A pathological RNASEH1 mutant causes R-loop depletion and aberrant DNA
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Abstract

The genetic information in mammalian mitochondrial DNA is densely packed;
there are no introns and only one sizeable non-coding, or control, region
containing key cis-elements for its replication and expression. Many molecules of
mitochondrial DNA bear a third strand of DNA, known as 7S DNA, which forms a
displacement (D-) loop in the control region. Here we show that many other
molecules contain RNA as a third strand. The RNA of these R-loops maps to the
control region of the mitochondrial DNA and is complementary to 7S DNA.
Ribonuclease H1 is essential for mitochondrial DNA replication, it degrades RNA
hybridized to DNA and so the R-loop is a potential substrate. In cells with a
pathological variant of Ribonuclease H1 associated with mitochondrial disease, R-
loops are of low abundance and there is mitochondrial DNA aggregation. These
findings implicate Ribonuclease H1 and RNA in the physical segregation of

mitochondrial DNA, perturbation of which represents a new disease mechanism.

Significance Statement

The DNA in mitochondria is essential for efficient energy production. Critical for
mitochondrial DNA replication and expression are sequences concentrated in the
so-called control region. We report that many mitochondrial DNAs contain a triple
stranded region whose third strand is RNA and maps to the control region. These
R-loops contribute to DNA architecture and replication in the mitochondria; and

aberrant R-loop processing causes disease.



Introduction

Mammalian mitochondrial DNA (mtDNA) contributes thirteen critical proteins of
the oxidative phosphorylation system that produces much of the cell’'s energy.
Consequently, aberrant or insufficient mtDNA causes cell and tissue dysfunction
that manifests in a range of human diseases (1). In most cells and tissues mtDNA
is formed of circles of double-stranded DNA. The two strands are denoted heavy
(H) and light (L) owing to their different base compositions. Important cis-elements
that function as origins of replication, the replication terminus and transcriptional
promoters, are concentrated in the control region (CR) (2-5). Many molecules of
MtDNA bear a third strand of DNA, known as 7S DNA, which forms a
displacement (D-) loop covering much of the CR. The D-loop spans approximately
half a kilobase (kb) of the 16.5 kb of mammalian mtDNA (6-8) and is present on
between 1% and 65% of mtDNA molecules (9). The frequent synthesis of 7S DNA
across such a pivotal region of the mitochondrial genome implies an important
role for the D-loop in mtDNA metabolism, and it has been implicated in protein
recruitment and mtDNA organization (10, 11).

Ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA (12) and is
essential for mtDNA maintenance in mice (13). Recently, pathological mutations
in RNASEH1, including RNASEH1, c.424G>A; p.Vall42lle (V142l), have been
reported to cause adult onset neuromuscular disease (14). We have studied
fibroblasts with V1421 RNase H1 and find no evidence of the primer retention
associated with loss of the gene in murine cells (15). However the human cells
carrying mutant RNase H1 have markedly reduced levels of a newly identified
RNA that forms an R-loop on the mtDNA. The RNA is similar in length and
location to the D-loop, but complementary to 7S DNA. The low level of the
mitochondrial R-loop is associated with aggregation of mtDNA, suggesting a role

for it in mtDNA organization and segregation.



Results

Analysis of RNA hybridized to mtDNA has to contend with the ready degradation
of the RNA during extraction (16). Previous analysis of fragments of mtDNA
encompassing the control region (CR) demonstrated that they included molecules
with 7S DNA as expected for triple stranded D-loops (10), but no RNA (Sl
Appendix, Fig. S1A). However, more recently, inter-strand cross-linking was found
to preserve RNA/DNA hybrids of mtDNA and to enhance markedly the signal
associated with D-loop-like structures ((17) and S| Appendix, Fig. S1B). Therefore
we sought to determine whether the increased signal reflected RNA preservation
or solely increased D-loop stability. As intact RNA/DNA hybrids are easier to
isolate from solid tissues than from aneuploid cultured cells (17), we refined our
isolation procedure for mouse liver mtDNA. The new protocol employs a protease
treatment on ice (see Materials and Methods), which improves the quality of the
MtDNA, as evidenced by the replication intermediates resolved by two-
dimensional agarose gel-electrophoresis (2D-AGE) (SI Appendix, Fig. S2). The
revised procedure was used for all subsequent analysis of murine mtDNA. To
enrich D-loops and small bubble structures and to determine their nucleic acid
composition, we gel-extracted material from the base of an initiation arc, treated it
with RNase HI, DNase or no enzyme, prior to denaturation and 1D-AGE. Blot
hybridization to strand-specific probes revealed L-strand RNA complementary to
7S DNA and of similar mobility and abundance (Fig. 1A). Analysis of smaller
fragments containing the CR resolved the small bubble structures into two
discrete species, D and R, of similar abundance (Fig. 1B). Ban2 (which cuts 7S
DNA bound to mtDNA (i.e. the D-loop) (S| Appendix, Fig. S3A)) cleaved D, but not
R (SI Appendix, Fig. S3B), indicating the latter was refractive to digestion at
nucleotide position (np) 15,749 (in the control region), possibly owing to an RNA
component, as restriction enzymes are unable to cleave RNA/DNA hybrids (e.g.
(18)). Species R proved sensitive to in vitro RNase H treatment, but was largely
insensitive to single-stranded RNase (RNase Ti) (Fig. 1C), indicating it contains
an RNA hybridized to DNA for much of its length. Therefore, we conclude that
species D contains the well-recognized D-loop, whereas R is a previously
unknown form of mtDNA containing an R-loop, whose RNA is approximately the

complement of the D-loop.



Further mtDNA preparations and gel extractions were performed to generate
material for conversion of the R-loop RNA to DNA via reverse transcription (see
Materials and Methods), and sequencing analysis confirmed that the R-loop maps
to the CR (Fig. 2). Seven of 41 RNAs sequenced were oligo-adenylated (Table
S1, Fig. 2), all at the terminus mapping closest to the light-strand promoter (LSP).
Oligo or polyadenylation occurs at the 3" end of mitochondrial and other
messenger RNAs and so indicates that these RNAs are L-strand, concordant with
the results of the strand-specific probes (Fig. 1A). The most frequent 3" ends
mapped precisely to LSP (20 of 41 sequences) and none extended beyond this
point (Fig. 2, Table S1), suggesting LSP is the ultimate terminus for R-loop
synthesis. Of the 41 R-loops sequenced, the eight longest (with respect to the
inferred 5° end) began at np 15476 + 2 nt, within a region (np 15423-15483 (19))
predicted to form secondary structure (20), known as the Termination Associated
Sequence (TAS) due to its proximity to the 3" end of many 7S DNAs (8).
Seventeen of the other 5° ends were clustered around np 15,600, within 25
nucleotides of the second origin of replication in the CR, Ori-b (15). We propose to
name the RNA component of the abundant mitochondrial R-loop LC-RNA (Light-
(or lagging-) strand, Control region RNA), as the term 7S RNA has been applied
to the transient primer sequence spanning LSP to Ori-H on the H-strand (15, 21).

Although the preservation of RNA/DNA hybrids in aneuploid cells is more difficult
than in solid tissues in our experience (17), a similar pair of small bubble-like
structures was evident in human mtDNA of 143B osteosarcoma cells subjected to
inter-strand cross-linking (Fig. 3A); and species refractive to Ban2 digestion at np
15,749 of murine mtDNA (i.e. equivalent to species R of SI Appendix, Fig. S3B)
were detected in heart, brain and kidney (S| Appendix, Fig. S4A). Hence, R-loops,
as well as D-loops, appear to be a ubiquitous feature of mammalian mtDNA.
Because the gel-extracted mouse mtDNA material contained both LC-RNA and
7S DNA (Fig. 1A), it was not clear whether the two species resided on different
molecules; however, the greater resolution achieved with the smaller 1.35 kb
restriction fragment indicated that the two small bubble-like structures (D and R)
had similar mobility in the first-dimension electrophoresis step (Fig. 1B),
suggesting their masses were substantially the same, as expected for species
containing either 7S DNA or LC-RNA, but not both. This inference was



corroborated by the analysis of human mtDNA, as a specific replication (Y) fork
structure marks the position where a species of ~2.1 kb of duplex DNA resolves,
which is similar to that predicted for molecules containing both LC-RNA and 7S
DNA, whereas species D and R ran considerably closer to the linear duplex
fragments of 1.45 kb (see overlay in Fig. 3A). Moreover, the single-stranded DNA
content of D and R is approximately the same, evidenced by the similar mobility
shift when pre-incubated with single-stranded DNA binding protein, prior to gel
fractionation (Fig. 3B, 3C). Nevertheless, a short initiation type arc of a length
appropriate to a combined D/R loop was detectable in cross-linked rat liver
mtDNA samples (SI Appendix, Fig. S4B), suggesting some molecules contain
both LC-RNA and 7S DNA.

The existence of the mitochondrial R-loop raises questions about its formation
and processing, and its roles in mtDNA metabolism. Concerning the enzyme
involved in its processing, RNase H1 represents a strong candidate, as it is known
to target RNA/DNA hybrids in the control region (15). The identification of a
homozygous missense mutation in RNASEH1, (c.424G>A; p.Vall42lle (V142l)) in
the affected members of two unrelated families with neuromuscular disease (Sl
Appendix, Fig. S5A and Table S2), offered an opportunity to explore the enzyme’s
impact on mtDNA and the mitochondrial R-loop, using patient-derived fibroblasts
and muscle of affected individuals.

Recently we showed that murine cells lacking the enzyme are unable to maintain
mtDNA (15). In contrast, fibroblasts carrying V1421 RNase H1 had 92% of the
average mtDNA copy number of three controls and normal levels of the mtDNA
packaging protein TFAM (Fig. 4A). Concordant with the mtDNA copy number
data, the RNase H1 variant, V142Il, produces milder pathologies in humans than
gene ablation in the mouse: adult-onset neuromuscular disease
(encephalomyopathy) (this report and (14)), as oppose to embryonic lethality (13).
However, analysis of the steady-state level of the protein using detergent-
solubilized cell lysates, stored frozen, implied the V142l substitution resulted in
almost complete loss of RNase H1, as the protein was barely detectable (Fig. 4B).
This could indicate either a much greater redundancy for RNase H1 in humans

than mice, or that the immunoblotting results were misleading. In favor of the latter



possibility, electrophoresis of freshly prepared samples, immediately after cell
lysis, yielded a markedly higher signal for V142I RNase H1 than those stored
frozen (Fig. 4C). Hence, we infer that the mutant protein is less stable than wild-
type RNase H1, and the presence of an appreciable amount of RNase H1 protein
in the patient-derived fibroblasts correlates with the less severe phenotype of the

human disease compared to Rnasehl excision in the mouse.

A prominent feature of the loss of RNase H1 in murine cells is the retention of
primers on the mtDNA in the CR (15). It has long been proposed that 7S DNA
arises from a primer initiating at the LSP and that the 5" ends of the 7S DNAs
mark the RNA-DNA transition point (22). Fractionation of 7S DNA from mouse
embryonic fibroblasts (MEF) without Rnasehl indicates it is contiguous with a
segment of RNA, detected by a probe spanning LSP to Ori-H, whereas in cells
retaining Rnasehl the RNA extension is not detectable (Fig. 5A). Therefore,
Rnasehl ablation leads to (LSP-Ori-H) primer retention on 7S DNA molecules, as
well as on productive nascent strands (15). Because 7S DNA is highly abundant it
was chosen to determine whether the human mutant RNase H1 compromises

primer processing in the CR of human mtDNA.

Before assessing 7S DNA primer retention in V142| RNase H1 fibroblasts, we first
analyzed mitochondrial D-loop length and properties in human embryonic kidney
(HEK) cells. Fractionation by sodium-borate gel-electrophoresis resolved four 7S
DNA species of ~560-650 nucleotides, which are concordant with those defined
previously (8) with free 5° ends mapping to np 111, 150, 168 and 191 (23).
Treatment with RNase HI did not alter their lengths (Fig. 5B) suggesting that none
of the 7S DNAs had a retained primer (of 10 or more ribonucleotides). The lengths
of the 7S DNAs of human fibroblasts with wild-type or mutant (V142l) RNase H1
were similar to those of HEK cells, irrespective of an in vitro RNase HI treatment
(Fig. 5C). Therefore, in the human mutant fibroblasts, there was no evidence of
retention of a primer from LSP to Ori-H, which would have extended the 7S DNAs

by 200 nucleotides, one third of their usual length.

Because RNA/DNA hybrids of mtDNA can be lost readily during isolation (16, 24),

we additionally carried out a ‘blocked site’ assay to screen for retained primers. In



MEF lacking Rnasehl, the failure to remove the LSP-Ori-H primer creates a
stretch of RNA/DNA hybrid in the mtDNA that is refractive to restriction digestion
at a site (np 16,179), immediately downstream of LSP (np 16,190) (S| Appendix,
Fig. S6A and (15)). Mscl was selected for the equivalent analysis of human
MtDNA, as its cleavage site, at np 323, lies between LSP (np 407) and Ori-H
(multiple proposed sites at or downstream of np 300) (SI Appendix, Fig. S6B).
First we applied the procedure to mtDNA of human 143B osteosarcoma cells,
after silencing RNase H1 for 144 hours (as previously (25)). The experiment
potentially served two purposes, providing a test for the hypothesis that RNase H1
performs the same role in human and murine cells, and if true, a positive control
for RNA retention in human mtDNA. RNASEH1 gene silencing in 143B cells
markedly increased the amount of Mscl-digested mtDNA that was uncut at np
323 (but not at np 8939), particularly in cells subjected to psoralen/UV cross-
linking that improves the recovery of RNA/DNA hybrids (17). Moreover, site
blockage was largely relieved when the samples were co-incubated with Eco-
RNase HI for the final hour of the restriction digestion (Fig. 5D). These findings
suggest that an acute shortage of RNase H1 in human (143B) cells leads to the
retention of the primer from LSP to the DNA transition site, as per murine
fibroblasts (15). In contrast, the V142l RNase H1 was not associated with any
detectable site blockage at np 323 of human mtDNA (Fig. 5E), again indicating
there is no persistent primer from LSP to Ori-H in the patient-derived fibroblasts.
Thus, human mitochondria containing the V1421 RNase H1 are able to remove
the primers associated with 7S DNA. Either the residual activity of the mutant
enzyme (14) is sufficient for this task, or there is redundancy for primer processing

in some human cell types but not in others.

The V142| mutation was associated with an approximately 8 fold increase in the
abundance of 7S DNAs relative to control fibroblasts (Fig. 6A), as reported
previously (14). The earlier report also measured a 2-4 fold increase in
mitochondrial replication intermediates in the mutant fibroblasts detected by 2D
gel-electrophoresis. However, very few products of strand-asynchronous/bootlace
replication were detected (14), while they form the majority of mitochondrial
replication intermediates in other cell types and in solid tissues (3, 18), and so

their disintegration during extraction might have confounded the analysis. In a



different approach, we intentionally separated the strands of mtDNA after cleaving
at np 14,955 (Xhol) or 14,445 (Bsu361), sites 1.7 and 2.2 kb downstream of the
origin of replication, Ori-H, respectively. Fragments of these lengths, i.e. nascent
strands of DNA with a 5° end mapping to Ori-H, were approximately three times
more abundant in RNase H1 mutant cells than control fibroblasts (Fig. 6A). Thus,
the new finding establishes that mitochondrial replication intermediates are
present at higher steady-state level in cells with V142] RNase H1, and the
increase in nascent strands suggests this is attributable to slow mtDNA replication
rather than slow turnover of the mtDNA. As with the 7S DNAs (Fig. 5C), there was
no evidence of a retained primer associated with the nascent strands of mtDNA in
V1421 RNase H1 fibroblasts (Fig. 6B, S6C), in contrast to murine cells lacking
RNase H1 (15).

In terms of our prior knowledge of mtDNA replication and maintenance, it was
difficult to explain the marked increase in 7S DNA caused by mutant RNase H1
(Fig. 6A), as the only candidate substrate, the so-called 7S RNA (primer), appears
to be processed normally in cells with V1421 RNase H1 (Figs. 5, 6B and S6C).
Assuming RNase H1 acts exclusively on RNA/DNA hybrids and doesn’'t have an
unrecognized function, 7S DNA levels must be influenced by RNA other than 7S
RNA (the primer spanning LSP to Ori-H). The mitochondrial R-loop is a clear
alternative candidate. As a test of the potential impact of V1421 RNase H1 on the
mitochondrial R-loop, we again employed a blocked site assay, by digesting
human fibroblast DNA with Accl and Ban2 (Fig. 6C). Human mtDNA has an Accl
site at np 15,255, approximately 850 nt downstream of the 3" end of the D-loop.
Ban2 has two sites in the D-loop region of human mtDNA (and extrapolating from
the mouse data (Fig. 2) also in the R-loop) at np 16459 and 40, and a third
outside the CR at np 629. Hence, the R-loop should prevent cleavage by Ban2 at
np 16,459 and 40, generating a fragment of 1.95 kb. (D-loops, on the other hand,
are susceptible to Ban2 digestion (SI Appendix, Fig. S3). A species
commensurate with a fragment containing blocked sites at np 16459 and 40 was
readily detectable in HEK cells and in control fibroblasts, whereas this species
was of markedly lower abundance in the V142| RNase H1 fibroblasts (and in cells
expressing high levels of recombinant Twinkle DNA helicase) (Fig. 6C). The

mitochondrial R-loop, resolved by 2D-AGE analysis of mtDNA after inter-strand



cross-linking, was also of lower abundance in V1421 RNase H1 containing
fibroblasts than controls (SI Appendix, Fig. S7). Hence, the fibroblasts of the

patient with mutant RNase H1 had fewer R-loops than control fibroblasts.

The high abundance of mitochondrial R-loops in normal cells and tissues and the
maintenance of near normal mtDNA copy number when it is scarce (see Figs. 1,
4A, 6C and S7) suggested that many R-loops are not directly involved in
replication. The portion of the mtDNA including the control region is implicated in
the association of the mtDNA to the inner mitochondrial membrane (26), and we
have described multi-copy fragments of mtDNA encompassing the CR, held
together by protein, that are putative intermediates of the segregation process.
These findings led us to propose that the D-loop is involved in the organization
and segregation of mtDNA (10, 11); the same inferences apply to the
mitochondrial R-loop. Therefore, we determined the distribution and organization
of mMtDNA in fibroblasts with mutant and wild-type RNase HI1.
Immunocytochemistry showed that over one-third of the mutant primary
fibroblasts have abnormally large mtDNA foci (nucleoids) (Fig. 7A and Sl
Appendix, Fig. S8), occupying as much as 200 times the volume of the typical
(modal) mtDNA foci of control fibroblasts. Deconvolution analysis of the
microscope images revealed closely packed smaller discrete foci of approximately
0.3 um in diameter (Fig. 7B), similar to those of the control fibroblasts analyzed
here and previously (27), leading us to infer that the enlarged mtDNA foci
comprise clusters of single copies of mtDNA. The multipartite nature of the
enlarged mitochondrial nucleoids suggests that RNase H1 V142| impedes the
physical segregation of mtDNA molecules. Attribution of the enlarged nucleoid
phenotype to the pathological variant of RNase H1 is supported by the
observations that loss of RNase H1 in murine fibroblasts or its depletion in human
143B cells also result in the formation of abnormally large mtDNA foci (Sl
Appendix, Fig. S9). The inability to distribute mtDNA normally is associated with
perturbation of the mitochondrial network, as the mitochondria themselves form
dense bodies around the aggregates of mtDNA (Fig. 7C). Hence, the distribution
of mtDNA and mitochondria might be coupled. Despite the aggregation of
nucleoids and mitochondria the clusters of mtDNAs remained replication

competent, as labeling of cellular DNA for a period of 10 hours with the nucleotide

10



analogue bromo-deoxyuridine (BrdU) and immunocytochemistry to the
incorporated BrdU produced a similar staining profile as anti-DNA labeling (Fig.
7D). Mitochondrial disease manifests in non-dividing cells, and so quiescent cells
potentially offered a context closer to that of the affected tissues (muscle and
brain). After stopping cell growth via serum starvation, mtDNA foci were larger
than in the corresponding proliferating cells; in the case of the patient-derived
cells the clusters of mtDNA reached a size and DNA concentration that was
visible with DAPI staining, in contrast to control cells (Fig. 8A). Next, we extended
the analysis of mtDNA organization to muscle sections and found that clustering
was also evident in an affected tissue, muscle, and the distribution of mtDNA foci
was not as uniform as control fibers (Fig. 8B and SI Appendix, Fig. S10).
Mitochondrial DNA clustering and disorganization were evident in a majority of the
patient’'s muscle fibers, whereas only a small percentage displayed mitochondrial
proliferation based on succinate dehydrogenase staining (S| Appendix, Fig. S5-
Bii). Therefore, the enlarged mtDNA foci are attributable to impaired segregation

and not a secondary consequence of mitochondrial biogenesis and proliferation.

In the cultured cells with V1421 RNase H1 there is no evident perturbation of
transcription based on the steady-state levels of four mature mitochondrial
transcripts, nor was there an increase in precursor RNAs, suggesting that RNA
processing is not compromised in the mutant fibroblasts (SI Appendix, Fig. S11).
However, the mitochondria of V1421 RNase H1 fibroblasts displayed rates of
protein synthesis a third lower than controls (with the exception of ATP synthase
subunit A6 that gave inconsistent results), as evidenced by 3°S-methionine
labeling of mitochondrial translation products (Fig. 9A), and their respiratory
capacity was compromised (Fig. 9B). These defects might relate to perturbation of
the intimate connections between the translation machinery and the mtDNA (28),
perhaps because the mitochondrial R-loop includes a putative ribosome-binding

sequence (21).
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Discussion

The discovery of pathological mutations in human RNase H1 advances our
understanding of mitochondrial disorders and highlights the fundamental role of
the enzyme and RNA in mtDNA metabolism. The pathology associated with the
human mutation and the loss of RNase H1 activity in the mouse is strikingly
different. Rnasehl ablation is incompatible with development beyond early
embryogenesis (13), whereas the missense mutation in RNASEH1 results in an
adult-onset neuromuscular disease. The molecular defects also differ: an absence
of murine RNase H1 results in mtDNA depletion and primer retention (15), but
neither is the case for the human mutant RNase H1 (Figs. 4A and 5). Two striking
changes in the mtDNA of cells harboring V142 RNase H1 are the increase in D-

loops and the decrease in the newly recognized R-loop.

The detection of the mitochondrial R-loop comes almost half a century after the
first descriptions of the mitochondrial D-loop (6, 7). Both are triple stranded
species with the third strand located in the major non-coding region, which is
frequently described as the least conserved part of the mitochondrial genome;
however, apart from three short hypervariable regions (29) most of the CR is well
conserved, and the portion known as the conserved central domain (8, 20)
defines much of the overlap between the D-loop and the R-loop (Fig. 2). The high
abundance and location of the triple stranded species and the perturbations
described in this report, combined with earlier studies of the D-loop, suggest they

have important roles in mitochondrial DNA maintenance and expression.

The V142l substitution results in lower RNase H activity than the wild-type
enzyme (14), yet is associated with a marked decrease in R-loops in the
fibroblasts of the patient studied here (Fig. 6C, S7). Human cells might activate a
back-up mechanism of processing RNA/DNA hybrids in response to RNase H1
deficiency, but with poorer powers of discrimination, causing the mitochondrial R-
loop to be dislodged and degraded prematurely. However, the V142 RNase H1
protein appears to be unstable (Fig. 4B, 4C), potentially owing to its susceptibility
to oxidation (30), raising the intriguing possibility that the mutant protein is

modified in vivo to accelerate its turnover, or to render it inactive (30), in order to
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prevent a dominant negative phenotype manifesting. This would be desirable if
the V142| substitution disrupted RNase H1'’s interaction with a protein partner(s)
that restricted its actions. Even at 40% of full activity (14), unregulated V142|
RNase H1 would be expected to degrade RNA/DNA hybrids inappropriately, and
could thereby increase the rate of turnover of mitochondrial R-loops. All that said,
definitive demonstration that R-loop depletion is the result of V142l RNase H1

awaits the creation of a cellular or animal model with this mutation.

The increase in the abundance of D-loops in cells with mutant RNase H1 can be
explained in one of two ways. The D-loop is the precursor of the mitochondrial R-
loop. Thus, more D-loops are made to increase R-loop synthesis enabling some
R-loops to survive long enough to perform its (critical) function(s); i.e. to
compensate for unfettered RNase H1 (V142I) degrading the mitochondrial R-loop
rapidly, or accelerated R-loop turnover due to an imperfect substitute for the
mutant enzyme. Alternatively, the reciprocal relationship between the D-loop and
the R-loop in the fibroblasts carrying mutant RNase H1 could be owing to
overlapping functions. D-loops might not be optimal for mtDNA segregation but be
serviceable when R-loops are scarce, although the increase in D-loops appears
disproportionate. Further study of the D-loop could help to resolve its relationship
to the R-loop; if D-loops beget R-loops then decreasing the level of D-loops in the
fibroblasts with mutant RNase H1 would decrease R-loop levels still further, and
situations that result in a decrease in D-loops would be accompanied by a

decrease in R-loops, or increased R-loop stability.

The impact of RNase H1l on mtDNA segregation strongly implies RNA
involvement. Such a role might have been anticipated earlier, as mitochondria
retain features of their prokaryotic ancestors, and in bacteria RNA has long been
proposed to play an important role in nucleoid organization (31). Furthermore,
RNA polymerase has been linked to bacterial chromosomal segregation (32).
Thus, the mtDNA aggregates of V142 RNase H1 cells, formed when the
abundance of mitochondrial R-loops is low, potentially point to an analogous
arrangement and process in the mitochondria, in which RNase H1 is required to
process products of the mitochondrial RNA polymerase (POLRMT) to facilitate
mtDNA segregation.

13



There are two ways in which POLRMT could generate the mitochondrial R-loop.
To produce all the mature RNAs required for gene expression the polycistronic H-
strand transcript must cover almost the entire mitochondrial genome (33); the
furthest from the promoter, tRNA™, is separated from the CR by the anti-sense
sequence of tRNAP™, Thus, POLRMT needs to extend synthesis of the minimal H-
strand polycistronic RNA only a short distance beyond tRNA™ to enter the CR
and create a RNA corresponding to the mitochondrial R-loop. The other means by
which POLRMT could readily generate the mitochondrial R-loop is via promoter-
independent synthesis on the single-stranded template formed by the D-loop. The
site in the CR known as Ori-b is a good candidate, it functions as a start point for
DNA synthesis on both strands (3, 15), presumably preceded by a short primer in
the case of the L-strand, and over 40% of the sequenced R-loops have a 5" end
within 25 nucleotides of Ori-b (Fig. 2). Any triplex regions of DNA in the D-loop
would be disrupted in the process of LC-RNA synthesis, reducing the stability of
the 7S DNA, and so facilitating its removal, leaving the mitochondrial R-loop. This
can readily be achieved given that RNA/DNA hybrids have higher melting
temperatures than equivalent duplex DNAs, and a number of DNA helicases are
poor at unwinding RNA/DNA duplexes (34). Both methods of generating R-loops
might exist for different purposes. H-strand polycistronic transcripts offer the
possibility of transcript-dependent (aka Bootlace) replication, or TDR (17), as,
according to the model, RNA is hybridized to the lagging strand template from its
inception. Hence, a prediction of TDR is that it requires an RNA covering much of
the CR (i.e. LC-RNA). However, the D-loop dependent R-loops starting at TAS or
Ori-b, would leave a small gap to any H-strand polycistronic transcripts that
terminate outside the CR (HSP-transcript in Fig. 2), which might prevent their use
in TDR. This hypothesis in turn suggests a possible tight coupling of transcription
and replication, in which they are consecutive, not concurrent, events. Viz. H-
strand transcription initiates at the heavy strand promoter and proceeds around
the mtDNA terminating at LSP, with the final portion of the transcript serving as
the (lagging-strand) initiator RNA for TDR. Some form of coupling between the D-
loop and the longest polycistronic HSP transcripts was inferred in 1990, as 7S
DNA levels correlate with those of the most HSP-distal (cytochrome b) mRNA (9).

14



In both the schemes for POLRMT-mediated synthesis of R-loops, the putative
cloverleaf structure known as TAS could play a key regulatory role. Binding of a
protein to TAS could arrest transcription (in the manner of mTERF at a another
site in the mitochondrial genome (35)), and thereby prevent POLRMT progression
into the CR, denying the mtDNA the first RNA needed for transcript-dependent
replication. In the case of R-loop synthesis via the D-loop, TAS could facilitate
recruitment of POLRMT or other accessory factors to the appropriate start site.
POLG?2 is an excellent candidate for binding to TAS, based on its D-loop binding
properties (10) and homology to amino acyl-tRNA-synthetases (36). Furthermore
the mitochondrial R-loops have a displaced DNA strand that binds single-stranded
DNA binding protein (Fig. 3B), which suggests a new role for mtSSB in mtDNA

maintenance.

The discovery of the mitochondrial R-loop may necessitate a reassessment of
almost all aspects of mtDNA metabolism. As R-loops are low in the cells of a
patient with mutant RNase H1 and mtDNA abnormalities, investigation of the
abundance and behavior of the mitochondrial R-loop in the context of pathological
mutants of Twinkle DNA helicase (37), MGMEL1 (38), FARS2 (39), FBXL4 (40)
and POLG (41) could prove informative. Human cultured cells are an appropriate
model system for the study of this and many other aspects of mtDNA replication
and maintenance. For a protracted period it was thought that cultured cells did not
recapitulate the prominent mtDNA abnormalities (depletion or multiple deletions)
seen in the tissues of patients. However, although proliferating cultured cells of
patients with defects in deoxynucleotide metabolism display normal mtDNA levels,
in most cases mtDNA depletion occurs when they exit the cell cycle (e.g. (42,
43)), and a revaluation of the phenomenon of multiple deletions suggests they too
are present in cultured cells. The existing data from muscle samples are
consistent with the view that multiple deletions are broken replication
intermediates. It is possible, even likely, that most of these are intact prior to
extraction, as linear DNA molecules are unlikely to persist for long, given the
dangers of strand invasion and the aberrant recombination products they could
generate. Thus, the accumulated replication intermediates seen in the mutant

RNase H1 fibroblasts (Fig. 6A) could be directly related to the multiple deletions
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detected in the muscle of the patient; however, their contribution to the pathology

in this and the allied disorders remains to be established.

Materials and Methods

Full methods are described in SI Appendix. MtDNA from tissue was prepared as
described previously (17) but without a 50°C incubation step. Digestion and
fractionation of native or denatured mtDNA was as previously (15, 17).
Mitochondrial translation was via 3°S-methionine labeling in the presence of
emetine (44), and oxygen consumption was measured using a XF flux analyzer.
Control region RNA was sequenced after reverse transcription and cloning. MEF
MtDNAs were prepared as described previously (15). Cell culture, RNA
interference, mitochondrial DNA isolation, nucleic acid digestion, modification, and
analysis were as described previously (15, 17, 25, 45). This study was performed
under the ethical guidelines issued by University College London for clinical
studies. Written informed consent was obtained from all subjects before genetic

testing.
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Figure Legends

Figure 1. Many molecules of murine mitochondrial DNA contain a mitochondrial
R-loop complementary to the 7S DNA of the mitochondrial D-loop. (A) Purified
mouse mtDNA (See SI Appendix Fig. S2) was digested with Bcll and fractionated by
2D-AGE, prior to gel-extraction of the material close to the base of the initiation arc
(circled on a representative blot, hybridized to probe np 15551-16034). Repeated 2D-
AGE of the gel-extracted nucleic acids confirmed that the majority was more massive
than the linear restriction fragment; and heat denaturation and repeated 1D-AGE of
samples, untreated (U), treated with RNase HI (R) or DNase (D) as previously (18),
revealed an L-strand RNA complementary to 7S DNA. (B) A double digest of mouse
MtDNA to create a smaller CR-containing fragment reveals two discrete species (D
and R) well separated from the linear 1.35 kb fragment. C) 2D-AGE of BseR1
digested mouse mtDNA and enzyme treatments indicate species R is more sensitive

to Eco-RNase HI than D, whereas both are largely resistant to RNase Ti.

Figure 2. Mapping of the mouse mitochondrial R-loop. RNAs recovered from Bcll
digested mouse liver mtDNA fractionated by 2D-AGE, see Fig. 1A and main text), or
undigested purified mouse liver mtDNA, were DNase-treated, circularized, converted
to DNA by RT-PCR, cloned and sequenced. The lengths of the R-loops (red lines) are
inferred from the junctions (see S| Appendix, Table S1) and are aligned to the control
region of murine mtDNA. Circularized RT-PCR applied to purified mouse mt-RNA
yielded a small number of clones (red lines in gray box, at the base of the figure); and
circularized-PCR, cloning and sequencing was used to map the ends of gel-extracted
7S DNAs (blue lines). LSP — light strand promoter; TAS - Termination Associated
Sequence; Thr - tRNA threonine gene; Pro — tRNA proline gene; Ori-b and Ori-H -
origins of replication; CSB — conserved sequence block; short black arrows mark the
approximate position of the primers used for RT-PCR. A — adenine residues added
post-transcriptionally to the 3" end of the RNAs.

Figure 3. Inter-strand nucleic acid cross-linking stabilizes mitochondrial D-

loops and R-loops in human cultured cells, and both are mobility shifted by
SSB. A) Human 143B osteosarcoma cells were Psoralen/UV cross-linked or left
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untreated (control) and the isolated DNA digested with Sac2 and Dral prior to 2D-
AGE, and blot hybridization to a probe spanning np 16,341-151 that detects the D-
loop region (np 16,107-191). An overlay shows the mobility of species D and R
relative to a recognized species on the replication fork arc (Y). Vertical broken blue
lines indicate the mobility of various species in the first dimension electrophoresis step
that is indicative of their mass. Interpretations of the structures of the nucleic acids
appear to the right of the gel images: L or 1n — linear duplex mtDNA fragment; Y —
replication fork; D-loop — 1n + 7S DNA; R-loop — 1n + LC-RNA (see text for details).
The slower mobility of the R-loop in the second dimension compared to the D-loop
might reflect a general feature that distinguishes the two types of triple stranded
molecule (i.e. the different properties of molecules with a third strand of RNA as
oppose to DNA), or it could be indicative of a more complex arrangement of LC-RNA
that includes segments of RNA-RNA pairing, as well as RNA/DNA hybrid. Species D
and R of human (B) and mouse (C) mtDNA are mobility shifted by incubation with
SSB. RNase Ti1 was applied before SSB incubation to remove any RNA tails that
might otherwise have accentuated the mobility shift. The probe for mouse mtDNA
spanned np 15,511-16,034. Merged false-color images at the foot of the panel C
provide a direct comparison of the effect of SSB on the mobility of D- and R-loops:

green, C-i merged with red, C-ii or C-iii.

Figure 4. V1421 RNase H1 protein is unstable, but the mutant protein does not
appreciably alter mtDNA copy number. (A) Quantitative PCR to a fragment of a
nuclear and a mitochondrial gene (see Sl Appendix) was used to determine the
relative abundance of mtDNA in V1421 RNase H1 fibroblasts (V142l) compared to
three control human fibroblast lines (CF); data from 3 independent experiments are
represented as the mean + SEM. Inset a representative immunoblot for TFAM and the
the reference protein GAPDH. Immunoblots of proteins from control and patient-
derived fibroblasts, stored frozen (B) or freshly prepared (C). RNase H1, MGMEL1, a
mitochondrial endonuclease (Atlas), and vinculin, a reference protein. Proteins were
fractionated by 4-12% SDS-PAGE.

Figure 5. 7S DNA molecules are persistently attached to their primer RNA in
murine cells lacking RNase H1, but there is no evidence of primer retention in
human cells with V1421 RNase H1. (A) MEF mtDNA, from cells treated for 8 days
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without (control) or with 4HT to excise the Rnasehl gene (ARH1), was digested with
Dral, left untreated (U) or treated with DNase (D) or Eco-RNase HI (RH); denatured
in 80% formamide, 15 min at 85°C, and separated by 1D-AGE (1% Tris-borate). A-
Hind3 DNA ladder was run in parallel to provide size markers. Southern hybridization
with a riboprobe to the 5” end of the H-strand (H15511-16034) detected the full length
H-strand of 3.6 kb (1n) and nascent strands (ns) (described in detail in (15)) and 7S
DNA. 7S DNA without a primer is not detected by m-H16051-161832, but is detected
by m-H15511-16034 (albeit only in ARH1 samples). Line drawings appear to the right
of the gel image to denote 7S DNA with and without an RNA primer; red line, RNA;
blue lines, DNA. 7S DNAs of the human mitochondrial D-loop range from ~560-650 nt
in HEK cells (B) and lack a RNA primer in human cells with wild-type (control) or
mutant (V142l) RNase H1. (C). Sucrose-gradient purified mtDNAs of HEK cells and
fibroblasts were separated by 1D-AGE (2% agarose, sodium borate (46)), after
treatment with (+) or without (-) Eco-RNase HI, and denaturation in 80% formamide,
15 min at 85°C, and hybridized with a riboprobe complementary to nt 15869-168 of
human H-strand mtDNA. The mtDNA was run in parallel with a series of markers of
defined length (see SI Appendix). DNA was extracted from whole 143B cells after 6
days of siRNA (non target — NT, or targeting RNASEH1) (D), and from control (CF) or
patient-derived (PF) fibroblasts (E). (D and E) DNA was digested with Mscl and
fractionated by 1D-AGE (1%, TAE) and blot hybridized to the indicated probe. Cells
were subjected to UV/psoralen cross-linking prior to nucleic acids isolation, and Mscl
and RNase HI (RH) digestions, as indicated. The composition of the 8 and 11 kb
species are interpreted in the line drawings, the 11 kb band has a blocked site at np
323 owing to the R-loop; RNA, red line, black lines, DNA.

Figure 6. V1421 RNase H1 has opposite effects on the abundance of
mitochondrial D-loops and R-loops. (A) Whole cell DNA from control (C) and
V1421 RNase H1 (P) fibroblasts was denatured in 80% formamide, 15 min at 85°C
and fractionated by 1D-AGE, where indicated samples were digested with Bsu361 or
Xhol. After blot transfer, nascent H-strands and 7S DNA were detected by
hybridization to probe h-H15869-168. (B) Equivalent DNA samples were denatured
after digestion with BsaW1 to shorten the nascent strands and allow higher-resolution
mapping on 2% agarose, sodium borate gels (15, 46), (nascent strands with retained

primers would resolve above the np 323 marker, see Sl Appendix, Fig. S6C). (C)
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Ban2 and Accl digested whole cell DNAs of control (C) HEK cells, or cells expressing
Twinkle DNA helicase (Twinkle), and from control (C) or V142l RNase H1 (V142l)
fibroblasts, were subjected to 1% agarose, 1D-AGE and blot hybridized to h-H15869-
168. HEK cell DNA was psoralen/UV cross-linked prior to extraction (see Sl

Appendix).

Figure 7. V1421 RNase H1l causes mtDNA aggregation and disruption of
mitochondrial morphology. Confocal single optical images of primary human
fibroblasts of a control and the index case with V1421 RNase H1 were labeled with
antibodies to DNA (green), the outer mitochondrial membrane protein, TOM20; the
mitochondrial ribosomal proteins MRPS18b or MRPLA45 (red) as indicated (A-C). DNA
in the mitochondria produces co-localization of green and red (yellow). In some cases
nuclear DNA was stained (blue) with DAPI. White arrows point to the mtDNA clusters
observed in the patient-derived cells (A, D). (B) panel i is a raw confocal optical
section of a region of a V142l patient fibroblast depicting antibody staining against
mtDNA (green); ii is the reconstruction of i treated with a custom deconvolution
algorithm to extend the resolution, and showing that the large mtDNA foci comprise
multiple smaller units of similar sized particles. Such particles colocalize (yellow) with
staining for antibodies against the mitochondrial ribosomal subunits MRPS18b and
MRPL45, and the outer mitochondrial membrane protein TOM20 (C). (D) Single
confocal optical section of V1421 RNaseH1 and control fibroblasts treated with 20 uM
BrdU. Replicating DNA is visualized with antibodies against BrdU (green), and
mitochondria with anti-Tom20 (red), cell nuclei are stained with DAPI (blue). Images
show clustering of BrdU signal in V1421 RNaseH1 patient fibroblast cells similar to the
DNA clusters in other panels, and Fig. S3. White horizontal bars represent a width of
20 um (A and D) or 5 pum (C).

Figure 8. V1421 RNase H1l quiescent cells and muscle display mtDNA
aggregation. Confocal optical images of quiescent human fibroblasts (A) and a 12
um transverse section of muscle (B) of controls and the index case with V142| RNase
H1. Samples were labeled with antibodies to DNA (green), the outer mitochondrial
membrane protein, TOM20 (red), and stained with DAPI (magenta). White arrows and

zoomed images highlight some of the mtDNA clusters observed in the patient-derived
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cells that stained with DAPI. (B) Tom20, DNA merged images; for individual
components and DAPI staining, and additional muscle fibers see SI Appendix, Fig.
S10.

Fig. 9. V1421 RNase H1 impairs mitochondrial translation and respiration. (A)
One-hour 3°S-methionine labeling of nascent mitochondrial polypeptides in control
(CF) or V1421 RNase H1 patient (PF) fibroblasts, fractionated by 12% SDS-PAGE. To
the left of the gel tentative polypeptide assignments are ND1-6, cyt b, COX1-3 and
A6, A8: subunits of respiratory chain complexes I, Ill and IV, and ATP synthase,
respectively. The panel shows two of four experiments, the pair of samples to the right
derived from cells grown to full confluence. V142I cells displayed a 34% decrease in
mitochondrial translation compared to the two control cell lines analyzed, based on
guantitation of the indicated bands (*). (B) Mitochondrial oxygen consumption rate
(OCR) was measured using a Seahorse flux analyzer before (basal) and after the
addition of uncoupler FCCP (maximal), having subtracted the non-mitochondrial
(rotenone-insensitive) OCR. The data represent the mean + SEM of 4 independent
experiments, each one performed in duplicate. Statistical analysis was performed
using an unpaired two-tailed Student's t-test. Maximal respiration of the V142l (P)

cells was significantly lower than the controls (C) p = 0.018.
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Supporting Information

Materials and Methods

Patients: Exome sequencing identified homozygous missense mutations in
RNASEH1, c.424G>A; p.Vall42lle (V142l), in the affected members of two unrelated
families with neuromuscular disease. All unaffected members of the families had at
least one normal allele. In Family 1, the two affected siblings developed ptosis,
chronic progressive external ophthalmoplegia, ataxia, proximal myopathy and a
sensorimotor neuropathy in adult life; a very similar clinical phenotype was exhibited
by the four affected siblings of Family 2. The muscle tissue of all affected individuals in
both families manifested multiple mtDNA deletions and frequent cytochrome c oxidase
and ragged red fibers (Fig. S5). The patient derived fibroblasts used in the study were
from family 2 member 111-9 (Fig. S5A).

Mitochondrial DNA preparation from solid tissue: Ten grams of finely chopped
mouse liver was suspended in 9 vol homogenization buffer (HB)/g liver and subjected
to 3 strokes of Dounce homogenization with a tight fitting pestle. HB is 225 mM
Mannitol, 75 mM Sucrose, 2 mM EDTA and 10 mM HEPES-NaOH (pH 7.6). The
homogenate was centrifuged at 600 gmax for 10 min, and the supernatant re-
centrifuged at 7,000 gmax for 10 min to obtain a crude mitochondrial pellet. The
mitochondrial pellet was re-suspended in 5 vol HB/g liver, centrifuged at 7,000 gmax for
10 min, and this step was repeated with 2.5 vol HB/g liver. The second mitochondrial
pellet was re-suspended in 0.5 vol HB/g liver and loaded on to a 1M/1.5M sucrose
step-gradient, in 2 mM EDTA and 10 mM HEPES-NaOH (pH 7.8), and centrifuged at
40,000 gmax for 1 h. The mitochondrial layer was diluted to 250 mM sucrose, 2 mM
EDTA and 10 mM HEPES pH 7.8 and sedimented by centrifugation at 9,850 gmax for
10 min. The mitochondrial pellet was re-suspended in 75 mM NaCl, 50 mM EDTA, 20
mM HEPES pH 7.2 and divided into 4 equal fractions (of ~10 mg) (a-d, see Fig. S2).
All the above procedures were performed on ice in a cold-room. Mitochondria were
incubated with 100 ug/ml Proteinase K on ice for either 45 min (A-C) or 10 min (D).
Next the mitochondria were lysed with 1% sodium N-lauroylsarcosinate (sarcosine)
and incubated at 50°C for 45 min (a) 10 min (b), or 0 min (c and d) (Fig. S2); and the
nucleic acids isolated by successive phenol and chloroform extractions, followed by 2-

propanol precipitation. All chemicals used were RNase- and DNase-free grade. For



all the subsequent R-loop analysis the 50°C step was omitted and Proteinase K

treatments were performed on ice for 10-45 mins.

Cell culture and mitochondrial DNA isolation: Proliferating human cells were
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM), with 10% fetal bovine
serum. Cells were harvested in PBS and mtDNA extracted as previously (1). For
whole cell DNA isolation, cells were lysed in HB. After cell or mitochondrial lysis with
0.25% sodium sarcosine and digestion with 1 mg proteinase K per 5 x 10° cells for 1-6
h at 37°C, nucleic acids were isolated via phenol-chloroform extraction, and
precipitated with 0.1 vol of 3M sodium acetate and 0.8 vol 2-propanol; DNA was
recovered by centrifugation, re-suspended in 10 mM Tris pH 8.0 and stored at -20°C.
For nucleic acids cross-linking, cells were pre-incubated in 10 uM 4,5'.8-
trimethylpsoralen (TMP) for 10 min at 37°C and exposed to 365 nm UV light for a
further 10 min at room temperature. The cells were washed once in PBS and lysed
immediately to extract DNA as above. Quiescence was induced in the fibroblasts by
reducing the serum concentration of the growth medium from 10% to 0.1% and the

cells analyzed 10 days later.

Nucleic acid digestion, modification and analysis: Restriction digestions of 2-10
Mg of whole cellular DNA, or 2-4 ug lots of DNA from purified mitochondria, were
performed in 40-200 ul volumes according to the manufacturer’s instructions, and then
precipitated with ethanol and salt and re-suspended in 10 mM Tris pH 8.0. Where
indicated samples were treated additionally with 1 U of E. coli RNase HI (Promega or
Takara) for 15-60 min at 37°C. Incubation with recombinant SSB from E. coli
(Promega) was as previously (2). Denaturation of DNA was achieved by mixing with
an equal volume of formamide, heating to 95°C for 5 min and quenching on ice for 2
min. DNA was fractionated in one dimension (1D-AGE) either on 0.8-1.5% Tris-
acetate agarose (Invitrogen) gels overnight at 0.8 V/icm or 2-2.5% Nu-Sieve 3:1
agarose (Lonza) gels (10 mM sodium borate), at 17.5 V/cm for 4-6 h at room
temperature with circulation. Two dimensional agarose gel electrophoresis was as
previously described (3). After electrophoresis, gels were soaked for 30 min in 5 x
SSC and 10 mM NaOH and then transferred to nylon membrane overnight by capillary
transfer using 5 x SSC, 10-100 mM NaOH. DNA was cross-linked to the membrane by
exposure to UV at 1200 pJd/cm. Membranes were then probed with radiolabeled DNA,
prepared using a random-prime labeling kit (GE Healthcare); or riboprobes, using T7-



maxiscript kit (Ambion) as per the manufacturer’s instructions. Probing of the
membrane was performed overnight at 55-60°C in 2 x SSPE, 2% Sodium dodecy!
sulfate, 5 x Denhardts Reagent, 5% Dextran sulfate buffer. After overnight incubation,
membranes were washed four to six times with 0.1-1 x SSPE, 0.5% SDS, at 55°C.
Membranes were exposed to X-ray film or phosphorscreens for 4-120 h and imaged
on a Typhoon scanner (GE Healthcare). Image J software was used to quantify D-
loop and R-loop levels.

Detection and characterization of the mitochondrial R-loop: To determine the
composition of small bubble-like structures associated with fragments of mtDNA
containing the control region, Bcll digested mouse liver mtDNA was fractionated by
2D-AGE and the portion of the gel running slightly above the linear 4.15 kb fragment
(np 12,034-16,179) was excised and the nucleic acids recovered by electrophoresis
into dialysis tubing. Some gel-extracted material was treated with RNase HI, DNase or
no enzyme, prior to denaturation and re-fractionated by 1D-AGE, as previously
applied to mtDNA replication intermediates (3). The products were re-fractionated by
1D-AGE and hybridized to H- and L-strand specific riboprobes generated from
amplified mouse (m) mtDNA with the following primers (5'-3', with the T7 promoter
sequence underlined.): TAATACGACTCACTATAGGCAATGGTTCAGGTCATAAAA
TA ATCATC, m-H15,511-15,539 and GCCTTAGGTGATTGGGTTTTGC m-H16,034-
16,012; CAATGGTTCAGG TCATAAAATAATCATC, m-L15,511-15,539 and TAATA
CGACTCACTATAGGGCCTTAGGTGATTGGGTTTTGC m-L16,034-16,012.

For sequencing, gel-extracted material, or purified mtDNA was treated with 2 U Turbo
DNase | (Ambion) in 20 pl at 37°C for 1 h; incubated with 20 U T4 RNA ligase in 1 x
RNA ligase buffer, 12% PEG 6000 to circularize the RNA. For reverse transcription
the RNA was incubated with 0.5 mM dNTPs, 0.5 pM primer R1 (m-L15,897-15,918
GTGGTGTCATGC ATTTGGTATC), 4 U Omniscript reverse transcriptase in 1 x RT
buffer, in 20 ul at 37°C for 1 h. For PCR across the ligation junctions to identify the
ends of the RNAs, the DNA was amplified using 1U Vent polymerase in 50 pl of 1 x
amplification buffer, 0.1 pyM primer F1 (m-H15,840-15,821 GGGAACGTATG
GGCGATAAC) and R1, 0.25 mM dNTPs for 35 cycles of 95°C 2 min, 56°C 1 min,
76°C 1 min, and an elongation step of 10 min at 76°C. 2-5 ul of the PCR reaction
served as template in a second amplification reaction comprising template, 3U
BioTaqg, 1 x BioTaq buffer, 1.5 mM MgClz, 0.12 yM primers F2 (m-H15,704-15,680



CACGGAGGATGGTAGATTAATAGA) and R2 (mH-15,949-15,969 GCCGTCAAG
GCATGAAAGGAC), 0.3 mM dNTPs in 50 pl. Reaction conditions were 95°C for 3 min
followed by 35 cycles of 95°C 0.5 min, 58°C 0.5 min, 72°C 0.5 min, and an extension
step of 72°C for 10 min. The products were gel-extracted (QIAquick Gel Extraction Kit)
and cloned into PCR2.1 vector using 50 ng of vector, 4U T4 DNA ligase in 1 x DNA
ligase buffer for 14 h at 14°C. The ligated DNA was transformed into Topl10 E. coli
and clones carrying a DNA insert sequenced commercially. On one occasion the
same procedure was applied to Trizol™ purified RNA from purified mouse liver
mitochondria; and the ends of 7S DNAs were determined using the same primers and

purified mtDNA, omitting the DNase treatment and reverse transcription steps.

Additional Primer pairs for hybridization probes:

Mouse

m-14903-15401: 5-CAGACAACTACATACCAGCTAATCCAC and 5 -ACCAGCTTTG
GGTGCTGGTG. m-15511-16034: 5 -ATCAATGGTTCAGGTCATAAAATAATCATCA
AC-3" and 5-GCCTTAGGTGATTGGGTTTTGC-3". m-H16051-16183: 5 -TAATAC
GACTCACTATAGGGTTAGACATAAATGCTACTCAATACC-3" and 5 -GATCAGGAC
ATAGGGTTTGATAG-3".

Human (h)

h-H15,869-168: 5 -TAATACGACTCACTATAGGAAAATACTCAAATGGGCCTGTCC-
3" and 5-GGTGCGATAAATAATAGGATGAGG-3". h-16,341-151: 5'-TTACAGTCAA
ATCCCTTCTCGTCC-3" and 5'-GGATGAGGCAGGAATCAAAGACAG-3'.

Q-PCR of human mtDNA: MtDNA was quantified as described in (4). Briefly, total
DNA was isolated from human fibroblasts using DNeasy Blood and tissues Kit
(QIAGEN). 25 ng DNA were used as template for amplification of COXII gene in a
real-time quantitative PCR reaction (7550 Fast Real-Time PCR, Applied Biosystem). A
portion of APP1 gene was amplified simultaneously as nuclear reference. Primers:
hCOXIl: 5-CGTCTGAACTATCCTGCCCG-3° and 5 -TGGTAAGGGAGGGATCGT
TG-3", hAPP-F: 5-TTTTTGTGTGCTCTCCCAGGTCT, and 5-TGGTCACTGGTTGG
TTGGC-3'.



Immuno-blotting: Protein fractionation, transfer and immuno-detection were
performed as described (5), with some modifications. Cells were lysed on ice in PBS,
1% SDS, 1 X protease inhibitors cocktail (Roche) and 50 U Benzonase (Millipore).
Protein concentration was measured by Lowry assay (DC™ Reagent, Biorad) and 20
Mg of lysates analyzed per lane. For RNAse H1 immunodetection, samples were
treated with 2 mM DTT as reducing agent. Primary antibodies employed were: mouse
anti-RNase H1 (abcam # 56560, 1:500) and mouse anti-VCL (abcam # 18058,

1:5000).

Primers for markers of defined length: for high-resolution 1D-AGE were generated
by PCR amplification of human mtDNA with forward primer: h15869 5"-AAA
ATACTCAAATGGGCCTGTCC-3" and the following series of reverse primers: h-54
5-CCAAATGCATGGAGAGCTCC-3"; h-111 5 -TGCTCCGGCTCCAGCGTC-3"; h-
150 5-GATGAGGCAGGAATCAAAGACA-3’; h-168 5 -GGTGCGATAAATAATAGG
ATGAGG-3"; h-191 5-TGTTCGCCTGTAATATTGAACG-3"; h-240 5'-TATTA
TTATGTCCTACAAGCAT-3"; h-300 5-TGGTGGAAATTTTTTGTTATGATG-3'; h-407
5-AAAGATAAAATTTGAAATCTGGT-3. PCR products were digested with Dral to
create a consistent end at np 16,010 prior to 1D-AGE fractionation of the markers.
Another marker spanning the BsaW1l site at np 15,924 to 50 was generated by
digesting 143B crude mtDNA with BsaW1 and BstX1 to create a product of 699 bases
in length (see Fig 5C).

PCR Conditions: Unless specified elsewhere in the methods, 50 ng of template DNA
was incubated with 200 yM of each of the 4 dNTPs, 1.25 U of EX-Tag DNA
Polymerase (Takara) in 50 ul of 1 X reaction buffer (Takara), for 30 cycles of 94°C, 30
sec; Tm °C (lower of the 2 primers), 30 sec; 72°C, 30 sec. The 30 cycles were
preceded by denaturation for 3 min at 94°C, and followed by a 5 min incubation at
72°C.

Northern Hybridization RNA was extracted from fibroblasts using Trizol according to
the manufacturers instructions. Three microgram aliquots were fractionated on 1%
agarose gels in 1 x MOPS buffer, and blot hybridized to radiolabeled probes derived
from regions of mMtDNA amplified with primers 5-CACCCAACAATGACTAATC
AAACTAACCTC-3" and 5 -TATGAGGAGCGTTATGGAGTGGAAG-3" (A6/A8); 5'-
TATTCCTAGAACCAGGCGACCTGC-3" and 5 -TTTCGTTCATTTTGGTTCTCAGGG



TTTG-3° (COX2); and 5 -CTGCCATCAAGTATTTCCTCACGC-3° and 5'-
TCAGGTGCGAGATAGTAGTAGGGTC-3 (ND2).

Gene-silencing of RNase H1: RNA interference of RNase H1l in human 143B
osteosarcoma cells was as described (6). Briefly, 2 x 10° 143B cells were transfected
with lipofectamine RNAIMAX (Invitrogen) combined with 10 nM dsRNA [5°-
GGAUGGAGAUGGACAUGAAAG-3, 5-UUCAUGUCCAUCUCCAUCCAG-37]
according to the manufacturer’s instructions. The same number of cells was re-
transfected 72 h after the first transfection and the nucleic acids harvested 72 h later.

Repression of the target protein after sSIRNA was confirmed by immunoblotting.

Immunocytochemistry: Patient and control fibroblast cultures, the cells were
incubated with 20 uM BrdU for 10 h and fixed with 2% paraformaldehyde 15 min at
room temperature, treated with phosphate buffered saline (PBS) containing 0.2%
Triton X-100. After a 5 min PBS wash, cells were incubated for 90 min at 40 C in 2N
hydrochloric acid (HCI). 5% goat serum in PBS was applied for 1 h, for blocking, after
which the cells were incubated with primary antibody in PBS at 4°C overnight and
subsequently with secondary antibodies for 2 h at ambient temperature. A 90 min
incubation at room temperature with Alexa Fluor 488 conjugated streptavidin
(Invitrogen) was followed by three PBS washes. The coverslips were mounted on
glass slides using Progold with DAPI. For staining which did not include BrdU the HCI
antigen retrieval step was omitted. Primary antibodies: mouse anti-DNA Progen (AC-
30-10) at 1:200; rat anti-BrdU Bio-Rad (MCA2060) 1:200; rabbit anti-MRPL45
(Proteintech) 1:200; rabbit anti-MRPS18b (Proteintech) 1:200; rabbit anti Tom20
(Santa Cruz) 1:400. Secondary antibodies: Alexafluor 488 goat anti-mouse (1:500);
Alexafluor 488 goat anti-rat (1:500); Alexafluor 568 goat anti-rabbit (1:1000).

[3°S]-methionine labeling of mitochondrial proteins: mitochondrial translation
products in cultured cells were labeled as described previously (5). Fibroblasts were
washed twice with methionine/cysteine-free DMEM (Sigma) supplemented with 2 mM
L-glutamine, 96 pg/ml cysteine and 5% (v/v) dialyzed FBS followed by a 10 min
incubation in this medium at 37°C. Cytosolic translation was inhibited by incubating
the cells for 20 min with 100 pg/ml emetine dihydrochloride (Sigma) at 37°C. 100 pCi
[3°S]-methionine was added to the medium and the cells incubated for 1 h at 37°C,
washed three times with PBS and lysed in 1 X PBS, 0.1% n-dodecyl-D-maltoside



(DDM), 1% SDS, 50 U benzonase (Novagen), 1:50 (v/v) protease inhibitor cocktail
(Roche). 20 pg lots of protein were fractionated by SDS-PAGE (Novex) and
radiolabeled proteins detected by Phosphorimager after drying (Typhoon Molecular

Imager FX, GE Healthcare), and quantified using Image J software.

Cellular Oxygen Consumption: The Oxygen Consumption rate (OCR) of adherent
fibroblasts was assayed with a XF24 Extracellular Flux Analyzer (Seahorse
Bioscience). Briefly, 4x10* proliferating fibroblasts were seeded in microplates
(Seahorse Bioscience) in 250 pl of prewarmed growth medium (DMEM, GIBCO) and
incubated 37°C /5% CO:2 for 6 h. Subsequently, the medium was removed and
replaced with assay medium and the cells incubated for 30 min in a 37°C non-CO:
incubator. After taking an OCR baseline measurement, 1 yM oligomycin, 1.2 uM
carbonylcyanide-4-trifluorometho-xyphenylhydrazone (FCCP) and 1 uM rotenone
were added sequentially. For normalization, protein concentration in each well was

determined using the Lowry assay (Biorad).

Generation of a cell line carrying inducible transgenic TWINKLE: A cDNA of
TWINKLE was cloned into vector pcDNAS/FRT/TO (Invitrogen). HEK293T cells
(Invitrogen) were transfected with 0.2 ug of pcDNAS.Twinkle and 1 pg of pOG44,
using lipofectamine2000 (Invitrogen) according to the manufacturer’s instructions.
Prior to transfection HEK293T cells were cultured in DMEM supplemented with 10%
tetracycline-free fetal bovine serum, 15 pg/ml blasticidin and 100 pg/ml zeocin.
Transformants were grown in 15 pg/ml blasticidin, 100 pg/ml hygromycin. Transgene

expression was induced for 72 h at a dose of 20 ng/mL doxycycline.



5" end
15476
15476
15516
15561
15581
15580
15584
15586
15593
15595
15599
15600
15601
15609
15660
15671
15648
15620
15607
15476
15659
15606
15475
15745
15478
15628
15667
15667
15595
15592

3'end
16192
16190
16189
16189
16190
16189
16190
16190
16190
16190
16189
16190
16189
16188
16190
16097
16091
16087
16084
16072
16067
16046
16039
16039
16031
16007
15991
15989
15988
15981

Supplemental Tables

MtDNA
ML6-GE
ML6
ML6
ML6
ML6
ML6
ML6
ML6
ML6
ML6
ML6
ML6
ML6
ML2-GE
ML6
ML6
ML6
ML1-GE
ML1-GE
ML1-GE
ML1-GE
ML2-GE
ML2-GE
ML2-GE
ML6
ML6
ML1-GE
ML1-GE
ML1-GE
ML1-GE

Incidence

P R R W R R R R U R R R R R P R R NP RPRNPRPR PR R PR R R R DN

Length (nt)
716
714
673
628
609
609
606
604
597
595
590
590
588
579
530
426
443
467
477
596
408
440
564
294
553
379
324
322
393
389

polyA

11

13

11

15



Table S1. Cloned sequences of mouse mitochondrial R-loops (LC-RNA), after
circularized RT-PCR. 5" and 3" ends denote the ends of the RNAs according to the
revised reference sequence of murine mtDNA (7). Blue shading - RNAs with a 3" end
mapping to LSP; purple shading - 5" ends at TAS; green shading - 5" ends near Ori-b
(see text for details). RNAs were derived directly from purified preparations (numbered
chronologically (numbers not listed were used in other studies)) of mouse liver (ML)
mtDNA or from gel-extracted material (GE) from the region where the mitochondrial R-
loop is predicted to migrate. PolyA — the number of adenosine residues at the 3" end of
the RNA that do not match the reference sequence and are therefore inferred to be
added post-transcriptionally.

Family 2, Family 2, Family 2, Family 2, Family 1, Family 1, Family
I11.9 I11.10 11.11 111.8 11.8 1.6 1,11.1

Status Affected Affected Affected Affected Affected Unaffected | Affected
Uniquereads | 30293109 | 23468401 | 28223264 | 31470349 | 30329427 | 36841048 n/a
% Aligned 0.79 0.78 0.77 0.78 0.78 0.78 n/a
min 10x
depth % 0.79 0.70 0.75 0.79 0.77 0.82 n/a
Tot variants 21372 20316 20930 21478 21542 22161 20075
Homozygous
variants 8696 8298 8741 8642 8535 8795 7690
Non-syn
variants* 4308 4106 4358 4340 4228 4335 3542
Novel
variants 47 36 63 61 56 62 17

Table S2. Exome Sequence Data Summary. Summary of all the variants for each
patient (affected and unaffected) where exome sequencing was performed. Results from
Exome Sequencing of Families 1 and 2 with variants identified. *includes stop, gain,
indel and splice variants. Total shared variants: 1 RNASEH1 V142l. All three
unaffected family members sequenced had at least one wild-type RNASEH1 allele.
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Figure S1. A) In contrast to the new preparations of mouse mtDNA (Fig. 1A), no L-strand
nucleic acids species (other than the full-length linear restriction fragment, 1n) were
detected when small bubble (sb) structures were gel-purified from the base of an initiation
arc, denatured and re-fractionated by 1D-AGE — lower gel image. The L- and H- strand
riboprobes for mouse (m) mtDNA spanned np 15,511-16,034. T — total undigested mouse
MtDNA. Panel A is adapted from (8). B) Psoralen-ultraviolet crosslinking markedly
increased the signal (i.e. the stability or integrity) of the small bubble-like structures. DNA
from crosslinked (b and d) or control (a and c) rat mitochondria or liver homogenate,
digested with BspH1, prior to 2D-AGE and hybridization to a probe spanning np 15,732-
16,077 of the Control Region (CR) of rat (r) mtDNA. Crosslinking also prevented cleavage
at the np 14,208 BspHL1 site in a fraction of molecules producing a new spot (1n [14,208-
1,361] + 1n [12,023-14,208]) and an accompanying small bubble (sb) arc. Cyt b —
cytochrome b gene. Panel B is adapted from (9). Based on the new findings reported here
the small bubbles comprise D-loops and R-loops in similar amounts.
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Figure S2. Purification of mouse liver mitochondrial DNA at 4°C improves the
quality of the replication intermediates. Purified mtDNA from mouse liver mitochondria
(see methods) were digested with Bcll and blot hybridized to probe np 15,551-16,034,
after 2D-AGE. Omission of the proteinase K (PK) step at 50°C after detergent (sarcosine)
lysis yielded longer initiation arcs (the final portion indicated in gray in the cartoon), and
reduced the signal from the sub-Y arc (again indicated in gray in the cartoon) (panels c
and d compared to a and b). ‘Retracted’ initiation arcs and sub-Y arcs are attributable to
the degradation of RNA associated with replicating mtDNA molecules (detailed in (3)).
Hence the RNA/DNA hybrids of mtDNA are adjudged to be better preserved using
protocols ¢ and d compared to a and b. Therefore, the 50°C step was avoided for the
analysis of RNA/DNA hybrids in the control region of murine liver mtDNA in this report. Y
— standard replication fork arc; Sub-Y — partially degraded Y arc, SMYs — slow-moving Y
arcs attributable to RNA/DNA hybrids at Bcll sites (nps 7,084, 11,329 and 12,034)
outside the control region (detailed in (3)).
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Figure S3. Restriction enzymes, Bgll and Ban2 cleave 7S DNA in the form of a D-
loop, but not free 7S DNA; they also cut some but not other small bubble structures
associated with fragments of mtDNA containing the control region. (A) Purified
murine liver mtDNA was digested with Bgll or Ban2, in one case the samples were pre-
heated to 70°C for 15 min to release 7S DNA before loading (preventing cleavage by the
restriction enzymes); all were fractionated by 1D-AGE (1% Tris-acetate) and blot
hybridized to a probe within the CR (np 15,551-16,034). (B) Murine liver mtDNA digested
with Ban2 and blot hybridized to probe np 14,903-15,401, after 2D-AGE. Interpretations
are shown in the carton: SMYs arising due to RNA/DNA hybrids formed on replicating
MtDNA molecules have been described in detail previously (3); R-loops (R) with RNA
(red) across np 15,749 prevent Ban2 cleavage at this position, whereas the 7S DNAs of
the D-loop (D) (and nascent strands — blue) are cleaved by Ban2.
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Figure S4. D-loop and R-loop species in mouse and rat tissues. (A) Mitochondrial
DNA molecules refractive to Ban2 digestion extracted from a variety of mouse tissues.
Mitochondrial DNA extracted from sucrose gradient purified mitochondria (SG mt) of B -
brain, H - heart, K - kidney or L - liver mitochondria was digested with Ban2 and
fractionated by 1D-AGE (1% Tris-borate), blot hybridized to a probe spanning np 15,450-
16,034 of the mouse mitochondrial genome. Separately, total tissue DNA was extracted



from murine kidney and brain after dounce homogenization and 10 yM, 10 psoralen/UV
cross-linking at 365 nm for 10 min (XL), and subjected to the same Ban2 digestion and
fractionation. Interpretations are shown to the sides of the gel images. R - R-loops with
RNA in red across np 15,749 prevents Ban2 cleavage at this position, whereas the 7S
DNAs (blue), of the D-loop (D), are cleaved by Ban2. A gray box covers one lane that
does not add materially to the results. The preparation of liver mitochondria was slower
than for the other tissues, which may account for the few surviving R-loops on this
occasion in this tissue. The species assigned as D-loop containing fragments were, as
expected, modified by mung bean nuclease (MBN) treatment that cleaves single stranded
DNA (inset). (B) Psoralen/UV crosslinking of rat liver mtDNA vyields an arc projecting from
the R-loop and D-loop spots that is commensurate with synthesis of a dual D/R-loop. DNA
from cross-linked rat mitochondria, digested with BspH1, prior to 2D-AGE and
hybridization to a probe to the CR (panel B is adapted from (9)).
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Figure S5. Pedigrees of the two families (1 and 2) with a homozygous missense
mutation in RNASEH1, c.424G>A; p.Vall42lle (A) and muscle histochemistry of an
affected patient (II-8) (B). Chromosome annotations in panel A, y-homozygous c.424G,

*-homozygous c.424A (V142l), [1-heterozygous individuals. Sparse atrophic fibres
visualized in Haematoxylin and Eosin preparation (B-i). Succinate dehydrogenase
staining revealed ragged red equivalents (white arrow) (B-ii). Histochemical staining for
cytochrome c oxidase demonstrated significant numbers of fibres with deficient enzyme
activity (B-iii). Sudan black stain showing increased lipid droplets in central fibers (B-iv).
Bar represents 50 uym in B-i-iii and 25 pm in B-iv.
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Figure S6. Primer retention generates RNA/DNA hybrids that are refractive to
restriction digestion, but primer retention is not evident in V142l RNase H1
fibroblasts. (A) An inability to remove the RNA spanning LSP to Ori-H (or Ori-b, not
illustrated) in MEFs lacking RNase H1 blocks a restriction site at np 16,179, immediately
downstream of LSP (adapted from (15)). (B) Likewise, primer retention in human mtDNA
will result in failure to cut mtDNA molecules at the np 323 Msc1l site. However, np 323 is
cut as normal in cells with V142I RNase H1 (Fig. 5E) and nascent strands and 7S DNAs
remain the usual length, with and without in vitro RNase HI treatment (Fig. 6B and panel
C above). (C) DNA from V1421 and control fibroblasts and 143B cells was BsaW1l



digested, denatured, fractionated and probed as per Fig. 6B, additionally some samples
were treated (+) with E. coli RNase HI.
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Figure S7. 2D-AGE analysis indicates R-loops are less abundant in fibroblasts with
mutant RNase H1 than controls. DNAs from human fibroblasts with wild-type (control)
or mutant (V142l) RNase H1 were digested with the indicated restriction enzymes,
fractionated by neutral 2D-AGE and blot hybridized to riboprobe h-H15869-168. Cells
were subjected to UV/psoralen cross-linking (10 uM TMP, 10 min UV 365 nm) prior to
nucleic acids isolation. The control fibroblasts for these experiments derived from a
different individual to those used in the 1D-AGE, R-loop assay (Fig. 6C). On average R-
loop abundance was ~6 fold lower in V142]| fibroblasts than the two control cell lines
tested (n = 3 independent experiments).
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Figure S8. V142] RNase H1 is associated with enlarged mtDNA foci in human
fibroblasts. (A) An example of the pronounced mtDNA clustering in V142] RNase
H1 cells compared with control fibroblasts (7301) imaged by confocal microscopy
after incubation with antibodies to the mitochondrial outer membrane protein
TOM20 (red) and to DNA (green), merged images are shown. The control
fibroblasts for these experiments derived from a different individual to those shown
in Fig. 7. The number of cells displaying clustering of mtDNA and its extent were
much higher in V142I cells compared to six other fibroblast lines (three of which
have a potential or confirmed mitochondrial disorder - thereby excluding
generalized mitochondrial dysfunction as a cause of mtDNA aggregation). (B) The
proportion of cells with mtDNA foci larger than the modal 0.3 pm in a
representative control cell line compared with fibroblasts with V142l RNase H1 (n
= 4 independent experiments, error bars are standard deviation from the mean).
Unpaired two-tailed t test with Welch's correction, p = 0.0008.
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Figure S9. RNase H1 ablation in murine flbroblasts or knockdown in human
osteosarcoma cells results in the formation of enlarged mitochondrial DNA
foci. MEFs were cultured without (Control) or for 5 or 7 days with 4-hydroxy-
tamoxifen (ARNase H1) (as previously (10)). Human 143B cells were transfected
with a non-target siRNA or siRNA to RNASEH1, and imaged 72 hours later.




Immunocyto-chemistry was performed with anti-DNA antibodies (green). White
arrows indicate examples of enlarged mtDNA foci.
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Figure S10. V1421 RNase H1 quiescent cells and muscle display mtDNA
disorganization and aggregation. (A) Individual components of the merged
images of Fig. 8B and DAPI-labeled nuclei. (B) additional images of individual
muscle fibers labeled with anti-DNA antibodies (green); and (C) muscle sections of
a control and the index case with V142] RNase H1. Anti-DNA - green, Anti-TOM20
(mitochondria) - red. The sizes of the mtDNA foci in muscle sections of the control
were 0.25-0.38 um, similar to those of control fibroblasts (Fig. 7). The nuclei in
muscle are denser than in fibroblasts and other cultured cells, which we infer
accounts for the non-specific labeling of some nuclei with anti-TOM20. Purple
signal in (C) is autofluorescence.
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Figure S11. V1421 RNase H1 does not decrease the levels of four mature
mitochondrial mRNAs or their precursors. RNA was isolated from patient-derived
(V142l) and control (CF — L1068) fibroblasts. Five microgram lots were fractionated by
1D-AGE in MOPS buffer (see Materials and Methods) and blot hybridized to ribobprobes
complementary to mitochondrial mRNAs encoding ATP synthase subunits 6 and 8
(ATP6/8), NADH dehydrogenase 2 (ND2), cytochrome oxidase subunit 2 (COX2) and
cytochrome b (cyt b). The ATP6/8 and cyt b probes also bound non-specifically to the
abundant 28S and 18S rRNAs of cytosolic ribosomes.
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