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Abstract

Background: DMBT1 is a gene that shows extensive copy number variation (CNV) that alters the number of
bacteria-binding domains in the protein and has been shown to activate the complement pathway. It lies next to
the ARMS2/HTRA1 genes in a region of chromosome 10q26, where single nucleotide variants have been strongly
associated with age-related macular degeneration (AMD), the commonest cause of blindness in Western
populations. Complement activation is thought to be a key factor in the pathogenesis of this condition. We sought
to investigate whether DMBT1 CNV plays any role in the susceptibility to AMD.

Methods: We analysed long-range linkage disequilibrium of DMBT1 CNV1 and CNV2 with flanking single nucleotide
polymorphisms (SNPs) using our previously published CNV and HapMap Phase 3 SNP data in the CEPH Europeans
from Utah (CEU). We then typed a large cohort of 860 AMD patients and 419 examined age-matched controls for
copy number at DMBT1 CNV1 and CNV2 and combined these data with copy numbers from a further 480
unexamined controls.

Results: We found weak linkage disequilibrium between DMBT1 CNV1 and CNV2 with the SNPs rs1474526 and
rs714816 in the HTRA1/ARMS2 region. By directly analysing copy number variation, we found no evidence of
association of CNV1 or CNV2 with AMD.

Conclusions: We have shown that copy number variation at DMBT1 does not affect risk of developing age-related
macular degeneration and can therefore be ruled out from future studies investigating the association of structural
variation at 10q26 with AMD.

Background
Age-related macular degeneration (AMD) is the leading
cause of severe visual impairment in individuals over the
age of 50, and affects the central region of the retina
(the macula) containing the highest concentration of
cone photoreceptors responsible for normal visual acuity
[1–3]. Although the etiology and pathogenesis of AMD
are not fully understood, numerous studies indicate that
risk factors are both genetic and environmental include
age, sex, ethnicity, smoking, hypertension and diet [4, 5].
Despite the multifactorial nature of AMD, and variable
phenotype definitions, two genetic regions at 1q32 and

10q26 have been repeatedly implicated by linkage analysis
and subsequently by genome-wide association studies
[5–13]. The estimated effect sizes of the index SNPs
at these two loci are also notable, with a fifty-fold increase
in AMD risk in those individuals who are homozygous
at both loci, with 65 % of AMD cases attributable to
variation at these two SNPs [14].
The genetic signal at 1q32 has subsequently been

shown to be due to variation involving genes of the
Regulators of Complement Activation (RCA) alpha block,
including complement factor H (CFH) and the comple-
ment factor H related genes (CHFR1-5). The Y402H poly-
morphism in CFH is strongly associated with AMD as
well as several other SNPs in the CFH region [5, 15, 16].
Furthermore, an 84 kb deletion removing the CFHR3 and
CHFR1 genes shows protection against AMD [17, 18].
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This deletion is part of a spectrum of different copy num-
ber variants within the RCA region, with deletion and du-
plication mediated by different segmental duplications,
and there is suggestive evidence that a rare deletion in-
volving CFHR1 and CFHR4 is associated with bilateral
geographic atrophy, one of the two main phenotypic vari-
ants of AMD [19, 20]. In addition to the identification of a
strong genetic association between AMD and the RCA re-
gion, variation within several other complement genes
such as complement factor B (CFB)/complement 2 (C2)
[21], complement 3 (C3) [22] and complement factor I
(CFI) [23] has been found to be associated with AMD.
Taken together, these findings point to an important role
of the complement innate immune response in the etiology
of AMD [24].
The functional basis of the association at 10q26 remains

unclear. Although there is some evidence that rs10490924
in the ARMS2 gene affects systemic complement activa-
tion [25], this remains controversial and the genes HTRA1
and PLEKHA1 do not have convincing links with the
complement pathway. In contrast, the DMBT1 (Deleted in
Malignant Brain Tumors 1) gene, 106 kb distal of
rs10490924, encodes a glycoprotein which is known to
bind complement C1Q [26] activate complement by the
mannose-binding lectin pathway [27, 28], and promotes
VEGF expression. DMBT1 (also known as gp340, salivary
agglutinin, muclin or hensin) is present on the surfaces of
the eye, being abundant in tears and in the lacrimal glands
with a lesser amount detected in cornea and conjunctiva
[29], and is expressed in the retina [30].
Sequence variation within and surrounding DMBT1 is

poorly represented on SNP genotyping chips. However,
given the distance between the rs10490924 risk allele
and DMBT1, it is unlikely that a common single nucleo-
tide polymorphism around DMBT1 is responsible for the
association with AMD. We considered it possible, how-
ever, that the association may, at least in part, be due to a
synthetic association with a copy number variant (CNV)
of very strong effect size. This might be possible particu-
larly if that CNV was rare or due to recurrent mutation
that happened to occur on a rs10490924 risk allele
background, and therefore be in LD with that allele [31].
Indeed, the observation that 10q26 had been identified in
linkage studies of AMD is not inconsistent with a
synthetic association with a rare or moderate frequency
allele of very strong effect.
We and others have previously shown DMBT1 exhibits

extensive copy number variation that affects the number
of scavenger-receptor cysteine-rich domains (SRCR)
within the protein [32–34] (Fig. 1). The copy number
variation is confined to two loci within the gene, termed
CNV1 and CNV2. Both show a high copy number muta-
tion rate (of the order of 1–2 % per generation) and copy
number at the two loci is not correlated at the population

level. There is extensive variation at the population level,
such that individuals are predicted to have between 7 and
20 SRCR repeats per DMBT1 molecule.
Investigating the relationship between flanking SNP

variation and CNV also casts light on the extent to which
CNV can be tagged by flanking SNPs because of linkage
disequilibrium (LD). Even partial tagging would allow
CNV to be indirectly imputed rather than directly geno-
typed, and this remains a topic of considerable interest in
the literature. This is primarily because even imperfect im-
putation could indicate a role in disease susceptibility for
certain CNVs, particularly given extremely large sample
sizes. It is generally established that, using current imput-
ation panels, whether a CNV is taggable depends on its
mutational history, with CNVs generated by a unique mu-
tational event such as most simple deletions and duplica-
tions being more taggable than complex multiallelic CNVs
generated by recurrent mutation [35, 36].
We sought to explore the role of DMBT1 CNV in

AMD by investigating the linkage disequilibrium be-
tween copy number variations at DMBT1 and common
SNP alleles surrounding the gene and the association of
DMBT1 CNV with AMD in a large case–control cohort.

Methods
AMD case–control collection, DMBT1 CNV and SNP
genotype data
The AMD case–control collection comprised cases with
predominantly advanced AMD (either geographic atrophy
or choroidal neovascularization) and spouse controls re-
cruited from hospital ophthalmic clinics in London and
the South East of England [22]. All subjects were exam-
ined by an ophthalmologist and had colour, stereoscopic
fundus photography of the macular region. All the images
were graded at the Reading Centre, Moorfields Eye Hos-
pital, London using the International Classification of
Age-related Maculopathy and Macular Degeneration [37].
All subjects described themselves as “white” on a recruit-
ment questionnaire. DNA samples were obtained from a
total of 1533 individuals. Each DNA plate contained both
patients and controls and those undertaking the analysis
were unaware of disease status of each sample.
DMBT1 CNV data from the HapMap Phase 1 CEU

cohort and the UK Human Random Control (HRC) co-
hort was published previously [34]. SNP genotype data
for the Phase 3 (release 27) HapMap 1 CEU cohort was
downloaded from the International HapMap Project
(ftp://ftp.ncbi.nlm.nih.gov/hapmap/). SNP genotype data
for the AMD case–control cohort was available from pre-
vious whole-genome SNP genotyping studies [5].

DMBT1 copy number typing
Typing of diploid copy number of DNA samples used
paralogue ratio test methods previously described [34],
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which involves amplification of 10 ng of DNA using
fluorescently labelled primers matching both test and
reference loci. Briefly, CNV1 was typed using two distinct
PRT assays, PRT1 and PRT2, with CNV2 typed using a
further two distinct PRT assays, PRT3 and PRT4. Copy
numbers for CNV1 and CNV2 were subsequently called
using a Gaussian mixture model on the mean value of
both PRTs, implemented using the CNVtools v1.42.3
package for the statistical software R v2.15.3 [38]. Previous
analysis has shown that these assays have an error rate of
0.37 % for CNV1 and 0.33 % for CNV2 [34].

Linkage disequilibrium and association analysis
Linkage disequilibrium (LD) in HapMap trio data was
analysed using Haploview [39]. Association analysis be-
tween CNV and flanking SNPs on HapMap CEU
founder individuals was performed using PLINK v.1.0.7,

using an additive model for the SNPs, treating CNV copy
number as a quantitative trait, and visualised using Locus-
Zoom [40]. Samples from the AMD dataset where
DMBT1 CNV was called were matched to clinical data
and case–control association analysis was carried out on
late AMD cases and examined controls using logistic re-
gression and Stata (version 13.1, StataCorp LP, College
Station, TX).

Results and discussion
We began this study by using our previously published
DMBT1 CNV data [34] and publically available SNP data
on the HapMap CEU population, as a representative of a
north-west European population, to investigate any evi-
dence for long-range LD involving DMBT1 CNV1 and
CNV2. There are several problems inherent in examining
the LD between multiallelic copy number variants and

Fig. 1 Overview of copy number variation within the DMBT1 gene. The top half shows a dot plot of the DMBT1 gene (shown below, in blue,
from a screenshot from the UCSC genome browser) aligned against itself. Black dots indicate regions of sequence identity, with the diagonal
lines showing the tandemly-repeated nature of the DMBT1 gene. The tandemly-arranged SRCR repeat regions are annotated as numbers on this
dot plot, including SRCR14 which does not bind bacteria [44]. The bottom half shows the genome assembly of the DMBT1 gene, with one assembled
copy of CNV1 and four assembled copies of CNV2. CNV regions, as recorded in the Database of Genomic Variants, are shown below the DMBT1 gene
structure. Below these, location of reference and test amplicons of the four independent paralogue ratio tests (PRTs) that measure copy number of CNV1
and CNV2 are shown
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SNPs. Firstly, multiallelic CNVs are often within regions
of segmental duplication, where SNPs cannot be geno-
typed, and indeed may not exist as true diallelic polymor-
phisms. Secondly, most methods that measure copy
number variation, such as qPCR, PRT, arrayCGH and se-
quence read-depth, rely on dosage information. This dos-
age information is for both alleles of the CNV, so that the
resulting dosage is a sum of the two alleles at a diploid
locus. Resolving this dose information into a true copy
number genotype – for example determining whether a
diploid copy number of 4 is a 2–2 genotype, 3–1 genotype
or 4–0 genotype – requires observation of copy number

in extended pedigrees so that the constituent alleles segre-
gate as different combinations in different offspring.
Although the HapMap SNP data provides a densely

SNP genotyped map of the human genome, the SNP
density is low within and surrounding the DMBT1 gene
(Fig. 2), such that only long-range LD can be examined.
For CNV1 of DMBT1, we directly determined diploid ge-
notypes of HapMap CEU trios using long PCR. Because
most CNV1 variation can be regarded as presence or
absence of a deletion allele, we recoded this variation as
diallelic, equivalent to the DMBT1SR47- deletion reported
previously [32], such that a copy number of 0 is regarded

Fig. 2 Regional association plots of DMBT1 copy number variation and flanking SNPs. Analysis of SNPs within the 1 Mb region flanking DMBT1
and association with diploid copy number of a CNV1 and b CNV2. The left-hand y-axis shows statistical support for an association, as measured
by the negative log10 of the p-value of the linear regression test of association. The right-hand y-axis shows the recombination rate inferred from
HapMap population data. The index SNP is shown as a diamond, and is annotated with its rs number. The size of each point reflects the number
of genotypes for that particular SNP, and the colour of each point reflects the strength of association with the index SNP
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as a homozygous deletion, a copy number of 1 as a hetero-
zygous deletion and copy numbers of 2 and higher as
homozygous non-deleted. This allowed conventional
determination of linkage disequilibrium. Pairwise LD of
CNV1 with rs10490924, which has previously been shown
to be most strongly associated with AMD, showed a D’
value of 1 and r2 value of 0.031, although the logarithm
of odds (LOD) score, was only 0.75, reflecting weak
confidence in the value of D’.
We also treated copy number for the two independent

CNVs within DMBT1 as a quantitative trait for associ-
ation analysis in the unrelated CEU individuals. The lack
of genotype information for CNVs is likely to result in a
loss of power. Furthermore, an r2 value, reflecting the
squared correlation coefficient of the SNP genotype and
copy number, is used as a measure of allelic association,
but is not directly comparable to r2 values between
SNPs. Nevertheless, such information gives an indication
of the relationship between a CNV and flanking SNPs. In
general, as expected, there is weak association between
copy number and flanking SNPs. Copy number at CNV1

is associated with rs1474526 (r2 = 0.14, p = 3.2 × 10−3), a
PLEKHA1/ARMS2 intergenic SNP which itself is only in
weak LD with flanking SNPs (Fig. 2a). For CNV2, stron-
gest association was with rs714816 (r2 = 0.12, p = 6.6 × 10
−3, Fig. 2b), which is within the intron of the HTRA1 gene
and has been previously associated with AMD, although it
is not the most strongly associated in the region [41].
Given the suggestive evidence at least some allelic as-

sociation between CNVs and SNPs around the ARMS2
and HTRA1 genes, as well as the strong functional can-
didacy of DMBT1, we directly tested for an association
of CNV1 or CNV2 copy number with AMD using a
case–control design. Copy number typing of cases and
controls showed raw values that clustered about integer
copy numbers, and integer copy number was assigned to
each individual using Gaussian mixture modelling (Fig. 3).
Of 1533 DNA samples of cases and examined controls
typed for this study, 5 had a posterior probability of a call
less than 0.99 for CNV1, of which 2 were excluded follow-
ing retesting, and for CNV2, 328 out of 1533 had a had a
posterior probability of a call less than 0.99 but all had a

Fig. 3 Raw copy number histograms and Gaussian mixture models. Raw copy number data, plotted as a histogram, for a CNV1 and b CNV2. The
normalised signal, shown on the x-axis, reflects raw average PRT values normalised so that the overall standard deviation of the data is 1. Lines
indicate the Gaussian mixture model fit, with numbers above each curve indicating the diploid copy number inferred
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posterior probability >0.5 for any given call. A small num-
ber of outliers (for example one DNA sample with CNV1
copy number 4 sample) were removed prior to Gaussian
mixture model calling of copy number, and copy number
called manually. The samples where copy number was
called were matched to clinical data and the resulting 860
advanced AMD cases and 419 examined controls were
used in the case–control association analysis. Copy num-
ber distributions ranged from 0 to 4 for CNV1, and from
2 to 13 for CNV2, consistent with previous studies
(Tables 1, 2, [34]). We found no association of diploid
copy number with disease status (Table 3). We also reclas-
sified CNV1 as DMBT1SR47- deletion as previously [34],
and found no association of CNV1 or CNV2 with disease
status, either using matched examined controls or larger
control cohort including 479 unexamined controls from
the HRC cohort (Table 3). Furthermore, because the
AMD cases and examined controls had been genotyped
for rs10490924, we were able to analyse LD between this
SNP and DMBT1SR47-. There was no evidence of LD be-
tween the two loci (r2 = 0.004, D’ = 0.25). As expected,

rs10490924 genotype was strongly associated with AMD
(Table 4).
Sequence variation within and immediately surround-

ing the DMBT1 gene was not investigated for association
with AMD in this study. It is poorly represented on
genotyping chips, and uncertainties in aligning short se-
quence reads to a tandemly-repeated structure have pre-
vented a full interpretation of variation of the gene.
Nevertheless, analysis of low-coverage sequencing data
outside the known CNV regions has led to the 5′ end of
DMBT1 being identified as a region that has been sub-
ject to balancing selection [42]. The role of a rapidly-
mutating CNV, putatively under selection pressure, on
surrounding SNP variation remains to be explored.
However, although such SNP variation may be effectively
untagged by current SNP markers, it is very unlikely to
account for the strong association signal with AMD at
10q26 because of the clear breakdown of LD between
SNPs from rs10490924 towards DMBT1.
Could variation at rs10490924 be affecting expression

levels of DMBT1? Initial examination of eQTL datasets
suggests not, although such long range interactions are
very likely; indeed, three SNPs within DMBT1 are eQTLs

Table 1 Frequency of CNV1 in advanced AMD cases and controls

CNV1 Cases Controls (matched) Controls (HRCa)

Count Frequency Count Frequency Count Frequency

0 8 <0.01 6 0.01 2 <0.01

1 141 0.16 75 0.18 79 0.16

2 687 0.80 329 0.79 387 0.81

3 23 0.03 8 0.02 11 0.02

4 1 <0.01 0 0 1 <0.01

total 860 418 480
aHuman Random Control collection

Table 2 Frequency of CNV2 in advanced AMD cases and controls

CNV2 Cases Controls (matched) Controls (HRC)

Count Frequency Count Frequency Count Frequency

2 27 0.03 11 0.03 11 0.02

3 83 0.10 45 0.11 48 0.1

4 162 0.19 79 0.19 110 0.23

5 230 0.27 114 0.27 125 0.26

6 206 0.24 104 0.25 104 0.22

7 84 0.10 46 0.11 51 0.11

8 44 0.05 13 0.03 23 0.05

9 18 0.02 7 0.02 4 <0.01

10 4 <0.01 0 0 4 <0.01

11 1 <0.01 0 0 0 0

12 0 0 0 0 0 0

13 1 <0.01 0 0 0 0

total 860 419 480

Table 3 Association of DMBT1 CNV1 and CNV2 copy number
with advanced AMD

Variation Control group Odds ratio
(95 % CI)

p-value

CNV1 Matched controls (unadjusted) 1.18 (0.92–1.51) 0.20

Matched controls (adjusted
for age, sex and smoking status)

1.15 (0.88–1.51) 0.30

All Controls 1.06 (0.86–1.30) 0.57

CNV2 Matched controls 1.04 (0.96–1.12) 0.32

Matched controls (adjusted
for age, sex and smoking status)

1.01 (0.93–1.10) 0.81

All Controls 1.03 (0.98–1.11) 0.22

DMBT1SR47- Matched controls 0.87 (0.66–1.14) 0.31

Matched controls (adjusted
for age, sex and smoking status)

0.89 (0.66–1.19) 0.43

All controls 0.96 (0.77–1.21) 0.73

Table 4 Association of rs10490924 with advanced AMD

Cases Controls

Count Frequency Count Frequency

GG 250 0.29 260 0.62

GT 423 0.50 140 0.34

TT 175 0.21 16 0.04

Total 848 1.00 416 1.00

missing genotypes 12 - 3 -

Unadjusted p value 7.8 × 10−30 OR = 3.25 (95 % CI: 2.65–3.98), n = 1264
Adjusted p value (for age, sex, smoking) 1.5 × 10−28 OR = 3.37 (95 % CI:
2.72–4.18), n = 1175
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for HTRA1 in monocytes [43]. It should also be noted that
no results from an eQTL analysis of retinal tissues, or in-
deed any tissues where DMBT1 is significantly expressed,
have been published.

Conclusion
We have shown that copy number variation at DMBT1
does not affect risk of developing age-related macular
degeneration, and can therefore be ruled out from future
studies investigating the nature of association signal at
10q26.
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