
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 1

Generalized Numerical Entanglement For
Reliable Linear, Sesquilinear And Bijective

Operations On Integer Data Streams
Mohammad Ashraful Anam, Ijeoma Anarado and Yiannis Andreopoulos, Senior Member, IEEE

Abstract—We propose a new technique for the mitigation of
fail-stop failures and/or silent data corruptions (SDCs) within
linear, sesquilinear or bijective (LSB) operations on M integer
data streams (M C 3). In the proposed approach, the M input
streams are linearly superimposed to form M numerically
entangled integer data streams that are stored in-place of
the original inputs, i.e., no additional (aka. “checksum”)
streams are used. An arbitrary number of LSB operations
can then be performed in M processing cores using these
entangled data streams. The output results can be extracted
from any M � K entangled output streams by additions
and arithmetic shifts, thereby mitigating K fail-stop failures
(K B �M�1

2
�), or detecting up to K SDCs per M -tuple

of outputs at corresponding in-stream locations. Therefore,
unlike other methods, the number of operations required for
the entanglement, extraction and recovery of the results is
linearly related to the number of the inputs and does not
depend on the complexity of the performed LSB operations.
Our proposal is validated within an Amazon EC2 instance
(Haswell architecture with AVX2 support) via integer matrix
product operations. Our analysis and experiments for fail-
stop failure mitigation and SDC detection reveal that the
proposed approach incurs 0.75% to 37.23% reduction in
processing throughput in comparison to the equivalent error-
intolerant processing. This overhead is found to be up to
two orders of magnitude smaller than that of the equivalent
checksum-based method, with increased gains offered as the
complexity of the performed LSB operations is increasing.
Therefore, our proposal can be used in distributed systems,
unreliable multicore clusters and safety-critical applications,
where robustness against failures and SDCs is a necessity.

Index Terms—linear operations, sum-of-products, fault tol-
erance, silent data corruptions, numerical entanglement

I. INTRODUCTION

MODERN computing clusters exhibit decreasing
mean-time-to-failure characteristics due to their

composition from diverse commercial-off-the-shelf cores
with varying levels of reliability, combined with the ag-
gressive voltage/frequency scaling applied on each core [1]
and the varying degrees of reliability of runtime compo-
nents [2]. Therefore, it is now becoming imperative for
distributed computing systems to provide for: (i) fail-stop
failure mitigation [3], i.e., mitigate cases where one (or

The authors are with the Electronic and Electrical Engineer-
ing Department, University College London, Roberts Building, Tor-
rington Place, London, WC1E 7JE, U.K.; tel. +442076797303,
fax. +442073889325, email: {mohammad.anam.10, ijeoma.anarado.12,
i.andreopoulos}@ucl.ac.uk. This work was supported by EPSRC, grant
EP/M00113X/1. The work of I. Anarado was supported by the Federal
Government of Nigeria under the PRESSID Scheme.

more) of their processor cores becomes unresponsive (or
does not return the results within a predetermined time-
to-completion constraint); (ii) detection and mitigation of
silent data corruptions (SDCs) [4], i.e., detect and mitigate
bit flips in memory or disk drives that do not interfere
with the algorithmic or software execution flow, thereby
causing data corruptions that remain undetected by runtime
or hardware checkpointing methods.

Applications that are particularly prone to fail-stop fail-
ures and SDCs include distributed systems like grid com-
puting [5], sensor data processing systems [6], webpage,
or multimedia retrieval applications [7], relevance ranking
[8], object or face recognition in images [2], [9], encryption
and data compression [10], [11], financial computing [12],
machine learning and security applications [13], etc. The
compute- and memory-intensive parts of these applications
comprise linear, sesquilinear (also known as “one-and-half
linear”) and bijective operations, collectively termed as
“LSB” operations in this paper. These operations are typ-
ically performed using single or double-precision floating-
point inputs or, for high-performance systems requiring ex-
act reproducibility and reduced hardware complexity, 32-bit
or 64-bit integer or fixed-point inputs. Thus, ensuring robust
recovery from fail-stop failures for applications comprising
integer LSB operations is of paramount importance.

A. Summary of Prior Work

Fail-stop failures and SDCs in parallel LSB routines are
currently mitigated via roll-back or roll-forward methods.
Roll-back methods are based on periodic checkpointing and
recomputation if failures or SDCs are detected. Roll-back
techniques essentially comprise methods for backward error
recovery (BER), where system states are stored periodically
and computations are restarted from the last stored state
when a failure happens in the computing environment [4],
[14]–[17]. Several BER studies show that, depending on
the desired level of resilience to core failures, substantial
resources may be spent on checkpointing and recomputa-
tion. This has been identified as a major challenge for future
exascale systems [4], [18], [19].

Roll-forward methods ensure result recovery from the
functioning processor cores without recomputation when
fail-stop failures or SDCs are detected in the system.
Examples include: forward error recovery (FER) methods
that recover the lost data from pre-established (and stored)

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 2

input data checksum relationships without repeating com-
putations [20]–[23], algorithm based fault tolerance [24]
[25] and dual modular redundancy (DMR) [14], [26] or
similar techniques [27] [28] [29]. Computations examined
in such proposals include matrix products [20], matrix
factorization [30], digital filters [25] and iterative solvers
[31]. The overarching concept of these methods within the
context of LSB data stream processing is the production of
checksum data streams in ways such that the performed
computation can be applied on the checksum elements
alongside the original integer data streams. These additional
data streams can then be used for FER by solving a system
of linear equations if core failures are detected. Therefore,
all roll-forward approaches incur significant overhead due
to the storage and processing of the checksum data streams.
Methods to reduce the amount of additional checksum data
streams have been investigated [25], but the requirement
of additional cores for checksum processing decreases the
achievable peak performance, as less cores are dedicated
to actual input-data computations. Nevertheless, for fail-
stop failure resilience and SDC mitigation, roll-forward
methods are preferable to roll-back methods as they achieve
higher reliability and can immediately mitigate the effect of
failures without service interruption due to checkpointing
and recomputation.

B. Contribution

We propose a new FER method for linear, sesquilinear
(also known as one-and-half linear) or bijective opera-
tions performed in integer data streams. Examples of such
operations are element-by-element additions and multipli-
cations, inner and outer vector products, sum-of-squares
and permutation operations. They are the building blocks
of algorithms of foundational importance, such as: matrix
multiplication [24], [32], convolution/cross-correlation [33],
template matching for search algorithms [34], covariance
calculations [9], integer-to-integer transforms [35], and
permutation-based encoding and scrambling systems [10],
[11], which form the core of the applications discussed ear-
lier. Because our method performs linear superpositions of
input streams onto each other, it “entangles” input streams
together and we term it as numerical entanglement. Our
approach guarantees mitigation of any K fail-stop failures
in M -core data stream processing (M C 3, K B �M�1

2
�), or

detection of K SDCs occurring in each M -tuple of outputs.
Thus, it generalizes our earlier work on single-core fail-stop
failure mitigation [36]. Importantly, generalized numerical
entanglement does not generate any additional “checksum”
or duplicate streams and does not depend on the specifics
of the LSB operation performed. Therefore, it is found
to be extremely efficient in comparison to the equivalent
checksum-based methods that require the generation and
processing of K additional checksum streams.

C. Paper Organization

In Section II, we introduce checksum-based methods for
fail-stop failure mitigation and SDC detection/correction in

numerical stream processing. In Section III we propose
the concept of generalized numerical entanglement and
demonstrate its inherent reliability for LSB processing of
integer streams. Section IV presents the complexity of nu-
merical entanglements within integer linear or sesquilinear
operations. Section V presents experimental comparisons,
followed by Section VI that presents the application of
the method for the detection of SDCs. Finally Section VII
presents some concluding remarks.

II. CHECKSUM-BASED METHODS VERSUS NUMERICAL
ENTANGLEMENT

Consider M input streams of integers, each comprising
Nin samples1 (M C 3):

cm � �cm,0 . . . cm,Nin�1� , 0 Bm @M. (1)

These may be the elements of M rows of a matrix of
integers, or a set of M input integer streams of data to
be operated upon with an integer kernel g. This operation
is performed by:

¦m > �0, . . . ,M � 1� � dm � cm op g

op > ��, � , � , ` , e ,a,� I
G

� ,�¡ (2)

with dm the mth vector of output results (containing
Nout values) and op any LSB operator such as element-
by-element addition/subtraction/multiplication, inner/outer
product, permutation2 (i.e., bijective mapping from the
sequential index set I to index set G corresponding to g)
and circular convolution or cross-correlation with g. An
illustration of the application of (2) is given in Fig. 1(a).
Beyond the single LSB operator indicated in (2), we can
also assume series of such operators applied consecutively
in order to realize higher-level algorithmic processing, e.g.,
multiple consecutive additions, subtractions and scaling op-
erations with pre-established kernels, followed by circular
convolutions and permutation operations. Conversely, the
input data streams can also be left in their native state (i.e.,
stored in memory), e.g., if op � ��� and g � 1.

A. Checksum-based Methods

In their original (or “pure”) form, the input data streams
of (1) are uncorrelated and one input or output element
cannot be used for the recovery of another without inserting

1Notations: Boldface uppercase and lowercase letters indicate matrices
and vectors, respectively; the corresponding italicized lowercase indicate
their individual elements, e.g. A and am,n; calligraphic uppercase letters
indicate operators; N� is the set of natural numbers excluding zero; d̂
denotes the recovered value of d after disentanglement; all indices are
integers. Basic operators:
a� is the largest integer that is smaller or equal
to a (floor operation); �a� is the smallest integer that is larger or equal to
a (ceiling operation); a P b and a Q b indicate left and right arithmetic
shift of integer a by b bits with truncation occurring at the most-significant
or least significant bit, respectively; amod b � a � �a

b
� b is the modulo

operation.
2We remark that we consider LSB operations that are not data-

dependent, e.g., permutations according to fixed index sets as in the
Burrows-Wheeler transform [11].

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 3

0
c

1M−
c

⋮ gop

0
d

1M−
d

⋮=

in
M N×

out
M N×

(a) Conventional processing

⋮

+

+

0
c

1M−
c

⋮

gop

0
d

1M−
d

⋮

=

1Q−
c

⋮

1Q−d

⋮

1P−
r

0
r

⋮

⋮

1P−
e

0
e

⋮gop =

+

+

() in
M P N+ × ()

out
M P N+ ×

(b) FER using K checksum streams

Figure 1. (a) kernel g applied to M streams of input integers via LSB operator op; (b) corresponding application of g to M input streams, as well as
to K checksum input streams, r0, . . . , rK�1, used for forward error recovery. The K checksum input streams are produced via linear combinations
with weight vectors w0, . . . ,wK�1.

some form of coding or redundancy. This is conventionally
achieved via checksum-based methods [24], [37]–[42] and
is pictorially illustrated in Fig. 1(b). Specifically, K addi-
tional input streams are created, which comprise checksums
of the original inputs:

rk � �rk,0 . . . rk,Nin�1� , 0 B k @K. (3)

by using different checksum relationships with predefined
weight vectors wk � �wk,0 . . . wk,M�1� [38], [39], [41],
[42] (0 B n @ Nin, 0 B k @K):

¦k,n � rk,n �
M�1

Q
m�0

wk,mcm,n. (4)

The LSB processing is then performed in all input streams
c0, . . . ,cM�1 and checksum input streams r0, . . . , rK�1

(each running on a different core) by:

<@@@@@@@@@@@>

d0

�

dM�1

e0
�

eK�1

=AAAAAAAAAAA?
�

<@@@@@@@@@@@>

c0
�

cM�1

r0
�

rK�1

=AAAAAAAAAAA?
op g. (5)

Any K fail-stop core failures in the group of M � K
cores executing (5) can be recovered from the remaining
M output streams [38], [39], [41], [42]. In addition, any
K SDCs in any �M �K�-tuple of outputs at position
n, �d0,n . . . dM�1,n e0,n . . . eK�1,n�T, can be de-
tected, and K � 1 SDCs can be detected and corrected
without recomputation [38], [39], [41], [42]. Evidently, this
FER capability comes at the cost of using K additional
cores to process the checksum input streams r0, . . . , rK�1.

B. Generalized Numerical Entanglement

The proposed method of generalized numerical entan-
glement mixes the integer inputs prior to processing using
linear superposition, and ensures the results can be recov-
ered via a mixture of shift-add operations. Considering

M (M C 3) input streams cm, 0 B m @ M (each
comprising Nin integer samples), the nth element of the
mth entangled stream, denoted by εm,n (0 B n @ Nin),
comprises the superposition of K�1 distinct input elements
cx0,n, . . . , cxK ,n, with 0 B x0, . . . , xK @M and K B �M�1

2
�.

The LSB operation op with kernel g is carried out with M
independent cores utilizing the M entangled input streams
directly, thereby producing the entangled output streams
δm (each comprising Nout integer samples). These can be
disentangled to recover the final results d̂m and K fail-stop
failures in the M processor cores can be mitigated from the
results of the remaining M �K cores. In addition, any K
SDCs in any M -tuple of outputs at in-stream position n,�δ0,n . . . δM�1,n�, can be detected, and K�1 SDCs can
be detected and corrected without recomputation.

Importantly, the complexity of entanglement, disentan-
glement (extraction) and recovery does not depend on
the complexity of the operator op, or on the length of
the kernel (operand) g. This is because the entangled
inputs can be written in-place and no additional storage
or additional operations are needed during the execution
of the actual operation. That is, the entanglement of M
input streams of Nin samples each, results in M entangled
streams of Nin samples each, and each processing core
uses the same operator op and operand g. Therefore,
if entanglement, processing, and disentanglement is per-
formed in batch mode, the entire processing stage remains
agnostic to the fact that the inputs comprise numerically-
entangled inputs rather than the original stream values. Our
approach is also suitable for stream processors with the
entanglement/disentanglement stage applied during the data
input/output. The only detriment of numerical entanglement
is that the dynamic range of the entangled inputs εm is in-
creased in comparison to the original inputs cm. Therefore,
under 32-bit or 64-bit integer representations, the maximum
output dynamic range that can be supported under an
entangled representation is smaller in comparison to the
dynamic range of conventional processing. However, as it
will be demonstrated in this paper, this decrease depends on
the number of jointly-entangled inputs, M , and the number

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 4

of fail-stop failures or SDCs (K) the system should be able
to handle. Therefore, one can form the appropriate tradeoff
between the reliability to fail-stop failures and SDCs and
the increase in dynamic range. A summary of the features of
numerical entanglement in comparison to checksum-based
FER and DMR is presented in Table I.

III. NUMERICAL ENTANGLEMENT FOR FAIL-STOP
RELIABILITY IN LSB OPERATIONS

We first describe numerical entanglement for mitigation
of one fail-stop failure [36]. This provides the basis for the
generalization to K-failure mitigation in M data streams,
with K B �M�1

2
�.

A. Simplest Form of Numerical Entanglement

The simplest form of entanglement takes place with�M,K� � �3,1�. In this case, each triplet of input samples
of the three integer streams, c0,n, c1,n and c2,n, 0 B n @ Nin,
produces an entangled triplet of inputs via the superposition
operations [36]:

ε0,n � Sl �c2,n� � c0,n
ε1,n � Sl �c0,n� � c1,n (6)
ε2,n � Sl �c1,n� � c2,n

where:

Sb �a� � � �aP b� , if b C 0�aQ ��b�� , if b @ 0
(7)

is the left or right arithmetic shift of a by b bits. If we
assume that the utilized integer representation comprises w
bits, the results of the l-bit left-shift operations of (6) must
be upper-bounded by w to avoid overflow. Therefore, if the
dynamic range of the input streams c0, c1, c2 is l � k bits:

2l � k B w. (8)

The values for l and k are chosen such that l�k is maximum
within the constraint of (8) and k B l. Each entangled input
stream εm (0 Bm @M) is converted to the entangled output
stream3 δm (which contains Nout values) via the application
of LSB operations:

¦m � δm � �εm op g� . (9)

A conceptual illustration of the entangled outputs after (6)
and (9) is given in Fig. 2. As a practical instantiation of
(6), we can set w � 32, l � 11 and k � 10 in a signed 32-bit
integer configuration. More broadly, regarding any �M,1�
entanglement pattern, the allowable input dynamic range is
given in Remark 4 and Remark 5 and practical examples
given in Table II.

3For the particular cases of: op > ��,��, g must also be entangled with
itself via: gn � Sl �gn� � gn, in order to retain the homomorphism of
the performed operation.

llk

{ }0,l n
dS�

{ }2,l n
dS�

0,n
d

{ }1,l n
dS

2,n
d

1,n
d

0,
:

n
δ

1,
:

n
δ

2,
:

n
δ

(1)M l−k

k

l≪

bits bits

Figure 2. Illustration of three entangled outputs after integer LSB
processing. The solid arrows indicate the maximum attainable dynamic
range of each output d0,n, d1,n and d2,n. The dotted rectangles and
arrows illustrate that the contents of entangled output δ0,n are contained
within the two other entangled outputs.

For each position n, 0 B n @ Nout, we can disentangle
the outputs by first creating the 2w-bit temporary variable4

dtemp � δ2,n � Sl �δ1,n� (10)

and then recover the outputs by:

d̂2,n � S�2�w�l� �S2�w�l� �dtemp��
d̂0,n � S�2l �� �dtemp � d̂2,n�� (11)

d̂1,n � δ1,n � Sl �d̂0,n�
The correctness of (11) can be verified by using Fig. 2 to
check the results of all steps. Notice that (10) and (11) do
not use δ0,n. This is a crucial element of this approach:
since d̂0,n, d̂1,n and d̂2,n were derived without using δ0,n,
all outputs are recovered even under the complete loss of
one entangled stream. We are able to do this because,
for every n, 0 B n @ Nout, δ1,n and δ2,n contain d̂0,n
and d̂2,n, via which we can recreate δ0,n if the latter
is not available due to a fail-stop failure. This link is
pictorially illustrated in Fig. 2. Since the entangled pattern
is cyclically-symmetric, it is straightforward to demonstrate
that mitigation of any single stream loss (out of the three)
is possible following the same approach. Moreover, if all
entangled outputs �δ0,n δ1,n δ2,n�T are obtained per
position n, 0 B n @ Nout, any single SDC within them
can be detected by recovering �d̂0,n d̂1,n d̂2,n�T in two
different ways (e.g., without using δ0,n and δ1,n) and
cross-validating the recovered results. Therefore, l bits

4The disentanglement operation can be performed in w-bit representa-
tion if the operation of (10) is performed in two subsets of w bits as, as
discussed later on in Remark 1.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 5

Table I
SUMMARY OF FEATURES OF DIFFERENT METHODS FOR K-FAILURE MITIGATION WITHIN M STREAMS UNDER A w-BIT REPRESENTATION.

Method Checksum-based FER Dual Modular Proposed Generalized
Feature [23], [24], [37], [43], [44] Redundancy [21] Numerical Entanglement

In-place storage No No Yes
% of redundant K

M
� 100% 100% 0%LSB computations

Reduction of output K � 1: �log2M� 0 bits K � 1: � w
M

�
bitwidth supported K A 1: see Table II K A 1: see Table II

Failure K B �M�1
2

� failures K � 1 failure in K B �M�1
2

� failures
Mitigation in M �K streams, M C 3 M � 2 streams in M streams, M C 3

Practical execution More than More than 0.75% to 37.23% (decreases
overhead K

M
� 100% 100% with increased operand length)

of dynamic range are being used within each entangled
input/output in order to achieve recovery from any single
fail-stop failure or detection of any single SDC in the
computation of δ0,n, δ1,n and δ2,n.

B. Generalized Numerical Entanglement in Groups of Five
Inputs (M � 5, K � 2)

Generalizing numerical entanglement into a multitier
process guarantees mitigation of more than a single fail-
stop failure in the processing of M entangled streams with
M cores, or detection and mitigation of one or more SDCs.
In this subsection, we illustrate the basic case of mitigation
of two fail-stop failures in five input streams, or detection
and correction of one SDC within the quintuple of outputs
at any in-stream position n.

1) Entanglement: In the two-tier entanglement with
M � 5, each quintuple of input samples from the five
streams, c0,n, . . . , c4,n, 0 B n @ Nin, produces the quintuple
of entangled samples, ε�2�0,n, . . . , ε

�2�
4,n, via the following two-

tier superposition operations:

<@@@@@@@@@@@@>

ε
�1�
0,n

ε
�1�
1,n

ε
�1�
2,n

ε
�1�
3,n

ε
�1�
4,n

=AAAAAAAAAAAA?

�

<@@@@@@@@@>

1 0 0 0 Sl1

Sl1 1 0 0 0
0 Sl1 1 0 0
0 0 Sl1 1 0
0 0 0 Sl1 1

=AAAAAAAAA?

<@@@@@@@@@>

c0,n
c1,n
c2,n
c3,n
c4,n

=AAAAAAAAA?
(12)

and

<@@@@@@@@@@@@>

ε
�2�
0,n

ε
�2�
1,n

ε
�2�
2,n

ε
�2�
3,n

ε
�2�
4,n

=AAAAAAAAAAAA?

�

<@@@@@@@@@>

1 0 0 0 Sl2

Sl2 1 0 0 0
0 Sl2 1 0 0
0 0 Sl2 1 0
0 0 0 Sl2 1

=AAAAAAAAA?

<@@@@@@@@@@@@>

ε
�1�
0,n

ε
�1�
1,n

ε
�1�
2,n

ε
�1�
3,n

ε
�1�
4,n

=AAAAAAAAAAAA?

(13)

with

3l1 � k1 B l2 � k2 (14)
2l2 � k2 B w. (15)

and the maximum dynamic range supported for each signed
input, c0,n, . . . , c4,n, being proportional to 2l1 � k1 bits.

The values for l2 and k2 are chosen such that 2l2 � k2
is maximum within the constraint of (15) and k2 B l2.
Similarly, the values for l1 and k1 are chosen such that
3l1 � k1 is maximum within the constraint of (14) and
k1 B l1. Via the application of LSB operations of (9),
ε
�2�
m � �ε�2�m,0 . . . ε

�2�
m,Nin

� (0 B m @ M) are converted

to the entangled outputs, δ�2�
m � �δ�2�m,0 . . . δ

�2�
m,Nout

�. A
conceptual illustration of the entangled outputs after (13)
and (9) is given in Fig. 3. Similarly as before, l1� l2 bits of
dynamic range are sacrificed in order to achieve recovery
from failures. Since it is assumed that the dynamic range
of the inputs does not exceed 2l1 � k1 bits, the entangled
representation is contained within 2l2 � k2 bits and never
overflows. As a practical instantiation of (13), we can set
w � 32, l1 � 6, l2 � 11, k1 � 3 and k2 � 10 in a signed
32-bit integer configuration.

We now describe the disentanglement and recovery pro-
cess in case of any two failures. The reader can also consult
Fig. 3 in order to verify the results of all the presented steps.

2) Disentanglement: The proposed method mitigates
K > �1,2� failures. Equivalently, if all M entangled output
streams are obtained, it can detect up to two SDCs and can
also detect and correct any single SDC within any quintuple

of outputs �δ�2�0,n . . . δ
�2�
4,n�T.

For the case of loss of a single stream δ�2�
r , 0 B r @M ,

due to a single fail-stop failure, we recover the outputs of
the first tier by (0 B n @ Nout):

d
�1�
temp � δ

�2�

�r�2�mod5,n � Sl2 �δ�2��r�1�mod5,n�
δ̂
�1�

�r�2�mod5,n � S�2�w�l2� �S2�w�l2� �d�1�temp��
δ̂�1�r,n � S�2l2 �� �d�1�temp � δ̂

�1�

�r�2�mod5,n�� (16)

δ̂
�1�

�r�1�mod5,n � δ
�2�

�r�1�mod5,n � Sl2 �δ̂�1�r,n�
δ̂
�1�

�r�3�mod5,n � δ
�2�

�r�3�mod5,n � Sl2 �δ̂�1��r�2�mod5,n�
δ̂
�1�

�r�4�mod5,n � δ
�2�

�r�4�mod5,n � Sl2 �δ̂�1��r�3�mod5,n�

On the next stage, we recover the final outputs by:

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 6

(a) Outputs of LSB processing (b) Contents of δ
�1�
0,n, . . . , δ

�1�
4,n showing the original outputs

d0,n, . . . , d4,n

Figure 3. Illustration of entanglement of five outputs after integer LSB processing: (a) second tier of superimposed outputs; (b) first tier of superimposed
outputs, showing the original output values d0,n, . . . , d4,n that are entangled within.

dtemp � δ̂
�1�
0,n � Sl1 �δ̂�1�4,n� � S2l1 �δ̂�1�3,n�

d̂0,n � S��2w�3l1� �S�2w�3l1� �dtemp��
d̂1,n � δ̂

�1�
1,n � Sl1 �d̂0,n� (17)

d̂2,n � δ̂
�1�
2,n � Sl1 �d̂1,n�

d̂3,n � δ̂
�1�
3,n � Sl1 �d̂2,n�

d̂4,n � δ̂
�1�
4,n � Sl1 �d̂3,n�

Explanation of (16) and (17)—see also Fig. 3: The
first part of (16) creates a composite number comprising
δ̂
�1�
r,n in the l2 � k2 most-significant bits and δ̂

�1�

�r�2�mod5,n

in the 2l2 least-significant bits (therefore, d�1�temp requires
3l2 � k2 bits). In the second part, δ̂�1�

�r�2�mod5,n is extracted
by: (i) discarding the �2w � 2l2� most-significant bits; (ii)
arithmetically shifting the output down to the correct range.
The third part of (16) uses δ̂

�1�

�r�2�mod5,n to recover δ̂�1�r,n

and the last three parts of (16) use: (i) δ̂�1�r,n to recover
δ̂
�1�

�r�1�mod5,n, (ii) δ̂�1�
�r�2�mod5,n to recover δ̂�1�

�r�3�mod5,n and,

finally, (iii) δ̂�1�
�r�3�mod5,n to recover δ̂�1�

�r�4�mod5,n. Finally,
having recovered all δ̂0,n, . . . , δ̂4,n, via (17), we recover the
final outputs d̂0,n, . . . , d̂4,n.

For the case of two fail-stop failures, δ�2�r1,n and δ�2�r2,n with
0 B r1, r2 @M and r2 A r1, we first define the stream index
r based on the distance r2 � r1 between the two streams.

Specifically, we set:

r � � r2, if r2 � r1 @ 3
r1, if r2 � r1 C 3

(18)

If r2 � r1 � 1, we can disentangle the tier-one outputs by
(0 B n @ Nout)

d
�1�
temp � δ

�2�

�r�2�mod5,n � Sl2 �δ�2��r�1�mod5,n�
δ̂
�1�

�r�2�mod5,n � S�2�w�l2� �S2�w�l2� �d�1�temp��
δ̂�1�r,n � S�2l2 �� �d�1�temp � δ̂

�1�

�r�2�mod5,n�� (19)

δ̂
�1�

�r�1�mod5,n � δ
�2�

�r�1�mod5,n � Sl2 �δ̂�1�r,n�
δ̂
�1�

�r�3�mod5,n � δ
�2�

�r�3�mod5,n � Sl2 �δ̂�1��r�2�mod5,n�
and, on the next stage,

dtemp � δ̂
�1�

�r�2�mod5,n � Sl1 �δ̂�1��r�1�mod5,n�
� S2l1 �δ̂�1��r�mod5,n�

d̂�r�2�mod5,n � S��2w�3l1� �S�2w�3l1� �dtemp��
d̂�r�4�mod5,n � S�2l1 �dtemp � d̂�r�2�mod5,n�

d̂r,n � δ̂
�1�

�r�mod5,n � Sl1 �d̂�r�4�mod5,n� (20)

d̂�r�1�mod5,n � δ̂
�1�

�r�1�mod5,n � Sl1 �d̂r,n�
d̂�r�3�mod5,n � δ̂

�1�

�r�3�mod5,n � Sl1 �d̂�r�2�mod5,n�
If r2 � r1 � 2, we can disentangle the outputs by (0 B n @
Nout)

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 7

d
�1�
temp � δ

�2�

�r�2�mod5,n � Sl2 �δ�2��r�1�mod5,n�
δ̂
�1�

�r�2�mod5,n � S�2�w�l2� �S2�w�l2� �d�1�temp��
δ̂�1�r,n � S�2l2 �� �d�1�temp � δ̂

�1�

�r�2�mod5,n�� (21)

δ̂
�1�

�r�1�mod5,n � δ
�2�

�r�1�mod5,n � Sl2 �δ̂�1�r,n�
and on the next stage

dtemp � δ̂
�1�

�r�2�mod5,n � Sl1 �δ̂�1��r�1�mod5,n�
� S2l1 �δ̂�1�r,n�

d̂�r�2�mod5,n � S��2w�3l1� �S�2w�3l1� �dtemp��
d̂�r�4�mod5,n � S�2l1 �dtemp � d̂�r�2�mod5,n�

d̂r,n � δ̂
�1�

�r�mod5,n � Sl1 �d̂�r�4�mod5,n� (22)

d̂�r�1�mod5,n � δ̂
�1�

�r�1�mod5,n � Sl1 �d̂r,n�
d̂�r�3�mod5,n � �δ̂�2�

�r�4�mod5,n � S�l1�l2� �d̂�r�2�mod5,n�
� d̂�r�4�mod5,n� � �2l1 � 2l2��1

The last part of (22) can be implemented without division
with factor �2l1 � 2l2� if one additional temporary variable,
one addition and two arithmetic shifts are used.

Finally, if r2 � r1 > �3,4�, disentanglement and recovery
of all outputs d̂0,n, . . . , d̂4,n follows (19)–(22), albeit with
r � r1 as per (18). We conclude the presentation of the case
of �M,K� � �5,2� with some remarks relating to various
implementation aspects of our approach.

Remark 1 (operations within w bits): To facilitate our
exposition, the first three parts of (16), the first two parts
of (17), and the first three parts of (19)–(22) are presented
under the assumption of a 2w-bit integer representation
since d�1�temp and dtemp require 2w bits. However, it is straight-
forward to implement them via w-bit integer operations
by separating d�1�temp and dtemp into two parts of w bits and
performing the operations separately within these parts.

Remark 2 (recovery without the use of K > �1,2�
streams): Notice that, for the case of a single fail-stop
failure, (16) does not use stream δ�2�

r . This is a crucial
element of our approach: since streams d̂0, . . . , d̂4 were
derived without using δ�2�

r , full recovery of all outputs takes
place even with the loss of one entangled stream. Similarly,
for the case of two failures, (19) and (21) do not use streams
δ�2�
r1 and δ�2�

r2 for the recovery of d̂0, . . . , d̂4.
Remark 3 (detection and correction of any single

SDC within �δ�2�0,n . . . δ
�2�
4,n�T): Given that we can re-

cover all outputs from three entangled streams, to de-
tect and correct any single SDC within any quintuple

�δ�2�0,n . . . δ
�2�
4,n�T, we can recover five versions of all

outputs �d̂0,n . . . d̂4,n�T using (¦r > �0,4�):

�d̂0,n, . . . , d̂4,n��r� (19)-(22)
�ÐÐÐÐ �δ�2�r,n , δ

�2�

�r�1�mod5,n, δ
�2�

�r�2�mod5,n� .
(23)

The pattern between the agreed results will show the stream
number where the SDC occurred, and the recovery can
retain the results that do not stem from that stream. For
example, if δ�2�0,n is erroneous due to an SDC, then the
disentanglements of (23) corresponding to r > �0,3,4� will
not agree with the ones of r > �1,2�, which demonstrates
than an SDC occurred in δ�2�0,n (similar for the other cases)—
therefore, to mitigate the SDC occurrence, the results of the
r > �1,2� disentanglements of (23) should be used.

Remark 4 (dynamic range): Bit 2l1 � k1 within each
recovered output d̂0,n, . . . , d̂4,n represents its sign bit. Given
that: (i) each entangled output comprises the addition of
two outputs (with one of them left-shifted by l1 bits); (ii)
the entangled outputs must not exceed 3l1 � k1 bits, we
conclude that the outputs of the LSB operations must not
exceed the range

¦n � d0,n, . . . , d4,n > �� �22l1�k1�1 � 22l1� ,22l1�k1�1 � 22l1� .
(24)

with l1 and k1 defined within the constraints of (14) and
(15). Therefore, (24) comprises the range permissible for
the LSB operations of (9) with the entangled representation
of (12) and (13). Thus, we conclude that, for integer outputs
with range bounded by (24), the extraction mechanism of
(16)–(22) is necessary and sufficient for the recovery of any
two streams from δ

�2�
0 , . . . ,δ

�2�
4 .

C. Generalized Entanglement in Groups of M Inputs (M C

5)

We now examine the general case of �M,K� numerical
entanglement, which uses K levels of linear superpositions
of pairs of inputs to mitigate K fail-stop failures or detect
K SDCs in each M -tuple of outputs, with M C 2K � 1.

First, for K levels of linear superpositions of pairs of
inputs, the conditions that ensure no overflow occurs are
generalized to the following group of K inequalities:

�K � 1� l1 � k1 B �K � 1� l2 � k2
Kl2 � k2 B �K � 2� l3 � k3

� (25)
3lK�1 � kK�1 B lK � kK

2lK � kK B w

with the values for lx and kx (¦x � 1 B x B K) selected
such that the left side of each inequality of (25) is maximum
and kx B lx. The dynamic range supported for all outputs
is (¦m,n):

dm,n > ��2Kl1 �2k1�1 � 1� ,2Kl1 �2k1�1 � 1�� . (26)

We now define the following operator that generalizes
the proposed numerical entanglement process:

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 8

E l �

<@@@@@@@@@>

1 0 � 0 Sl

Sl 1 � 0 0
�

0 � Sl 1 0
0 � 0 Sl 1

=AAAAAAAAA?M�M

(27)

with E l the circulant matrix operator comprising cyclic
permutations of the 1 �M vector �1 0 � 0 Sl�.

Similarly as before, per entanglement stage, two inputs
are entangled together (with one of the two shifted by l bits)
to create each entangled input stream of data. Any LSB
operation is then performed directly on these input streams
and up to K fail-stop failures can be mitigated within each
group of M outputs. For every input stream position n,

0 B n @ Nin, the entanglement vector �ε�K�
0,n � ε

�K�
M�1,n

�T

is formed by:

�ε�1�0,n � ε
�1�
M�1,n

�T
� E l1 ��c0,n � cM�1,n�T�

�ε�2�0,n � ε
�2�
M�1,n

�T
� E l2 ��ε�1�0,n � ε

�1�
M�1,n

�T
�

�ε�K�
0,n � ε

�K�
M�1,n

�T
� E lK ��ε�K�1�

0,n � ε
�K�1�
M�1,n

�T
(28)

After the application of (9) on �ε�K�
0,n � ε

�K�
M�1,n

�T
, and

by following a similar process as before, we can disentangle
the outputs dm,n, 0 Bm @M , 0 B n @ Nout. The remainder
of this section is dedicated to proving that recovery from
K fail-stop failures is possible and examining properties of
the generalized entanglement.

The proof is constructed by induction. Initially, it is noted
that the cases �M,K� > ��3,1� , �5,2�� hold, since they
have been demonstrated in Sections III-A and III-B.

Let us now assume that this holds for K entanglement
levels derived via (28) with M C 2K � 1 and lx and kx
(1 B x B K) selected such that the conditions of (25) hold
and ¦x � kx B lx. We shall show that, under this assumption,
this also holds for K� �K �1 entanglement levels and K�

failures in M� C 2K�3 streams, with K� constraints given
by (25) under the replacement of K by K�.

We first note that it suffices to prove this result for the
equality case, i.e., M� � 2K � 3, as having more than
2K�3 streams will not influence the classification of failure
patterns and recovery steps discussed in the following parts
of the proof. After K � 1 failures in 2K � 3 streams, we
shall have K � 2 available streams. Out of the �2K�3

K�2
�

possible failure patterns, it is straightforward to show that
any failure pattern with three or more consecutive streams
will lead to the recovery of (at least) K � 3 streams at
level K, thereby having only (up to) K missing streams
at level K, i.e., guaranteed recovery by the inductive
assumption. However, in order to complete the proof, we
also have to consider the worst case amongst all possible
failure patterns, i.e., the failure pattern where only a single
pair of consecutively-numbered streams is available. That
is, §r > �0, . . . ,M� � 1� such that all of the following
conditions hold:

Y the pair of streams δ�K�1�
r and δ

�K�1�

�r�1�modM�

are avail-
able;

Y streams δ
�K�1�

�r�1�modM�

and δ
�K�1�

�r�2�modM�

are not avail-
able;

Y all other available streams are preceded and succeeded
by a failed stream; therefore, they cannot be used for
the direct extraction of any stream of entanglement
level K.

From the pair of available streams of level K�1, we can ex-
tract the following three streams of entanglement level K:
�δ̂�K�

�r�1�modM�,n
, δ̂

�K�
r,n , δ̂

�K�

�r�1�modM�,n
�, via (0 B n @ Nout)

d
�K�
temp � δ

�K�1�

�r�1�modM�,n
� SlK�1

�δ�K�1�
r,n �

δ̂
�K�

�r�1�modM�,n
� S�2�w�lK�1� �S2�w�lK�1� �d�K�

temp��(29)

δ̂
�K�

�r�1�modM�,n
� S�2lK�1

�� �d�K�
temp � δ̂

�K�

�r�1�modM�,n
��

δ̂�K�
r,n � δ�K�1�

r,n � SlK�1
�δ̂�K�

�r�1�modM�,n
� .

The last set of equations guarantees recovery because: (i)
the last condition of (25) ensures that both δ̂

�K�

�r�1�modM�,n

and δ̂
�K�

�r�1�modM�,n
can be extracted from d

�K�
temp and no

overflow occurs; (ii) the penultimate condition of (25)
ensures that the dynamic range at entanglement level K
does not exceed the bitwidth available within the �K � 1�-
level inputs.

Given the availability of three consecutive streams at
level K: δ̂

�K�

�r�1�modM�
, δ̂

�K�

r and δ̂
�K�

�r�1�modM�
, we can

recover four consecutive streams at level K � 1 and, by
carrying the recovery process across all K�1 entanglement
levels, we can recover K � 3 consecutively-numbered out-
put streams: d̂�r�K�2�modM�

, . . . , d̂�r�1�modM�
. Therefore,

K output streams will be unavailable after this recovery
process. However, these are guaranteed to be recoverable
from the K available and unused streams of level K � 1,
since we have K linear equations and K unknowns in the
system of 2K�3 streams of level K�1. Therefore, we can
mitigate K�1 failures in M+ C 2K�3 streams. This means
we can mitigate any K �

A K failures if K � entanglement
levels are carried out and M �

C 2K �
� 1 and the conditions

of (25) hold with the replacement of K by K �.
Remark 5 (detection and correction capabilities, and

dynamic range of generalized entanglement): Given that
we can recover all outputs from M �K entangled streams,
to detect and correct up to K SDCs within any M -

tuple �δ�K�
0,n . . . δ

�K�
M�1,n

�T, we recover M versions of

all outputs �d̂0,n . . . d̂M�1,n�T (¦r > �0,M � 1�):

�d̂0,n, . . . , d̂M�1,n��r� �Ð �δ�K�
r,n , . . . , δ

�K�

�r�M�K�1�modM,n
�

(30)
and detect any errors in the rth recovery attempt by
cross-comparing the results with their remaining re-
covered versions, since, at least M � K versions of
�d̂0,n, . . . , d̂M�1,n��r� of (30) will be identical. If the rth
recovery attempt is deemed to be erroneous, the correct
recovery from the remaining M�K streams is used instead.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 9

(a) GEMM (b) Convolution (time) (c) Convolution (freq)

Figure 4. Ratios of arithmetic operations for numerical entanglement, extraction, error checking and recovery versus the arithmetic operations of:
generic matrix multiplication, time-domain convolution and frequency-domain convolution, with M the number of streams (or the number of subblocks
within a GEMM operation) and K the number of SDCs or fail-stop failures that can be tolerated.

The dynamic range of the outputs of the generalized
entanglement is expressed by (26). Examples for the max-
imum bitwidth achievable for different cases of M and K
are given in Table II assuming a 32-bit representation. We
also present the dynamic range permitted by the equivalent
checksum method of (4) and (5) in order to ensure that
its checksum streams do not overflow under a 32-bit
representation. Evidently, the proposed approach incurs loss
of 1 to 13 bits of dynamic range against the checksum
method for K A 1, while it allows for comparable (or even
superior) dynamic range for M C 7 and K � 1 or M C 11
and K > �1,2�. At the same time, our proposal does not
require the overhead of applying the LSB operations to any
additional streams, as it “overlays” the information of each
input onto another input via the numerical entanglement of
pairs of inputs.

Table II
EXAMPLES OF BITWIDTH SUPPORTED FOR THE OUTPUT DATA UNDER
w � 32 BIT INTEGER REPRESENTATION AND: (i) THE PROPOSED

APPROACH; (ii) CHECKSUM-BASED FAILURE MITIGATION. ANY K
FAILURES IN M STREAMS (OR K SDCS IN EACH M -TUPLE

�d0, . . . , dM�1�) CAN BE MITIGATED (OR DETECTED) UNDER BOTH
FRAMEWORKS, WITH THE CHECKSUM-BASED METHOD REQUIRING K

ADDITIONAL STREAMS.

M K l1 k1

Maximum bitwidth supported by

Proposed Checksum-based

3 1 11 10 21 30
5 1 7 4 25 29
5 2 5 5 15 28
7 1 5 2 27 29
7 2 4 4 19 27
7 3 3 3 12 25
8 1 4 4 28 29
8 2 3 3 19 26
8 3 2 2 12 24

11 1 3 2 29 28
11 2 2 2 24 25
11 3 5 5 15 21

IV. COMPLEXITY IN LSB OPERATIONS WITH
NUMERICAL ENTANGLEMENTS

We now turn our attention to the cost of performing nu-
merical entanglement, result extraction and error checking
versus the cost of the LSB operation itself.

Figure 5. Ratio of arithmetic operations for checksum generation, error
checking and recovery versus the arithmetic operations of: generic matrix
multiplication, with M the number of streams (i.e., GEMM subblocks)
and K the number of SDCs or fail-stop failures that can be tolerated.

Consider M input integer data streams, each comprising
several samples and consider that an LSB operation op with
kernel g is performed in each stream. This is the case,
for example, under inner-products performed for GEMM
or convolution/cross-correlation between multiple input
streams for similarity detection or filtering applications or
matrix-vector products in Lanczos iterations and iterative
methods [45]. If the kernel g has substantially smaller
length than the length of each input stream, the effective
input stream size can be adjusted to the kernel length
under overlap-save or overlap-add operation in convolution
and cross-correlation [33] and several (smaller) overlapping

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 10

input blocks can be processed independently. Similarly,
block-major reordering is used in matrix products and
transform decompositions for increased memory efficiency
[32], [46], [47]. Thus, in the remainder of this section we
assume that N expresses both the input data stream and
kernel dimension.

The operations count (additions/multiplications) for
stream-by-stream sum-of-products between a matrix com-
prising M subblocks of N � N integers and a matrix
kernel comprising N �N integers (see [32], [37], [44], [46]
for example instantiations within high-performance com-
puting environments) is: CGEMM � MN3. For sesquilin-
ear operations like convolution and cross-correlation of
M input integer data streams (each comprising N sam-
ples) with kernel g [see Fig. 1(a)], depending on the
utilized realization, the number of operations can range
from O �MN2� for direct algorithms (e.g., time-domain
convolution) to O �MN log2N� for fast algorithms (e.g.,
FFT-based convolution) [33]. For example, for convo-
lution or cross-correlation under these settings and an
overlap-save realization for consecutive block process-
ing, the number of operations (additions/multiplications)
is [33]: Cconv,time � 4MN2 for time domain processing
and Cconv,freq � M ��45N � 15� log2 �3N � 1� � 3N � 1�
for frequency-domain processing.

As described in Section III, numerical entanglement of
M input integer data streams (of N samples each) requires
up to O �KM2N� operations for the entanglement, ex-
traction, error checking and recovery per output sample
[including the M -fold recovery and error check of (30)
of Remark 5]. For example, ignoring all arithmetic-shifting
operations (which take a negligible amount of time), based
on the description of Section III the upper bound of the
operations for numerical entanglement, extraction, error
checking and recovery is: Cne,conv � 2KM2N . Similarly
as before, for the special case of the GEMM operation
using M subblocks of N � N integers, the upper bound
of the overhead of numerical entanglement of all inputs
is: Cne,GEMM � 2 �KMN�2. We present the percentile
values obtained for Cne,GEMM

CGEMM
� 100%, Cne,conv

Cconv,time
� 100% and

Cne,conv

Cconv,freq
� 100% in Fig. 4 for typical values of �M,K� and

N � 500, which represents a typical subblock size in high-
performance GEMM and convolution/cross-correlation op-
erations. For sesquilinear operations like matrix products
the overhead of numerical entanglement, extraction, error
checking and recovery in terms of arithmetic operations
is below 0.2%. For convolution and cross-correlation this
overhead varies from below 8% to 32% depending on
implementation. Moreover,

lim
N�ª

Cne,GEMM

CGEMM
� lim

N�ª

Cne,conv

Cconv,time
� lim

N�ª

Cne,conv

Cconv,freq
� 0,

(31)
i.e., the overhead of the proposed approach approaches 0%
as the dimension of the LSB processing increases.

For comparison purposes, Fig. 5 shows the percentile
overhead of checksum methods [Fig. 1(b) [37], [43], [44]]
under the same range of values for �M,K� and N � 500,

i.e., for the same fail-stop failure or SDC mitigation capa-
bility5. Specifically, we examine the ratios: Cchecksum,GEMM

CGEMM
�

100%, Cchecksum,conv,time

Cconv,time
�100% and Cchecksum,conv,freq

Cconv,freq
�100%, where

Cchecksum,GEMM � 2K2MN2
�

K
M
CGEMM, Cchecksum,conv,time �

2KMN �
K
M
Cconv,time and Cchecksum,conv,freq � 2KMN �

K
M
Cconv,freq represent the overhead in terms of operations

count (additions/multiplications) for each case. Given that
checksum methods for time-domain/frequency-domain con-
volution and GEMM exhibit the same percentile overhead
(with variation between them limited to no more than
0.2%), Fig. 5 illustrates only the latter. As expected, the
overhead of checksum methods converges to K

M
�100% as

the dimension of the LSB processing operations increases,
i.e.,

lim
N�ª

Cchecksum,GEMM

CGEMM
� lim

N�ª

Cchecksum,conv,time

Cconv,time
(32)

� lim
N�ª

Cchecksum,conv,freq

Cconv,freq
(33)

�
K

M
.

Therefore, checksum methods lead to substantial overhead
(which can be surpass 45%) when high reliability is pur-
sued, i.e., when M B 8 and K A 1. Even for the low
reliability regime (i.e., when M A 8 and K � 1), Fig. 5
shows that checksum methods can incur more than 4%
overhead in terms of arithmetic operations. On the other
hand, with the exception of frequency-domain convolution
with K A 1, the proposed method always incurs less than
8% overhead. This overhead reduces even further with
increasing values for N . Overall, the comparison between
Fig. 4 and Fig. 5 demonstrates that, for the high reliability
regime (i.e., M B 15), the complexity overhead of the
proposed approach is expected to be one to two orders of
magnitude smaller than that of checksum methods.

V. EXPERIMENTAL VALIDATION

We present results using an Intel Xeon E5-2666v3
2.9GHz instance of Amazon EC2 (compute-optimized
c4.8xlarge, reserved instance type, Windows Server
2012, Intel C++ 15.0 Compiler). All experiments were per-
formed using the physical cores of the computing platform
by setting the command prompt system affinity appropri-
ately to ensure parallel execution of the Intel MKL GEMM
routine. In Fig. 6 and Fig. 7, we present throughput results
for the mitigation of up to K � 3 core failures when running
on M � 7 and M � 11 cores of the computing platform for
the parallel N �N by N �N GEMM computation, with
N > �400,8000�. All entanglement, disentanglement and
checksum generation make use of the OpenMP framework,
as well as the increased optimization offered by AVX2
SIMD instructions. In addition, all pre and post processing

5Unlike the row-column algorithm-based fault-tolerance method of
Huang and Abraham [24], the checksum method for fail-stop failure
mitigation in GEMM generates an additional (i.e., checksum) subblock,
since the former cannot mitigate fail-stop core failures.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 11

steps of all presented algorithms are performed using 32-
bit integers, while inputs and outputs of the dGEMM routine
undergo the appropriate casting/rounding from integer to
floating point number representation and vice versa6. Im-
portantly, the failure intolerant computation, together with
the proposed algorithm utilizes all M cores for data com-
putation. On the other hand, the checksum method can only
use Mdata �M �K cores for actual input data processing,
while reserving K cores for checksum data computation.
In our experiments, to create the redundant streams of (4)
with M �Mdata, we utilized the weighted checksum-based
method of Luk et. al. [39] [38] with K � 3 and linear
weights given by the 1 �Mdata vectors: w0 � �1 1� 1�,
w1 � �1 2�Mdata� and w2 � �20 21 � 2Mdata�1�.

The results of Fig. 6 and Fig. 7 show the decrease
in throughput (in Mega samples per second) against the
failure intolerant parallel GEMM kernel realization based
on the Intel MKL GEMM subroutine [47] for M � �7,11�
and K > �1,3�. Specifically, the proposed algorithm incurs
1.72% � 37.23% decrease in computational throughput for
the mitigation of (up to) 3 core failures during GEMM
for the presented �M,N� values. On the other hand, the
throughput achieved by the checksum-based [39] [38] fail-
ure mitigation method is 11.88%–51.87% lower than that
of the failure-intolerant computation. Overall, generalized
numerical entanglement is shown to incur 40% to 95%
lower overhead than checksum methods while providing
same or better level of recoverability.

VI. NUMERICAL ENTANGLEMENT FOR SDC
DETECTION

Beyond the mitigation of fail-stop failures in distributed
computing platforms, generalized numerical entanglement
can be used for the detection of fail-continue failures (i.e.,
silent data corruptions) in data computations. In this section
we demonstrate this for the example cases of �M,K� ���3,1� , �5,1� , �7,1��, i.e., detection of one SDC within
each triple, quintuple or septuple of outputs. In order
to achieve the same level of detectability, the checksum
approach produces a single checksum data stream (per
case), which must be processed with the input kernel.

All experiments were performed on an Intel Xeon CPU
E5-2670 v2 2.50GHz running Linux Ubuntu and using the
clang3.2 compiler. Results are presented for a set of M
vector-matrix multiplications of dimensions 1 � 2000-by-
2000 � 2000. Artificial fault injection is performed during
the above multiplication via KULFI [48], an open source
LLVM-based [49] fault injection tool. Transient faults are
injected during one of the M multiplications, with all M
streams (M � 1 streams for the checksum method) being
equiprobable.

To determine the number of injected SDCs for each fault
injection experiment, KULFI performs two executions of

6Like all high-performance MKLs for general-purpose processors, Intel
MKL only supports single and double-precision floating point; we opt for
the latter to avoid approximations incurred from the loss of dynamic range
in floating-point representations.

the binary file: one error free and the other susceptible to
SDCs. The outputs of the executions are compared in order
to categorize the effect of the injected errors on output data
with a typical error summary output presented as:

Segmentation Faults: 8, Benign Faults:
33, Out of Bounds: 2, SDC: 41

Table III shows the average execution time out of 200
single fault injection experiments using randomly generated
inputs for the detection and correction of a single error
within the M output data streams. Execution time for
GEMM is measured during the error-free execution of
KULFI, while the pre/post-processing execution time (in-
cluding error correction by recomputation of the erroneous
results) is measured for the error-prone execution of the
same KULFI experiment. The results demonstrate that the
overhead incurred by the proposed approach for SDC de-
tection is negligible (less than 0.75%), and remains 2 orders
of magnitude lower than that of the equivalent checksum-
based method [38] [39]. In all cases, all faults were detected
correctly by both the proposed and the checksum-based
method.

VII. CONCLUSIONS

We propose a new approach for LSB processing of inte-
ger data streams that is based on the novel concept of nu-
merical entanglement. Under M input streams (M C 3), the
proposed approach provides for: (i) guaranteed mitigation
of multiple (up to K � �M�1

2
�) fail-stop failures or SDCs;

(ii) complexity overhead that depends only on �M,K� and
not on the complexity of the performed LSB operations,
thus, quickly becoming negligible as the complexity of the
LSB operations increases. These two features demonstrate
that the proposed solution forms a third family of roll-
forward fail-stop failure (or SDC) mitigation techniques
(i.e., beyond the well-known and widely-used checksum-
based methods and modular redundancy) and offers unique
advantages, summarized in Table I. As such, it is envisaged
that it will find usage in a multitude of systems that require
enhanced reliability against core failures in hardware with
very low implementation overhead.

REFERENCES

[1] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson,
and S.-L. Lu, “Energy-efficient cache design using variable-strength
error-correcting codes,” in Proc. 38th IEEE Int. Symp. Computer
Archit. (ISCA), 2011. IEEE, 2011, pp. 461–471.

[2] Y. Andreopoulos, “Error tolerant multimedia stream processing:
There’s plenty of room at the top (of the system stack),” IEEE
Trans. on Multimedia, vol. 15, no. 2, pp. 291–303, 2013.

[3] S. Gotoda et al., “Task scheduling algorithm for multicore processor
system for minimizing recovery time in case of single node fault,” in
Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on. IEEE, 2012, pp. 260–267.

[4] D. Fiala et al., “Detection and correction of silent data corruption
for large-scale high-performance computing,” in Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society Press,
2012, p. 78.

[5] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Environments
Workshop, 2008. GCE’08. Ieee, 2008, pp. 1–10.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 12

0 2000 4000 6000 8000
Matrix Size (N)

101

102

103
T

hr
ou

gh
pu

t (
M

S
am

pl
es

/s
)

Failure-intolerant

Proposed

Checksum-based

31.64%

15.70%

1.72%

14.71%

(a) �M,K� � �7,1�

0 2000 4000 6000 8000
Matrix Size (N)

101

102

103

T
hr

ou
gh

pu
t (

M
S

am
pl

es
/s

)

Failure-intolerant
Proposed
Checksum-based

41.57%

1.97%

29.67%

24.98%

(b) �M,K� � �7,2�

0 2000 4000 6000 8000
Matrix Size (N)

101

102

103

T
hr

ou
gh

pu
t (

M
S

am
pl

es
/s

)

Failure-intolerant
Proposed
Checksum-based

43.69%

51.87%

23.64%

2.03%

(c) �M,K� � �7,3�

Figure 6. Throughput results for GEMM for the mitigation of core failures in M � 7 streams. Failure-intolerant computation using Intel MKL 11.0
is used as a benchmark.

0 2000 4000 6000 8000
Matrix Size (N)

101

102

103

T
hr

ou
gh

pu
t (

M
S

am
pl

es
/s

)

Failure-intolerant
Proposed
Checksum-based

3.31%

11.88%

38.10%

26.82%

(a) �M,K� � �11,1�

0 2000 4000 6000 8000
Matrix Size (N)

101

102

103

T
hr

ou
gh

pu
t (

M
S

am
pl

es
/s

)

Failure-intolerant
Proposed
Checksum-based

20.55%

34.37% 39.31% 3.45%

(b) �M,K� � �11,2�

0 2000 4000 6000 8000
Matrix Size (N)

101

102

103

T
hr

ou
gh

pu
t (

M
S

am
pl

es
/s

)

Failure-intolerant
Proposed
Checksum-based37.23%

46.35%
3.90%

29.30%

(c) �M,K� � �11,3�

Figure 7. Throughput results for GEMM for the mitigation of core failures in M � 11 streams. Failure-intolerant computation using Intel MKL 11.0
is used as a benchmark.

Table III
AVERAGE EXECUTION (IN MICROSECONDS) AND PERCENTILE COMPARISONS AGAINST THE FAULT-INTOLERANT (CONVENTIONAL) INTEL MKL

SGEMM FOR A SINGLE ERROR DETECTION WITHIN M MULTIPLICATIONS OF SIZE 1 � 2000-BY-2000 � 2000.

M � 3 M � 5 M � 7
Conventional Proposed Checksum Conventional Proposed Checksum Conventional Proposed Checksum

Preprocessing — 16.46 20.87 — 29.93 30.09 — 42.68 41.95
Postprocessing — 71.59 51.36 — 104.22 59.01 — 144.09 80.06

GEMM 12322.40 12322.40 16420.73 20554.80 20554.80 24669.09 28899.00 28899.00 32772.71
% increase — 0.71 33.26 — 0.65 20.02 — 0.65 13.40

[6] W. Kurschl and W. Beer, “Combining cloud computing and wireless
sensor networks,” in Proceedings of the 11th International Con-
ference on Information Integration and Web-based Applications &
Services. ACM, 2009, pp. 512–518.

[7] B. Carterette, V. Pavlu, H. Fang, and E. Kanoulas, “Million query
track 2009 overview,” in Proc. TREC, 2009, vol. 9.

[8] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: bringing order to the web.,” 1999.

[9] J. Yang, D. Zhang, A. F Frangi, and J.-Y. Yang, “Two-dimensional
PCA: a new approach to appearance-based face representation and
recognition,” IEEE Trans. Patt. Anal. and Machine Intel., vol. 26,
no. 1, pp. 131–137, 2004.

[10] J.-S. Coron, T. Lepoint, and M. Tibouchi, “Batch fully homomorphic
encryption over the integers,” Tech. Rep., Cryptology ePrint Archive,
Rep. 2013/036, 2013. http://eprint. iacr. org, 2013.

[11] P. M. Fenwick, “The Burrows–Wheeler transform for block sorting
text compression: principles and improvements,” The Comp. J., vol.
39, no. 9, pp. 731–740, 1996.

[12] Y. Peng, B. Gong, H. Liu, and Y. Zhang, “Parallel computing
for option pricing based on the backward stochastic differential
equation,” in Springer High Perform. Comput. and Applic., pp. 325–
330. 2010.

[13] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision
with the OpenCV library, O’Reilly Media, Incorporated, 2008.

[14] I. P. Egwutuoha et al., “A survey of fault tolerance mechanisms and
checkpoint/restart implementations for high performance computing
systems,” The Journal of Supercomputing, vol. 65, no. 3, pp. 1302–
1326, 2013.

[15] C. Wang et al., “A job pause service under lam/mpi+ blcr for
transparent fault tolerance,” in Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International. IEEE, 2007,
pp. 1–10.

[16] G. Bronevetsky et al., “Automated application-level checkpointing
of MPI programs,” ACM Sigplan Notices, vol. 38, no. 10, pp. 84–94,
2003.

[17] M. Treaster, “A survey of fault-tolerance and fault-recovery tech-
niques in parallel systems,” pp. 1–11, 2005.

[18] I. Philp, “Software failures and the road to a petaflop machine,” in
HPCRI: 1st Workshop on High Performance Computing Reliability
Issues, in Proceedings of the 11th International Symposium on High
Performance Computer Architecture (HPCA-11), 2005.

[19] J. T. Daly et al., “Application MTTFE vs. platform MTBF: A
fresh perspective on system reliability and application throughput for
computations at scale,” in Proc. 8th IEEE International Symposium

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, ACCEPTED 13

on Cluster Computing and the Grid, CCGRID’08. IEEE, 2008, pp.
795–800.

[20] Z. Chen and J. Dongarra, “Algorithm-based fault tolerance for fail-
stop failures,” IEEE Trans. on Parallel and Distributed Systems, vol.
19, no. 12, pp. 1628–1641, 2008.

[21] C. Engelmann, H. Ong, and S. L Scott, “The case for modular
redundancy in large-scale high performance computing systems,” in
Proc. IASTED Int. Conf., 2009, vol. 641, p. 046.

[22] J.-Y. Jou and J.A. Abraham, “Fault-tolerant matrix arithmetic and
signal processing on highly concurrent computing structures,” in
Proc. of the IEEE. IEEE, May 1986, vol. 74, pp. 732,741.

[23] Z. Chen, “Optimal real number codes for fault tolerant matrix
operations,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. ACM, 2009, p. 29.

[24] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance
for matrix operations,” IEEE Trans. Comput., vol. 100, no. 6, pp.
518–528, 1984.

[25] Z. Gao, P. Reviriego, Z. Xu, X. Su, J. Wang, and J. A. Maestro,
“Efficient coding schemes for fault-tolerant parallel filters,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 62, no.
7, pp. 666–670, July 2015.

[26] M. Treaster, “A survey of fault-tolerance and fault-recovery tech-
niques in parallel systems,” ACM Computing Research Repository
(CoRR, vol. 501002, pp. 1–11, 2005.

[27] P. Reviriego, S. Pontarelli, C. J. Bleakley, and J. A. Maestro, “Area
efficient concurrent error detection and correction for parallel filters,”
Electronics Letters, vol. 48, no. 20, pp. 1258–1260, September 2012.

[28] S. Pontarelli and A. Salsano, “On the use of karatsuba formula
to detect errors in gf((2(sup)n(/sup))(sup)2(/sup)) multipliers,” IET
Circuits, Devices Systems, vol. 6, no. 3, pp. 152–158, May 2012.

[29] S. Pontarelli, P. Reviriego, C. J. Bleakley, and J. A. Maestro, “Low
complexity concurrent error detection for complex multiplication,”
IEEE Transactions on Computers, vol. 62, no. 9, pp. 1899–1903,
Sept 2013.

[30] P. Du et al., “Algorithm-based fault tolerance for dense matrix
factorizations,” ACM SIGPLAN Notices, vol. 47, no. 8, pp. 225–
234, 2012.

[31] Z. Chen, “Algorithm-based recovery for iterative methods without
checkpointing,” in Proc. 20th Int. Symposium on High performance
Distributed Computing. ACM, 2011, pp. 73–84.

[32] K. Goto and R. A Van De Geijn, “Anatomy of high-performance
matrix multiplication,” ACM Trans. Math. Soft, vol. 34, no. 3, pp.
12, 2008.

[33] M. A. Anam and Y. Andreopoulos, “Throughput scaling of con-
volution for error-tolerant multimedia applications,” IEEE Trans.
Multimedia, vol. 14, no. 3, pp. 797–804, 2012.

[34] D. Anastasia and Y. Andreopoulos, “Software designs of image
processing tasks with incremental refinement of computation,” IEEE
Trans. Image Process., vol. 19, no. 8, pp. 2099–2114, 2010.

[35] C. Lin, B. Zhang, and Y. F. Zheng, “Packed integer wavelet transform
constructed by lifting scheme,” IEEE Trans. Circ. and Syst. for Video
Technol., vol. 10, no. 8, pp. 1496–1501, 2000.

[36] M. A. Anam and Y. Andreopoulos, “Failure mitigation in linear,
sesquilinear and bijective operations on integer data streams via
numerical entanglement,” in Proc. IEEE Int. On-Line Testing. Symp.,
IOLTS, submitted, 2015.

[37] Z. Chen, G. E Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca,
and J. Dongarra, “Fault tolerant high performance computing by a
coding approach,” in Proc. 10th ACM SIGPLAN Symp. Princip. and
Pract. Paral. Prog., 2005, pp. 213–223.

[38] F. T. Luk, “Algorithm-based fault tolerance for parallel matrix
equation solvers,” SPIE, Real-Time Signal processing VIII, vol. 564,
pp. 631–635, 1985.

[39] V. K. Stefanidis and K. G. Margaritis, “Algorithm based fault toler-
ance: Review and experimental study,” in International Conference
of Numerical Analysis and Applied Mathematics. IEEE, 2004.

[40] V.S.S Nair and J.A. Abraham, “General linear codes for fault tolerant
matrix operations on processor arrays,” in Int. Symp. Fault Tolerant
Comput. IEEE, 1988, pp. 180–185.

[41] J. Sloan, R. Kumar, and G. Bronevetsky, “Algorithmic approaches to
low overhead fault detection for sparse linear algebra,” in Depend-
able Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP
International Conference on. IEEE, 2012, pp. 1–12.

[42] N.K. Rexford, J.; Jha, “Algorithm-based fault tolerance for floating-
point operations in massively parallel systems,” in Proceedings.,
1992 IEEE International Symposium on Circuits and Systems. IEEE,
May 1992, vol. 2, pp. 649,652.

[43] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-
based fault tolerance applied to high performance computing,”
Elsevier J. Paral. and Distrib. Comput., vol. 69, no. 4, pp. 410–416,
2009.

[44] D. G Murray and S. Hand, “Spread-spectrum computation,” in Proc.
USENIX 4th Conf. Hot Top. in Syst. Dependab., 2008, pp. 5–9.

[45] G. H Golub and C. F Van Loan, Matrix computations, Johns Hopkins
University Press, 1996.

[46] D. Anastasia and Y. Andreopoulos, “Throughput-distortion computa-
tion of generic matrix multiplication: Toward a computation channel
for digital signal processing systems,” IEEE Trans. Signal Process.,
vol. 60, no. 4, pp. 2024–2037, 2012.

[47] MKL Intel, “Intel math kernel library,” 2007.
[48] V. C. Sharma et al., “Towards formal approaches to system

resilience,” in Proc. IEEE 19th Pacific Rim Int. Symp. on Depend.
Comp. (PRDC). IEEE, 2013, pp. 41–50.

[49] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Int. Symp. on Code
Gen. and Optim., 2004, (CGO). IEEE, 2004, pp. 75–86.

Mohammad Ashraful Anam obtained the PhD
in Electronic Engineering from University Col-
lege London (Lombardi Prize for the Best PhD
thesis in Electronic Engineering) and is currently
post-doctoral research associate in the Depart-
ment of Electronic and Electrical Engineering,
University College London, London, UK. His
research interests are in error tolerant computing,
and reliable cloud computing.

Ijeoma Anarado is currently pursuing the Ph.D.
degree at the Department of Electronic and Elec-
trical Engineering, University College London,
U.K. Her research interests include the design
of system level algorithms for fault tolerance in
data computations and throughput acceleration
in signal processing tasks. Her PhD is funded
by the Federal Government of Nigeria under the
PRESSID Scheme.

Yiannis Andreopoulos (M’00-SM’14) obtained
the Electrical Engineering Diploma and an MSc
in Signal and Image Processing Systems from
the University of Patras, Greece, and the PhD
in Applied Sciences from the Vrije Universiteit
Brussel, Belgium. He is Reader (Assoc. Profes-
sor) in Data and Signal Processing Systems in
the Department of Electronic and Electrical En-
gineering of University College London (U.K.).
His research interests are in wireless sensor net-
works, error-tolerant computing and multimedia

systems. He received the 2007 Most-Cited Paper Award from the Elsevier
EURASIP Signal Processing: Image Communication journal and a best
paper award from the 2009 IEEE Workshop on Signal Processing Systems.
He was Special Sessions Co-Chair of the 10th International Workshop on
Image Analysis for Multimedia Interactive Services (WIAMIS 2009) and
Programme Co-Chair of the 18th International Conference on Multimedia
Modeling (MMM 2012) and the 9th International Conference on Body
Area Networks (BODYNETS 2014). He has been an Associate Editor of
the IEEE Transactions on Multimedia, the IEEE Signal Processing Letters
and Image and Vision Computing (Elsevier).

	I Introduction
	I-A Summary of Prior Work
	I-B Contribution
	I-C Paper Organization

	II Checksum-based Methods versus Numerical Entanglement
	II-A Checksum-based Methods
	II-B Generalized Numerical Entanglement

	III Numerical Entanglement for Fail-Stop Reliability in LSB Operations
	III-A Simplest Form of Numerical Entanglement
	III-B Generalized Numerical Entanglement in Groups of Five Inputs (M=5, K=2)
	III-B1 Entanglement
	III-B2 Disentanglement

	III-C Generalized Entanglement in Groups of M Inputs (M5)

	IV Complexity in LSB Operations with Numerical Entanglements
	V Experimental Validation
	VI Numerical Entanglement for SDC Detection
	VII Conclusions
	References
	Biographies
	Mohammad Ashraful Anam
	Ijeoma Anarado
	Yiannis Andreopoulos

