptors (Bliss & Collingridge, 1993). Chelating Ca2+ using BAPTA or 

EGTA was shown to abolish plasticity in several plasticity induction protocols and cell types 

(Lynch et al., 1983; Hansel et al., 1996; Cho et al., 2001; Nevian & Sakmann, 2006; Lee et al., 2009). 

By using photolysis of Ca2+ loaded into CA1 cells, Malenka and colleagues (1988) demonstrated 

that an increase in intracellular calcium is sufficient for LTP induction. The standard theory of the 

relationship between Ca2+ and plasticity was proposed by Lisman (1989) - moderate levels of 

intracellular Ca2+ increases result in LTD, whereas large increases in Ca2+ result in LTP. This theory 

has received fair amount of support from studies using Ca2+ chelators (Hansel et al., 1996; Cho et 

al., 2001), glutamate and calcium uncaging (Neveu & Zucker, 1996; Tanaka et al., 2007; Cormier et 

al., 2013). In the field of STDP, the relationship between Ca2+ influx and plasticity is more 

controversial. Some studies failed to see a (moderate) increase in intracellular Ca2+ in protocols 

that commonly elicit t-LTD – in fact, a small decrease was observed (Koester & Sakmann, 1998). 

In other studies, t-LTD and t-LTP protocols resulted in a supra-linear influx into dendrite (Nevian 

& Sakmann, 2006). The magnitude of Ca2+ influx was not informative of the sign of the resulting 

plasticity as both t-LTP and t-LTD elicited similar increases in intracellular Ca2+. Despite some 

lingering controversies, it is evident that Ca2+ plays a major role in the induction of LTP and LTD. 

The literature on the role of Ca2+ in plasticity induction is primarily centred on Ca2+ increases in 

single spines. Previous studies confirmed that concurrent stimulation of neighbouring spines 



83 | P a g e  
 

increases the likelihood of (structural) plasticity induction (Harvey & Svoboda, 2007) whilst 

localizing the concurrently stimulated spine on a neighbouring dendrite decreases it (Govindarajan 

et al., 2011). One possibility is that the dendritic increase in Ca2+ results in setting a plasticity “tag” 

that enhances the likelihood of plasticity induction (Frey & Morris, 1997; Govindarajan et al., 

2006). The biochemical identity of the plasticity tag is currently unclear, nevertheless it is likely that 

different spatial Ca2+ profile influences the threshold for setting of the plasticity tag for 

neighbouring spines. At the current time, there is little experimental data to draw predictions from 

in terms of what the spatial profile of spatiotemporal plasticity might be.  Different Ca2+ increases 

were observed in the dendrites of cortical cells following distinct spatiotemporal patterns of 

synapse activation (Branco et al., 2010). Centripetal activation of synapses resulted in an NMDA-

dependent enhancement of responses compared to centrifugal activation in cortical cells.  

 

Figure 4.1 Dendritic calcium influx is direction and velocity sensitive. 

A) Basal dendrite of layer 2/3 pyramidal neuron. Uncaging locations indicated in yellow: linescan 

profile used for Ca2+ imaging in red. B) Spatiotemporal profile of Ca2+ signals triggered by IN and 



84 | P a g e  
 

OUT input patterns at two different input velocities. C) Three-dimensional plot of the data in (B) 

(2.3 µm/ms). (D) Relation between Ca2+ signals and input velocity (ΔF/F values where F is 

fluorescence normalized to the mean ΔF/F of all velocities in the IN direction of each cell). Error 

bars indicate SEM. E) Relation between direction selectivity of Ca2+ signals and input velocity. F) 

Average spatial profile of the integrated Ca2+ transient across the dendrite (n=5 cells) (lines indicate 

SEM; bar indicates region of statistical significance). Source: Branco et al. (2010). 

Nevertheless, these increases corresponded to a single uncaging stimulation of selected synapses 

that is unlike the high frequency pairing of uncaging stimulation and action potentials present in 

my protocol. During such high frequency pairing protocol, recruitment of voltage-gated calcium 

channels is expected to affect the spatial profile of Ca2+ increases. I suggest three possible 

hypotheses for the spatial profile of Ca2+ influx (Figure 4.2) that might underpin the induction of 

spatiotemporal plasticity. The faster unblocking of NMDA receptors in the IN-pairing protocol 

(see Figure 4.2A - top) could result in a uniform increase in the Ca2+ influx when compared to the 

OUT-pairing protocol. Alternatively, preferential spatial profile could be observed in locations 

where different sequences are expected to have a maximal Ca2+ profile – IN-pairing protocol in 

the proximal part of the dendrite and OUT-pairing protocol in the distal part (Figure 4.2 – middle). 

Finally, the baseline synapse strength could be the primary determinant of the observed Ca2+ influx, 

giving rise to a complex spatial rule that depends on the relative distribution of synaptic weights 

(Figure 4.2 – bottom).  
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Figure 4.2 Schematic of potential dendritic Ca2+ profiles underpinning spatiotemporal 

plasticity 

A) Schematic of hypothesized dendritic Ca2+ profiles underlying the induction of spatiotemporal 

plasticity. The averaged potential spatial profile of the Ca2+ influx is shown in B). (Top) The 

schematic shows a uniform preferential Ca2+ influx in the IN-induction protocol compared to the 

OUT induction protocol with no variation in the spatial profile. (Middle) A differential increase in 

Ca2+ for IN and OUT-induction protocols favouring proximal and distal locations respectively. 

(Bottom) A complex spatial profile of IN and OUT-induction protocols showing arbitrary 

localized increases in Ca2+. 

4.1.1 Aims of the chapter 

In this chapter, I will look at the Ca2+ profile (see Figure 4.2) during the induction of spatiotemporal 

plasticity described in Chapter 3. I will then study the properties of supralinearity and cooperativity 

of different stimulation protocols in the dendrites of layer 5 pyramidal neurons. Finally, I will look 

at the pharmacology underlying the induction of spatiotemporal plasticity, specifically the role of 

NMDA receptors in the induction.  
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4.2 RESULTS 

4.2.1 Imaging of Ca2+ influx following spatiotemporal-plasticity induction protocol 

4.2.1.1 Calcium imaging protocol 

As Ca2+ influx is a determinant of whether potentiation is induced, my goal was to test whether 

distinct sequences can result in a differential spatial Ca2+ profile that underpins the observed 

spatiotemporal plasticity observed in Chapter 3. However, Ca2+ indicators act as Ca2+ buffers, 

which have been previously shown to prevent the induction of plasticity. As a result, it is difficult 

to demonstrate the induction of plasticity in the presence of Ca2+ dyes. Therefore in this chapter, 

I describe the Ca2+ profile during the induction protocol and not the spatiotemporal plasticity 

described in the previous chapter.   

The induction of plasticity at high frequencies is expected to lead to strong membrane voltage 

changes and result in a significant Ca2+ influx through various voltage-dependent sources such as 

voltage-gated calcium channels and NMDA receptors. As a result, high affinity indicators such as 

OGB-1 will show saturation, and thus, I selected Fluo-5F, which has moderate affinity (Kd = 2.3 

µM) for supra-linear increases in Ca2+. To compare IN-potentiation and OUT-potentiation 

protocols, I selected uncaging points as previously described and interleaved pairing of IN- and 

OUT-sequences with action potentials for multiple trials (see Figure 4.3). This consistently resulted 

in a strong, supralinear Ca2+ influx into dendrite (see below).  
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Figure 4.3 Schematic of a method used for imaging the profile of Ca2+ influx during 

induction. 
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A) Top – Example cell recorded in a whole-cell patch-clamp configuration filled with Alexa-594 

dye. Bottom – uncaging locations indicated in yellow and the defined profile of line-scan shown 

in red. B) Schematic of interleaved induction protocol used. IN-pairing and OUT-pairing were 

interleaved during calcium imaging. C) Example Ca2+ imaging of IN-pairing and OUT-pairing 

protocols. Scale bar – y axis: 100 ms, x axis: 5 µm. D) Example recording (top) and profile of Ca2+ 

imaging after uncaging induction artefact correction (see below).  

4.2.1.2 IN sequence results in a greater Ca2+ influx than OUT sequence 

Previously, Branco et al. (2010) showed that the IN sequence preferentially activates NMDA 

receptors when compared to the OUT sequence. However, the stimuli used in the study were 

supra-linear which likely resulted in enhanced NMDA activation. Branco et al. (2010) and my own 

analysis show that even in case of mostly passive small-magnitude EPSPs in a layer 2/3 (Branco 

et al. (2010)) and layer 5 (Figure 4.4), somatic voltage responses for the IN sequence are larger 

than the OUT sequence. Accordingly, Ca2+ influx for the IN sequence was significantly larger than 

for OUT sequence (Figure 4.4 and Figure 4.5, N=7, p < 0.05) presumably due to enhanced 

activation of NMDA receptors. 
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Figure 4.4 IN sequence results in greater Ca2+ influx than OUT sequence. 

A) Basal dendrite of layer 5 pyramidal neuron. Uncaging points indicated in yellow, line-scan 

profile used for Ca2+ imaging in red. B) Averaged ΔF/F trace across spatial locations in the 

dendrite. C) Spatiotemporal profile of Ca2+ signals following IN and OUT input patterns.   

4.2.1.3 IN- and OUT-sequence induction pairing result in supra-linear Ca2+ influx 

I next investigated whether spatiotemporal induction patterns, IN-pairing and OUT-pairing, can 

be differentiated from one another in terms of their spatial profile of the Ca2+ influx. Because of 

action potential backpropagation, I expected an increase in recruitment of voltage-gated calcium-
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permeable conductances (i.e. VGCCs and NMDA receptors) resulting in an enhancement of Ca2+ 

influx compared to a linear sum of Ca2+ profile from IN/OUT input pattern and backpropagating 

action potential. Consistently, I found that IN- and OUT-pairings are supra-linear in their Ca2+ 

recruitment as compared to the linear sum of IN/OUT input patterns and backpropagating action 

potentials (Figure 4.5E, N=7, paired t-test: 2.6, p < 0.05).  

There was a significant difference between sequential stimulation, linear sum of bAP and pairing 

induction protocol (Friedmann χ2 = 10.3, p < 0.01). The pairing induction protocol resulted in a 

significantly greater Ca2+ increase than the linear sum of the bAP and sequence stimulation (N=6, 

post-hoc paired t-test: 2.6, p < 0.05). Compared to the OUT-pairing protocol, IN-pairing resulted 

in a significantly larger Ca2+ increase (N=7, post-hoc paired t-test: 4.2, p < 0.01). To control for 

the movement of slice preparation artefacts between interleaved trials, I looked at whether there 

was a difference between bAPs recorded with the same separation as was used in the interleaved 

IN/OUT-pairing protocol. No uniform enhancement was observed in the experiment with only 

bAPs (N=6, post-hoc paired t-test: 1.29, p > 0.05). To verify whether there is a spatial profile in 

the increased Ca2+ influx in the case of IN-pairing protocol over the OUT-pairing protocol I split 

the dendrite into three segments normalized by their spatial dimension – proximal, medial and 

distal. There was no significant difference between the individual segments of the dendrite in the 

degree of IN-pairing protocol Ca2+ increase over the OUT-pairing protocol (Friedmann χ2 = 2.0, 

p > 0.05). Whilst it is possible that a more complex spatial rule exists, the most parsimonious 

explanation is the uniformly greater Ca2+ influx during the IN-pairing protocol as compared to the 

OUT-pairing protocol.  In further analysis of dendritic integration of different stimulation 

protocols, I discovered that the linear sum of bAP and sequential stimulation was significantly 

greater than sequential stimulation on its own (N=6, post-hoc paired t-test: 5.8, p < 0.01) and the 

Ca2+ influx to a train of bAPs were significantly greater than sequential stimulation on its own 

(N=6, post-hoc paired t-test: -2.85, p < 0.05). 
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Figure 4.5 EPSP and AP pairing protocol results in a cooperative increase of Ca2+ influx 

into the dendrite 

A) A sample dendrite with selected uncaging points and a line scan taken along the dendrite (red). 

B) (Left) A sample dendritic Ca2+ response to IN/OUT pairing protocol and bAPs alone. (Right) 

A sample spatial profile of the Ca2+ signal for induction protocol and bAPs only. C) Spatial profile 

of the difference between IN and OUT induction protocols (N=6) and for the bAPs condition 

only (control, N=6). Shaded regions indicate SEM. D) Average normalized ΔF/F trace difference 

between IN- and OUT-pairing protocols and between bAP controls. IN-pairing protocol shows 

a uniform increase in Ca2+ influx compared to OUT pairing protocol. E) Normalized ΔF/F 
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averages for different conditions (N=7 cells, N=6 for bAP condition). IN- and OUT-pairing 

protocols result in cooperative increase in Ca2+ influx compared to bAP and IN and OUT readout 

protocols (EPSP only). IN-pairing protocol results in a significant increase in Ca2+ influx 

compared to OUT-pairing protocol. Error bars indicate SEM.   

4.2.2 NMDA receptors are required for the induction of spatiotemporal potentiation 

Most traditional forms of pre- or post-synaptic plasticity in principal cells are dependent on 

NMDA receptors. As a result, I investigated whether whole-branch plasticity and spatiotemporal 

plasticity could be induced in the presence of NMDA blocker (D-AP5 bath, 50 µM). I did not 

detect any potentiation following IN- or OUT-pairing protocols (N=6, p > 0.05) and I also did 

not observe any significant spatiotemporal plasticity. 

 

 

Figure 4.6 NMDA receptors are required for the induction of spatiotemporal plasticity. 

A) (Top) Somatic responses to the IN and OUT input patterns in the presence of bath-applied D-

AP5 (50 μM) for baseline (left) and after spatiotemporal pairing (right). (Bottom) Example of 

individual response amplitudes to interleaved IN and OUT input patterns. B) Long-term 

potentiation and sequence-dependent plasticity are blocked in the presence of D-AP5 (N=3, 50 

μM). 
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4.3 DISCUSSION 

In this chapter, I investigated the role of Ca2+ in the induction of spatiotemporal plasticity. I have 

discovered Ca2+ inflow differs depending on which type of spatiotemporal pairing protocol is 

utilized. Consistent with previous findings, IN-sequences paired with action potentials results in a 

higher Ca2+ elevation than similarly paired OUT-sequences. Interestingly, this inflow is uniform 

across the extent of the dendrite suggesting that a fairly simple plasticity rule may underlie the 

generation of the spatiotemporal plasticity described in previous chapter.  

Ca2+ influx is required for the induction of long-term potentiation and depression in neurons 

(Hansel et al., 1997; Cho et al., 2001; Nevian & Sakmann, 2006). Consistent with previous reports, 

I verified that spatiotemporal plasticity is mediated by NMDA receptors, as is the case in traditional 

LTP induction protocols (Bliss & Collingridge, 1993; Sjöström et al., 2008). In different areas of 

the brain, LTP can be expressed pre- or post-synaptically. One advantage of the uncaging method 

is that pre-synapse is bypassed and the locus of (post)-synaptic plasticity can be identified. 

Nevertheless it is interesting to speculate as to the potential role of the pre-synapse in 

spatiotemporal plasticity. As I mentioned previously, in situations where synaptic release is 

insufficient to activate fully receptors on the post-synaptic membrane, pre-synaptic modifications 

could, similarly, lead to the emergence of spatiotemporal plasticity. Research in optogenetics 

resulted in the generation of opsin variants that can faithfully drive cells to high frequency firing 

rates (Lin et al., 2009) which were shown to be capable of reliable induction of long-term 

potentiation and long-term depression (Nabavi et al., 2014). Sparse expression of such opsins in 

presynaptic cells of cortical and hippocampal circuits could be used to drive activation of 

presynaptic terminals to elicit plasticity. Such experimental context is not only more physiological 

than uncaging method but also allows the study of the possible role of pre-synapse in 

spatiotemporal plasticity.  
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Furthermore, my experiments were primarily performed by imaging calcium influx into the 

dendrite and not into spines. Spines are often viewed as structures which enable electrical and 

biochemical compartmentalization (London & Häusser, 2005; Harnett et al., 2012). Single spines 

may be important sites of protein synthesis which importantly determine the magnitude of 

plasticity (Tanaka et al., 2008). As a result, an important next step in the analysis of the role of Ca2+ 

in induction of spatiotemporal plasticity is to analyse the Ca2+ influx into individual spines. Several 

key parameters of spines are important in the context of spatiotemporal plasticity. First, the 

morphology of spine head and neck determine the degree of Ca2+ influx and diffusion (Alvarez & 

Sabatini, 2007; Chen & Sabatini, 2012). A second important parameter is the location of the spine 

on the dendritic tree. As I previously mentioned, an impedance gradient importantly affects the 

recruitment of active conductances. As a result, evaluating Ca2+ influx in different morphologies 

and spine locations could importantly modify the current expectation of largely uniform increase 

in Ca2+ entry into the dendrite.  

Because my experiments visualized dendrites by injecting dye through the patch-clamp pipette, 

evaluation of structural changes during and after induction of plasticity were methodologically 

difficult. In cells with complex dendrites such as layer 5 pyramidal cells or Purkinje cells, dispersion 

of dyes into the dendrite following establishment of whole-cell configuration can take tens of 

minutes. Because whole-cell configuration was previously found susceptible to washout of 

plasticity, from methodological standpoint, it is important to induce plasticity as early as possible 

upon breaking the plasma membrane of the cell. Furthermore, analysis of structural plasticity is 

complicated due to the difficulty of separating increase in the size of the spine through plasticity 

induction from simple dye dispersion into the dendrite. The use of cells expressing GFP through 

viral transfection or transgenic lines could be used to evaluate the role of structural changes of 

spines, if any, in the induction of spatiotemporal plasticity.  
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A variety of mechanisms could potentially underlie observed spatiotemporal plasticity such as an 

increasing or decreasing gradient of synapse potentiation with the distance from the soma, or a 

complex spatial code of synapse potentiation or depression.  The size of Ca2+ influx was previously 

linked with the sign and magnitude of plasticity (Koester & Sakmann, 1998). As a result, I 

hypothesized that the spatial Ca2+ profile would be predictive of the magnitude of observed 

individual synapse potentiations (or depressions). Consistent with previous reports, I observed a 

supra-linear increase in the Ca2+ influx following EPSP-bAP pairing as well as an increased Ca2+ 

entry following IN input pattern as compared to the OUT input pattern. I observed a greater 

uniform increase in the Ca2+ influx following IN-pairing protocol as opposed to the OUT-pairing 

protocol. Interestingly, I did not observe differences in the spatial profile of Ca2+ influx between 

IN-pairing and OUT-pairing protocols. Whilst these results seem to rule out the spatial rule of 

spatiotemporal plasticity induction explained in the introduction (Figure 4.2 – middle), a complex 

rule where the spatial Ca2+ profile is driven primarily by synaptic weights may still be valid.  

Since I performed Ca2+ imaging across different dendrites, the averaged spatial profile may hide 

the complexity of synaptic weight distributions of individual dendrites. A future experiment to 

address this issue is to monitor individual synaptic weights and evaluate whether synaptic weight 

based rule compared to uniform rule can better predict observed spatiotemporal Ca2+ profile . The 

uniform model of conductance is the more parsimonious model of synaptic weight update. 

Previous work shows some support for the role of the dendrite as the primary locus of plasticity. 

Co-stimulation of nearby spines with suprathreshold and subthreshold protocols concurrently 

produces similar changes in synaptic strength (Harvey & Svoboda, 2007). Plasticity protocols 

across multiple dendrites are less likely to induce synaptic strength changes (Govindarajan et al., 

2011). The dendritic locus is consistent with the location of organelles involved in local protein 

translation at the dendritic branch. Local protein translation was previously shown to be required 

for the induction of plasticity (Sutton & Schuman, 2006) and it is hypothesized to play a key role 

in the setting of synaptic plasticity tags (Redondo & Morris, 2011). Nevertheless, it is important to 
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appreciate that baseline synaptic weights importantly determine the magnitude of plasticity 

observed (Abraham & Bear, 1996).  

In this chapter, I empirically tested the Ca2+ profile in dendrite following the spatiotemporal 

plasticity induction protocol. Assuming that the Ca2+ profile corresponds to the magnitude of 

plasticity observed, a fairly simple rule emerges from my Ca2+ imaging data – differential uniform 

scaling of synaptic weights in the dendrite. The advantage of such simplicity is the potential of 

generality of such rule. Any neuron capable of scaling synaptic weights is able to make use of such 

a rule and thus learn to respond to a particular spatiotemporal sequence of synaptic inputs. In this 

reduced model, neurons determine their spatiotemporal preference by a simple dialing up or down 

of their synaptic weights. Such parsimonious rule is a useful baseline approximation that I 

employed in the next chapter in compartmental simulation of spatiotemporal plasticity. 

Whilst such plasticity rule is enticing for its simplicity, it is currently controversial whether Ca2+ 

imaging can be used as a proxy for synaptic weight scaling. Glutamate uncaging does allow the 

probing of single synapses, however, the high phototoxicity of such a protocol reduces yield 

considerably for long experiments such as plasticity protocols. As a result, it is also difficult to test 

other features on which spatiotemporal plasticity may depend, such as the role of distance and 

velocity of synaptic activations. Compartmental modelling of morphologically realistic neuronal 

models was previously shown to be a useful approximation when an experimental approach was 

not feasible. In the next chapter, I describe the evaluation of uniform scaling rule in eliciting 

spatiotemporal preference in a compartmental model of layer 2/3 and layer 5 pyramidal neurons.   
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5 MODELLING OF SPATIOTEMPORAL PLASTICITY INDUCTION 

5.1 INTRODUCTION 

Many sensory pathways, across a diverse range of animal species such as locusts, primates and 

humans, have the remarkable ability to encode stimuli with precisely tuned action potentials 

(deCharms & Merzenich, 1996; Wehr & Laurent, 1996; Johansson & Birznieks, 2004). Structural 

plasticity changes were reported in the learning of arbitrary sensorimotor behaviours such as the 

rotarod task (Yang et al., 2014). Spatiotemporal plasticity is a good candidate for refining circuits 

to better encode such behaviours. Nevertheless, it is still unknown how spatiotemporal patterns 

could potentially be stored on the level of dendrites. In this chapter, I will consider a theoretical 

framework for implementing plasticity rules that are dependent on temporal sequences.  

The ability of neurons to learn to represent an arbitrary temporal pattern is currently an actively 

researched area. The Remote Supervision Method (ReSuMe) and Tempotron model are two 

methods that are currently at the forefront of the field. In the ReSuMe model (see Figure 5.1), 

inputs are strengthened when the target spike is observed, and depressed when the trained neuron 

spikes (Ponulak & Kasiński, 2010). If potentiation and depression are balanced, the actual spiking 

of the neuron converges to the target value even in the case of highly overlapped information 

(such as neural noise from overlapping patterns). Tempotron, a variant of the ReSuMe model 

(Florian, 2008), was demonstrated to be useful in learning to encode tasks requiring time-warp 

invariant processing such as in the case of speech stimuli  (Gütig & Sompolinsky, 2009) or in tasks 

such as classification of retinal spike trains (Gütig et al., 2013). Nevertheless, as I described in 

previous chapters Tempotron or ReSuMe models are not physiological representations of plastic 

changes in dendrites of neurons.  
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Figure 5.1 Illustration of the ReSuME model for an excitatory connection. 

The input spikes (top row) give rise to an exponentially decaying STDP trace (second row) that 

determines the magnitudes of synaptic changes (bottom row). Desired spikes (gray, third row) 

potentiate the synaptic efficacy and actual spikes (black, forth row) depress it. The effects of 

coincident desired and actual spikes cancel such that the synaptic efficacy remains unchanged. 

Source: Gütig (2014). 

An ReSuMe model expects depression in the pre-post pairing which is not commonly observed in 

cortical synapses (Feldman, 2000, 2009; Sjöström et al., 2001). Neither of the models uses active 

dendrites as integrative units. Most importantly, both ReSuMe and Tempotron models are based 

on integrate-and-fire neurons in which the spatial component of the input is absent. Nevertheless, 

in Chapter 3 of this thesis, I described a novel variant of plasticity that is sensitive to the 

spatiotemporal activation of inputs that cannot be accounted for with current theoretical models. 

In Chapter 4, I found that individual spatiotemporal plasticity induction protocols are associated 

with different Ca2+ spatial profiles in the dendrite. In particular, the IN-induction protocol is 

associated with greater Ca2+ influx than the OUT-induction protocol. In this chapter, I will describe 
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the induction of spatiotemporal plasticity using simple rule derived from my Ca2+ imaging study. I 

will simulate induction of plasticity by uniform scaling of synapses on the dendrite. Consistent 

with Ca2+ data, I will assume greater scaling of synapses in the simulation of IN-potentiation 

compared to OUT-potentiation. I will then describe how such a parsimonious plasticity rule can 

account for the induction of spatio-temporal plasticity.  

There is currently a gap in the theoretical literature on the potential plasticity mechanisms that 

would result in spatiotemporal pattern storage. In this chapter, I describe a potential theoretical 

mechanism that underpins the generation of plasticity rules that are dependent on temporal 

sequences. The model of plasticity I present in this chapter is constrained by the empirical data 

from Ca2+ imaging that I presented above (namely the greater uniform increase in Ca2+ influx 

following IN sequence compared to the OUT sequence).   

 

5.1.1 Aims of the chapter 

My aim in this chapter is to use theoretical simulations to describe possible candidates for a 

physiological mechanism underlying observed spatiotemporal plasticity. I constrained the plasticity 

rule by my experimental findings, namely a prediction of the magnitude of the plasticity changes 

derived from Chapter 5 and the distribution of anticipated weight changes using Ca2+ influx as a 

proxy presented in Chapter 6 of the thesis. Using computational models of morphological 

reconstructions of neurons in the NEURON environment (Hines & Carnevale, 1997), I attempted 

to describe the underlying factors that influence the induction of spatiotemporal plasticity.  
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5.2 RESULTS 

5.2.1 Optimization of NEURON model parameters using a genetic algorithm 

Compartmental models often contain many nonlinear and nonhomogeneous distributions of 

conductances across the dendritic tree. Defining parameter sets, even restricted to physiologically 

observable values, that faithfully replicate experimental data is not practicable manually. On the 

other hand, brute-force approaches, due to exponential increase in complexity with increased 

number of parameters, are also not feasible, except for a very restricted set of circumstances. 

Thus to discover parameters of model that was capable of reproducing my experimental findings, 

I used a genetic algorithm optimization technique constrained within physiological ranges of 

parameters (as reported in previous studies - see Table 5.1) The natural parallelization character of 

genetic algorithms makes them well-suited for optimization of NEURON parameters (Keren et 

al., 2005; Almog & Korngreen, 2014). Constraining parameter sets using pharmacological or 

numerical peeling procedures allowed the construction of detailed ionic mechanism of dendritic 

spikes in neurons displaying large number of heterogeneous conductance gradients (Almog & 

Korngreen, 2014). Genetic algorithms use mechanisms borrowed from Darwinian evolution such 

as point mutations and cross-over to breed better models from random starting populations. 

Whilst the original algorithm presented in Keren et al. (2005) did not breed the new generation 

based on the fitness score of each individual in the population, I observed that such approach 

converges to a minimum faster to both NEURON models (not shown) and a randomly generated 

linear function with 16 parameters (Figure 5.2B). An example cost function is shown which was 

used to optimize the ratio of peak voltages of preferred and non-preferred spatiotemporal 

sequences (see Figure 5.2C). The optimal ratio was selected based on the average ratio obtained in 

experimental data presented in chapter 3. 
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Figure 5.2 Genetic algorithm overview of performance and cost functions. 

A) Schematic of a single generation of the genetic algorithm optimization. Generated feature 

vectors are initially sorted based on their fitness score. Children are produced based on the 

normalized fitness of each of the parents. Children are then subjected to a point mutation process 

with defined probability (usually 0.1) and a cross-over where random features are exchanged (with 

a probability 0.2). The most successful individual is moved to next generation unchanged to 

prevent drift. B) Comparison of fitness-based reproduction performance with the original Keren 

et al. (2005) in optimization of 16-variable linear function with random multipliers. C) An example 

of asymmetric cost function used in optimizations to penalize potentiation of non-preferred 

pattern.  
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5.2.2 Uniform scaling of synaptic weights is sufficient for the induction of spatiotemporal 

plasticity in a model of Layer 2/3 neuron 

 

In the simulations presented in this chapter, I used the Layer 2/3 compartmental cell model in 

which spatiotemporal sensitivity was initially demonstrated (Branco et al., 2010). The development 

of spatiotemporal pattern preference was tested in a simple passive model containing AMPA and 

NMDA conductances. Consistently, the peak difference between the IN and OUT patterns of 

activation was dependent on the velocity of the input and NMDAR activation as previously 

reported. The genetic optimization was run with a set of constraints that were drawn from 

experimental data and from previous literature (see Table 5.1).  

In the generation of first population, AMPA and NMDA baseline conductance values were 

selected from a random uniform distribution with an upper bound equal to that employed in the 

previous study (Branco et al., 2010). Plasticity was simulated by multiplying the baseline 

conductance values by a multiplier that was uniform for all synapses on the dendrite. The uniform 

constraint was taken from the Ca2+ imaging data described in chapter 4. The conductance 

multiplier for both AMPA and NMDA was allowed to vary based on the previously published 

literature on the subject (Benke et al., 1998; Watt et al., 2004). In practice, the optimization never 

reached the upper-bound of conductance values or multipliers. In the analysis below, I describe a 

further constraint on the conductance values based on the physiologically observed 

AMPA/NMDA ratios in the literature. The model was further constrained to with a 2 ms of inter-

spine activation time that corresponded to experimental data. Furthermore, the number of 

synapses was allowed to vary within the range I used in the experiments. Finally, the locations of 

synapses on the dendrite, as well as the synapse spread, were allowed to vary freely. For all 

constraints and parameters employed in the model, see Table 5.1. 

Table 5.1 Optimization results and constraints used in NEURON simulations 
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The cost of the model was derived based on the distance of ratio of peak voltages of preferred and 

non-preferred spatiotemporal sequences following potentiation (uniform scaling of conductances) 

from the ratio observed in experimental data (see Methods). Following the genetic optimization 

run, I observed that uniform scaling of conductances can result in both IN-preference and OUT-

preference (Figure 5.3).  

Parameter Unit

Figure Figure 5.3 Figure 5.4 Video 1 Video 2 Figure 5.7 Figure 5.8

Passive Parameters

150 150 150 150 120.48 120.48

10000 10000 10000 10000 25812 25812

1 1 1 1 0.6 0.6

-75 -75 -75 -75 -75 -75

Optimized values

350 217 203 298 229 638

1491 3459 2964 5752 8947 9314

Number of synapses unitless 18 16 20 20 15 19

Synapse spread (31,72) (26,79) (0,31) (3,27) (42,99) (37,85)

Inter-spine interval 2 2 2 2 2 2

OUT scaling AMPA unitless 1.1 1.21 2.42 2.24 2.6 1.74

IN scaling AMPA unitless 1.32 2.02 2.52 2.8 2.12 2.3

OUT scaling NMDA unitless 2.04 1 2.42 1 1.22 1

IN scaling NMDA unitless 2.16 1 2.52 1 1.4 1

Constraints range

(0,1500) (0,1500) (0,1500) (0,1500) (0,1500) (0,1500)

(0,24000) (0,24000) (0,24000) (0,24000) (0,24000) (0,24000)

Number of synapses (8,20) (8,20) (8,20) (8,20) (8,20) (8,20)

Synapse spread (0,99.02) (0,99.02) (0,99.02) (0,99.02) (0,113.6) (0,113.6)

Inter-spine interval 2 2 2 2 2 2

OUT scaling range (1,3) (1,3) (1,3) (1,3) (1,3) (1,3)

IN scaling range (1,3) (1,3) (1,3) (1,3) (1,3) (1,3)

L5 Pyramidal CellL2/3 Pyramidal Cell

   𝑃 

 𝑁   

   𝑃 
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𝑅𝑚
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Figure 5.3 Uniform increase in AMPA and NMDA conductances results in the emergence 

of spatiotemporal input preference 

A) A Neurolucida reconstruction of a layer 2/3 pyramidal neuron adapted from Branco et al. 

(2010). The selected dendrite for genetic optimization protocol is marked in red. Scale bar: 100 

µm.  B) A profile of differences of maximal amplitude of simulated EPSPs of played IN and OUT 

patterns at different AMPA and NMDA conductance values. The arrows display the vectors 

defining the direction of AMPA and NMDA scaling. C) Simulated EPSP and AMPA and NMDA 

current profiles corresponding to baseline values and following OUT and IN uniform scaling of 

AMPA values. AMPA and NMDA conductance values are shown by the circles in B). D) Integral 

of AMPA and NMDA currents under baseline, OUT and IN uniform scaling conditions.  

For the progressive development of spatiotemporal preference across linear increase of AMPA 

and NMDA conductance values see Video 5.1. In summary, for a given set of parameters, IN-

preference requires enhanced conductance increase compared to the OUT-preference (Figure 
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5.3B,D). This result is consistent with the observed amplification of Ca2+ influx following IN-

pairing compared with OUT-pairing (see Chapter 4).  

 

  

Video 5.1 Uniform increase in AMPA and NMDA conductance results in the emergence 

of spatiotemporal input preference. 

(Top left) A profile of the differences between IN and OUT simulated EPSPs. Black circle 

represents the example trace shown in the remaining figure panels. (Top right) Example EPSPs 

for simulated IN and OUT sequences. (Bottom left) A mean profile of AMPA conductances for 

IN and OUT simulated sequences. (Bottom right) A mean profile of NMDA conductances for 

IN and OUT simulated sequences. Web Source: YouTube - http://tinyurl.com/VivaVideo51 

 

http://tinyurl.com/VivaVideo51
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5.2.3 Uniform enhancement of AMPA conductances only is sufficient for the induction of 

spatiotemporal plasticity 

 

While an increases in both AMPA (Shi et al., 2001; Malinow & Malenka, 2002; Kessels & Malinow, 

2009) and NMDA (Watt et al., 2004) receptors were reported following plasticity induction 

protocols, the NMDAR component of plasticity was markedly slower to develop than the AMPA 

component. My recordings, which showed strong changes in spatiotemporal preference post-

induction, were usually only ~30 minutes in duration. At such time-scale, it is likely that the 

NMDAR component is not significantly enhanced. Therefore, I performed a more conservative 

simulation test by uniformly scaling only AMPA conductance in the optimization run (Figure 5.4). 

Following convergence, I observed that uniform AMPA-only scaling is sufficient to induce 

spatiotemporal preference.  
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Figure 5.4 Uniform increase in AMPA conductance results in the emergence of 

spatiotemporal input preference 

A) A Neurolucida reconstruction of a layer 2/3 pyramidal neuron adapted from Branco et al. 

(2010). The selected dendrite for genetic optimization protocol is marked in red. Scale bar: 100 

µm.  B) A profile of differences of maximal amplitude of simulated EPSPs of played IN and OUT 

patterns at different AMPA and NMDA conductance values. The arrows display the vectors 

defining the direction of AMPA scaling.  C) Simulated EPSP and AMPA and NMDA current 

profiles corresponding to baseline values and following OUT and IN uniform scaling of AMPA 

values. AMPA and NMDA conductance values are shown by the circles in B). D) Integral of 

AMPA and NMDA currents under baseline, OUT and IN uniform scaling conditions.  

For the progressive development of spatiotemporal preference across linear AMPA conductance 

scaling values see Video 5.2 below. Consistent with previous results, the generation of IN-

preference required greater uniform scaling of synaptic conductances compared to the OUT-

preference. In summary, my simulations demonstrate that uniform scaling of AMPA conductance 

is sufficient to elicit spatiotemporal preference in a passive compartmental model of 

morphologically realistic neuron. 
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Video 5.2 Uniform increase in AMPA conductance results in the emergence of 

spatiotemporal input preference. 

(Top left) A profile of the differences between IN and OUT simulated EPSPs. Black circle 

represents the example trace shown in the remaining figure panels. (Top right) Example EPSPs 

for simulated IN and OUT sequences. (Bottom left) A mean profile of AMPA conductances for 

IN and OUT simulated sequences. (Bottom right) A mean profile of NMDA conductances for 

IN and OUT simulated sequences. Web Source: YouTube - http://tinyurl.com/VivaVideo52 

5.2.4 Properties of the IN and OUT pattern enhancement  

5.2.4.1 Description of the modelling approach 

The results of uniform scaling that I have obtained could have been the result of over-fitting of 

the genetic algorithm. To verify that the parameters obtained were in the physiological range, I 

performed an exhaustive evaluation of the difference between peak voltages of IN and OUT 

http://tinyurl.com/VivaVideo52
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spatiotemporal sequences across a range of parameters that the genetic algorithm was optimizing 

for (see Table 5.2).  

Table 5.2 Range of parameters used in brute force search in Layer 2/3 model of neuron 

 

Based on the previous results (Branco et al., 2010) as well as theoretical work by Rall (1964), IN 

pattern is expected to result in a higher EPSP peak amplitude than the OUT pattern. I was thus 

interested in the stimulation parameters that generate OUT-preference. I defined a metric 

OUTAREA which corresponds to the proportion of the space of conductance values where peak 

voltages of OUT pattern predominate over peak voltages of IN pattern (see Figure 5.5 for a visual 

schematic of OUTAREA).  

 

Figure 5.5 Schematic of spatiotemporal modes of integration at different synaptic 

conductance values. 

Parameter Unit Range Values

(0,1500) 100

(0,24000) 100

Number of synapses (8,18) 6

Synapse spread (49.5-99) 3

Velocity (1,13) 7

Mean distance (24.7-74.3) 3

   𝑃 

 𝑁   

𝑚  , 𝑚     /𝜇𝑚2

𝑚  , 𝑚     /𝜇𝑚2
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A) Schematic of the spatiotemporal stimulation protocol showing centrifugal IN-sequence and 

centripetal OUT-sequence. B) Profile of spatiotemporal integration pattern for different values of 

   𝑃  and  𝑁    values. OUTAREA is defined as a region of simulated EPSP values where OUT 

pattern is preferred, the converse holds for the INAREA region.   

5.2.4.2 Spatiotemporal preference generation is most likely for physiological AMPA/NMDA 

ratios 

 

To calculate OUTAREA within physiological parameters, I defined conductance bounds by the 

empirically observed range of AMPA/NMDA ratios in the principal cells (Feldmeyer et al., 2002; 

Myme et al., 2003; Watt & Desai, 2010; Kohl et al., 2011; Bittner et al., 2012) that resulted in a 

physiological single synapse EPSP amplitude (0.1-0.5 mV) (see Figure 5.6C). I then explored 

combinations of AMPA and NMDA conductance values for which the likelihood of induction of 

an OUT-preference is the highest. I explored the two conditions by varying the number of 

synapses stimulated between 8 and 16 synapses. I then generated IN and OUT EPSP peak voltage 

difference plot (Figure 5.5B) for different inter-spine intervals. To evaluate which conductance 

combinations are likely to result in OUT-preference, I calculated standard deviation of difference 

values for which IN and OUT peak voltage difference is negative (i.e. OUT peak voltage 

predominates over IN peak voltage). The region of synaptic conductance values where the 

induction of spatiotemporal preference is most likely is expected to correspond to the region of 

highest standard deviation values (within the range of parameters listed in Table 5.2). The region 

of highest values of standard deviations corresponds well with the region of physiological 

AMPA/NMDA ratios (Figure 5.6E). Therefore physiological synaptic conductance values are well 

suited for the generation of spatiotemporal preference in a passive model of dendrite in 

morphologically realistic reconstruction of a layer 2/3 neuron.  
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Figure 5.6 Physiological AMPA/NMDA ratios correspond to the region where OUT 

potentiation induction is favoured. 

A) A Neurolucida reconstruction of a layer 2/3 pyramidal neuron adapted from Branco et al. 

(2010). The selected dendrite for genetic optimization protocol is marked in red. Scale bar: 100 

µm. B) Example simulation of a one synapse AMPA and NMDA current profile. The 

AMPA/NMDA ratio is calculated as a proportion of the peak amplitudes. C) AMPA/NMDA 

ratio profile for different AMPA and NMDA conductance values. The boundaries of the accepted 

AMPA/NMDA ratios correspond to AMPA/NMDA ratios in the range of 1-5 that elicit EPSPs 

in the range of 0.1-0.5 mV. The black circle corresponds to selected AMPA and NMDA 

conductance values presented in B). D) Example AMPA and NMDA conductance profile grid of 

IN-OUT peak EPSP values for different velocities and synapse numbers. White polygon 

corresponds to selected AMPA/NMDA ratios in B). Red circle represents the center of mass of 

the OUTAREA. E) Profile of standard deviation values of simulation runs where OUT peak voltage 

predominates over IN peak voltage across different AMPA and NMDA conductance values with 

(Left) 8 synapses or (Right) 16 synapses stimulated.  

5.2.4.3 Number of synapses stimulated and velocity of stimulation modulate the synaptic 

conductance required for generating spatiotemporal preference  

 

I was then interested in exploring the role of individual parameters (listed in Table 5.2) in eliciting 

spatiotemporal preference in dendrites. I first evaluated the role of number of synapses in the 

induction of spatiotemporal preference. Increasing the number of synapses from 8 to 16 shifted 

the region where spatiotemporal preference was most likely induced to lower values of AMPA and 

NMDA conductances per synapse. Thus increasing effective synaptic conductance in dendrite 

shifts the region where IN and OUT preference varies the most. To analyse this relationship 

further, I localized OUTAREA by calculating the center of mass in conductance space where the 
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OUT sequence predominates over the IN sequence (red circle, Figure 5.6D). Interestingly, 

increasing the number of synapses correspondingly decreases the NMDA conductance (but not 

AMPA conductance) values for the center of mass of the OUTAREA (Figure 5.6E and Figure 5.7). 

This is consistent with previous reports which demonstrated the importance of NMDA receptors 

in mediating spatiotemporal preference (Branco et al., 2010). 

To further analyse the role of overall effective dendritic conductance, I varied the velocity of 

stimulation of synapses in my model. I found that low velocity values shift the center of the 

OUTAREA to higher NMDA values (Figure 5.7A,B). Thus increasing the overall effective synaptic 

conductance (such as by varying the number of synapses or velocity) decreases the amount of 

synaptic conductance (especially NMDA) needed for the generation of an OUT-preference.  
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Figure 5.7 Effective conductance per unit of time determines the size and position of 

OUTAREA. 

A) Center of mass of the OUTAREA in AMPA and NMDA conductance values per synapse as a 

function of inter-spine interval. With higher inter-spine intervals (lower velocity) more NMDA 

and AMPA conductance is required. Increasing the effective dendritic conductance decreases the 

individual synaptic conductances required for generation of an OUT-preference. B) and C) Center 

of mass of the OUTAREA in AMPA and NMDA conductance values per synapse as a function of 

B) velocity and C) number of synapses across different stimulation parameter values described in 

Table 5.2. The error bars are SEM.  

For a gradual visualization of the changes of the location of OUTAREA in the synaptic conductance 

space with changes in velocity of stimulation, I generated videos for conditions where 8 (Video 

5.3) or 16 synapses (Video 5.4) are stimulated.  
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Video 5.3 Magnitude of synaptic conductance to generate OUT-preference depends on 

the effective dendritic conductance (8 synapses). 

(Top left) A profile of the differences between IN and OUT EPSP amplitudes plotted at different 

AMPA and NMDA conductance values. The range of accepted AMPA/NMDA ratios is defined 

by the white polygon. The black circle shows the centre of mass of area that corresponds to OUT-

sequence preference. (Top right) Standard deviation profile of IN and OUT differences plotted at 

different AMPA and NMDA conductance values. The range of accepted AMPA/NMDA ratios 

is defined by the white polygon. (Bottom) AMPA (dark orange) and NMDA (maroon) 

conductance values corresponding to the centre of mass of OUTAREA plotted against the inter-

spine interval of stimulation. Web Source: YouTube - http://tinyurl.com/VivaVideo53 

 

Video 5.4 Magnitude of synaptic conductance to generate OUT-preference depends on 

the effective dendritic conductance (16 synapses). 

http://tinyurl.com/VivaVideo53
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(Top left) A profile of the differences between IN and OUT EPSP amplitudes plotted at different 

AMPA and NMDA conductance values. The range of accepted AMPA/NMDA ratios is defined 

by the white polygon. The black circle shows the centre of mass of area that corresponds to OUT-

sequence preference. (Top right) Standard deviation profile of IN and OUT differences plotted at 

different AMPA and NMDA conductance values. The range of accepted AMPA/NMDA ratios 

is defined by the white polygon. (Bottom) AMPA (dark orange) and NMDA (maroon) 

conductance values corresponding to the centre of mass of OUTAREA plotted against the inter-

spine interval of stimulation. Web Source:  YouTube - http://tinyurl.com/VivaVideo54 

In conclusion, my analysis shows that passive dendrite sensitivity to different spatiotemporal 

sequences is modulated the overall level of effective synaptic conductance.  

5.2.4.4 Distance of synapses from the soma and clustering modulate the synaptic 

conductance required for generating spatiotemporal preference 

 

As I discussed in the introduction, the distance of synaptic input has a major influence on its 

readout in the soma. As a result, I tested three synapse distributions and their role in generating 

spatiotemporal preference - inputs localized to the proximal half of the dendrite (P), to the distal 

part of the dendrite (D) and inputs distributed across the whole dendrite (W). In agreement with 

my experimental results, OUTAREA is present in all clustering modalities within physiological 

AMPA/NMDA ratios. Surprisingly, I discovered that OUT-preference is less prominent than the 

IN-preference at distal compared to proximal synapses (Figure 5.8). Consistent with previous 

findings, increasing velocity and the number of synapses increases the likelihood of IN-preference 

in the dendrite.  

 

http://tinyurl.com/VivaVideo54
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Figure 5.8 The likelihood of OUT pattern predomination is influenced by the distance 

from soma.  

A) Colour-code schematic of synapse distributions in the dendrite tested using the Branco et al. 

(2010) layer 2/3 model neuron. B) OUTAREA plotted against different synapse distributions across 

the parameters studied and against velocity (left) and number of synapses on the dendrite (right). 

The error bars are SEM.  

5.2.5 Uniform scaling of synaptic conductances is sufficient for induction of spatiotemporal 

plasticity in a model of layer 5 pyramidal neuron 

 

Finally, I was interested in whether the likelihood of induction of OUT-potentiation using only 

uniform scaling is preserved in a physiological model of layer 5 neuron. For this reason, I used the 

layer 5 pyramidal cell morphological reconstruction from the work done by Almog & Korngreen 

(2014). The Almog & Korngreen (2014) has several advantages. The model was shown to faithfully 

predict a wide range of physiological activity including dendritic spikes and voltage-activated 

channel kinetics and distribution. The passive parameters were also optimized using the numerical 
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peeling procedure and thus are expected to be more physiological.  In the experiments presented 

in this chapter, I used a passive version of the model and included synaptic conductances as 

described in the methods for the layer 2/3 model. I used the same constraints for the optimization 

run as described in the layer 2/3 model (listed in Table 5.1.) Following optimization run, I showed 

that uniform scaling of AMPA and NMDA conductances can result in both IN and OUT-

preferences. Consistent with previous results from the layer 2/3 model, IN-preference requires 

greater conductance scaling than OUT-preference (Figure 5.9). Furthermore, the NMDA channel 

scaling is the major driver of the type of spatiotemporal preference in the dendrite (Figure 5.9B).  

 

Figure 5.9 Uniform increase in AMPA and NMDA conductance in Layer 5 model results 

in the emergence of spatiotemporal input preference. 
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A) A Neurolucida reconstruction of a layer 5 pyramidal neuron adapted from Almog and 

Korngreen (2014). The selected dendrite for genetic optimization protocol is marked in red. Scale 

bar: 200 µm. B) A profile of differences of maximal amplitude of simulated EPSPs of played IN 

and OUT patterns at different AMPA and NMDA conductance values. The arrows display the 

vectors defining the direction of AMPA and NMDA scaling. C) Simulated EPSP and AMPA and 

NMDA current profiles corresponding to baseline values and following OUT and IN uniform 

scaling of AMPA values. AMPA and NMDA conductance values are shown by the circles in B). 

D) Integral of AMPA and NMDA currents under baseline, OUT and IN uniform scaling 

conditions.  

Verifying that the model of layer 5 neuron corresponds to the findings from layer 2/3 neuron, I 

then proceeded to evaluate the role of AMPA only uniform scaling across the dendrite. In this 

optimization run, the NMDA conductance was not scaled between baseline and simulated 

plasticity conditions. I confirmed that the AMPA-only scaling is sufficient to elicit both types of 

spatiotemporal preference (Figure 5.10). IN-preference required greater AMPA scaling than OUT-

preference, consistent with results from the layer 2/3 model. 
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Figure 5.10 Uniform increase in AMPA conductance in Layer 5 model results in the 

emergence of spatiotemporal input preference. 

A) A Neurolucida reconstruction of a layer 5 pyramidal neuron adapted from Almog and 

Korngreen (2014). The selected dendrite for genetic optimization protocol is marked in red. Scale 

bar: 200 µm.  B) A profile of differences of maximal amplitude of simulated EPSPs of played IN 

and OUT patterns at different AMPA and NMDA conductance values. The arrows display the 

vectors defining the direction of AMPA scaling.  C) Simulated EPSP and AMPA and NMDA 

current profiles corresponding to baseline values and following OUT and IN uniform scaling of 

AMPA values. AMPA and NMDA conductance values are shown by the circles in B). D) Integral 

of AMPA and NMDA currents under baseline, OUT and IN uniform scaling conditions. 
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5.3 DISCUSSION 

In this chapter, I demonstrated that uniform scaling is sufficient to induce IN- and OUT-

preference in layer 2/3 and layer 5 compartmental models of dendrites. To discover parameters 

that induce spatiotemporal preference, I employed a genetic algorithm model. Consistent with 

previous findings, the genetic algorithm was useful in optimizing NEURON parameters. A large 

number of free parameters in a typical compartmental model results in a multi-dimensional 

solution set that is generally too large for a brute-force approach. The inherent parallelized nature 

of the genetic algorithm and ease of constraining of models enables a time-efficient and 

physiological exploration of the simulation parameters. Additionally, I discovered that creating 

new generation based on the normalized fitness results in a faster optimization of parameters. 

The results of simulations confirm that simple uniform scaling of synaptic conductances can 

underpin different types of spatiotemporal preference in the dendrite. Even a minimal condition, 

when only AMPA conductance was scaled uniformly, was sufficient for eliciting preference for 

different types of temporal sequences. My work is therefore consistent with a wide modalities of 

synaptic conductance changes that were reported in the literature (Benke et al., 1998; Watt et al., 

2004). Crucially, such plasticity induction is possible within a constrained set of synaptic 

conductances which correspond to physiologically observed AMPA/NMDA ratios. Finally, this 

result was not dependent on any active-conductances (apart from NMDA receptors) and could be 

fully reproduced in a passive model of neuron. For a long time, passive neuron was known to 

produce spatiotemporal preference for the IN direction, famously described by Wilfrid Rall (1964). 

Such spatiotemporal preference, however, was dependent on dendrites with long electrotonic 

length that is not present in basal dendrites. NMDA conductance is a natural mechanism by which 

this passive propensity could become boosted. The finding that effective synaptic conductance 

(passive and active) determines a sign of plasticity is a potential addition to the theory of 

spatiotemporal preference in dendrites.   
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This minimal model, presented in this thesis, raises a tantalizing prospect that spatiotemporal 

plasticity that I described in my model could be present in other neuronal cell types across the 

brain. The possible generality of the rule is supported by previous work describing the presence 

of sensitivity to spatiotemporal sequences in a wide range of neurons (Branco et al., 2010), as well 

as the simplicity of the mechanism (uniform scaling of synaptic conductances).  

A more physiological model incorporating active conductances is an important next step to the 

work presented in this thesis. My finding that the type of spatiotemporal preference depends on 

the amount of recruited effective synaptic conductance raises interesting questions for future 

research. For example, previous reports indicated that A-type potassium channels are acting as a 

gate for eliciting plasticity in dendrites of CA1 pyramidal neurons (Losonczy et al., 2008). The A-

type K+ channel recruitment was inversely related to the likelihood of dendritic spike propagation 

to the soma. My model predicts that the degree of blocking A-type K+ outward currents should 

be associated with different types of spatiotemporal preference elicited in the dendrite. In apical 

dendrites of layer 5 neurons, Ih currents were previously found to normalize temporal summation 

in the dendrite (Williams & Stuart, 2000b). Since Ih is activated at hyperpolarizing potentials and 

closed at depolarizing potentials, Ih gating results in a net outward current during synaptic 

stimulation (Magee, 1999). As a result, Ih could importantly modulate the overall synaptic 

conductance in apical dendrites of layer 5 neurons and thus the type of spatiotemporal preference 

for the dendrite. Further exploration of the importance of effective overall synaptic conductance 

is necessary both in theoretical work utilizing active models of dendrites and in empirical 

verification of modelling results.  

Surprisingly, in distal regions, the size of the conductance space that exhibits OUT-preference 

(OUTAREA) was lower than in the proximal regions of the dendrite. It is known that temporal 

integration window of dendrites differs based on their distance from the soma (Branco & Häusser, 

2011) with more distal dendrites having longer integration windows. However, in my empirical 



123 | P a g e  
 

work the type of spatiotemporal preference was not dependent on the distance of synapses from 

the soma. My current data can partly account for the discrepancy. My model shows that all 

dendritic locations (proximal or distal) contained regions in which both types of spatiotemporal 

preference could be elicited. Distal regions exhibited smaller regions in which OUT-preference 

was seen. Currents such as IA and Ih could modulate the effective synaptic conductance and thus 

the likelihood of OUT-preference in distal dendrites. Whilst Ih does not show the same gradient 

increase in basal dendrites as it does in apical dendrites (Berger et al., 2001; Almog & Korngreen, 

2014), the IA gradient in basal dendrites is, to my knowledge, unknown, possibly because of the 

methodological difficulty of obtaining outside-out patches from thin basal dendrites. Another 

possible candidate are the G-protein inactivated K+ channels which were previously shown to be 

important in modulating dendritic integration in CA3 pyramidal neurons (Makara & Magee, 2013).   

A further improvement of the model would be to model the ongoing synaptic activity to simulate 

in vivo-like conditions (Paré et al., 1998; Destexhe et al., 2003). A high-conductance state is expected 

to increase the overall level of effective conductance and thus decrease the NMDA component 

required to elicit OUT-preference in dendrites. Furthermore, cortical neurons are significantly 

modulated by cortical states exhibiting significant depolarized UP states and hyperpolarized 

DOWN states (Steriade et al., 1993; Sanchez-Vives & McCormick, 2000). Based on my model 

findings, such variable conductance state is expected to importantly modulate the type of preferred 

spatiotemporal preference of dendrites. This further enhances the computational complexity of 

the information that can be potentially represented by cortical neurons. Transitions between brain 

states in cortex can be induced in brain slices by chemical or electrical stimulation (Rigas & Castro-

Alamancos, 2007). Such experimental model could be used in conjunction with uncaging, as 

described in this thesis, to empirically verify the relationship between conductance states and the 

type of preferred spatiotemporal sequence.  
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In this chapter, I present a model of neuron employing realistic morphology and physiological 

synaptic conductances capable of generating different spatiotemporal preferences in dendrites. I 

provide mechanistic insight into the main driver of the type of spatiotemporal preference elicited 

– the effective overall synaptic conductance, and I describe the parameters that importantly 

influence it. The main finding of my theoretical model is the potential physiological mechanism 

by which neurons can modify their synaptic weights to favour certain type of spatiotemporal 

sequence of inputs. My findings contribute to the body of theoretical literature on how neurons 

can be modified to represent precise spike timings.  
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6 GENERAL DISCUSSION AND OUTLOOK 

In my work, I have demonstrated the capacity of pyramidal neurons to preferentially potentiate 

their response to distinct spatiotemporal input patterns. My results contribute to the growing body 

of the plasticity toolkit available to neurons in the cortex.  

6.1 SUMMARY OF THE FINDINGS 

In chapter 3, I experimentally demonstrated the existence of spatiotemporal potentiation. I tested 

two different spatiotemporal patterns that were previously found to result in different amplitude 

EPSP events – a distal-to-proximal stimulation or IN sequence and proximal-to-distal stimulation 

or OUT sequence (Branco et al., 2010). Pairing a given sequence with a train of action potentials 

resulted in a potentiation of that sequence as compared to the non-paired sequence. Such 

potentiation was shown to be dependent on the magnitude of plasticity and was not influenced by 

factors such as distance or clustering. In Chapter 4, I described the NMDAR dependence of the 

potentiation. I further evaluated the magnitude of Ca2+ influx during induction pairing. Whilst both 

IN- and OUT-pairing protocols were found to be supralinearly increased during pairing, IN-

sequence pairing exhibited a significantly larger Ca2+ influx than the OUT-sequence pairing 

protocol that was uniformly increased along the dendrite. My experimental findings from Chapter 

3 and Chapter 4 were then used to constrain the simulation of models in NEURON environment. 

In Chapter 5, I described that uniform scaling of AMPA and NMDA, or AMPA only, 

conductances can lead to specific potentiation of both IN and OUT spatiotemporal patterns.  I 

further discovered that the overall level of the synaptic conductance on the level of the dendrite 

determines the spatiotemporal preference. Increasing velocity and the number of synapses 

decreases the AMPA and NMDA levels required to induce OUT-preference. My passive model 

of the neuron was in agreement with the data from Ca2+ imaging and with my electrophysiological 

evaluation. 
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6.2 THE ROLE OF SPATIOTEMPORAL PLASTICITY IN NEURONAL PROCESSING 

The expected role of the spatiotemporal plasticity is to enhance the computational capacity of 

individual neurons. The functional importance of storing temporal sequences of inputs was 

described previously in theoretical literature (Gütig & Sompolinsky, 2006; Florian, 2012; Gütig, 

2014). Models based on temporal learning were found to be efficient at computational tasks such 

as time-warp invariant processing (in speech recognition) or in classifying trains of complex visual 

spikes (Gütig & Sompolinsky, 2009; Gütig et al., 2013). Previous empirical literature showed that 

the pattern of presynaptic input can influence the sign of plasticity (Kwag & Paulsen, 2009). 

Furthermore, cortical neurons were found to be sensitive to purely temporal patterns of the 

presynaptic input in the induction of depression (Rodríguez-Moreno et al., 2013). Following the 

finding of differential potentiation of IN and OUT sequences in my experimental results, the key 

further question is the capacity of pattern storage of a single dendrite. In the tempotron model, 

Gütig and Sompolinsky (2006) showed that the capacity to reach error-free classification is equal 

to the number of synapses multiplied by 2-3x (see Figure 6.1).  

 

Figure 6.1 Tempotron performance 

A) Learning time – defined as the mean number of pattern presentation cycles required for error-

free classification-versus load 𝛼. The load is defined as the ratio of the number of patterns over 
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the number of afferents. Results for random latency patterns with 𝑁 = 500 afferents (black solid 

line) were obtained with a synaptic integration time of 𝜏 = 10 𝑚𝑠 . For 𝑁 = 1000 afferents (gray 

dashed line) and 𝑁 = 1500 afferents (black dotted line), 𝜏 was set to 4 ms and 3 ms respectively. 

These values of 𝜏 are close to the respective optimal 𝜏. For comparison, the learning times for 

𝑁 = 1000 and 𝑁 = 1500 were scaled to match the learning time for 𝑁 = 500 at 𝛼 = 2. The 

gray solid line depicts learning times for perceptron-like input patterns with 𝑁 = 500 afferents. 

B) – D) In B) learning time for 𝑁 = 500 afferents versus PSP time constant for 𝜏 for 𝛼 = 2 (black 

line) and 𝛼 = 2.5 (gray line). Open circles mark 𝜏 = 2 𝑚𝑠 (black) and 𝜏 = 75 𝑚𝑠 (gray) used in 

C)-D). In C), distributions of effective number of contributing synapses 𝑁𝑑𝑒𝑐 after learning (𝛼 =

2) for 𝜏 = 2 (black) and 𝜏 = 75 𝑚𝑠 (gray). In D) distributions of learned synaptic efficacies 𝜔 (in 

units of the spike threshold 𝑉𝑡ℎ𝑟) for parameters as in C) (same colors). Data are averaged over 

1,000 realizations. Source: Gütig and Sompolinsky (2006). 

As I previously discussed, tempotron is not a physiologically valid representation of neuron. 

Several questions need to be answered for the computational capacity of a realistic neuron to be 

evaluated. For example, does the spatiotemporal potentiation rule extend to other types of 

stimulation patterns apart from IN and OUT sequences I used? Discovering whether dendrites 

can be preferentially potentiated to an arbitrary sequence of inputs is a natural next step. In chapter 

5, I showed how modulating effective levels of synaptic conductances can lead to a gradual change 

in the spatiotemporal preference between IN and OUT sequences. In principle, such a mechanism 

could lead to spatiotemporal pattern preference with an arbitrary degree of directionality and thus 

storage of multiple patterns on a single dendrite. This can be verified by an adjustment of my 

theoretical model in which optimization would be performed for multiple sequences within the 

physiological conductance parameters as I described above. Such adjustment could provide an 

important theoretical insight into the number of patterns that a single dendrite can store. 
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There were other simplifying assumptions in my model that could correspond to an underestimate 

of the potential storage capacity of dendrites. Firstly, in my simulations of spatiotemporal plasticity, 

synapses were of equal weight. Neurons exhibit varied distribution of spine morphologies (Hering 

& Sheng, 2001; Bourne & Harris, 2011) and the relationship between spine morphology and 

synapse weight has been established previously (Matsuzaki et al., 2004). The possibility of unequal 

weights on dendrites allows for another free parameter for optimization of my theoretical model.  

Secondly, the type of conductance used in my NEURON model is another simplification. 

Although, the 10-state kinetic model of NMDA receptors used in this study is currently state-of-

art, it is known that NMDA receptors show significant variability of subtypes and their expression 

during development (Cull-Candy et al., 2001; Cull-Candy & Leszkiewicz, 2004). For example, 

NR2A containing NMDA receptors have 6-fold slower weighted deactivation time-constant as 

seen in NR2B containing NMDA-receptors (Vicini et al., 1998; Cull-Candy et al., 2001). The 

expression of different NMDA subunits during development importantly determines the types of 

plasticity that can be induced. For example, NR2C/D receptor which is expressed during young 

juvenile stage is required for the induction of t-LTD on layer 4 to layer 2/3 synapses but not on 

layer 2/3-layer 2/3 connections (Banerjee et al., 2009).  

Thirdly, a change in intrinsic excitability of the dendrite has been described for a variety of cell-

types (Aizenman & Linden, 2000; Zhang & Linden, 2003; Fan et al., 2005). As I have shown in 

Chapter 5, changing the overall level of available synaptic conductance modulates the preferred 

type of spatiotemporal pattern. Such modulation may be important for normalization of the 

distance-dependence preference for specific patterns.  

Finally, I assumed that the input is clustered on a single dendrite in both my experiments and my 

theoretical simulations. However, spatiotemporal preference is conserved when uncaging 

stimulation is applied in a distributed manner (Branco et al., 2010). The distributed stimulation 

using uncaging is methodologically difficult as dendrites are generally not aligned in a single plane 
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of focus, which significantly reduces experimental yield. One possible alternative is to use 

dissociated cultures, which are guaranteed to have dendrites in a single plane of focus. 

Alternatively, three-dimensional acousto-optic two-photon scanning or piezoelectric stepping of 

objective could be used to stimulate synapses in 3D (Göbel et al., 2007; Kirkby et al., 2010). Whilst 

the speed of stimulation in 3D is usually lower than using the traditional two-photon setup, the 

potential advantages in increasing yield are considerable. The likelihood of inducing spatiotemporal 

plasticity for distributed input remains a key open question.  

The important advantage of such simplified model of spatiotemporal plasticity is its potential 

applicability across cell-types. My simulations on layer 2/3 and layer 5 cells suggest that both cell 

types are capable of generating preference for both spatiotemporal integration modes. Previous 

data from the lab suggest that spatiotemporal preference for the IN sequence is conserved across 

cell types of the brain (Branco et al., 2010). Based on the previous experimental results from the 

lab as well as my modelling results, it is tantalizing to hypothesise the generality of the 

spatiotemporal plasticity across neuronal types.  

In their landmark study, Poirazi and Mel (2001) described the role of active dendrites and neuronal 

morphology in enhancing memory storage. Both non-linear activation functions of dendrites and 

high number of small subunits were associated with an increase in storage capacity of neurons. In 

an elegant two layer representation of CA1 pyramidal cell, Poirazi and colleagues (2003) 

demonstrated that such simplified abstraction can account for substantial proportion of spike 

variance. Later studies modified this two-layer representation for layer 5 dendrites by adding a 

“third layer” corresponding to the Ca2+ initiation zone in the apical dendrite (Larkum et al., 2009). 

In the hierarchical parallel processing representation, dendrites are also represented as sites of local 

output that are allowed to interact with one another (Branco & Häusser, 2010). The discovery of 

spatiotemporal plasticity adds another consideration of the history of synaptic stimulation patterns 

of a dendrite. My theoretical model shows that the overall effective synaptic conductance of a 
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dendrite provides a good starting point for evaluating the particular spatiotemporal preference of 

the dendrite. Nevertheless, more complex rules than uniform synaptic scaling are likely to occur 

such as synapse-specific changes in the magnitude of conductance increase. As hinted above, a 

more comprehensive evaluation of pattern storage capacity is needed to evaluate the theoretical 

increase in informational capacity that the neuron can store.  

6.3 SPATIOTEMPORAL PLASTICITY IN NEURAL CIRCUITS 

The key question following the discovery of spatiotemporal plasticity is its role in refinement of 

neural circuits and whether such plasticity can be observed in vivo. In the last couple of years, we 

witnessed a remarkable progress in our capacity to perform in vivo imaging experiments with a 

single spine resolution (Chen et al., 2011b, 2012), in vivo imaging in freely moving animals 

(Piyawattanametha et al., 2009). Previous work showed that repeated presentation of the same 

stimulus produces reverberation of cortical waves in the visual cortex (Han et al., 2008). 

Nevertheless, due to poor resolution of the voltage-sensitive dye method used, the authors could 

not possibly evaluate the changes at a single cell-level. However, spatial light modulator systems 

have been demonstrated to be capable of optical readout and activation of tens of neurons (Packer 

et al., 2015). Is it possible to use such multi-cell stimulation methods to reproduce reverberation in 

cortical circuits? Are circuits that can faithfully reproduce previous patterns of spatiotemporal 

activation also more likely to have dendrites that favour certain spatiotemporal sequences of 

inputs? Or even more importantly, do stimuli with defined spatiotemporal sequences such as 

repeating visual patterns or multi-whisker piezo-stimulation protocols (Jacob et al., 2012) result in 

a higher likelihood of spatiotemporal pattern generation in the dendrites of cortical neurons? For 

the first time, available methods allow probing of neural circuits with such fine spatiotemporal 

resolution in vivo. Concurrently, the development of new opsin structures allows for fast activation 

enhancing our ability to recruit plasticity processes in the cell. Previous work using the ultra-fast 

opsin oChIEF was shown to allow for reversible switching between LTP and LTD and concurrent 
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expression or depression of behaviour (Nabavi et al., 2014). Such opsins could be used to reversibly 

switch between different spatiotemporal modes of integration in vivo.  

Finally, brain state can be a powerful modulator of spatiotemporal pattern preference in neurons. 

UP and DOWN states, which powerfully modulate conductance levels in dendrites, are expected 

to strongly affect preferred temporal sequences to which dendrites are sensitive. Neuromodulation 

exerts powerful influence over a range of parameters on which spatiotemporal plasticity depends. 

Acetylcholine receptor activation via carbachol was shown to mediate branch specific plasticity 

and down-regulation of A-type K+ channels in CA1 pyramidal cells. Dopamine agonists can 

potentiate or depress NMDA function depending on the type of dopamine receptor recruited 

(Seamans et al., 2001; Seamans & Yang, 2004). α2A adrenergic receptor stimulation was shown to 

be associated with downregulation of HCN channels in prefrontal cortex (Wang et al., 2007a). 

Furthermore, the type of neuromodulatory tone often importantly affects target cells. For example, 

phasic and tonic adrenaline release affects the performance of monkeys on visual discrimination 

tasks (Usher et al., 1999). Given such varied effects on intrinsic properties of dendrites, synaptic 

conductances and behaviour, it is difficult to form an expectation of the effect of neuromodulation 

on spatiotemporal plasticity. Nevertheless, an interesting test of the role of neuromodulation 

would be to evaluate the induction of spatiotemporal plasticity under conditions of different 

neuromodulation tone such as by phasic and tonic activation of dopamine or noradrenaline 

afferents through electrical or optogenetic stimulation. Thus neuromodulation remains an 

important unexplored frontier in the study of plasticity in general and spatiotemporal plasticity in 

particular. 

Finally, the role of spatiotemporal plasticity in the modulation of behaviour is even more uncertain. 

Previous reports, however, do provide an intriguing possibility of evaluation of the plasticity model 

in behavioural tasks. The Rotarod assay is a complex sensorimotor task that evaluates the ability 

of mice to remain, without falling, on a rod with a progressively increasing speed of rotation (Figure 
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6.2A). Such task is associated with an increase in spine formation (Figure 6.2) in motor cortex 

(Yang et al., 2009) which was shown to be branch specific and sleep-dependent (Yang et al., 2014). 

 

Figure 6.2 Motor learning and novel sensory experience promote rapid dendritic spine 

formation 
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A) Transcranial two-photon imaging of spines before and after rotarod training or sensory 

enrichment. B) CCD camera view of the vasculature of motor cortex. C) Two-photon image of 

apical dendrites from the boxed region in B). A higher magnification view of a dendritic segment 

in C) is shown in D). D), E) Repeated imaging of a dendritic branch before D) and after rotarod 

training E). Arrowheads indicate new spines formed over 2 days. F) The percentage of new spines 

formed within 2 days in the motor cortex was significantly higher in young or adult mice after 

training as compared with controls with no training or running on a non-accelerated rotarod. No 

increase in spine formation was found in the barrel cortex after training. G) After previous 2-day 

training, only a new training regime (reverse running) caused a significant increase in spine 

formation. H) Environmental enrichment (EE) increased spine formation over 2 days in the barrel 

cortex in both young and adult animals. No significant increase in spine formation was found 

under EE when the whiskers were trimmed. I) After previous 2-day EE, animals switched to a 

different EE showed a higher rate of spine formation than those returned to SE. Data are 

presented as mean ± s.d. *p<0.005. Source: (Yang et al., 2009) 

6.4 OUTLOOK FOR SPATIOTEMPORAL PLASTICITY 

The dendritic locus, as well as complex spatial and temporal learning aspects, make it an ideal 

candidate for testing spatiotemporal plasticity in a behavioural context. It is particularly interesting 

whether branch specific structural plasticity is also associated with a specific spatiotemporal profile 

of Ca2+ influx into the dendrite. 

 

 

In conclusion, my thesis builds on the important finding that dendrites are capable of distinct 

processing of spatiotemporal input (Branco et al., 2010). I discovered that dendrites are capable of 

storing distinct spatiotemporal patterns, and, through a theoretical model, proposed a candidate 
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mechanism mediating the changes. Spatiotemporal plasticity is an important finding with 

consequences for the fields of plasticity, dendritic integration and computational neuroscience. 

The functional importance of plasticity of temporal sequences is yet to be elucidated but is likely 

important for learning of diverse sensorimotor tasks and feature binding in sensation  
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