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Abstract

Estimates of animal abundance are essential for understanding animal ecology.

Camera traps can be used to estimate the abundance of terrestrial mammals,

including elusive species, provided that the sensitivity of the sensor, estimated as

the effective detection distance (EDD), is quantified. Here, we show how the

EDD can be inferred directly from camera trap images by placing markers at

known distances along the midline of the camera field of view, and then fitting

distance-sampling functions to the frequency of animal passage between markers.

EDD estimates derived from simulated passages using binned detection distances

approximated those obtained from continuous detection distance measurements

if at least five intervals were used over the maximum detection distance. A field

test of the method in two forest types with contrasting vegetation density, with

five markers at 2.5 m intervals, produced credible EDD estimates for 13 forest-

dwelling mammals. EDD estimates were positively correlated with species body

mass, and were shorter for the denser vegetation, as expected. Our findings sug-

gest that this simple method can produce reliable estimates of EDD. These esti-

mates can be used to correct photographic capture rates for difference in

sampling effort resulting from differences in sensor sensitivity between species

and habitats. Simplifying the estimation of EDD will result in less biased indices

of relative abundance, and will also facilitate the use of camera trap data for esti-

mating animal density.

Introduction

Estimation of animal abundance is essential for under-

standing animal ecology and for wildlife management and

conservation. However, for many species (e.g., forest-

dwelling mammals, elusive carnivores) conventional tech-

niques such as capture–mark–recapture or line transect

counts are difficult and time consuming (Wilson and

Delahay 2001). Cameras with passive infrared (PIR) sen-

sors, commonly referred to as camera traps or trail cam-

eras, can detect rare, cryptic and elusive animals and are

increasingly used to detect and monitor wildlife world-

wide (Rowcliffe and Carbone 2008). PIR sensors detect a

difference in heat and motion between subjects and the

environment and trigger the camera if the difference

exceeds a pre-set threshold (Rovero et al. 2013). Thus,

animals that are warmer than their surroundings will trig-

ger the camera when passing within the range of the sen-

sor and are photographed or filmed.

When animals can be individually identified, camera

traps can be used to perform conventional capture–mark–
recapture using the capture rate of known individuals

(Karanth and Nichols 1998). For animals that cannot be

distinguished individually, camera traps are often used to

derive relative abundance estimates, reasoning that photo-

graphic capture rates – the number of visits recorded per

unit time – of a species will be proportional to its abun-

dance (Carbone et al. 2001). However, the use of capture
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rates as relative abundance indices has received criticism,

as capture rates are influenced by other factors besides

animal abundance, which can lead to important biases

(e.g., Sollmann et al. 2013). Some of these factors are

related to non-random movement of the focal species,

such as the preferred use of trails. However, most factors

that bias capture rates are related to the PIR sensor of the

camera trap: camera type, camera placement, animal size,

vegetation density, temperature and relative humidity all

influence the effective range of the sensor (Kelly and

Holub 2008; Rowcliffe et al. 2011). Some of these factors

can be dealt with using adequate sampling design, for

example, using the same camera model and thus the exact

same PIR sensors (Rovero et al. 2013), the same sampling

period, similar climate and random sampling points

(Kelly and Holub 2008; Sollmann et al. 2013). However,

when the goal is to compare different species, or the same

species in different habitat types, biases may remain a

problem.

Although larger animals omit less heat per unit of mass

than small animals, they still omit a larger absolute

amount of heat (thermal infrared) than do small animals

(Mcnab 1980). Therefore, the PIR sensor of a camera trap

is more sensitive to large animals than to smaller animals

(Rowcliffe et al. 2011). Furthermore, most PIR sensors

are more sensitive in the middle of the field of view

(FOV) than at the edges (Rovero et al. 2013), which also

results in differences in detectability between large and

small species (Rowcliffe et al. 2011). The resulting differ-

ences in sampling area can be corrected for by estimating

the effective detection distance (EDD) and angle for each

species (Rowcliffe et al. 2011). The EDD is the distance at

which the number of animals detected further away

equals the number of animals missed nearer by. The esti-

mation of EDD and angle is essential for using the Ran-

dom Encounter Model (REM; Rowcliffe et al. 2008),

which estimates animal densities by correcting photo-

graphic capture rates for detection bias and species’ day

range. Rowcliffe et al. (2011) measured distances and

angles by tracking the movement path of animals through

the FOV on site, and measuring the distance and angle

from the camera at first detection, which required a sub-

stantial investment of field time. This method was

recently simplified by the use of a photograph of a grid

of markers taken after each camera deployment to esti-

mate detection distance and angle using image processing

software (Caravaggi et al. 2016).

Here, we present an further simplified method to esti-

mate the EDD directly from camera trap images. The

principle is to establish markers at known distances along

the midline of the FOV, record the frequency of animal

passage between markers and then fit distance-sampling

functions to distance distributions to estimate EDD. To

determine whether this approach was effective, we com-

pared it with the conventional method described by Row-

cliffe et al. (2011) using simulated data. Then, in a field

study, we tested whether EDD estimates derived with the

line marker method (1) increased with body mass, as lar-

ger animals emit more infrared radiation; and (2) were

shorter in denser vegetation, as vegetation affects trans-

mission of infrared radiation.

Materials and Methods

We approached detection of animals by camera traps using

distance-sampling detection models (sensu Rowcliffe et al.

2011). The trigger threshold of the PIR sensor of a camera

trap is more easily exceeded by a warm-blooded animal

walking close to the sensor than by an animal walking fur-

ther away from the sensor. When we assume that an animal

walking against the camera (distance of zero) is always

detected, we can model the probability of being detected as

a standard monotonically declining detection model. When

the distance from the camera to each animal triggering the

camera is known, these distances can be used as input for

the detection model. Although exact distances are hard to

obtain, distance classes are easily obtained from the images

if intervals are marked in the FOV, and using distance

classes is general practice in distance sampling (Buckland

et al. 2015). Distance classes can be realized by establishing

markers at known distances along lines running away from

the camera when the camera is setup. As it is not practical

to place such lines along multiple angles in the full FOV,

we reasoned that the distance at which an animal triggers

the camera and the distance at which an animal walks

through the middle of the FOV are correlated. If this

assumption holds, detection distance can be estimated by

placing a line of markers in the middle of the FOV. We

tested this assumption using a simulation (see below).

Distance data are obtained during annotation of the

photographs, as the analyst records between which mark-

ers photographed animals pass, assigning each passage to

a distance interval. All triggers of animals that do not

cross the midline are ignored. The distribution of pas-

sages over the different distance categories is then used to

fit a detection probability function from which EDD can

be estimated using standard techniques for estimating

effective strip width (line model) or effective detection

radius (point model; Buckland et al. 2001). Where a line

model assumes that the histogram of the number of

detections over the different distance categories follows a

distribution similar to the detection probability, a point

model assumes that the distribution of the histogram is

similar to the detection probability multiplied by the dis-

tance, correcting for the increase in detection area with

distance. In our case, the detection along a centre line
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may be best described by a line model, whereas the true

detection by the sensor may be better described by a

point model (Rowcliffe et al. 2011). Because the reduction

of a cone-shaped detection area to a line might not result

in a perfect line detection, we considered both models in

our analysis. The fitting of detection probability functions

to distance data can be done with several software pack-

ages such as DISTANCE (Thomas et al. 2010) or the R

package mrds (Laake et al. 2015).

Following Rowcliffe et al. (2011) we use two different

detection probability models: A half-normal model and a

hazard-rate model, respectively:

gðxÞ ¼ expð�x2Þ
2a2

(1)

gðxÞ ¼ 1� exp

�
� � x

a

��c
�

(2)

where g(x) is the detection probability at distance x, a
defines the width of the function and c the shape of the

hazard-rate function. These detection functions can also

be expanded using covariates, such as body mass, habitat

type or season (Rowcliffe et al. 2011). We fitted both sim-

ple distance-sampling models without covariates on single

species in each habitat, and multiple-covariate distance-

sampling models, including body mass and habitat as

covariates (see below; Marques and Buckland 2003). We

selected the best-performing models based on Akaike’s

Information Criterion (AIC) values as estimates of model

quality (Buckland et al. 2015).

Simulation

To determine whether EDD estimated using grouped dis-

tances along the centre line reflects EDD as estimated by

the baseline approach described by Rowcliffe et al. (2011)

using direct radial distances, we bootstrapped simulated

samples, and explored the effect of varying the number of

intervals used. For each of 1000 samples, we defined 100

random positions of first detection (point of trigger) by

drawing radii from a hazard-rate distribution and angles

from a half-normal distribution. We then assigned each

position a random direction of travel (uniform in 0–2p),
and calculated the distance at which its trajectory crossed

the camera’s line of sight (centre-line distance). To define

trajectories that could be observed to cross the camera’s

line of sight, we retained those that crossed the centre line

in front of the camera, within the maximum trigger posi-

tion distance, and after the point of trigger.

For each sample, we fitted a point detection function

model to the direct trigger distance data to provide baseline

expected EDD, using previously published methods (Row-

cliffe et al. 2011). For comparable centre line models, we

fitted both point and line models with data either binned

into 2, 3, 4, 5 or 10 equal distance intervals, or unbinned

using a grouped likelihood for the binned models (Buck-

land et al. 2001). In all cases we used hazard-rate models

with no expansion terms. We tested with different numbers

of distance intervals, as to assess what number of markers

should be used in the field to obtain reliable EDD estimates.

Here, we did not use expansion terms, as to enable a more

robust estimation of EDD with low sample size.

Field test

We field tested the method by surveying mammals in for-

ests that had contrasting densities of understory vegetation:

four 1-ha plots with Scots pine (Pinus sylvestris) and a thick

undergrowth of blueberry (Vaccinium myrtillus; dense

understory), and four with Pedunculate oak (Quercus

robur) with a sparse undergrowth of ferns (Dryopteris dila-

tata; open understory), scattered across the Netherlands

(Table S1). Within each plot, we deployed two camera traps

(HC500, RECONYX Inc., Holmen, WI) for 4 weeks, at two

random locations >30 m apart. These cameras were moved

to two new locations every 4 weeks until 14–18 different

locations were sampled. Cameras were deployed on the tree

nearest to a computer-generated random point, 40 cm

above the ground facing north and aimed parallel to the

ground. If necessary, we pruned the vegetation that blocked

the view of the camera in a strip of 1 m broad and 5 m

long in front of the camera. Vegetation was cut at 20–
30 cm height to reduce false triggers due to moving vegeta-

tion which is standard practice in camera-trapping studies

(Meek et al. 2014). Cameras were set to take a series of 10

photographs when triggered, and to be available for re-trig-

gering without delay, so that movement between the mark-

ers would be recorded. Markers (bamboo sticks of 60 cm

length) were placed in front of the camera, at intervals of

2.5 m, based on the maximum distance at which the cam-

eras could detect a human (15 m). The markers were

topped with two strips of black tape to increase visibility of

the sticks in the photographs (Fig. 1). We placed the sticks

slightly out of line, to ensure that they were all visible in the

pictures. Depending on visibility through the vegetation,

we used three to five markers, resulting in four to six dis-

tance intervals.

Photographs were managed and annotated using a cus-

tom-made photo-processing tool called ‘Agouti’ (cf. Kays

et al. 2009). All photographs were automatically grouped

into sequences if ≤5 min passed between triggers, stored

as separate sequences if separated more than 15 min and

otherwise checked manually to determine if it was the

same or a different passage that triggered the camera. For

each sequence, we noted the species and separated or

combined sequences if the automatic procedure grouped

or split passages from the same individual or group of
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individuals. Furthermore, we noted, for each individual

animal, if it crossed the midline of the FOV, and if so,

through which interval they passed. If the animals passed

just behind the last marker, we noted it as passing in an

interval of 2.5 m behind the last marker. There were no

animals that triggered the camera and passed the line

>2.5 m past the last marker.

All analyses were done in R 3.2.3 (R Core Team, 2015).

We used a two-step approach, where we first estimated

EDD for each species – habitat combination of which we

had at least 20 distance measurements (Table 1), using

models without covariates as implemented in the mrds

package version 2.1.14 (Laake et al. 2015). We estimated

EDD using point models, as these gave the best fit in our

simulation (see results). EDD was estimated as:

EDD ¼ w �
ffiffiffiffiffi
Pa

p

where w is the truncation distance, and Pa is the expected

probability of detection for an animal within distance w

from the camera (Buckland et al. 2015), which is given as

output of the ddf function in the mrds package. We used

the furthest distance at which an animal was detected as

the truncation distance.

A single body mass estimate per species was taken from

the PanTHERIA database (Jones et al. 2009). As the exact

Figure 1. Camera trap photograph with a transect of markers at 2.5 m, 5 m, 7.5 m and 10 m, and a passing red fox (Vulpes vulpes).

Table 1. Body mass, number of distance measurements obtained and total number of passes per habitat type for 13 forest mammal species that

were detected during this study.

Species Body mass (kg)1

Number of distance measurements/Total number of animals detected

Dense understory Open understory

Eurasian red squirrel Sciurus vulgaris (squirrel) 0.3 7/9

European hedgehog Erinaceus europaeus (hedgehog) 0.8 2/8

Polecat Mustela putorius (polecat) 1.0 4/5

European pine marten Martes martes (pine marten) 1.3 26/33 32/41

Stone marten Martes foina (stone marten) 1.7 9/9

Feral cat Felis catus (cat) 2.9 21/24

European hare Lepus europaeus (hare) 3.8 2/4 148/199

Red fox Vulpes vulpes (fox) 4.8 34/39 103/132

European badger Meles meles (badger) 11.9 14/18 54/68

Roe deer Capreolus capreolus (roe deer) 22.5 83/108 552/763

Fallow deer Dama dama (fallow deer) 57.2 108/131 3/3

Wild boar Sus scrofa (wild boar) 84.5 551/633

Red deer Cervus elaphus (red deer) 240.9 390/460

Detection distance sample sizes above 20 are printed in bold. Abbreviated common names in brackets are used hereafter.
1Body mass values as given in the PanTHERIA database (Jones et al. 2009).

4 ª 2016 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Estimating Effective Detection Distance T. R. Hofmeester et al.



relationship between being detected by the camera and

body mass was not known, we tested different transfor-

mations of body mass (square root, cube root and log10).

The relationship between species-specific EDD estimates

and transformed body mass was modelled with least-

squares regression for each habitat. We used transformed

parameters in a least-squares regression to be able to use

the outcome as a linear covariate in the distance-sampling

model. Secondly, we estimated EDD using multiple-cov-

ariate distance sampling (Buckland et al. 2015) with

transformed body mass and habitat as covariates. Both

covariates were modelled as additive to the scale parame-

ter of the detection function. For this analysis we used all

distance estimates, from all species in both habitats. The

advantage of using a model including covariates is that all

distance measurements for all species can be used. This

enables the estimation of EDD for species for which we

had too few measurements for fitting single-species mod-

els (Table 1).

Results

Simulation

We found that point models applied to centre-line data

(Fig. 2) matched predetermined EDD fairly well (off 5%

on average), whereas line models (Fig. S1) produced over-

estimates (by about 34% on average). Expected EDD was

somewhat sensitive to the number of intervals used in

centre-line models at very small interval numbers, with

higher estimates on average using only two intervals, but

no change in the expectation above three intervals. With

three or four intervals there was a tendency for models to

fit poorly, giving extremely low EDD estimates on occa-

sion. With five or more intervals, the result was effectively

indistinguishable from the unbinned analysis.

Field test

We recorded 13 mammal species, 9 of which had more than

20 distance measurements in one or both habitats (Table 1).

The percentage of animals that walked across the midline of

the FOV, that is, yielded distance measurements, was higher

in the areas with a dense understory (85%) than in areas

with a more open understory (74%), and differed slightly

between species (Table 1). Using the distance interval mea-

surements, a half-normal detection probability function

gave the best fit for most species–habitat combinations

except fallow deer and red fox in pine forest and European

badger in oak forest, where a hazard-rate function per-

formed marginally better (Table 2). Estimated EDD

increased significantly with body mass, as predicted, where a

log10 transformation gave the best fit (Fig. 3) both in forests

with a dense understory (Least-Squares regression:

F1,4 = 23.6, P = 0.008, R2
adj = 0.82, b = 2.4 [95% CI: 1.0–

3.8]) and an open understory (F1,4 = 8.2, P = 0.045,

R2
adj = 0.59, b = 2.4 [95% CI: 0.1–4.7]).
We then fitted detection probability functions using

multiple-covariate distance-sampling models with log10-

transformed body mass and habitat as covariates, now

using all distance estimates for all species in both habitats.

A half-normal model including both covariates had the best

fit (AIC = 6439.2; b body mass = 0.40; bhabitat = 0.19), com-

pared to a half-normal model including only body mass as

covariate (AIC = 6469.8) or a hazard-rate model including

both covariates (AIC = 6530.4). Estimates of EDD from

the half-normal covariate model are given in Table 3.

Discussion

Variation in the distance over which passing animals are

detected is a major source of error in studies that use

camera traps for estimating animal abundance (Rowcliffe

et al. 2011). This can be solved by quantifying effective

detection distance (EDD). We show that credible esti-

mates of EDD can be obtained from photographs by

establishing a line of distance markers in the field of view

(FOV) of the camera. This method is a great simplifica-

tion of previously published methods (Rowcliffe et al.

2011; Caravaggi et al. 2016), and the deployment of

markers in front of all cameras did not substantially

increase the time spend in the field, or the costs involved

in our survey compared to conventional use of camera

traps without the estimation of EDD. Our simulations

showed that estimates of EDD acquired with this method

resemble estimates using the method proposed by
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Figure 2. Bootstrapped distributions of estimated effective detection

distances using point detection function models applied to different forms

of data. Reference indicates unbinned direct distances to first detection

position. Mid line models were fitted to distances at which the same

records were projected to cross camera’s line of sight, with data binned to

varying degrees (‘Inf’ indicates unbinned analysis). Central bars are

medians, boxes are interquartile ranges and whiskers are ranges.
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Rowcliffe et al. (2011) if at least five intervals were used.

We obtained credible EDD estimates for 13 different

mammal species in two different habitats; estimated EDD

increased with species body mass and – to a lesser

degree-vegetation openness.

We found that the EDD increased with body mass

(Fig. 3), consistent with expectations based on greater

emission of heat by larger animals (Mcnab 1980). Similar

relationships were found for mammals in Peru (Tobler

et al. 2008) and in Panama (Rowcliffe et al. 2011). Scaling

of EDD with body mass shows that uncorrected photo-

graphic capture rates yield overestimates of relative

abundance for large species for which sampling effort is

effectively larger. This scaling seems to be corresponding

to a log10 transformation of body mass, which is also

consistent with previous findings (Tobler et al. 2008;

Anile and Devillard 2016). We used estimates of body

mass from the global PanTHERIA database (Jones et al.

2009), which might differ from the actual body mass of

the local populations, thus introducing error. Therefore,

we advise to use body mass estimates obtained from local

populations. If age or sex can be distinguished from the

Table 2. Effective Detection Distance (EDD) of terrestrial mammals in two forest types in the Netherlands, estimated with the marker transect

method using single-species, single-habitat point detection models.

Species

Dense understory Open understory

AIC1

EDD m (SE)

AIC1

EDD m (SE)Half-normal Hazard rate Half-normal Hazard rate

Pine marten 44.1 46.1 2.73 (0.30) 74.5 76.6 3.86 (0.35)

Cat 57.5 60.2 4.81 (0.63)

Hare 391.0 400.9 4.77 (0.21)

Fox 94.7 91.8 3.45 (1.13) 245.7 251.5 4.37 (0.25)

Badger 148.1 146.2 7.38 (0.51)

Roe deer 250.6 252.4 5.95 (0.35) 1640.2 1654.7 6.11 (0.15)

Fallow deer 349.3 348.0 7.24 (0.77)

Wild boar 1616.8 1649.9 5.40 (0.11)

Red deer 1327.5 1332.7 8.45 (0.27)

Only species with more than 20 distance measurements per habitat type were included.
1EDD estimates are given for the best performing model, highlighted in grey.
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Figure 3. Relationship between the Effective Detection Distance

(EDD) estimated with single-species, single-habitat detection functions

based on distance intervals obtained from camera trap images using

the marker method and body mass of the species. Lines represent

linear regression fits for forests with dense understory (filled symbols,

solid line) and with open understory (open symbols, dotted line).

Whiskers are standard errors.

Table 3. Effective Detection Distance (EDD) of terrestrial mammals in

camera trap surveys in two forest types in the Netherlands estimated

with the marker transect method using multiple-covariate point mod-

els with log10 body mass and habitat as covariates, using all measure-

ments from all species.

Species1
Dense understory Open understory

EDD m (SE) EDD m (SE)

Squirrel 2.40 (0.17) 2.90 (0.14)

Hedgehog 2.79 (0.15) 3.37 (0.12)

Polecat 2.90 (0.14) 3.50 (0.12)

Pine marten 3.05 (0.14) 3.68 (0.11)

Stone marten 3.19 (0.13) 3.85 (0.11)

Cat 3.51 (0.12) 4.24 (0.10)

Hare 3.69 (0.11) 4.45 (0.09)

Fox 3.84 (0.11) 4.63 (0.09)

Badger 4.50 (0.09) 5.43 (0.08)

Roe deer 5.03 (0.08) 6.07 (0.07)

Fallow deer 5.92 (0.07) 7.11 (0.06)

Wild boar 6.34 (0.07) 7.58 (0.06)

Red deer 7.55 (0.06) 8.88 (0.05)

1Species are ordered by body mass. Species for which a single-species,

single-habitat estimate of EDD is available in Table 2 are highlighted

in bold.
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camera trap footage, using age- and sex-specific estimates

of body mass can further improve precision.

Many camera-trapping studies do not correct for dif-

ferences between habitats, implicitly assuming that sam-

pling efficiency of camera traps is constant across habitats

(e.g., Rovero and Marshall 2009; Manzo et al. 2012). Our

field test demonstrates that differences between habitats

can be large – 20% decrease in closed compared to open

vegetation in our analysis – and that not accounting for

these differences produces biases. For example, apparent

differences in habitat use might simply result from vegeta-

tion-related differences in detection distance. Avoiding or

pruning of vegetation in the FOV may reduce the difference

in detectability between sites to some degree, but not

entirely. Differences in detection distance in different habi-

tats can be especially problematic when capture rates from

camera traps are used to study habitat selection or other

variables which are linked to the habitat (Sollmann et al.

2013). Estimating EDD per habitat type and correcting cap-

ture rates accordingly can reduce bias in habitat selection

studies that use camera trap data.

Our method for estimating EDD relies on the assumption

that the distance at which animals cross the midline corre-

lates with the distance at which animals trigger the camera.

Our simulation showed that this assumption holds if ani-

mals move in a random direction compared to the line of

sight of the camera. However, it might no longer hold if ani-

mals for some reason tend to always approach from one par-

ticular angle. This problem can be overcome by averaging

measurements over multiple camera locations. The assump-

tion of randommovement of animals compared to the cam-

era position is essential for estimating relative abundance

(Sollmann et al. 2013) as well as for estimating density using

the random encounter model (REM; Rowcliffe et al. 2008,

2013). Studies using these methods rely on camera place-

ment in random positions, which ensures random move-

ment of animals relative to the camera position. Therefore,

our assumptions should hold for camera traps that are

deployed for these study purposes, and our method of esti-

mating EDD should give reasonable estimates accordingly.

We found that a minimum of five distance intervals

was sufficient for obtaining reliable estimates of EDD

(Fig. 2), but this was based on a simulation with a simple

detection probability without expansion terms. In reality,

detection probability might follow a more complex distri-

bution. For example, detectability at distance zero may be

<100% when camera trigger speed is low and animal

movement speed is fast, resulting in short-distance detec-

tions without photographs of animals and, thus, species-

specific distance measurements. In these situations, more

precise measurements are needed to model the detection

probability. Five distance intervals should thus be consid-

ered as a minimum, more is advisable.

Our approach for estimating EDD can be used in the

REM for estimating absolute population density (Rowcliffe

et al. 2008, 2011). So far, most studies using the REM used

a proxy to estimate EDD, for example, by moving in front

of the camera themselves (Cusack et al. 2015), or by using

a domesticated animal, such as a cat (Manzo et al. 2012).

However, our results show that EDD scales with body

mass. Thus, the densities found by Manzo et al. (2012) are

most probably underestimates, as they used EDD esti-

mated for a domestic cat to estimate pine marten densities,

while EDD for pine marten is smaller (Table 2).

While most animals ignored the marking sticks, like

the red fox in Figure 1, some sniffed at or chewed on the

sticks (especially ungulates and carnivores). Because such

responses were uncommon, we consider the image

sequences obtained using our method suitable for mea-

suring activity and behaviour. However, the sticks could

pose a problem for researchers interested in carnivore or

ungulate behaviour. A possible way to overcome beha-

vioural problems could be to take photographs that

include markers during the setup or removal of the cam-

era trap, but not leave any markers during the actual

deployment (Caravaggi et al. 2016). These photographs

can then be used as a reference to overlay all other pho-

tographs to measure the distance category at which each

animal passes. This might, however, decrease the preci-

sion of detection distances as it can be difficult to esti-

mate the right distance interval without physical reference

points in front of or behind animals.

Our method allows researchers to correct for differences

in capture rate related to variation in EDD, but not for

biases caused by differences in the width of the FOV

between studies related to the model of camera trap used,

openness of the vegetation or size of the species (Rowcliffe

et al. 2011). This problem can be overcome by considering

only animals that cross the midline of the FOV for calculat-

ing capture rates, and discarding all observations of animals

that do not cross the line. In essence, the sampling is then

reduced to a line. A major advantage of this approach is

that the capture rates obtained from this line only need to

be corrected for EDD and day range (the distance that ani-

mals travel daily) to estimate density (Rowcliffe et al.

2016), just as in line-transect estimation from indirect sign

using the Formozov-Malyshev-Pereleshin formula (Ste-

phens et al. 2006). Note that this is equivalent to an REM

with a detection angle of zero (Rowcliffe et al. 2008).

In conclusion, our method could facilitate the use of

camera traps for estimating relative abundance or density

of animal species of which individuals cannot be identi-

fied, reducing the bias in relative abundance or density

estimates that is due to differences in sampling effort

between species and habitats. Our method can be applied

by scientists and conservationists all over the world with
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limited extra effort. We advise to always deploy camera

traps with markers – at least during the setup – as to cre-

ate the possibility to correct capture rates.
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Supporting Information

Additional supporting information may be found online

in the supporting information tab for this article.

Figure S1. Bootstrapped distributions of estimated effec-

tive detection distances using line-detection function

models applied to different forms of data. Reference indi-

cates unbinned direct distances to first detection position.

Midline models were fitted to distances at which the same

records were projected to cross camera’s line of sight,

with data binned to varying degrees (‘Inf’ indicates

unbinned analysis). Central bars are medians, boxes are

interquartile ranges and whiskers are ranges.

Table S1. Habitat type, year of measurement, location

and number of camera deployments of the eight field

sites.
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