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Abstract

Molecular line lists are of utmost importance in understanding and characteris-

ing the molecular composition of atmospheres from their spectra. Cool stars and

exoplanets such as Hot Jupiters have temperature ranges that allow for a signifi-

cant composition of molecules in their atmospheres with extremely complex and

rich spectral structures. Building a comprehensive line-list to model such phenom-

ena is a non-trivial task. Therefore efficient production is a necessity. This thesis

presents three molecular line lists produced using the theoretical methodologies of

the TROVE program suite.

GPU Accelerated Intensities (GAIN) is a new addition to TROVE and allows

for the rapid calculation of billions of transitions by exploiting graphics processing

units (GPUs) to speed up the evaluation of the line strength by almost 1000x com-

pared to previous codes. The program’s extensive usage in computing the 17 billion

transitions for the hot phosphine line list SAlTY is briefly discussed.

A hot H2CO line-list applicable to 1500 K is computed using TROVE and

GAIN from a refined potential energy surface (PES) and ab initio dipole moment

surface (DMS). Results are compared to experimental data and problems encoun-

tered from the PES refinement are discussed.

A preliminary room temperature line list for H2O2 is produced from a purely

ab initio PES and DMS and compared to experimental result. The ab initio PES is

then refined to spectroscopic accuracy and a final hot line list is produced applicable

up to 1250 K.
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Chapter 1

Introduction

Studies of the nuclear motion problem are essential for the deeper understanding

of a molecule’s physical properties. Molecules that interact with electromagnetic

radiation in the infrared and microwave regions will undergo a change in how the

molecule rotates and/or the motion of its atoms. This interaction gives rise to a

spectrum with unique features that characterise the molecule and can be exploited

in probing the physical properties and conditions of remote environments. In such

fields where in situ experimental data is unavailable and/or impractical, remote sens-

ing and spectroscopy provides the only means of studying such environments. In

particular, the study and characterisation of astrophysical atmospheres is reliant on

obtaining and interpreting spectra. The atmospheres of cool stars and exoplanets

have temperature ranges that allow for a significant abundance of molecules in their

atmospheres. However, studying the composition and chemistry of these atmo-

spheres requires spectroscopic data for molecules over a large range of temperatures

and pressures in order to accurately characterise the spectra we obtain from them.

Molecular line lists provide this spectroscopic data and can be produced either ex-

perimentally or theoretically. In principle, experimental data is the best but they are

often limited in temperature applicability and spectral range. This can stem from

a range of issues that include: difficulty in obtaining samples, safety of molecule,

spectral limitations of equipment, resolution, available equipment time, confusing

spectra, contamination, thermal volatility and other such factors. Theoretical data

therefore provides a means to overcome these limitations. However, producing the-
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oretical data for molecules with three or more atoms requires a huge amount of

computational resources in order to achieve experimental accuracy and high tem-

perature applicability. As such, techniques must be developed in order to overcome

the computational burden required in order to compute such line lists for bigger

molecules efficiently, accurately and completely.

This thesis explores the techniques and methodologies used in the ExoMol

project to compute the billions of transitions needed to model spectra of polyatomics

at high temperatures. The remainder of this introductory chapter will describe the

application of these line lists in modelling exoplanetary atmospheres. In particular,

it will focus on the concept and necessity on ’completeness’ of the line lists at differ-

ent temperatures and their importance in accurate modelling and characterisation.

As such, this will lead into the motivation of this thesis and the ExoMol project [8].

Chapter 2 describes the theories and key methods used in production of poly-

atomic line lists. Presented is a derivation of the underlying approximations and the

TROVE (Theoretical ROVibrational Energies) nuclear motion code [30] used in

first half of the line list production pipeline. Chapter 3 describes the computation of

the second half of the line list and includes the introduction of the new code dubbed

GAIN (GPU Accelerated INtensities) that was developed to rapidly compute the

billions of transitions required for completeness. Focus will be given on the utiliza-

tion of newer accelerator hardware that was exploited to achieve this and includes a

case study application of the code on the phosphine molecule to produce the SAlTY

(Sousa-Silva, Al- Refaie, Tennyson, Yurchenko) line list.

Chapters 4 and 5 focus on the three molecular line lists that were produced

during the course of this PhD through the application of the methods described in

Chapter 2. Chapter 4 concerns the production of the hot formaldehyde (H2CO)

line list and describes the importance of the molecule, the difficulties encountered

in production which include a failed initial line list that demonstrates interesting ef-

fects and the final published hot line list AYTY (Al- Refaie, Yachmenev, Tennyson,

Yurchenko) compared to existing experimental data. The next chapter involves the

production of two molecular line lists for the hydrogen peroxide (H2O2) molecule.
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Similarly to H2CO, a description of its importance to the ExoMol project is pre-

sented and general application of theory before being partitioned into two distinct

parts. The first half describes the published ab initio room temperature line list

and compares and contrasts it with the currently available experimental data. The

second half involves the computation of the high temperature line list APTY (Al-

Refaie, Polyansky, Tennyson, Yurchenko) for H2O2 and the additional work re-

quired to improve the ab initio line list to experimental accuracy before concluding

with a comparison with both the room temperature line list and experimental data.

Chapter 6 is a short discussion on the process of computing opactities and

molecular cross sections and introduces the code GEXS (GPU ExoMol Xross

Sections) being developed to improve the efficiency of atmospheric modelling. The

final chapter concludes the thesis with an overview of the achievements described

in the thesis and of the ExoMol Project as a whole. It briefly presents further oppur-

tunites presented by this thesis that include applications of the computed line lists

and future work on larger molecules.

1.1 Transit Spectroscopy

The methodology of extracting spectra of exoplanet atmospheres came about from

the seminal paper by Seager and Sasselov [31] as well as additional papers by

Brown [1] and Hubbard et al. [32] using the stellar flux during the transit of the

Hot Jupiter HD 209458b as a model. As an exoplanet transits its host star, its ra-

dius can be observed. If a gaseous atmosphere is present, it will cause the apparent

radius of the planet to become a function of wavelength. The change of opacity

over wavelength comes from the molecular absorption of stellar flux and as a result,

an absorption spectrum is superimposed in the measured stellar spectra[31]. The

retrieval of the exoplanet’s spectra therefore requires extensive knowledge of the

host star’s contribution to the overall observed flux. Great care must be taken in

removing the stellar influence in the combined star-exoplanet spectra as its contri-

bution is influenced by other processes such as stellar activity, sunspots and flares.

Additionally, clouds in the exoplanet’s atmosphere must also be taken into account
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Figure 1.1: Taken from Figure 8 of Brown [1], described is the effect of a simulated trans-
mission spectrum from an exoplanet transiting HD 209458b with cloud depths
at varying pressures labelled (in bar).

as they can affect the apparent radius at different pressures and mask absorption

features as seen in Figure 1.1. Hubbard et al. [32] expanded on this by considering

additional effects such as Rayleigh scattering, refraction and cloud scattering. As

such, detection of spectral features not only describes the atmosphere’s chemistry

but also cloud depth, pressure and temperature. Seager and Sasselov [31] suggested

a means of detecting atmospheres by observing the wavelength region at 590 nm for

a strong Na I doublet feature and Hubbard et al. [32] further suggested additional

observations in the infrared for strong molecular absorption features such as H2O.

The prediction of the sodium feature was confirmed by the very first definitive ob-

servation of an exoplanet atmosphere by Charbonneau et al. [33]. Later observations

in the infrared (IR) of the Hot Jupiter HD 189733b confirmed the presence of water

vapour [34] and carbon monoxide[35], with a tentative observation of methane by
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Swain et al. [36].

1.1.1 Atmospheric Retrieval

Transit spectroscopy provides the means with which to retrieve spectra from an

exoplanet but interpreting and characterising it is a complex affair. The basis of ex-

oplanet atmosphere analysis is through radiative transfer modelling of the observed

features. This type of atmospheric analysis is not exclusive to exoplanet character-

ization as it is well established in extracting physical parameters and the chemistry

of terrestrial and solar system atmospheres [37]. All radiative transfer modelling

is fundamentally based on the radiative transfer equation that describes how radi-

ation intensity changes as it propagates through a medium; radiation loses energy

to absorption, gains energy by emission and distributes it through scattering. As

radiation passes through an atmosphere, the source of its energy loss comes from

absorption by molecules. The effect of absorption on radiation has two parts: the

strength and the shape.

The strength of an absorption is a characteristic of the species of molecules in-

volved, their abundance, their mixing ratios and of the temperature of their enviro-

ment. Each molecule in an isolated system produces a unique absorption spectrum

that can be described as their ’fingerprint’. This behaviour arises from the molecule

gaining energy and transitioning into a different state. In particular, the IR region of

the electromagnetic spectrum deals mostly in the change in a molecule’s rotational

and vibrational motion. These changes are known as rovibrational transitions and

their intensity at an arbitrary temperature can be computed if their spectroscopic

data is provided.

Transitions are discrete and are therefore represented as a single sharp line with

a specific frequency and intensity. However there are various mechanisms that can

cause these lines to broaden and must be taken into account in order to properly

represent a molecule’s spectrum. An absorber is not stationary, it moves with a

velocity due to thermal energy. The velocity of molecules in a volume follows the

Maxwell–Boltzmann distribution, with higher velocities becoming more likely at

elevated temperatures. The veloctiy of the absorber Doppler shifts the absorption
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Figure 1.2: A plot of the Doppler, Lorentzian and Voigt line profiles.

frequency slightly, this appears as a broadening in the lines profile with a greater

effect appearing at higher temperatures. This is known as Doppler broadening and

has the form of a Gaussian line profile with associated Doppler width. Molecules in

a volume are subject to collisions with surrounding molecules with the rate of colli-

sions influenced by the pressure of their environment. An absorbing molecule that

has collided causes an interruption of the absorption process shortening its char-

acteristic time. There is therefore an uncertainty in the energy absorbed causing a

broadening effect to occur. This broadening is refered to as pressure broadening

and takes the form of a Lorentzian profile with associated Lorentzian width. The

convolution of the two profiles is known as the Voigt profile and represents a more

complete model of line broadening. A comparison of all three is seen in Figure

1.2. Therefore a knowledge of the temperature-pressure profile must be taken into

account when interpreting the shape of lines.

Environments rarely contain a single species of molecule and are instead com-

posed of many molecules in a mixture. The affect of this is that their spectra are
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Figure 1.3: Taken from Figure 2 of Tinetti et al. [2]. Primary transit spectrum of XO-
1b obtained with the Hubble–NICMOS instrument. The observed data is black
and the coloured lines represent various atmospheric models consisting of H2O,
CH4, CO and CO2.

convoluted. The nature of this convolution is based on their abundance and mixing

ratio, with molecules that are abundant and/or with strong absorption features hav-

ing a greater expression in the resultant absorption spectra. It is worth noting that

the inverse of this, the removal of spectra in a convolution, is also a major topic in

literature. In particular, water has very strong IR features and is extremely abundant

in the Earth’s atmosphere, this makes ground based observation in the IR difficult

as its transmission spectrum heavily masks observations. Figure 1.3 illustrates the

process of characterising the molecular species in the atmosphere of the Hot Jupiter

XO-1b. Here the effect of mixing molecules causes changes in the features of the

overall spectra;

Radiative transfer is a forward model in the sense that it predicts data if the

parameters are already known. The inverse problem is estimating or retrieving these

parameters from the data. The basis of solving the inverse problem of atmospheric

analysis is by replicating as closely as possible the observed data through fitting
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of parameters. Older atmospheric retrieval methods used an estimated model of

the temperature-pressure (T-P) profiles and abundance ratios. Madhusudhan and

Seager [38] presented a method of retrieving T-P profiles and abundance ratios by

modelling millions of spectra to cover a significant portion of the parameter space

and selecting the best fit. This method was later refined by Benneke and Seager [39]

by constraining the parameter space through Bayesian analysis of the spectra, this

allows for a more iterative approach of retrieving these state variables and has now

become ‘industry standard’. Identifying the absorbers involved requires identifying

their spectroscopic signature in the observed spectrum. Generally absorbers such as

water are easily identified due to their recognisable spectrum. However, emerging

codes such as τ-Rex[3] utilise automated pattern recognition (see Figure 1.4 ) to

identify absorbers in a more robust fashion.

The exact process of modelling requires looping over the frequencies of in-

terest and calculating and integrating the contributions of all transitions within the

region for all molecular species involved. This line-by-line calculation therefore

requires knowledge of the spectroscopic characteristics of these transitions. This

is commonly computed from spectroscopic data supplied by molecular line lists.

Molecular line lists supply transitions between different energy states for a partic-

ular spectral range. Each transition consists of a frequency, lower state energy and

Einstein-A coefficients from which the line strength of the observed line at an ar-

bitrary temperature can be computed. More importantly, this spectroscopic data

must have a high degree of completeness. The concept of ‘completeness’ of a line

list lies in how well represented the spectra is for a certain temperature and fre-

quency coverage. This aspect cannot be understated; the absorption spectrum of a

molecule can vary significantly at different temperatures. Line lists that are incom-

plete will have missing features and/or experience a sudden drop in opacity at high

temperatures. This can cause a mis-identification of atmospheric parameters in the

observation. Previous atmospheric studies have been afflicted by this. An example

is the inconclusive observation of methane in HD 189733b by Swain et al. [35] due

to lack of spectroscopic data. Radiative modelling requires a robust identification
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Figure 1.4: Taken from Figure 5 of Waldmann et al. [3]. Hubble/WFC3 transmission spec-
trum of HD 209458b [4] (black). Here the spectra of H2O (blue dots), CO2
(green squares), NH3 (magenta triangles), and NO (red squares) are computed
at the resolution of the observation. A high resolution spectrum of H2O is also
shown. The bottom plot describes the overall normalized distance between the
observed data and the spectra of each absorber. Distance relates to how well
a particular absorber’s spectrum matches with the observation with lower val-
ues indicating a better fit. The conclusion is that H2O represents the principal
contributer and best fit to the observation.
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of the main absorbers involved to match features in the observation. Modelling

using incomplete spectroscopic data makes interpreting the spectra extremely dif-

ficult and inconclusive. High quality complete line lists are thus a necessity in the

effectiveness of atmospheric retrieval codes.

Figure 1.5 describes the atmospheres of ten Hot Jupiters; highlighted here is

the spectral coverage, observational sensitivity and frequency that is being attained

by the current exoplanet community. As such, molecular line lists must satisfy

a high degree of completeness in the near to far-infrared region for Hot Jupiters

whose temperatures can reach up to 3,000 K. Newer ground based telescopes such

as the European-Extremely Large Telescope (E-ELT) and space-based James Webb

Space Telescope (JWST) will further increase both coverage and sensitivity of tran-

sit spectroscopy. The coming years will also expect to include definitive observa-

tions of currently tentative or undetected molecules including ammonia, hydrogen

sulphide, phosphine, hydrogen cyanide [40], acetylene and ethylene. A huge bur-

den is thus imposed on the availability and applicability of molecular line lists in

order to make unambiguous interpretations of exoplanet atmospheres.

1.2 Molecular Spectroscopic Databases

Multiple databases exist that aggregate spectroscopic data of molecules. Examples

of these include the HITRAN [41, 42, 6], CDMS [43], JPL [44] and PNNL-IR [10].

These databases provide experimental spectroscopic data on a range of molecular

species for specific applications. The High Resolution Transmission (HITRAN)

database originally concerned itself with molecules relevant to studying transmis-

sion spectra in Earth’s atmosphere but has since seen numerous upgrades to cater

to solar system atmospheres. It is one of the biggest databases available with over

4.2 million transitions across 47 molecular species and their isotopologues. The

Cologne Database for Molecular Spectroscopy (CDMS) is a smaller database that

expands on the aims of HITRAN by dealing with molecules that are relevant to

cool interstellar enviroments and provides only rotational spectra. It has been par-

tially integrated into later editions of the HITRAN database[6]. The Jet Propulsion
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Figure 1.5: Taken from Figure 1 of Sing et al. [5] HST/Spitzer transmission spectra of 10
Hot-Jupiters. Solid circles indicate observed data with error bars and solid lines
are modelled spectra.
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Laboratory (JPL) spectroscopic database catalogs over 1.5 million spectral lines for

atoms and molecules at wavelengths greater than 30 µm, the goal of which is to aid

in observation and analysis of spectra of the interstellar medium and atmospheres.

The Pacific Northwest National Laboratory IR (PNNL-IR) database provides mea-

sured room-temperature opacities of a range of molecules related to enviromental,

energy and hazardous remote sensing. The CDMS, JPL and HITRAN databases

are primarily composed of reliable high accuracy experimental or semi-empirical

sources and provide parameters such as transition linestrengths or Einstein-A coef-

ficients to simulate spectra at any temperature. As discussed at the beginning of the

thesis, there are many obstacles to obtaining experimental data and they are often

very difficult to overcome. Because of this, these databases suffer from a lack of

spectral coverage and temperature applicability. Figure 1.6 highlights the issue of

spectral coverage in the HITRAN database. The spectral range chosen coincides

with that seen in Figure 1.5 and displays the common problem of gaps and unavail-

able data. Whilst there is some coverage in these regions by acetylene and hydrogen

sulphide, phosphine is the most affected by this as there is no data below 2.7 µm.

Overall this lack of data makes use of them unsuitable in radiative transfer mod-

elling in these spectral ranges. The second issue presented refers to the temperature

applicability of the data. The HITRAN database specifies its spectroscopic param-

eters for room temperature modelling only. Whilst it is possible to extrapolate these

parameters to higher temperatures, doing so makes the data less complete. Tem-

perature completeness arises from the Boltzmann distribution of energy states in

a population. The population N of a state i with energy Ei is proportional to the

Boltzmann distribution function:

N(i) ∝ e−
Ei
kT (1.1)

where k is the Boltzmann constant and T is the temperature in Kelvin. The transition

intensity from a state Ψi to any other state is also proportional to N(i). Therefore the

opacity of a molecule becomes more evenly distributed across states making highly

excited states stronger, lower energy states weaker and overall smoothing spectral



1.3. Theoretical Line Lists 29

0.5 1 1.5 2 2.5 3 3.5 4
Wavelength ( µm)

10
-28

10
-26

10
-24

10
-22

10
-20

A
bs

ol
ut

e 
in

te
ns

ity
 (

cm
 / 

m
ol

ec
ul

e)

C
2
H

2

PH
3

H
2
S

Figure 1.6: An overview of HITRAN data[6] in the far infrared region at room temperature
(296 K). The wavelength range is the most common in astrophysical observa-
tion and the molecules chosen are acetylene (C2H2), hydrogen sulphide (H2S)
and phosphine (PH3)

features. Therefore highly excited states may not be observable at room temper-

ature as their transition intensity may lie below laboratory equipment sensitivity.

Additionally, observations at elevated temperatures will produce more complicated

spectra with billions of transitions that make them increasingly difficult to analyse

and assign. As such, the room temperature data provided by these databases is usu-

ally inadequate for the high temperature modelling required for Hot Jupiters. The

HITEMP database[45] is a high temperature version of HITRAN that provides ap-

propriate data for modelling hot environments but is limited to only five molecular

species. Theoretical methods therefore present a solution to this impasse.

1.3 Theoretical Line Lists
For polyatomic molecules, theoretical line lists present a way of providing the

spectral range and temperature completeness that experimental studies struggle to

achieve. Computed line lists can also provide other useful parameters such as
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robust assignments, partition functions [46, 47], cooling functions and radiative

lifetimes[12]. The usefulness of a high quality line list cannot be understated: H+
3

is one of the most common cations in the universe yet it is almost impossible to

measure its transition intensities experimentally; this has made it one of the most

well studied molecules through theoretical means[48, 49, 50] and such methods

were paramount in its detection in supernovae[51]. A calculated H+
3 line list by

Neale et al. [52] has allowed for the improved modelling of white dwarfs [53] and

storage-ring experiments[54]. In addition, its usage in the hydrodynamic models

of Hot Jupiter atmospheres[55] have indicated that H+
3 is important to the atmo-

sphere’s thermal stability as its IR emissions act as a significant cooling mechanism.

The benefit of theoretical line lists also extends to molecules that are experimentally

well-studied, in particular H2O. Whilst there are only around 80,000 experimentally

known transition intensities [6] for H2O, the computed hot line list BT2 by Barber

et al. [29] extends this coverage to over half a billion allowing for a better spectral

range and temperature dependance in its opacities. These features provided by BT2

has attracted extensive usage in a wide range of fields. BT2 was utilized in the at-

mospheric retrieval of HD 189733b which resulted in the first detection of water in

an exoplanetary atmosphere[34]. It has improved the modelling of brown dwarfs

and very cool stars[56]. Atmospheric retrieval using BT2 allowed for the the de-

tection of the very cool brown dwarf ULAS J003402.77[57]. Interestingly, Warren

et al. [57] discuss how the lack of hot line list for NH3 and CH4 at the time made

it extremely difficult to acquire adequate opacities compared to H2O. Interstellar,

cometary[58] and protoplanetary[59] modelling was also improved through usage

of BT2 and allowed for detection of water in cometary spectra of 8P/Tuttle[60] and

of its isotopologues[61] in astrophysical media. Outside of astronomical settings,

BT2 is also used in benchmarking the resolution of new spectroscopic methods[62]

and was also used in analysing the refractive index of humid air[63]. This list is

not exhaustive and many more uses of the BT2 can be found in various fields of

literature.

There are two distinct theoretical methodologies used to construct these line
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lists: Perturbation and variational theory. Perturbation theory has formed the foun-

dation of high resolution spectroscopy. The majority of experimental spectra are

analysed and assigned by these methods using effective Hamiltonians and spec-

troscopic constants. Spectroscopic Hamiltonians exclusively utilize experimental

observations in order to construct synthetic spectra and are useful in characterising

the nature of rovibrational transitions. Such spectra boast a high degree of agree-

ment with the line positions against experiment. However they are entirely reliant

on both the quality and quantity of experimental data and generally fail to predict

or replicate weak transitions and unobserved regions in the spectrum. In short, a

high temperature synthetic spectrum requires high temperature experimental data.

Additionally, there are many systems and problems were perturbative treatments

break down; The standard assumption with perturbation is that the molecule will

undergo small amplitude motion, and this is poorly represented when the molecule

contains hydrogen or approaches dissociation. Variational methods address these

limitations as it attempts towards a more complete solution. They are seen as a

more robust method of replicating spectroscopic data as they are based on using

ab initio (“First principles”) theories and methodologies. The main disadvantage is

the computational and memory cost required for high accuracy that rapidly scales

with increasing complexity of the molecule. With the advent of increased comput-

ing power, robust codes and new methodologies, they are now not only a viable

option, but, for some systems, can even compete with experimental data in terms of

accuracy.

1.4 The ExoMol Project

The ExoMol project [8] aims to build upon these previous endeavours by provid-

ing a comprehensive database of molecular line lists for usage in characterising and

modelling astrophysical phenomena, with particular interest in exoplanets and cool

stars. The goal is not only to improve on currently available line lists for high tem-

preature modelling but to also provide line lists for molecules that are expected to

be of interest in the near future. The ExoMol project has already produced hot line
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Figure 1.7: Taken from Figure 2 of Azzam et al. [7]. A 296 K simulated spectrum from the
AYT2 line list for hot H2S compared against HITRAN.

lists for important molecules including PH3 [9] (Chapter 3.8.1), SO2 [21] and CH4

[64] which are being used extensively. The ’10to10’ hot CH4 line list [64] in par-

ticular has seen use in analysis of late-T dwarf spectra [65], atmospheric modelling

of the super-Earth 55 Cancri e[40] and the mass photometry of the HD8799 system

[66] . Such line lists can contain tens of billions of transitions necessary for hot tem-

perature modelling. Figure 1.7 demonstrates the high coverage and completeness

a typical ExoMol line list provides. For this reason, the τ-Rex[3] code has heavily

adopted ExoMol line lists. Figure 1.8 describes the production outline for a line list

in the ExoMol project as well as the problems that are required to be solved. The

main codes used across the line list production pipeline are:

• Solve the electronic structure problem: This is done via standard quantum

chemistry calculation codes such as MOLPRO [67] and CFOUR [68].

• Solve the nuclear motion problem: Here, the ExoMol project utilizes the

LEVEL [69] and Duo code [70] for diatomics, DVR3D [71] for triatomics
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Figure 1.8: Taken from Figure 3 of Tennyson and Yurchenko [8]. The general production
outline of a molecular line list in the ExoMol project.
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and TROVE [30] for polyatomics to calculate energies and wavefunctions.

• Compute Einstein-A coefficients: All codes for the nuclear motion problem

compute Einstein-A coefficients as standard but an additional new code GAIN

[72] (Chapter 3) can also produce these coefficients from TROVE wavefunc-

tions.

Experimental accuracy in most cases is not possible using purely ab initio meth-

ods. The ExoMol pipeline therefore allows for the introduction of experimental

data through refinement (see Chapter 2). Even with state-of-the-art codes and the

usage of multiple high performance computing facilities, the task of computing a

line list is still computationally expensive and time consuming. Each ExoMol team

member is therefore usually assigned a single molecule to complete but with the

improvement of methods and codes within the group, it is becoming increasingly

common to work with multiple species. This work in this thesis presents two con-

tributions to the ExoMol project. The first is the production and publication of a

hot molecular line list for the formaldehyde molecule and a room temperature and

hot line list for hydrogen peroxide. The second is the contribution of a new method

and code for the rapid calculation of billions of line strengths. The aim for this code

is to help the ExoMol project to continue to push towards bigger, hotter and more

difficult molecular systems.
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Solving the Nuclear Motion Problem

Consider a molecule with P particles, of which N are nuclei and Ne = P−N are

electrons. We will not consider the effect of spin. The exact non-relativistic molec-

ular translational(t)-rovibrational(rv)-electronic(e) Hamiltonian in a Cartesian co-

ordinate system (X ,Y,Z) is of the form:

Htrve = Te +TN +V (RN ,re) (2.1)

where:

Te =− h̄2

2me

P

∑
i=N+1

∇
2
i total electron kinetic energy (KE) (2.2)

TN =− h̄2

2

N

∑
i=1

∇2
i

mi
total nuclear KE (2.3)

V (RN ,re) =
P

∑
r<s=1

CrCse2

4πε0Rrs
Electrostatic potential energy (2.4)

with RN = (X1,Y1,Z1,X2,Y2,Z2, ....,XN ,YN ,ZN) as the nuclear co-ordinates, Re =

(XN+1,YN+1,ZN+1,XN+2,YN+2,ZN+2, ....,XP,YP,ZP) as the electronic co-ordinates

and the gradient and Laplace operators defined as

∇i =
∂

∂Xi
+

∂

∂Yi
+

∂

∂Zi
;∇

2
i = ∇i ·∇i (2.5)

Additionally mi is the mass of each nucleus, me is the electron mass, MN is the

total nuclear mass, Cre is the charge of a particle and Rrs is the separation between
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particles r and s. The full derivation of these equations is given in Bunker and

Jensen [20]. Therefore one must solve:

HtrveΨtrve,n = Etrve,nΨtrve,n (2.6)

Unfortunately Eq. (2.6) is practically impossible to solve for even the smallest of

molecules. Therefore a physically appropriate approximation must be made. The

most important of which is the Born-Oppenheimer Approximation.

2.1 The Born-Oppenheimer Approximation

The basis of this approximation relies on the idea that the motion of the nuclei is sig-

nificantly slower compared to the fast motion of the electrons. Therefore the kinetic

energy contribution of the nuclei to the motion of the electron is minimal. Taking

the variational approach, we can therefore separate the rovibronic wavefunction as

such:

Ψrve,m = ∑
n′

Φ
m
trv,n′(RN)Φe,n′(RN ,re) (2.7)

Putting this into Eq. (2.6) and integrating with Φe,n(RN ,re) over all re we get:

[TN +Ee(RN)]Φm
trv,n +∑

n′
〈Φe,n|TN |Φe,n′〉Φm

trv,n′ = Etrve,mΦ
m
trv,n (2.8)

the second term is the vibronic coupling which the Born-Oppenheimer approxima-

tion neglects, we arrive at the ro-vibrational form:

[TN +Ee,n(RN)]Φm
trv,n = Etrve,mΦ

m
trv,n (2.9)

Where solving the electronic wave-equation for Ee,n(RN):

[Te +V (RN ,re)]Φe,n(RN ,re) = Ee,n(RN)Φe,n(RN ,re) (2.10)

provides the potential function for Eq. (2.9). As there is no nuclei mass term in

Eq.(2.10), the potential function is isotopically invariant. Solving Eq. (2.10) re-
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quires fixing RN for each solution effectively ’clamping’ the nuclei. For polyatomic

molecules the potential function has the form of an N-dimensional hypersurface

and is therefore referred to as a Potential Energy Surface (PES). The polyatomics

discussed in this thesis only deal with the ground electronic state (n = 0) as higher

excited electronic states only occur at frequencies significantly greater than infrared.

With this we can simplify Eq. (2.7) as:

Ψtrve,m = Φ
m
trv(RN)Φe(RN ,re) (2.11)

and modify the form of ro-vibrational equation from Eq. (2.9) to:

[TN +VB(RN)]Φtrv = EtrvΦtrv (2.12)

Where VB(RN) = Ee,0(RN).

2.2 Potential Energy Surface
As discussed previously, the solution of the clamped nuclear Hamiltonian given by

Eq. (2.10) takes the form of a hypersurface referred to as a PES. Despite the Born-

Oppenheimer approximation, the clamped nuclear or ’electronic structure’ problem

is still analytically impossible to solve for most molecular systems and must instead

rely on numerical means. However, solving through numerical integration meth-

ods is extremely difficult as the problem and computational cost scales exponen-

tially with number of particles[73]. Therefore the N-body problem must be treated

with specially developed methods that introduce significant approximations. These

methods form the foundation of the well established field of theoretical quantum

chemistry.

2.2.1 Hartree-Fock Method

The simpliest model in ab initio electronic structure theory is the Hartree-Fock (HF)

mean field theory[74]. It makes the assumption that the electron is interacting with

a mean field potential caused by other electrons in the system and further postu-

lates that the N electron wavefunction can be approximated using a single Slater
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Determinant:

Φe =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(r1) χ2(r1) · · · χNe(r1)

χ1(r2) χ2(r2) · · · χNe(r2)
...

... . . . ...

χ1(rNe) χ2(rNe) · · · χNe(rNe)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.13)

where χi are the one electron functions or ’orbitals’ as a function of the position

ri of electron i. This determinant has the property of antisymmetry with respect

to the interchange of two identical electrons, satisfying the Pauli principle. The

variational principle can be used to approximate the wavefunction on the principle

that the energy of a trial wavefunction Ev and the exact energy E are related by:

E ≤ Ev (2.14)

Therefore the electron orbitals χ of the trial wavefunction can optimized in order to

minimize its energy. An iterative approach is utilized whereby the optimized wave-

functions are reused as the trial wavefunction and then the optimization is repeated

until convergence is achieved. This is known as the self-consistent method[75, 76].

The choice of χ orbitals is based on chosing a model function or basis set that best

represents the electrons distribution in the system. Larger basis sets approximate

orbitals more accurately as they can represent more nuances in the electron dis-

tribution at the cost of computational requirements. The need for a large number

of basis sets can be offset with more sophisticated functions that represent aspects

such as polarization (6-31G basis sets), diffuse (6-311++G) and splitting (G3Large)

with decreasing integration efficiency. Therefore, the choice of basis set is always

a trade-off between accuracy and computational cost. Energies that are calculated

with the most ideal basis set (infinite or exact orbital representation) are known

as the Hartree-Fock limit energies. However, the approximations used by the HF

method means that even the Hartree-Fock limit energy will always be higher than

the exact energy. This difference is formulated as:

ε = E−EHF (2.15)
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Where EHF is the Hartree-Fock energy and ε is known as the electron correlation

energy. This residual correlation term comes from the single Slater determinant that

assumes the electronic motion is independant of every other electron. In absolute

terms, the HF method recovers ≈99% of the exact total energy[77] near equilib-

rium which is impressive for a simple wavefunction. However, this accuracy is

still insufficient as important chemical properties such as bond angles and lengths

are extremely sensitive to the ‘lost’ energy from electron correlation[77]. Further

away from equilibrium, the electron correlation term grows and HF breaks down

further making it unsuitable for usage in accurate PES calculations[77]. Therefore,

Post-Hartree-Fock methods have been developed to in order to retrieve this residual

energy.

2.2.2 Coupled Cluster

The development of Post-Hartree-Fock methods is well established and has brought

about many new methodologies that aim to improve the accuracy of HF methods.

Discussions and comparisons between methods are common in the quantum chem-

istry literature[73, 78, 79, 77] with the most well known Post-Hartree-Fock methods

including configuration interaction (CI), Møller-Plesset perturbation theory (MP),

Density Functional Theory (DFT) and Coupled Cluster (CC) [80, 81]. For brevity,

only CC will be discussed as it is the theoretical basis of all PES calculations in this

thesis (Chapters 4 and 5). The form of the CC wavefunction is:

Ψ = eT
Ψ0 (2.16)

Where Ψ is the exact wavefunction, Ψ0 is a reference wavefunction (usually a HF

wavefunction) and T is the coupled cluster operator which when acted on the ref-

erence wavefunction, produces a linear combination of excited determinants. The

form of T is written as:

T = T1 +T2 +T3 + · · · (2.17)

where Ti represents the operator for excitations with i = 1 for single, i = 2 for dou-

ble, i = 3 for triple and so on. Higher excitations incur a greater computational
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demand and are therefore truncated. This gives rise to a family of CC methods

with increasing accuracy and computation expense and are named on the truncation

imposed: CCS is truncated up to T1, CCSD up to T2, CCSDT up to T3 etc. Compu-

tational effort can be saved on higher excitations by introducing approximate treat-

ments and is reflected in the naming convention by surrounding parenthesis. The

one most commonly used in this thesis is CCSD(T) where the single and double ex-

citations are fully treated and the triple excitations utilize a perturbative approxima-

tion. CCSD(T) presents the best balance in computational effort and accuracy[77]

and is sometimes considered the ‘gold standard in quantum chemistry’ [73].

The calculation of the PES provides the potential term in Eq. (2.12) and allows

us to begin solving the rovibrational Hamiltonian.

2.3 TROVE
Solving Eq. (2.12) in its current form does not take into account that the trans-

lation can be separated from the internal motion (rotational and vibrational) of

the molecule. A commonly used system is the molecule-fixed axis system with

origin at the nuclear center of mass. This can be described as the axis follow-

ing and rotating with the molecule such that the molecule can be viewed as ‘sta-

tionary’. The internal vibrational motion therefore only depends on the displace-

ment of the nuclei via some internal coordinate system. Therefore a transfor-

mation from RN = (X1,Y1,Z1, ...,XN ,YN ,ZN) co-ordinates to new 3N co-ordinates

ℜ = (X0,Y 0,Z0,θ ,φ ,χ,ξ1,ξ2, ...,ξ3N−6) is required where (X0,Y 0,Z0) is the nu-

clear center of mass coordinate given by:

X =
∑

N
i=1 miXi

∑
N
j=1 m j

Y =
∑

N
i=1 miYi

∑
N
j=1 m j

Z =
∑

N
i=1 miZi

∑
N
j=1 m j

(2.18)

(θ ,φ ,χ) are the Euler angles that define the orientation of the molecule-

fixed axis in relation to the laboratory-fixed system and ξ = (ξ1,ξ2, ...,ξ3N−6)

are the internal co-ordinates. The momentum operators also become: ℘ =

(PX ,PY ,PZ,Jx,Jy,Jz, p1, p2, ..., p3N−6) where (PX ,PY ,PZ) are the mometa relating

to the translation (X ,Y,Z), (Jx,Jy,Jz) are the total rotational angular momenta op-
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erators and (p1, p2, ..., p3N−6) are the momenta relating to the internal co-ordinates.

This co-ordinate change to the kinetic energy operator can be facilitated by using

the Podolsky trick (See Chapter 7 of Bunker and Jensen [20]) which gives the

general form for the Hamiltonian:

Htrv =
1
2

3N

∑
λ ,µ

℘λ Gλ µ(ξ )℘µ +U(ξ )+V (ξ ) (2.19)

Explicity this is written as:

Htrv =
1
2 ∑

F=X ,Y,Z
PFGFFPF (2.20)

+
1
2 ∑

α=x,y,z
∑

α ′=x,y,z
JαGαα ′(ξ )Jα ′ (2.21)

− ih̄
2 ∑

α=x,y,z

3N−6

∑
n=1

[
JαGα,n(ξ )

∂

∂ξn
+

∂

∂ξn
Gα,n(ξ )Jα

]
(2.22)

− h̄2

2

3N−6

∑
n=1

3N−6

∑
n′=1

∂

∂ξn
Gnn′(ξ )

∂

∂ξn′
+U (

ξ )+V (
ξ ) (2.23)

where U(ξ ) is the psuedo-potential and G is the kinetic energy co-efficient matrix

that is block diagonal with 3 blocks. Two blocks have size 3× 3 and relate to the

translation and rotational parts which are completely diagonal, a (3N−6)×3 block

which represents the coriolis coupling of the vibrational motion with rotation and a

(3N− 6)× (3N− 6) block that represents the vibrational terms and coupling. We

can simplify the operator to:

Htrv = Htran +Hro +Hcor +Hvib (2.24)

where Htran is the translational part, Hro is the rotational, Hcor is the coriolis cou-

pling part and Hvib is the vibrational part of the Hamiltonian which includes the

potential V and psuedo-potential U . A problem appears in the definition of the mo-

menta conjugate relating to the ξ . Here they each require explicit definition for

molecules that differ by number of nuclei and/or structure due to the different in-

ternal co-ordinates to describe the vibrational motion. This can be overcome by de-
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riving the kinetic energy numerically which is the procedure performed by the code

Theoretical Rovibrational Energies (TROVE)[30]. TROVE is a variational nuclear

motion solver that can be used for general polyatomic molecules with arbitrary

structure. It works by deriving an approximate kinetic energy operator (AKEO) in

terms of a Taylor expansion of the internal co-ordinates. To do this we must be able

to express Gλ µ(ξ ) and U(ξ ) as a series expansions:

Gλ µ = ∑
l1,l2,...

Gλ µ

l1,l2,...
gl1

1 gl2
2 . . . (2.25)

U = ∑l1,l2,...
Ul1,l2,...g

l1
1 gl2

2 . . . (2.26)

where Gi j
l1,l2,...

and Ul1,l2,... are expansion co-efficients and g1,g2, . . . are functions

of our choosing that depend on a single internal co-ordinate (gn = gn(ξn)). The ap-

proach follows the procedure given by Sørensen [82] where we start by expressing

the Cartesian kinetic energy operator as:

T =
N

∑
i=1

Pi
2

2mi
(2.27)

where Pi is a 3-dimensional momentum vector with Pi = (PiX , ,PiY ,PiZ) and:

PiR =−ih̄
∂

∂Ri
(2.28)

for nuclei i and co-ordinate R = X ,Y,Z. To transform ℘→ P requires applying the

chain-rule transformation of ℜ→ RN :

Pi =
1
2

3N

∑
λ=1

∑
R=X ,Y,Z

(sλ ,iR℘λ +℘λ sλ ,iR) (2.29)

where:

sλ ,iR =
∂ℜλ

∂Ri
/ (2.30)



2.3. TROVE 43

is the Jacobian matrix of the chain-rule transformation. Therefore inserting Eq.

(2.29) into Eq. (2.27) and comparing with Eq. (2.19) we can define Gλ ,µ as:

Gλ µ =
N

∑
i

1
mi

∑
R=X ,Y,Z

sλ ,iRsµ,iR (2.31)

and U as:

N

∑
i

1
mi

3N

∑
λ

2N

∑
µ

∑
R=X ,Y,Z

sλ ,iR℘λ sµ,iR℘µ + sλ ,iR℘λ℘µsµ,iR +℘λ sλ ,iR℘µsµ,iR (2.32)

The inverse Jacobian matrix tiR,λ = ∂Ri
∂ℜλ

yields the relation:

N

∑
i

∑
R=X ,Y,Z

sλ ,iRtiR,µ = δλ ,µ (2.33)

with explicit expressions [82] for t given by:

tiR,α =



δR,α if α = (X ,Y,Z) (translation)

∑
β=X ,Y,Z

εRαβ βi if α = (X ,Y,Z) (rotation)

∂Ri
∂ξα

if α = (1,2..,3N−6) (vibration)

(2.34)

2.3.1 Approximate Kinetic Energy Operator

Eq. (2.33) is a linear system of 3N×3N equations. These can be approximated by

expanding s and t as the power series:

sλ ,iR(ξ ) = ∑
L

sλ ,iR
l1,l2,...

gl1
1 gl2

2 . . .

tiR,µ(ξ ) = ∑
L

t iR,µ
l1,l2,...

gl1
1 gl2

2 . . .
(2.35)

Where L represents an N-dimensional vector space defined as L ∈ {NN ||l1 + l2 +

· · ·+ lN | ≤ L} where L is the maximal expansion order. Inserting Eq. (2.35) into
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Eq. (2.33) gives the recursive expression:

N

∑
i

∑
R=X ,Y,Z

sλ ,iR
L t iR,µ

0 = δλ ,µδL0−
N

∑
i

∑
R=X ,Y,Z

∑
K

sλ ,iR
K t iR,µ

L−K (2.36)

where K is a subspace of L with the condition that |K| ≤ |L|, 0 is the zero-set

subspace of L. From this we see that each sλ ,iR
L gives a system of linear equations

that depends on coefficients of a lower order. Hence it is only required that t iR,µ
0 be

defined from Eq. (2.34) with respect to a co-ordinate system of our choosing and

its derivatives in order to begin the procedure. Inserting Eq. (2.35) into Eq. (2.31)

gives us the expression:

Gλ µ = ∑
L

∑
K

N

∑
i

1
mi

∑
R=X ,Y,Z

sλ ,iR
L sµ,iR

L−KgL (2.37)

where:

gL =
3N−6

∏
i

gli
i (2.38)

is a re-expression of the internal co-ordinate function product series in compact

form. The kinetic energy expression is in the series expansion form presented in

Eq. (2.25). Therefore an expression for the expansion co-efficient is:

Gλ µ

L = ∑
L

∑
K

N

∑
i

1
mi

∑
R=X ,Y,Z

sλ ,iR
L sµ,iR

L−K (2.39)

The same methodology can be applied to the psuedo-potential and potential to ar-

rive at a similar expressions. This approach is general and has allowed TROVE to

handle a wide range of molecules and more complicated coordinate systems such as

curvilinear coordinates[83]. This method has a few drawbacks, first is the numeri-

cal error that can accumulate from the finite difference method used in computing

derivatives of higher order. This can be solved through using quadruple precision or

automatic differentiation[83]. Secondly, an exact kinetic energy operator (EKEO)

allows for the coupling of rotational and vibrational motion. This coupling allows

molecules to smoothly transition from bent to linear geometries which is essential
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for molecules such as C2H2 and floppy molecules[84]. In an AKEO, molecules that

exhibit linear geometries will have coordinates (such as the torsional) that become

undefined, the consequence of this is that the t matrix becomes singular[85] and the

s matrix is unobtainable by inversion. Codes such as WAVR4[86] utilize an EKEO

and are able to resolve such motion at the cost of significantly longer computa-

tion time. However in TROVE, this limitation with the AKEO has recently been

overcome for the C2H2 molecule[87].

2.3.2 Symmetry

Before we move on to solving the ro-vibrational Hamiltonian we must briefly dis-

cuss symmetry. Molecules that contain a number of identical species of atoms can

be classified under a Molecular Symmetry Group (MS)[20]. A symmetry group

consists of a set of symmetry operations such as rotational, reflection and inversion

that leave the energy of a system of particles unchanged, or to put it mathematically:

[R,Hrovib] = 0 (2.40)

The symmetry operation R commutes with the Hamiltonian. Symmetry plays an im-

portant role in understanding the dynamics and spectra of molecules. One concept

involves labelling molecules based on their symmetry or their irreducible represen-

tation:

HrovibRψ = ERψ = Eψ
R = EcR

ψ (2.41)

The operation R generates a new wavefunction ψR with the same energy as ψ . This

can be represented as a coefficient or ‘character’ cR to the original wavefunction. A

character table can be constructed and a symmetry label Γ can be assigned to the

wavefunction and energy. Additionally the product rule states:

ψ = φiφ jφk (2.42)

Γ(ψ) = Γ(φi)⊗Γ(φ j)⊗Γ(φk) (2.43)
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The major molecules dealt in this thesis involve Abelian symmetry groups that gen-

erally have character tables consisting solely of values ±1. They also have the

property of commutivity:

Γ(φi)⊗Γ(φ j) = Γ(φ j)⊗Γ(φi) (2.44)

One of the most important and most powerful features of symmetry involves the

vanishing integral rule[88]:

〈ψ ′|Ô|ψ ′′〉= 0 If Γ(ψ ′)⊗Γ(Ô)⊗Γ(ψ ′′) 6⊃ Γ
(s) (2.45)

Here Γ(ψ ′), Γ(ψ ′′) and Γ(Ô) are the symmetries of the wavefunctions and oper-

ator Ô respectively and Γ(s) refers to a totally symmetric symmetry species. This

rule dictates that if the product of all symmetries does not contain a totally sym-

metric species then the integral will be zero. Therefore, with prior knowledge of

symmetries, we can avoid unnecessary computation. With this we can now begin

computing rovibrational energies.

2.3.3 Formulating the Ro-vibrational Hamiltonian

Since Htran is separable mathematically from the rotation and vibrational parts in

Eq. (2.20), we will not consider it and only deal with the ro-vibrational terms. Since

TROVE is variational, the form of wavefunction for a particular state i is:

Ψi = ∑
ν ,J,K,τ

ci
ν ,K,τ |ν〉|J,K,τ〉 (2.46)

where |J,K,τ〉 is the rotational basis-set, |ν〉 is the vibrational basis-set and ci
ν ,K,τ

are the variational coefficients to be solved for.
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............

J=0

J=1

Figure 2.1: Block matrix structure of the Hamiltonian for different J

2.3.3.1 Rotational basis-set

The rotational basis-set used in TROVE is defined as:

|J,K,τ〉=


|J,0〉 K = 0

1√
2
(|J,K〉+(−1)J+K|J,−K〉) K > 0 τ = 0

(−1)Σ

√
2

(i|J,K〉− (−1)J+Ki|J,−K〉) K > 0 τ = 1

(2.47)

where J is the total rotational angular momentum, K is the projection of the ro-

tational angular momentum on the body-fixed axis z, |J,K〉 are the rigid-rotor

functions[20] and τ can be considered the rotational parity [30, 89]. The rota-

tional symmetry properties of J means that Eq. (2.45) is zero if J′ 6= J′′. This gives

rise to a block diagonal form given in Fig. 2.1 and means that each J matrix can

be separately constructed and diagonalized. Additionally, the rotational symmetry

species Γrot for the rotational basis can be determined analytically (for non-cubic-

group symmetries) from K and τ and the integral 〈J,K′|Jα |J,K′′〉 in Eq. (2.20) can

also be be determined analytically.
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2.3.3.2 Vibrational basis-set

The vibrational basis set function |ν〉 in TROVE is constructed as product of 1-D

basis-functions:

|ν〉= |ν1
i 〉|ν2

j 〉 . . . |ν3N−6
n 〉 (2.48)

Where the |ν i
j〉 is a basis-function representing a vibrational mode i with quantum

number j. These are obtained from solving the 1-dimensional schrodinger equation:

H1
n =− h̄2

2
∂

∂ξn
G1

nn(ξn)
∂

∂ξn
+U1(ξn)+V 1(ξn) (2.49)

where the superscript 1 represents the one dimensional reduction of the Hamiltonian

by restricting all co-ordinates except for ξn to their equilibrium values. This is

solved via Numerov-Cooley method [90, 91] on a set of grid-points. This basis-set

is truncated via a polyad scheme up to a maximum defined polyad number Pmax:

P = ∑
n

anνn ≤ Pmax (2.50)

where an is a polyad coefficient. This makes it simple to control the size of the

basis-set. However it can be seen that certain vibrations or class of vibration exhibit

the same motion with the same species of atoms through symmetry (and by this,

the same energy). We can combine them into a single contracted basis-set which

exhibit better symmetry properties and simplifies the process of determining their

irreducible representations. An example would be combining primitive stretches

into a new contracted form:

|φ s1,s2,...,sn〉= ∑
i, j,k,...,n

Aν ,s1,s2,...,sn
i, j,k,...,n |νs1

i 〉|ν
s2
j 〉 . . . |ν

sn
j 〉 (2.51)

Where ν
si
i are primitives of the same class si and Ai, j,k,...,n is solved via a reduced

Hamiltonian:

Hred
s1,s2,...,sn

= 〈νbn
0 | . . .〈ν

b2
0 |〈ν

b1
0 |Hvib|νb1

0 〉|ν
b2
0 〉 . . . |ν

bn
0 〉 (2.52)
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Where ν
bi
0 refer to primitive vibrational basis in their ground state that are not a basis

for Eq. (2.51) (in this example bi represents bends). The matrix is diagonalized and

eigenvalues and irreducible representations are determined via Eq. (2.43) and stored

for each class for later use. Our new vibrational basis set now has the form:

|Φ〉Γ = ∑
i, j,k,...,n

Bν
i, j,k,...,n|ν

c1
i 〉|ν

c2
j 〉 . . . |ν

cn
n 〉 (2.53)

where ci referes to a particular class i and Γ is the total symmetry of the basis set

from a product of all symmetries of each contracted basis function. Here Bν
i, j,k,...,n

can be solved for by constructing the pure vibrational J = 0 hamiltonian matrix Hvib

and diagonalizing for eigenvalues and eigenvectors:

〈ΦΓi
i |Hvib|Φ

Γ j
j 〉= EJ=0,Γi⊗Γ j

i, j δi, j (2.54)

where the integral is zero if Γi j satisfies Eq. (2.45) which for Abelian symmetry

groups implies Γi = Γ j. The eigenvectors are also calculated and stored. One last

contraction step can be still be performed. When constructing the J > 0 Hamilto-

nian, the contracted vibrational basis-set can instead be replaced by the new ΨJ=0
ν

solutions. This is refered to as the J = 0 representation [92]. In this contraction step,

a symmetry adapted basis-set is first constructed. This can be done via a standard

projection operator but for Abelian symmetries this is easily accomplished by only

selecting contracted basis with a specific symmetry species Γ. This has the advan-

tage of making the J matrices block diagonal along Γ as seen in Fig. 2.2 which

again this arises from Eq. (2.45). Doing this we can construct and diagonalize dif-

ferent Γ blocks separately for J = 0 and J > 0. We are now in possession of a new

J = 0 wavefunction: Ψ
J=0,Γ
ν . This wavefunction is used as the vibrational basis-set

and we can truncate this through an eigenvalue threshold EJ=0
max . Our ro-vibrational

wavefunction now has the form:

Ψ
J,Γtot
i = ∑

ν ,K,τ

cJ,Γtot,i
ν ,K,τ Ψ

J=0,Γvib
ν |J,K,τ〉 (2.55)
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............

Γ1

Γ2

Figure 2.2: Block matrix structure of the symmetry adapted Hamiltonian for different Γ

Using Eq. (2.43) the Γtot for Abelian symmetries is determined as:

Γtot = Γrot⊗Γvib (2.56)

A symmetry adapted basis-set can therefore be constructed for J > 0 and Γ by

selecting only Γtot = Γ. Substituting Eq. (2.55) into the Hamiltonian (Eq. (2.24))

for a particular J and Γ gives the matrix expression:

HJ,Γ
i,i′ =〈J,Ki,τi|Hro|J,Ki′,τi′〉

+〈J,Ki,τi|ΨJ=0,Γvib
i |Hcor|Ψ

J=0,Γ′vib
i′ |J,Ki′,τi′〉

+〈ΨJ=0,Γvib
i |Hvib|Ψ

J=0,Γ′vib
i′ 〉

(2.57)

This simplifies the vibrational contribution as:

〈ΨJ=0,Γ
i |Hvib|ΨJ=0,Γ

i′ 〉= EJ=0,Γ
i,i′ δi,i′ (2.58)
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which is diagonal and are simply the J = 0 energies calculated previously. This has

the additional benefit where experimental band centres can be substituted instead

of the eigenvalues. This has the effect of shifting the band centre onto the exper-

imental value and allows further rotational excitations to be computed around the

experimental band centres[92].

2.3.4 Diagonalization

The variational method of solving the Schrodinger equation takes the form of a

standard eigenvalue problem:

Ax = λx (2.59)

The A matrix is the Hamiltonian whose elements are given in Eq. (2.57), λ are

the eigenvalues corresponding to energy of a state and x are the eigenvalues and

are the variational coefficients in Eq. (2.55). TROVE implements several methods

of diagonalizing a matrix. The most commonly used is the dense double precision

symmetric eigenvalue solver DSYEV from the standard library LAPACK [93]. The

matrices are generated and solved in seperate J,Γ blocks. The size of the Hamil-

tonian at J > 0 in Eq. (2.57) is related by J and the J = 0 energy truncation EJ=0
max .

The relationship is:

dΓ
J = (2J +1)dΓ

J=0 (2.60)

where dΓ
J=0 is the size of the J = 0,Γ basis-set determined by EJ=0

max and dΓ
J is the

size of the Hamiltonian at rotational excitation J and symmetry Γ. The memory in

gigabytes (GB) required to hold a matrix of this size is:

Matrix memory =
8(dΓ

J )2

109 (2.61)

The main high performance computing centres used in computing line lists come

from the DiRAC supercomputing cluster, specifically the Cambridge Darwin and

COSMOS computing clusters. The Darwin cluster provides about 64 GB of mem-

ory on each node which translates to a maximum matrix size of dΓ
J =89,000. A

typical molecule will have a dΓ
J=0 in the order of 1,000 giving a maximum com-
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Figure 2.3: An image generated from the J = 8, Γ = A1 matrix for H2CO. The boxes high-
light blocks belonging to specific (K,τ) quantum numbers. Colours approach-
ing white represent values at each matrix element approching zero.

putable J around J = 44. However molecules such as H2CO and H2O2 require

J > 60 energy states in order to qualify for high temperature usage. One way is

to exploit the sparsity of the matrix. A consequence of the rotational basis set is

that the matrices are block diagonal along K. Fig. 2.3 shows that the only non-zero

values in the matrix are around the diagonal. Therefore, by only storing non-zero

elements, the memory requirements are significantly reduced. An iterative sparse

diagonalizer like ARPACK[94] can instead be used to solve for a set number of

eigenvalues. Typically, iterative diagonalizers are used to solve for a ≈1–10% of

the eigenvalues. For high J, this is advantageous as the number of eigenvalues

within the energy limit EJ=0
max is significantly smaller compared to the huge size of

the matrix. Figure 2.4 highlights the relationship between J, number of eigenvalues

and non-zero elements for the PH3 SAlTY linelist[9]. However for J matrices that

are generally large and require 50–90% of their eigenvalues, these iterative methods

are extremely inefficient to use.
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Figure 2.4: Dimensions of the SAlTY[9] matrices with J (blue), the corresponding number
of eigenvalues below a threshold (red) and number of non-zero elements on
each row (green).

For matrices that are too big and dense for Darwin, diagonalization moves

to the COSMOS cluster. COSMOS is a Non-Uniform Memory Access (NUMA)

shared memory system and can link multiple nodes into a single memory area pro-

viding terabytes of usable memory. This provides us the ability to diagonalize large

dense matrices but at the cost of poor performance where diagonalization can take

days to complete. The reason for this comes from the NUMA architecture itself.

Generally when allocating memory in Linux, the memory isn’t truly allocated to

hardware until a process initializes or ‘touches’ it (assigned a value, set to zero

etc.). For NUMA, this memory is allocated to the node that first touched this mem-

ory. The problem comes when another process from a different node wants to access

it, it must travel through a slower interlink in order to retrieve the value. LAPACK

was not designed for these shared memory systems and therefore does not take into

account the communication overhead that is occurring in the background to main-

tain the single memory space.
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2.3.4.1 MPI diagonalizer

Message Passing Interface (MPI) is a system that allows for different computers or

nodes to communicate with each other to complete a single given task. Programs

designed using this interface are typically more efficient when using multiple nodes

as they are known to be communication-aware. Therefore a linear algebra library

that is communication-aware is required. SCALAPACK [95] is a distributed parallel

linear algebra library based on LAPACK. It is built around MPI and can make full

use of nodes for diagonalization via the parallel double precision symmetric eigen-

value solver PSDYEV. The matrix is distributed across all processors with more

processors providing more memory. An external program was written that is able

to read matrices exported from TROVE, diagonalize over hundreds of cores and

outputs in TROVE’s eigenvalue and eigenvector format directly. A matrix of size

≈300,000 diagonalized over 512 cores only takes around 2 hours to complete for

all eigenvalues and eigenvectors.

2.3.4.2 Quantum number assignments

State quantum numbers are assigned using the largest coefficient in the eigenvec-

tor. The ro-vibrational state (of specific J, Γ) with wavefunction in Eq. (2.55)

is assigned the quantum numbers ν , K and τ from the basis set with the largest

contribution i.e the basis function with the largest variational coefficient (cJ,Γ,i
ν ,K,τ)

2.

The criterion for unique and well-defined assignment is (cJ,Γ,i
ν ,K,τ)

2 > 0.5 as given

by Hose and Taylor [96]. Eigenstates that do not meet this criterion are likely to

exhibit pseudo-degeneracies but these usually occur in highly vibrationally excited

states and are generally rarely observed experimentally. Additionally the vibrational

quantum numbers are local mode and refer to the basis-set arrangement defined in a

TROVE input file[97], these usually do not correspond to the normal mode quantum

numbers that is commonly used in literature. TROVE provides a facility to reassign

these quantum numbers for each contracted class based on their energies. This facil-

itates matching states to literature line positions and is useful for less well-behaved

molecules such as H2O2. Details of this can be seen in Chapter 5.3.
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2.3.5 Refinement of the Potential Energy Surface

Generally, the current level of ab initio electronic structure theory does not give ex-

perimental accuracy for ro-vibrational energies within a resonable timeframe. The

empirical shifting technique given in Eq. (2.58) is therefore a means to achieve this

degree of accuracy with minimal computational effort. Whilst band-centre shifting

can reproduce experimental energies very easily, its accuracy and predictive ability

is limited to vibrational bands whose band centre positions are already experimen-

tally characterised. A more robust method of correcting the PES is through fitting

or refining to experimental energies. The procedure [98] implemented in TROVE

describes a correction surface ∆V to the initial (ab initio) surface V . The new re-

fined surface V ′ can therefore be written as V ′ = V + ∆V where ∆V is expanded in

Taylor series with expansion coefficients ∆ fi jkl···:

∆V = ∑
i, j,k···

∆ fi jk···ξ
i
1,ξ

j
2 ,ξ k

3 · · · (2.62)

Our new Hamiltonian has the form H ′ = H + ∆V , where H is the Hamiltonian of

the starting point for the refinement. Therefore we can write a new corrected energy

E ′ with respect to the ab initio energies E as:

〈ΨJ,Γ
n |H ′|ΨJ,Γ

m 〉= EJ,Γ
n,mδn,m + 〈ΨJ,Γ

n |∆V |ΨJ,Γ
m 〉

E ′J,Γn,m = EJ,Γ
n,m + ∑

i, j,k···
∆ fi jk···〈ΨJ,Γ

n |ξ i
1,ξ

j
2 ,ξ k

3 · · · |ΨJ,Γ
m 〉

(2.63)

Interestingly, the differential of the energy with respect to adjustible parameters can

be found using the Hellmann–Feynman theorem [99]:

∂EJ,Γ
n,m

∂∆ fi jkl···
= 〈ΨJ,Γ

n |ξ i
1,ξ

j
2 ,ξ k

3 · · · |ΨJ,Γ
m 〉 (2.64)
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Which has the same form as the second term in Eq. (2.63), therefore we can simplify

the corrected energy as:

E ′J,Γn,m = EJ,Γ
n,m + ∑

i, j,k···
∆ fi jk···

∂EJ,Γ
n,m

∂∆ fi jkl···
(2.65)

For simplicity we will refer to a set of i, j,k · · · parameters under a single label n.

We therefore require a set of ∆ fn that provides the best overall modification in the

calculated energies towards experimental observation. An objective function F can

be constructed that represents this:

F =
N

∑
i

wi(Eobs
i −Ei)2, (2.66)

where N is the number of observed energies Eobs
i , E ′i are the corresponding calcu-

lated energies and wn are the weights which dictate the importance of experimental

energies in the refinement. The task is therefore to find a set of coefficients ∆ fn that

minimize Eq. (2.66). The requirements for the minimum is for ∂F
∂∆ fn

= 0 which in

conjunction with Eq. (2.65) gives:

N

∑
i

wi
∂Ei

∂∆ fn

∂Ei

∂∆ fm
∆ fm−

N

∑
i

wi(Eobs
i −Ei)

∂Ei

∂∆ fn
= 0 (2.67)

this is a linear equation of the form:

Ax−b = 0 (2.68)

which can be minimized using linear least squares fitting from linear algebra li-

braries such as LAPACK [93]. The refinement procedure can cause the PES to

assume unphysical shapes so the fitting is constrained around the energies at each

ab initio geometries [100, 98, 97, 9]. Great care must still be taken in ensuring that

the PES is not over-fit as it can subtly destroy the behaviour of coupled vibrational

states, a practical example of this is discussed in Chapter 4.5. This PES refinement

methodology used in TROVE has been successful in producing accurate PES for



2.3. TROVE 57

molecules such as NH3 [101], SO3 [102], PH3 [9] and CH4 [64].



Chapter 3

Transitions and GAIN

With the procedures outlined in the previous chapter we are now in possession of

eigenvalues and eigenvectors for a range of excitations. However, this only repre-

sents the first half of a line list calculation. These states give us great insight into

the behaviour of the molecule in isolation, however, the observation of molecules

requires them to be subjected to an electric field of some kind (such as a photon)

and their interaction with this field must be understood in order to model systems

such as atmospheres.

3.1 The Dipole Moment
A molecule in the most general sense is a system of charged particles. Charge

particles also exhibit an electric field. When the molecule’s electric field interacts

with an electric field ε the associated interaction energy E is defined as:

E =− ∑
A=X ,Y,Z

µA · ε (3.1)

Where µA is the dipole moment vector and is defined with Cartesian co-ordinate A:

µA = ∑
r

CreAr (3.2)

The dipole moment vector therefore describes the charge distribution or the elec-

tric field in a molecule. A molecule that exhibits a non-zero dipole moment in its

equilibrium configuration is said to have a permanent dipole moment. This is com-
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monly defined quantity in literature and is usually given in units of Debye (D). Like

the potential energy surface, the dipole moment for each nuclear geometry of the

molecule can be computed and an N dimensional hypersurface can be constructed

known as the Dipole Moment Surface (DMS). This surface can also be computed ab

initio in a similar fashion to the electronic structure problem. However, unlike the

potential energy, the dipole moment is a vector and not a scalar quantity. Therefore

a DMS must be constructed for each Cartesian co-ordinate in order to fully describe

both the direction and magnitude at each geometry. The strength or ‘intensity’ of

an electric field interaction is defined by the expectation value of E:

〈E〉=− ∑
A=X ,Y,Z

〈Ψn|µA|Ψm〉 · ε (3.3)

If the matrix element given by the integral is non-zero in the off-diagonal, it implies

that a transition is occuring from state Ψm to state Ψn. Transitions are therefore

driven by the interaction of the external and molecules electric field. The probability

or ‘strength’ of a transition is square of this integral and is written as:

S(m← n) = ∑
A=X ,Y,Z

|〈Ψm|µ̄A|Ψn〉|2 (3.4)

this is commonly known as the line-strength. The symmetry of the dipole mo-

ment operator gives insight into the manner of these transitions. Applying sym-

metry operations to Eq. (3.2), a permutation symmetry operation will leave the

dipole moment unchanged while an inversion (Ar = −Ar) permutation operation

will change the sign of the dipole. Therefore the symmetry of the dipole is the

symmetry species of a Molecular Symmetry group that has symmetric permutation

operations and anti-symmetric inversion-permutation operations. Table 3.1 high-

light a few of these symmetries for different symmetry groups. This property allow

us to apply the vanishing integral rule given in Eq. (2.45) to Eq. (3.4). The rules for

when this integral is zero are:

Γ(Ψn)⊗Γ(Ψm) 6⊃ Γ(µA) (3.5)
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Table 3.1: Symmetry of the dipole moment operator for various Molecular Symmetry (MS)
groups from Bunker and Jensen [20]

MS Group Γ(µA)
C2 A
C2v A2
C2h Au

D2h Au

D3h A′′1

star and forms the basis of the symmetry selection rules. If the linestrength eval-

uates to zero, these transitions are considered forbidden. Such a term is a mis-

nomer as these transitions aren’t truly forbidden but are considered weak under the

Born-Oppenheimer approximation[88]. The main features of a spectrum can still

be understood without considering them.

3.2 Simulating Spectra

By evaluating Eq. (3.4) important spectroscopic quantities can be derived, most

importantly the Einstein-A coefficents:

A f i =
8π4ν̃3

i f

3h
(2J f +1)S( f ← i) (3.6)

where ν̃i f = E f − Ei is the transition frequency. This quantity is temperature-

independent and with this the temperature dependent absolute intensity can be com-

puted:

I( f ← i) =
A f i

8πc
gns(2J f +1)

exp
(
−c2

Ei
T

)
Q ν̃2

i f

[
1− exp

(
−c2ν̃i f

T

)]
, (3.7)

where Ei is the computed energy for state i, ν̃i f = E f −Ei is the transition frequency,

T the absolute temperature, gns is the nuclear spin statistical weight factor and c2 is

the second radiation constant defined as:

c2 =
hc
k

(3.8)
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The partition function Q can be computed by the explicit summation of states [46].

This is given by:

Q = ∑
i

gi exp
(
−c2Ei

T

)
, (3.9)

where gi is the degeneracy of a particular state i with energy Ei. By providing only

Einstein-A coefficents, the spectra of a molecule at any temperature can be easily

modelled provided it is adequately populated with enough rotational excitations.

3.3 Evaluating the Linestrength

Our dipole is represented in space-fixed Cartesian co-ordinates (µs). It is often

more practical to evaluate the linestrength using spherical tensor representations

instead of the Cartesian representation of the dipole moment expressed in terms of

the molecular-fixed (µm) components as given by Bunker and Jensen [20]:

µ
1,σ
s =

1

∑
σ ′=−1

Dσ ,σ ′(φ ,θ ,χ)µ
1,σ ′
m (3.10)

were

µ
1,±1
m =

∓µX − iµY√
2

, µ
1,0
m = µZ (3.11)

Now Eq. (3.4) becomes:

S( f ← i) =
1

∑
σ=−1

|
1

∑
σ ′=−1

〈Ψ f |D1
σ ,σ ′ µ̄m

1,σ ′|Ψi〉|2 (3.12)

Between a lower state with energy E i and upper state with energy E f . The dipole is

dependent only on vibrational coordinates and the D1
σ ,σ ′ is dependent on rotational

(Euler) coordinates, therefore substituing the wavefunction from Eq. (2.55) into

Eq. (3.12) and employing Clebsch-Gordan algebra to evaluate the rotational part
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gives [20]:

S( f ← i) = (2J′+1)(2J +1)×| ∑
ν ′,K′,τ ′

∑
ν ,K,τ

1

∑
σ=−1

(−1)KcJ′,Γ′, f
ν ′,K′,τ ′c

J,Γ,i
ν ,K,τ

J 1 J′

K σ −K′


〈ΨJ=0,Γ′vib

ν ′ |µ̄m
1,σ |ΨJ=0,Γvib

ν 〉|2

(3.13)

From the 3- j symbols, the J selection rules for transitions are:

∆J = 0,±1 J + J′ ≥ 1 (3.14)

For individual matrix elements, the non-zero elements are determined by the K

quantum number:

∆K = σ = 0,±1 (3.15)

which effectively eliminates the summation over all σ . There are two properties

we can exploit. Firstly the symmetry-adapted wavefunction can inflated back into

non-symmetry-adapted form ΨJ=0
ν with coefficients cJ

ν ,K,τ . In this process, any

cJ
ν ,K,τ that do not possess the same symmetry as the wavefunction are set to zero.

Therefore we will retain the label cJ,Γ
ν ,K,τ for the coefficients that are non-zero. This

appears to be counterproductive at first as the size of the wavefunction increases

significantly but by doing this, we can precompute all elements of the integral

〈ΨJ=0
ν ′ |µ̄m

1,σ ′|ΨJ=0
ν 〉 and form the three dipole matrices: µ∆K

ν ,ν ′ saving significant

computation time. Secondly, the 3- j symbols can also be precomputed as well pro-

ducing another matrix: F∆J,∆k. With this, the linestrength simplifies to:

S( f ← i) = (2J′+1)(2J +1)| ∑
ν ′,K′,τ ′

∑
ν ,K,τ

(−1)KcJ′,Γ′, f
ν ′,K′,τ ′c

J,Γ,i
ν ,K,τF∆J,∆Kµ

∆K
ν ′,ν |

2 (3.16)

therefore the only varying quantity is the variational coefficients. However this is

an O(N3) operation where N is the size of the basis set, and evaluating it for each

of the possibly billions of transitions with basis sets sizes that could reach in the

millions is cumbersome and inefficient. Therefore a two-step strategy is developed.
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First the computation is split along the lower state wavefunction ΨJ,i:

sJ′,Γ′
ν ′,K′,τ ′(← i) = ∑

ν ,K,τ

cJ,Γ,i
ν ,K,τ(−1)KF∆J,∆Kµ

∆K
ν ′,ν (3.17)

where sJ′,Γ
v′,k′(← i) is a vector that represents a ‘half’ transition from a lower state i

to an undetermined state with J′,Γ′. This is referred to as the half linestrength and

is an O(N2) operation. A transition to any state ΨJ′,Γ′, f that satisfies Eq. (3.14) can

then be completed by performing a dot product:

S( f ← i) = (2J′+1)(2J +1)| ∑
ν ′,K′,τ ′

cJ′,Γ′, f
ν ′,K′,τ ′s

J′,Γ′
ν ′,K′,τ ′(← i)|2 (3.18)

which is an O(N) operation. This two step procedure has many advantages. When

computing transitions up to a maximum frequency vmax, the maximum energy of

lower states E i
max is determined by the relation:

E i
max = E f

max− vmax (3.19)

where E f
max is the maximum upper state energy. Because of this, Ni < N f where

Ni and N f are the number of lower and upper states respectively. Additionally this

has the consequence Nt >> Ni where Nt is the number of transitions. From this,

majority of work is performed by the cheaper and faster dot product in Eq. (3.18)

instead of the more expensive Eq. (3.17). This two step method is the methodology

used.

3.4 Computing linestrengths in TROVE
TROVE’s input is controlled by keywords and makes use of Stone’s input parser

[103]. Computing a transition requires modifying a TROVE input file to include an

intensity block with the keywords given in Table 3.2. An example of the intensity

part of the TROVE input file is given in Figure 3.4. The dipole matrix elements µ∆K
v′,v

are precomputed and stored in a checkpoint file. This is only done once in the en-

tire TROVE pipeline and is read into memory for every transition run. At each run
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Table 3.2: Keywords used in a TROVE input file.

Keyword Comment
mem total memory in gb
symgroup Molecular symmetry group
intensity Beginning of intensity block
absorption Required keyword
thresh line Smallest linestrength to output
thresh intens Smallest absolute intensity to output
thresh coeff cJ

ν ,K below this will be skipped in Eq. (3.17)
temperature Temperature of calculation
qstat Partition function Q
gns nuclear statistical weight
selection symmetry selection rules
J J range of calculation
zpe zero point energy
Freq-window Frequency range of calcuation
energy low: E i min,max — upper: E f min,max
end end of intensity block
( ) comments

the matrix F∆J,∆K for a specified J range is computed and stored in memory, while

the eigenvalues and quantum number assignments of states for all J in the range re-

quired are loaded and sorted by energy. The transition calculation occurs by looping

through each lower state eigenvector ΨJ,Γ,i within the corresponding lower state en-

ergy range and computing all possible half linestrengths. For each lower state J,Γ, i

all half linestengths (see Eq. (3.16)) are computed for each J′ and Γ within the upper

energy range that satisfy the selection rules given by Eqs. (3.14,3.5). OpenMP is

utilized during these half linestrength computations independently working on K′

and v′ amongst available cores. The sum in Eq. (3.16) is restricted to |K−K′| ≤ 1

and is also subject to the the expansion coefficient threshold condition

|cJ,Γ,i
v,K | ≤Cthresh,

with Cthresh of about 1× 10−12− 1× 10−16. After this stage, a nested loop for

upper state eigenvectors ΨJ′,Γ′, f is executed for for energies and frequencies within

the ranges requested, where the appropriate matrix sJ′,Γ′,i
v′,k′ (← i) is selected for the dot
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MEM 64 gb
SYMGROUP C2V(M)
(Other inputs)
INTENSITY

absorption
THRESH_INTES 1e-40
THRESH_LINE 1e-40
THRESH_COEFF 1e-40
temperature 1000.0
QSTAT 33314.25
GNS 1.0 1.0 3.0 3.0
ZPE 5773.228049563373
selection 1 1 2 2
J, 8,9
freq-window -0.001, 10000.0
energy low -0.001, 8000.00, upper -0.00, 18000.0

END
(Other inputs)

Figure 3.1: An example TROVE input with only relevant keywords for computing intensi-
ties for the H2CO molecule

product in Eq. (3.18). The dot-product is evaluated using the vendor specific BLAS

[104] sub-routine. In order to reduce the input/output (I/O) the needed eigenvectors

are batched into RAM. Since transitions from different lower states are independent,

the intensity calculations can be split into independent sub-ranges for E(i)
n ≤ Ei ≤

E(i)
n+1 and run in parallel over different nodes. After this stage, a nested loop of

upper states ΨJ′, f are filtered for energy and frequency range and the appropriate

sJ′,Γ,i
ν ′,K′,τ ′(← i) is selected for the dot product. The dot-product for Eq. (3.18) comes

from a vendor specific BLAS[104].

The main two factors that dictate the completion time of intensity calculations

are (i) the total number of transitions (controlled via the keywords in Table 3.2) and

(ii) the size of the basis set.

The size of a particular basis set dJ is given by:

dJ = (2J +1)dvib, (3.20)

where dvib is the size of the corresponding vibrational basis set. Therefore as J
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Table 3.3: Times in seconds for computing the half linestrength for molecules. H2CO, PH3
and SO3 are from the AYTY (Chapter 4), SAlTY [9] and UYT2 [21] hot line
lists, respectively. The last row gives the total time in hours to compute half
linestrengths for the most dense J↔ J′ with about 4000 lower states

J H2CO PH3 SO3
10 3.46 13.84 13.84
20 7.43 29.72 131.87
30 11.30 45.20 263.01
40 16.32 65.28 381.05
50 21.25 85.01 512.19
60 25.89 103.57 625.15
70 30.07 120.27 828.25
Dense J Total Time (hours) 12.56 33.02 920.28

increases the problem size increases. The time scaling for the half linestrength

is O(d2
J ) and for the dot-product, O(dJ). For large basis sets, the largest bottle-

neck comes from the half linestrength evaluation itself. For example, basis sets of

around ≈ 106 can take between 30 seconds to 10 minutes per lower state to com-

plete with typically thousands of lower states per selected intensity run, especially

for higher excitations. Table 3.3 shows typical half linestrength times for a number

of molecules as well as the total time spent performing this preprocessing step in

the most demanding cases. Heavier molecules incur a greater burden at this step

with SO3 requiring over a month of wallclock time.

Additionally there is an issue with the dot-product in terms of the load-

balancing; whether it is more efficient to use all cores for a single dot product or

a single core for multiple dot products. The choice made can cause conflicts with

other steps such as eigenvector inflation and filtering thus affecting the throughput

of intensity calculations. The problem lies with the extremely small number of cores

in CPUs that prevent the more balanced approach of calculating multiple transitions

as quickly as possible.

However accelerators such as graphics processing units (GPU) contain a larger

number of cores that can facilitate both the half linestrength calculation as well as

allowing for a more balanced core distribution between the parallel calculation of

transitions and the dot product itself.
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3.5 GPU architecture
This section describes the terminology related to GPUs and features exploited in

the program. The terminology and devices are based on the Compute Unified

Device Architechture (CUDA). GPUs contain multiple streaming multiprocessors

(SM) each containing physical cores used in execution, a register space and a small

user-managed cache (32KB) called shared memory. There is also a large on-board

memory (1-12 GB) accessible by all SMs called global memory. A CPU issues

commands to be executed by GPUs by calling routines known as kernals.

The hierarchy of memory is that registers are extremely fast (a few cycles) with

the scope of a single thread, the shared memory is moderately fast (10-20 cycles)

with the scope of the thread block and the global memory is slow (400 cycles) with

the scope of the entire GPU. Each thread can read and write to the global memory

and these persist across multiple kernals whilst shared and register memory are

lost. Global memory reads can be improved by ensuring ordered access (memory

coalescing).

All performance characteristics shown below are with the I/O time removed

and using the eigenvectors and dipole moments from the AYTY linelist (Chapter 4)

calculations [105] unless otherwise stated. The AYTY line list has vibrational basis

set size of dvib =7 642 and a maximum J at 70 giving a maximum basis set size

of dJ =1 077 522. The system used in measuring performance is the Emerald CfI

cluster and comprises of 12 cores (two 2.50 GHz six-cores Intel Xeon E5-2640 pro-

cessors) connected via NUMA with 8 nVidia Tesla M2090 GPUs attached (Fermi

architecture).

3.6 Cache and Reduce Kernal
A naive Baseline kernal was produced that implements Eq. (3.17) almost exactly

for TROVE. The basis-sets, 3- j symbols and dipole matrices are put into the GPUs

global memory. Figure 3.2 shows the performance gain from the baseline kernal.

Here we see that the GPU gives us a free speedup at smaller basis-sets but becomes

much less efficient at higher dimensions with only a 10 % speedup at best. The
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Figure 3.2: A plot showing the speed-up when directly implementing Eq. (3.17) to CUDA

reason for this is the sheer number of global reads for the quantum numbers and

coefficients required in order to complete. A refactoring in the overall methodology

is required. Firstly the basis set are arranged in increasing K effectively creating

J +1 blocks. Eq. (3.17) can also be decomposed into two further steps. The first is

a caching step:

CJ′,Γ′,K,∆K,i
ν ′,K′,τ ′ = ∑

ν

cJ,Γ,i
ν ,K,τ ′F∆J,∆Kµ

∆K
ν ′,ν (3.21)

CJ′,Γ′,K,∆K,i
ν ′,K′,τ ′ is the half linestrength belonging to a specific K block that is completed

with a specific ∆k. The second is a ’reducing’ step:

sJ′,Γ′
K′,ν ′,τ ′(← i) = CJ′,Γ′,K,−1

K′,ν ′,τ ′ +CJ′,Γ′,K,0
K′,ν ′,τ ′ +CJ′,Γ′,K,1

K′,ν ′,τ ′ (3.22)

In Eq. (3.21), all threads are guaranteed the same cJ,Γ
ν ,K,τ and F∆J,∆K making them

easily cached into shared memory and reused in computation and the value for

K is implicit based on which block is being executed. Therefore the only global



3.6. Cache and Reduce Kernal 69

200000 400000 600000 800000 1000000
Basis-set size

0.2

1

5

25
E

xe
cu

tio
n 

tim
e 

(s
)

CPU
Baseline
CR

Figure 3.3: Half linestrength call time vs basis-set size; note time is given on a logarithmic
scale.

memory read required are the ν indices and µ∆K
ν ′,ν matrices. The dipole reading is

further coalesced as all threads will read around the same area of memory. This

kernal will be referred to as the CR Kernal (Cache and Reduce Kernal). The kernal

is called (2J′+ 1) times in order to complete and each call is able to be performed

simultaneously, to a degree, by using multiple streams as they are each independent

of each other. Figure 3.3 compares the efficiency of the CR Kernal to that of CPU

and Baseline showing a substantial improvement with up to 30× speed-up from the

CPU call time. The CR Kernal can complete the half linestrength in less than a

second for the largest basis set and speed-ups gained from this kernal increase with

the growing basis set size. This comes entirely from the reduced global memory

reads, utilization of the fast shared memory and data re-use. It should be noted

that the threshold eigen-coefficient Cthresh is not applied here in contrast to the case

above, i.e. there are no associated losses of accuracy.
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3.6.1 Large Dipole Matrices

For the formaldehyde molecule in the AYTY hot line-list, dν = 7642. This gives

a dipole of dimension 7462×7462×3 which is ≈ 1.2 GB using double precision.

This can be fit easily into the M2090 or K20 GPU’s global memory. However

molecules such as PH3 and SO3 require dν of 14386 and 15948 respectively. For

the PH3 case this gives a dipole of memory size 4.6 GB which only barely fits into

the M2090. Unfortunately SO3 requires ≈ 5.8 GB to store which is unfeasible for

both the M2090 and K20 GPUs. The easiest solution would be to utilize the larger

memory K40 and K80 GPUs to perform the computation but these are not well

adopted in the HPC community. Another solution is to adopt a strategy of parti-

tioning the dipole into blocks that can fit in GPU memory and calling a modified

version of the CR kernal for each block of the dipole. The dipole matrix elements

depend on ν and ν ′. Each thread requires all of ν ′ to complete a particular K′ and

ν ′ and the matrix is therefore partitioned by ν into p blocks. The relation between

how the dipole matrix and Ψ′ is shown in Fig. 3.4. A matrix block is transferred into

the GPU and calls a block-CR kernal for each K. The block-CR kernal is almost

exactly the same as the CR kernal only it spawns threads for ν which exist in the

matrix block. This is repeated for each matrix block in order to complete the half

linestrength.

Figure 3.5 shows how the speedup gain varies over differing p values. Overall,

there is a performance reduction with increasing block-size with a 2x reduction for

p = 2 and 3x for p = 3. This makes sense as we effectively need to call the kernal p

multiple times to complete the half linestrength as given by block-CR. Such block-

ing method is more beneficial for more difficult molecules such as SO3. Figure 3.6

uses the basis-sets and vectors from the SO3 hot line-list given by Underwood et al.

[21]. As the dipole is too large to fit in the M2090 memory, only partitioned dipoles

are shown. Here the speed-up given is significant and the change in speed-up be-

tween p values ranges by only≈ 20−30%. This is because of the basis set that can

easily saturate the GPU with work even after splitting.

Overall, the half linestrength is up to 70x faster than the CPU-only version and
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Figure 3.4: A visual representation of blocking the dipole matrix elements with p = 4, the
colors and arrows show how each matrix block relates the K-blocks in state Ψ′
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Figure 3.5: Performance characteristics of the CR kernal with varying values for p
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Figure 3.6: Performance characteristics of the CR kernal with varying values for p using
basis-sets from SO3.

is especially suited to more difficult molecules. As the limitation of the vibrational

basis-set on the line-list completion time is reduced. This may encourage the use of

larger basis-sets that would improve aspects such as convergence as well as giving

the line-list a larger frequency range.

It is worth comparing the ideal case where the entire dipole fits into memory

for a large molecule like SO3. Access to a K80 GPU was acquired with an identical

setup to the M2090. The 12 GB of memory provided by the K80 gives us the ability

to access how the non-blocking CR compares to the blocking CR. Figure 3.7 shows

the speedup with the non-blocking CR kernal on the K80. Here we see that for

the largest cases presented, we can achieve a 1000× speed-up compared to TROVE

which is a substantial performance increase and a 10× increase from the 2-block

CR. This is attributed to the reduced number of CR calls and the lack of stalling

due to dipole matrix transfers. However the scaling of the algorithm is consistent

for both with only a ≈ 50% increase in execution time when the basis-set size is

doubled compared to the CPU version which increases by ≈ 100%
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Figure 3.7: Speed-up achieved with the non-blocking CR on a K80 for SO3

3.7 GAIN

GPU Accelerated INtensities (GAIN) is a set of functions that can compute transi-

tions rapidly using the CR kernals and the cuBLAS[106] implementation of the dot

product. The usage of the CR and non-blocking CR kernals are determined auto-

matically by collecting GPU data and the dipole size at run-time. Additionally the

code is asychronous and allows for the CPU to work whilst the GPU is computing.

GAIN is also compatable with OpenMP, by passing in the total number of cores,

it can perform up to 10 dot products in parallel on a single GPU. Multi-GPU con-

figurations are also supported and will automatically detect distribute computation

evenly across all cores reducing GPU core congestion in the dot-product step. Fig-

ure 3.8 shows the ‘effective’ speed-up of the dot product performance. As a single

linestrength completion time doesn’t change it is not a true ’algorithmic’ speed-up.

However with N GPUs we can compute 10N linestrengths simultaneously ‘effec-

tively’ increasing throughput by 10N.

The requirements to utilize GAIN are a dipole matrix µ∆K
ν ′,ν and a K-block
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Figure 3.8: ’Effective’ linestrength performance increase with varying GPU setups for
GAIN.

basis set that can supply J, K and τ quantum numbers and ν indices. The

dipole_GPU.cu source file contains the main kernals used to transfer basis sets,

perform dipole blocking, utilize kernals and transfer results. Additionally there is

code that can compute 3- j symbols by supplying J and K quantum numbers and

transfer them to the GPU. The code is self-contained and automatically performs

the required memory allocation on all available GPUs. The functions that call the

kernals will automatically transfer the vector needed to complete the task and addi-

tional functions to return results. The functions and function naming are compatible

with FORTRAN code and are seen as subroutines.

3.8 GAIN-MPI
GAIN-MPI is a hybrid OpenMP+MPI+CUDA C code that extends GAIN by in-

creasing the total available memory and number of GPUs compared to single node

setups. Its primary purpose is for the mass production of transitions. In its de-

fault form, it operates on TROVE’s wavefunctions and utilizes the same input files
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as TROVE, more specifically the intensity input blocks seen in Fig. 3.4 and key-

words in Table 3.2. GAIN-MPI supports all symmetries that TROVE supports, this

is because it utilizes TROVEs symmetry FORTRAN files. Therefore upgrading to

support newer symmetries implemented in TROVE is a simple case of replacing the

relevant FORTRAN files in GAIN.

Each process will read the input, load basis sets, states and perform the dipole

splitting. After which the eigenvectors are distributed to a particular rank through

the relation:

Rank = i mod Nprocs (3.23)

where i is a state counting number and Nprocs is the total number of MPI processes.

Eigenvectors are cached into RAM until the memory for each process is exhausted,

after which all further eigenvectors access are from storage. Each process will read

an initial state and determine whether is satisfies the filtering rules given by the input

file and whether the state belongs to that particular rank. The process whom the state

belongs to performs the necessary half linestrength calculations and broadcasts the

results to all processes. Each process then loops through all states and performs the

dot product on those that satisfy the filters and Eq. (3.23). Figure 3.9 describes this

process. This ‘striped’ approach to distributing states and eigenvectors ensure that

all ranks perform work within a given frequency range. Additionally, with enough

MPI processes, I/O reads can be eliminated.

Originally GAIN-MPI was written to produce hot formaldehyde transitions as

quickly as possible in order to make up for lost time from issues with the original

hot line list discussed in Chapter 4.5. Due to the promising performance of the code,

production of AYTY was temporarily halted and I moved to oversee the transitions

of the higher priority phosphine hot line-list.

3.8.1 Phosphine

Phosphorus is the one of the most abundant chemically reactive volatile elements

in a solar type system (with S, after H, C, N and O). Although phosphorus has con-

siderably smaller cosmic abundances than H, O, C or N, it is predicted to have an
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Figure 3.9: Flow chart depicting GAIN execution. s id refers to the state running number,
n procs the total number of MPI processes and rank the current MPI processes
rank
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important role in atmospheric chemistry and dynamics. Phosphorus is not particu-

larly common in the universe but it is ubiquitous and is important for most essential

biochemical functions. Due to its role as biogenic particle, phosphorus could po-

tentially be used in the search for extinct or extant life in other planets[107]. A

large fraction of the existing phosphorus in various astronomical environments is

expected to be found in the form of phosphine, or PH3. A theoretical phosphine

line list called SYT [108] was produced by the ExoMol project which was applica-

ble to 300 K. This line list was unsuitable for hot atmosphere modelling so a high

temperature line list was constructed which built upon the work done previously.

Phosphine belongs to the molecular symmetry group C3v(M), spanning A1, A2

and E, where E is a two-dimensional irreducible representation. This means that the

E symmetries has a matrix that is double the size and contains double the number

of eigenvectors compared to the A symmetries. Whilst a relatively low maximum

rotational excitation J = 45 is required for the line list, the extremely large J = 0

basis set, number of eigenvectors, wide frequency range at up to 10,000 cm-1 and

high energy threshold of 18,000 cm-1 means that a staggering number of states and

transitions are required to be computed and can be seen in Figure 3.10.

Even with the filters and symmetry reduction, J pairs such as J = 20 and J = 21

in E symmetry can take almost 1.5 months to complete the half a billion transitions

required. To complete such transitions would require a budget of over 200,000 CPU

hours which would constitute≈20% of the ExoMol projects allowed computer time

on the Darwin HPC center. The GAIN-MPI program was therefore a neccessity in

quickly and cheaply producing these transitions.

The GAIN-MPI code performed spectacularly and Figure 3.11 shows comple-

tion time for PH3 transitions at J = 20. Each process has 6 GB of memory and the

required total to store all eigenvectors is≈ 140 GB. When 30 processes are utilized,

I/O is completely eliminated an completion time takes less than an hour. Overall,

GAIN-MPI could do in less than a day what the CPU only version could complete

in over a month. The GAIN code was used to compute the majority of the 17 billion

transitions under time and under budget (Figure 3.12 ). This new line list is called
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Figure 3.10: Number of energy levels in each rotational quantum number, J, and transitions
between J and J + 1 in the SAlTY line list, summed over all symmetries.

SAlTY and has been successfully published [9]. GAIN has also been used to com-

plete the transitions for AYTY H2CO (Chapter 4), hot SO3 [21], and the hot H2O2

(Chapter 5) line-list.

3.9 TROVE-GAIN

A new version of TROVE was also developed to implement a functional version of

GAIN to encompass it as an overall nuclear motion solver suite. This code, dubbed

TROVE-GAIN, gives TROVE the ability to directly utilise the highly efficient CR

kernal and GPU dot products in order to evaluate transitions. Whilst the GPU ker-

nals were relatively unchanged, the structure of the calculation had to be modified in

order to be integrated into TROVE’s computation pipeline. To overcome C++ and

FORTRAN interoperability, wrapper functions were developed that facilitated the

execution of kernals and the transfer of basis-sets, dipoles and vectors through stan-
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Figure 3.11: Completion time for J = 21,22, E symmetry with ≈ 500,000,000 transitions
for PH3 against N MPI processes. At N = 30, I/O is effectively eliminated
as all eigenvectors are stored in memory. The base time for the CPU-only
completion is 1104.2 hours

dard data-types such as doubles and integers rather than C++ structs or FORTRAN

custom types. The benefit of this is that the code is significantly more resistant to

any change in TROVE’s code. The only requirement is that it must interface with

the simple wrapper functions in order to work. This code was extensively tested by

computing the room temperature H2O2 linelist (Chapter 5.6) and was successful in

producing the billions of transitions required. A paper has been submitted for pub-

lication [72]. Both the location of the source code for GAIN-MPI and the complete

SAlTY line list can be found in Appendix A.
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Figure 3.12: The hot PH3 line list dubbed SAlTY[9] in its entirety compared to currently
available experimental data at 1500 K. Red represents HITRAN transitions
and the blue represents the SAlTY transitions. Note that HITRAN is not de-
signed for usage at this temperature.



Chapter 4

Formaldehyde

4.1 Introduction
Formaldehyde, H2CO, is a poisonous molecule in the aldehyde group. On Earth it

plays a part in troposphere chemistry dynamics as the main source of OH via photo-

dissociation and is formed from photo-oxidation in the atmosphere or through the

incomplete burning of biomass [109]. Traces of formaldehyde have tentatively been

detected in the Martian atmosphere [110] where it is believed to be derived from the

oxidation of methane (CH4) [111].

Formaldehyde was the first polyatomic molecule to be detected in the interstel-

lar medium (ISM) [112] and is extremely abundant [113]. This has made it useful in

investigating the isotope composition of carbon in the Galaxy [114]. The proposed

mechanism of production is via the successive hydrogenation of CO [115] on icy

grain mantles:

H+CO → HCO

H+HCO → H2CO. (4.1)

Further hydrogenation produces methanol through an intermediate methyl radi-

cal H+H2CO→ CH3O→ H+ CH3O → CH3OH. Common reactions include that

with ammonia which produces amines [116] and polymerisation with other H2CO

molecules. As a result, formaldehyde is believed to be the major precursor for the

formation of complex organic molecules in the ISM that include interstellar glyco-
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laldehyde [117] and amino acids [116].

Formaldehyde’s astrophysical relevance does not end in the ISM. Recently, it

has been detected in comets [118], such as 103P/Hartley 2 [119], C/2007 N3[120]

and Hale-Bopp [121], where it is thought to originate from the degredation of poly-

oxymethylene [122]. It is also present in protoplanetary discs around low mass

young stars (Taurus-Auruga Class I/II) [123, 124, 125] as circumstellar ice with an

abundance ratio of ≈ 2% compared to the more ubiquitous water-ice.

Because of H2CO’s role as a precursor to complex organic molecules, it is con-

sidered a possible biomarker. The RNA world hypothesis suggests an early Earth

with a CO2, H2O and N2 rich atmosphere [126]. Illuminating this mix with ultravi-

olet (UV) radiation should lead to a large amount of formaldehyde being fixed in the

atmosphere before being deposited into the prebiotic oceans [126]. Alternatively,

the source of prebiotic chemical compounds may be derived without need of illu-

minating UV radiation via glancing icy body impacts [127]. Such impacts would

produce shock-compression conditions that lead to formation of HCN molecules.

These HCN molecules can be hydrolyzed to form formaldehyde and from there

produce amino acids. Thus a planet rich in formaldehyde may indicate one under-

going the stages of pre-life.

Finally, formaldehyde masers [128, 129] are a reliable and proven tracer for

high-density environments such as star-forming regions in galaxies due to its ubiq-

uity and large number of long wavelength transitions [130]. Currently, there are 19

extragalactic sources [130] of these masers including IRAS 18566 + 0408, which

is notable for detection of the first H2CO maser flare [131]. Formaldehyde masers

(and maser flares) have mostly been observed via the 110 → 111 and 211− 212 K-

doublet transitions at 6.1 cm-1 and 2.2 cm-1, respectively.

The wide-range of interactions in atmospheric, terrestrial, astrophysical and

astrobiological phenomena makes formaldehyde a relevant molecule in the chem-

istry of exoplanets and their atmospheres. Therefore a complete, high-resolution,

line list for H2CO should provide an important aid for characterisation and mod-

elling of formaldehyde. These considerations led formaldehyde to be included as
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part of the ExoMol project [8].

4.1.1 Available data

High-resolution, room-temperature formaldehyde spectra have been well-studied

in the laboratory [132, 133, 11, 134, 135, 13, 136, 137]; the early work was re-

viewed by Clouthier and Ramsay [138]. Currently, the major source of publicly

available spectroscopic data on H2CO is the HITRAN database [6] which has re-

cently been updated to include long-wavelength data from the CDMS database [43].

The spectral regions covered in the database are 0 – 100 cm−1, 1600 – 1800 cm−1

[139] and the 2500 – 3100 cm−1 [139] for lines with transition intensities greater

than 10−29 cm/molecule for T =296 K. However, this compilation accounts for only

40 000 transitions extending up to J = 64 and covers only four of the six funda-

mental vibrational bands as well as the ground state rotational spectrum. This defi-

ciency arises from an apparent lack of absolute intensities in the 100 – 1600 cm−1

range. Additional observed transitions are available [139] and include line positions

[140, 141, 14], and intensities [140, 142, 15] of some of the fundamental bands and

hot bands [143, 144, 145]. The incompleteness and low rotational excitations avail-

able in HITRAN limits the applicability of this data for temperatures above 300 K.

The theoretical spectra presented in this thesis aims to provide a more complete and

accurate picture of the spectrum of formaldehyde up to 10 000 cm−1 and for tem-

peratures up to 1500 K. The line list should therefore be useful for modelling higher

temperature environments as well as studies on non-LTE transitions such as those

observed in masers.

Theoretically, electric dipole transition intensities of H2CO were studied by

Luckhaus et al. [146] and Carter et al. [147]; see also the review by Yurchenko

[148]. Luckhaus et al. [146] used an ab initio MP2/6-311G** DMS to simulate

the photoacoustic spectrum of high C-H stretching overtones of H2CO. Carter et al.

[147] generated an ab initio coupled-cluster CCSD(T)/aug-cc-pVTZ dipole moment

surface (DMS) for H2CO; they used an effective charges representation to compute

(relative) rovibrational line intensities for H2CO reproducing the HITRAN data [42]

with reasonable agreement. Poulin et al. [136] computed an ab initio DMS using
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Table 4.1: Vibrational modes and observed band centres in cm −1 by Carter et al. [22].

Mode Band Centres Symmetry Description
ν1 2782.46 A1 symmetric C-H stretching
ν2 1746.01 A1 C-O stretching
ν3 1500.18 A1 symmetric O-C-H bending
ν4 1167.26 B1 out-of-plane bending
ν5 2843.33 B2 asymmetric C-H stretching
ν6 1249.10 B2 asymmetric O-C-H bending

the QCISD/6-31111G(d,p) level of theory and presented it as an expansion.

Despite these works there is no comprehensive line list for formaldehyde avail-

able in the literature. The goal of this work is to bridge this gap. An initial potential

energy surface (PES) obtained ‘spectroscopically’ by Yachmenev et al. [97] and a

new ab initio dipole moment surface (DMS) for formaldehyde and generate an ex-

tensive line list for H2
12C16O applicable for the temperatures up to T = 1500 K.

In the following, H2CO and formaldehyde will refer to the main isotopologue

H2
12C16O.

H2CO is a near-prolate asymmetric top molecule that belongs to the C2v molec-

ular symmetry group [20]. The group has four irreducible representations A1, A2,

B1 and B2. Once the H atom nuclear spin is taken into account the ‘para’ A repre-

sentations are singly degenerate gns = 1 and the ’ortho’ B representations are triply

degenerate gns = 3. As H2CO has four atoms, it has six vibrational modes; Table

4.1 shows the vibrational modes and their corresponding symmetries, band centers

and descriptions. Coriolis interactions occur strongly between the ν4 and ν6 modes,

and weakly between the ν3 and ν4 modes [149] which couples their energy levels

and wavefunctions. This manifests itself in the ν3, ν4 and ν6 mode interaction as

overlapping bands which make these three bands difficult to distinguish from each

other.

4.2 Potential Energy Surface
The potential energy surface was produced by Yachmenev et al. [97], so only a brief

summary is presented here. An ab initio six-dimensional surface was computed

with 30,840 geometries with energies up to 44,000 cm−1 using MOLPRO [67].
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The CCSD(T) level of theory was utilized in the quantum-chemical calculations

with the frozen-core approximation and augmented correlation-consistent aug-cc-

pVQZ basis. The potential is represented analytically as a Taylor expansion around

the out-of-plane motion minimum energy path (MEP):

V (r1,r2,r3,θ1,θ2,τ)= ∑
i jklmn

fi jklmn(1−e−∆r1)i(1−e−∆r2) j(1−e−∆r3)k(∆θ1)l(∆θ2)m(1+cosτ)n

(4.2)

with minimum expansion order of i + j + k + l + m + n = 6. The three stretching

co-ordinates are represented as:

∆r1 = rCO− rre f
CO(τ)

∆r2 = rCH1− rre f
CH1

(τ)

∆r3 = rCH2− rre f
CH2

(τ)

(4.3)

and the two bending co-ordinates are represented as:

∆θ1 = θOCH1−θ
re f
OCH1

(τ)

∆θ2 = θOCH2−θ
re f
OCH2

(τ)
(4.4)

where rCO, rCH1 and rCH2 are bond lengths, θOCH1 and θOCH2 are bond angles

and τ is the out-of-plane bending angle. Figure 4.1 visually describes these co-

oridnates. Here the MEP reference geometries were determined ab initio using the

CCSD(T)/aug-cc-pVQZ level of theory and then expanded around 1+ cosτ:

rre f
CO(τ) =

4

∑
n=0

aCO
n (1+ cosτ)n

rre f
CH(τ) =

4

∑
n=0

aCH
n (1+ cosτ)n

θ
re f
OCH(τ) =

4

∑
n=0

aOCH
n (1+ cosτ)n

(4.5)

Where an are reference geometry expansion parameters. With the MEP defined,

the potential expansion parameters ( fi jklmn) are computed using a least squares
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Figure 4.1: The internal co-ordinates of H2CO.

fit to computed ab initio energies with weighting as suggested by Partridge and

Schwenke [150]:

wi =
tanh[−0.0006(Vi−16000)]+a

b×V (w)
i

(4.6)

where a = 1.002002002, b = 2.002002002 and V (w)
i = max(16000,Vi) where Vi is

the ab initio energy at the i-th geometry.

This ab initio PES has an rms error for all term values below 7200 cm−1 of

5.1 cm−1 . A refinement process was carried out via the methodology outlined by

Yurchenko et al. [98] and Chapter 2.3.5. The input data for the refinement contains

319 experimental energies for J = 0,1,2 and J = 5 with fitting weights of wi = 100,

wi = 1.0 and wi = 0.1 assigned to purely rotational states, excited vibrational states

and data from Bouwens et al. [151], respectively. The rms error against experimen-

tal energy levels with J ≤ 5 of this semi-empirical PES, called H2CO-2011, is 0.04

cm-1.

4.3 Variational computation

The calculations outlined here were performed with TROVE[30] (See Chapter 2.3)

For H2CO, a kinetic expansion order of 6 and a potential energy expansion order of

8 was chosen. The internal co-ordinate system used in the kinetic energy expansion
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Table 4.2: Linearized internal co-ordinates and equilibrium geometry, bond lengths are in
angstroms and bond angles are in degrees

ξ `
i ξi Equilibrium (ξ e

i )
r`

1 rCO 1.20367
r`

2 rCH1 1.10290
r`

3 rCH2 1.10290
θ `

1 θOCH1 121.7810
θ `

2 θOCH2 121.7810

Table 4.3: Primitive basis functions, co-ordinate borders, number of grid points for
Numerov-Cooley integration and number of solutions

Basis func. Borders No. grid points No. soln
φn1(r

`
1) -0.35–1.80 1000 16

φn2(r
`
2) -0.50–1.00 1000 8

φn3(r
`
3) -0.50–1.00 1000 8

φn4(θ
`
1) -1.20–1.20 1000 14

φn4(θ
`
1) -1.20–1.20 1000 14

φn6(τ) -120.0◦–120.0◦ 2000 16

for H2CO are linearized co-ordinates [30, 20] of the form:

ξ
`
i = ξi−ξ

e (4.7)

where the ξ e is the equilibrum geometry for a co-ordinate ξi defined in Table 4.2.

The out of plane bending co-ordinate is simply τ . The primitive basis-set consists

of the six functions: φn1(r
`
1), φn2(r

`
2), φn3(r

`
3), φn4(θ

`
1), φn5(θ

`
2), and φn6(τ) which

are obtained by solving the one-dimensional Schrodinger equation in Eq. (2.49).

The paramaters used in computing these functions are given in Table 4.3.

The direct product of the 1D basis functions is contracted using the polyad

condition:

P = 2(n2 +n3)+n1 +n4 +n5 +n6 ≤ Pmax, (4.8)

where Pmax = 16. The relative simplicity of the molecule means that this gives

well-converged results. In terms of the normal mode quantum numbers vi reads

P = 2(v1 + v5)+ v2 + v3 + v4 + v6 ≤ Pmax. (4.9)
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This polyad rule is based on the approximate relationship between the H2CO fun-

damental frequencies (see Table 4.1):

ν1 ≈ ν5 ≈ 2ν2 ≈ 2ν3 ≈ 2ν4 ≈ 2ν6. (4.10)

The vibrational basis set is further optimized by solving Eq. (2.52) for

{r1}, {r2,r3}, {θ1,θ2}, and {τ} to produce four sets of wavefunctions Φ
(1)
n1 (r1),

Φ
(2,3)
n2,n3(r2,r3), Φ

(4,5)
n4,n5(θ1,θ2), and Φ

(6)
n6 (τ), respectively. Eq. (2.54) is then solved

and the solutions are symmetrized according to the C2v(M) molecular symmetry

group. The resulting eigenfunctions Ψ
J=0,Γ
i obtained for each C2v(M) symmetry

Γ = A1,A2,B1 and B2 and form the wavefunction representation given in Eq. (2.55).

The latter is defined according with the Eckart conditions [152] and is oriented ap-

proximately along the CO bond. In C2v(M) symmetry, K and τrot correlate with the

customary Ka and Kc rotational quantum numbers as

K = Ka, τrot = mod(|Ka−Kc|,2). (4.11)

The J = 0 basis set is truncated using the energy threshold of EJ=0
max = hc15400

cm-1 and thus consists of 868, 570, 628, and 791 functions for the A1,A2,B1 and B2

symmetries, respectively. The largest J computed was J = 70 which required the

diagonalisation of matrices in the order of ≈ 122000 for eigenvalues and eigenvec-

tors. The diagonalization was performed using LAPACK and SCALAPACK.

4.4 Dipole moment surface and intensities

Intensity calculations require a high-quality electric DMS. An ab initio DMS was

computed at the CCSD(T)/aug-cc-pVQZ level of theory in the frozen-core approx-

imation using CFOUR [68]. Three symmetry-adapted projections of the dipole

moment Cartesian components, µA1 , µB1 , and µB2 , are given in the analytical rep-

resentations with each component expanded in Taylor series (185 parameters in

total) in terms of internal coordinates around the equilibrium configuration using

the form developed by Yachmenev et al. [153] to represent the dipole moment of
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H2CS. These parameters reproduce the ab initio dipole moment values of the µA1 ,

µB1 , and µB2 components with rms errors of 0.0002 Debye for each component.

The equilibrium value of the dipole moment is 2.3778 D (at re
CO = 1.2033742 Å,

re
CH = 1.10377 Å, θ e

OCH = 121.844◦), which can be compared to the experimental

value of the ground vibrational state dipole moment of µ=2.3321(5) D measured by

Fabricant et al. [154].

The eigenvectors, obtained by diagonalization, are used in conjunction with

the DMS to compute the required linestrengths (and from that the Einstein-A coef-

ficients and absolute intensities) via the methodology described in Chapter 3. The

transitions must satisfy Eq. (3.5). The symmetry of the dipole moment operator

Γ(µA) is A2. Therefore Eq. (3.4) is non-zero for the symmetries:

A1↔ A2, B1↔ B2. (4.12)

The transitions were computed using the energy limits hc 6 000 and hc

15 600 cm−1 for the lower and upper states, respectively with a maximum tran-

sition wavenumber of 9 600 cm−1.

4.5 AYTY-0
AYTY-0 was the name retrospectively given to the first line-list produced using the

H2CO-2011 PES. This line list was developed over the course of a year and con-

tained 5 million energy states and around 3 billion transitions. Comparing band

intensities of the fundamentals highlighted in Table 4.4 demonstrated good agree-

ment with the ν1, ν2, ν3, ν5 and ν6 bands. The weak ν4 band however was an order

of magnitude too strong. Due to the lack of experimental intensities in this region,

it was difficult to determine whether it was due to a problem with the linelist or of

some experimental difficulty with this particular region. Cross-sections of this re-

gion are available [10, 11]. Figures 4.2(a) and 4.2(b) show simulated cross-sections

of the AYTY-0 linelist with HWHM at 0.112 cm-1 and 1.185 cm-1 respectively com-

pared against the available experimental data. It is worth noting that the data from

Figure 4.2(b) was extracted from Fig. 3 of [11] and scaled by a reasonable factor to
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Table 4.4: Band Intensities in 10 −17 cm −1 /(molecule cm −2 )

Band Obsa AYTY-0 (O-T)/O (%)
ν1 1.008 0.993 1.5
ν2 1.219 1.527 -25.2
ν3

b 0.184 0.058 68.5
ν4

b 0.069 0.846 1108.9
ν5 1.120 1.243 11
ν6 0.173 0.202 16.7

a Perrin et al. [139] b Perrin et al. [140]
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Figure 4.2: Cross-sections of the ν3, ν4 and ν6 region for H2CO against experimental data.
(a) is from PNNL-IR [10] (b) is from [11]. Indicated in the plot is the location
and extent (indicated by the line under the band label) of each band. Here
the overlap between the ν4 and ν6 band and their unusually strong intensities
compared to the ν3 band can be seen.

highlight structure and relative intensities.

From both comparisons, we see that the general features of the band are repro-

duced well and overall structure and position are in good agreement. The problem

arises in both the absolute and relative intensities of the ν3 and ν6 bands compared to

the ν4 band. Both experimental data sets suggest that the ν3 band should be stronger

than either the ν4 and ν6 band and the combined ν4 and ν6 integrated cross-sections



4.6. AYTY 91

around 72% stronger than the ν3 which is in agreement with Table 4.7 at 68%. The

AYTY-0 line list suggests 1806% and in general seems to be an order of magnitude

off. This effect was not observed with any other fundamental band.

Initially the blame fell upon the DMS. It was then discovered that calculations

based on the ab initio PES did not display this effect. The aggressive refinement

process PES used in H2CO-2011 changed the transition moments drastically for ν4.

The reason for this is unknown but may be due to the potential surface becoming

distorted unphysically.

As it is not known how many transitions were affected by this, it was decided

that the PES would be re-refined with careful observation of the transition moments.

A new PES dubbed H2CO-2014 was produced with comparable accuracy and was

used in the final hot-linelist AYTY.

4.6 AYTY

The AYTY-0 line-list was produced over the course of a year, during that time two

major developments occured. First, the development of an external MPI diagonal-

izer to diagonalize matrices produced by TROVE using SCALAPACK. Second, was

the development of the GAIN code described in Chapter 3. The former meant that

the extremely large matrices with sizes in the order ≈100,000 could be diagonal-

ized efficiently and were no longer constrained to the available memory on a single

computer. With this the basis-set truncation EJ=0
max was raised to 18,000 cm-1 making

the average size of basis-set 1,920 and maximum matrix size at J = 70 ≈300,000.

The latter development afforded us the ability to raise the energy limits to hc 8 000

and hc 18 000 cm−1 for the lower and upper states, respectively increasing the

maximum transition wavenumber to 10 000 cm−1.

After completing the new PES, a new line list was produced in only 4 months.

This new line-list labelled AYTY, now offers over 10 million states and around 14

billion transitions.

The transitions are sorted in increasing transition wavenumber and then con-

verted into the ExoMol format [155]. Spectra at arbitrary temperatures can be com-
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Figure 4.3: Radiative lifetimes computed for H2CO using the method described by Ten-
nyson et al. [12]

puted using the Einstein-A coefficients from the transition files. The theoretical

error is estimated by the fitting rms deviation as 0.18 cm-1. This means transition

frequencies and energy levels should be reliable to about 0.2 cm-1 for low-lying lev-

els and levels for vibrational states for which there is no available laboratory data.

The pure rotational transitions are much more accurate than this. Radiative life-

times were also computed with the methodology described by Tennyson et al. [12]

and are presented in Figure 4.3.

The completeness of the line list as a function of temperature can be deter-

mined by checking the convergence of the temperature-dependent partition func-

tion Q given in Eq. (3.9), which is computed via explicit summation [46] of the

10.3 million energy levels available. As T increases, a greater proportion of these

states are required as their contribution towards Q becomes more important. Fig-

ure 4.4 shows computed partition functions as a function of the maximum J value
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(Jmax) used in the calculation. As Jmax increases, each J contributes progressively

less until convergence is reached. The partition function at T = 296 K converges to

better than 1% at J ≈ 34 with the limit of Q = 2844.621 at J = 58. For = 1500 K,

it converges to about 0.005% at J = 70 with a Q value of 130 190.25. These par-

tition functions can be used to evaluate the effect of lower energy state threshold

of 8000 cm−1 on the completeness of the line list by comparing Qlimit, which sums

energies up to this threshold, with the full partition sum. Figure 4.5 shows that the

two partition functions are essentially the same up to 800 K and that Qlimit is 92.3

% of Q at T = 1500 K. Therefore T =1500 K is a ‘soft’ limit to the applicability of

the line list. Use of the line list at higher temperatures will lead to the progressive

loss of opacity although the ratio Qlimit/Q can be used to estimate the proportion of

this missing contribution [52].

Table 4.6 compares AYTY partition functions with those from CDMS [43]

and those used in HITRAN [23]. At temperatures T ≤ 300 K we agree to better

than 1% with CDMS and HITRAN. At 500 K the difference with CDMS is much

higher at 8.9%, due to the explicit sum running over a much larger number levels,

but agreement with HITRAN remains good. There are bigger differences at higher

temperatures: at 1500 K the partition function is lower by about 1.2% and at 3000 K

by 9.7%. This may be caused by the lack of the high energy contributions due

to the J cut-off of used in the line list, see Sousa-Silva et al. [47] and Neale and

Tennyson [156] for a discussion of the importance of contributions from the excited

ro-vibrational states up to the dissociation. The full partition function evaluated on

a 1 K grid is given on the ExoMol website.

We use the analytical representation suggested by Vidler and Tennyson [46] as

given by

log10 Q(T ) =
8

∑
n=0

an [log10 T ]n . (4.13)

The expansion parameters given in Table 4.5 reproduce the partition function better

than 0.3% for temperatures ranging up to 3000 K.

The dependence of the cross-sections on temperature is illustrated in Figure

4.6, the features in the simulated spectra become smoother as the temperature in-
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Figure 4.4: Partition functions of H2CO at two temperatures as a function of inclusion of
rotational states: all J up to Jmax for T = 296 K (left hand scale) and T = 1500
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Table 4.5: Parameters used to represent the H2CO partition function, see Eq. (4.13), which
is valid for temperatures up to 3000 K.

Parameter Value
a0 1.12789807683
a1 −5.35067939866
a2 10.33684323700
a3 −4.92187455147
a4 −2.28234089365
a5 3.61122821799
a6 −1.64174365325
a7 0.33727543206
a8 −0.02654223136

creases. This is a result of the vibrationally excited states becoming more populated

and the increasing width of the rotational envelope with temperature. Figure 4.7

shows a simulated T = 296 K spectrum computed from the line list against the

available laboratory absorption spectra up to 10 000 cm−1.The logarithmic scale

used shows the density of transitions in the AYTY line list and reveals the sig-

nificant gaps and limitations in the HITRAN 2012 database. Comparing specific
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Table 4.6: Comparisons of H2CO partition functions as a function of temperature for this
work, CDMS [43] and those used in HITRAN [23].

T / K AYTY CDMS HITRAN
2.725 2.0165 2.0166
5.000 4.4833 4.4832
9.375 13.801 13.8008
18.75 44.6835 44.6812
37.5 128.6581 128.6492
75 361.7053 361.7195 362.07

150 1019.9549 1019.9706 1020.47
225 1874.4679 1872.6221 1875.67
300 2904.1778 2883.0163 2906.32
500 6760.2315 6208.3442 6760.99

1500 128635.40 130190.25
3000 2741283.3 3038800.0
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Figure 4.7: Overview of the AYTY synthetic spectrum at T =296 K against HITRAN [6],
Reuter et al. [13] and Zhao et al. [14].



4.6. AYTY 97

regions, our line list accurately replicates both the line positions and intensities of

the three available bands, as illustrated in detail in Fig. 4.8. Additional lines are

present as the computed spectra contains all possible transitions within the region

including hot bands. Fig. 4.8d and Table 4.8 show agreement with the line posi-

tions and absolute intensities from Reuter et al. [13] with an rms deviation of 0.099

cm−1 for the line positions. There are some limitations with our line list. Higher J

transitions at around the J > 50 range begin to show a slight drift of ≈ 0.3 cm−1 in

predicted line position; this does not occur for the rotational band. In practice, errors

in the ro-vibrational energy levels grow with K (as opposed to J); the discrepancies

in transition frequencies become more pronounced in |K′−K′′|= 1 transitions than

those that involve the same K (K′ = K′′). This can be seen in the lack of drift in

the pure rotational band as it is mostly comprised of K′ = K′′ transitions due to

both ground and excited states being of A1 symmetry. B1 and B2 vibrational bands

however are mostly comprised of |K′−K′′|= 1 transitions which makes their errors

more sensitive to the quality of the model.

Computing band intensities requires simulating spectra at a chosen temperature

and accumulating all transitions that correspond to the specific band. Table 4.7

highlights the AYTY band intensities against those available in the literature. Each

band intensity required spectra simulated to the parameters used by each reference.

In general, AYTY agrees well with all band intensities which confirms that the

H2CO-2011 PES was responsible for the initial issues with the ν4 band intensities as

the DMS is unchanged from AYTY-0. Overall all bands are more intense in AYTY

compared to the experimental. This may be due to the fact that AYTY sums over

orders of magnitude more lines in a given band compared to synthetic spectra from

effective Hamiltonians. Table 4.7 also shows the total band intensity for the 3.5 µm

region compared to that by [133, 11] and HITRAN. The value is 13 % stronger

than HITRAN, (matches the discrepancy for the ν1 and ν5 bands in Table 4.7),

18 % stronger than Nakanaga et al. [11] and 40 % stronger than that by Brown

et al. [133]. Absolute intensities and bands not available in the HITRAN database

or literature can be evaluated against cross-sections. For the ν3, ν4 and ν6 bands,
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Figure 4.8: The fundamental bands compared to currently available experimental intensi-
ties [6, 13, 43] at T = 296 K. (a) Rotational Band (b) ν2 (c) ν1 and ν5 (d) ν3,
ν4 and ν6 .

further evaluation of these bands can be made against cross-sections available from

the PNNL-IR database [10] and Nakanaga et al. [11] using a Gaussian profile with a

HWHM (half-width-half-maximum) of 1.1849 cm−1 and 0.1120 cm−1, determined

from their respective experimental profiles. Figure 4.9a compares the AYTY line

list with a spectrum extracted from Fig. 3 of Nakanaga et al. [11] and scaled to

match the AYTY line list. Good agreement is seen in both structure and position

in the band with a slight drift occurring as an artifact from the extraction process.

Figure 4.9b shows an even better agreement with the spectral structure as well as

the cross-section intensity.

The total cross-section over the region 6.2 – 10.5 µm for AYTY and PNNL

is 8.02× 10−17 cm2/molecule and 8.20× 10−17 cm2/molecule respectively, mak-

ing PNNL overall around 8% stronger. PNNL covers regions beyond those cur-

rently available in HITRAN. Figure 4.10(a) depicts the 2ν2 band at 2.88 µm. Good

agreement is seen in structure, position and cross-sections with the integrated cross-
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Figure 4.9: Cross-section comparison of AYTY against experimental data for the ν3, ν4
and ν6 band regions: (a) Nakanaga et al. [11] at 296 K with HWHM = 1.1849
cm−1; Extracted from image and scaled to match the AYTY cross-section; (b)
PNNL-IR data at 323.15 K [10] with HWHM = 0.1120 cm−1.

sections differing by only 10%.

The regions below 2.8 µm in PNNL become increasingly polluted with noise

but band features are still visible as seen in Figures 4.10(b),(c) and (d). In partic-

ular, Figure 4.10(b), the AYTY cross-section reproduces peaks in features present

in the PNNL-IR data. This region was also studied by Flaud et al. [15]. Their ab-

sorbance spectrum produces certain transitions with double the intensity compared

to AYTY. These are due to splitting caused by two transitions with the same quanta

but with swapped Γ f and Γi giving the two lines very similar transition frequencies

and absolute intensity which make them difficult to resolve experimentally.

Further bands include the integrated cross-section for the 2ν5
QR1(10) line at

5676.21 cm−1 for AYTY and Barry et al. [157] at 6.4× 10−22 cm/molecule and

5.6× 10−22 cm/molecule respectively making AYTY 11% stronger. In Table 4.7

we also compare theoretical (AYTY) overtone band intensities obtained by the di-
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Figure 4.10: Additional bands in PNNL at wavelengths below 3.2 µm with HWHM at
0.1120 cm-1. (a) 2ν2 band; (b) Bands covered by Flaud et al. [15]; (c) 3ν2 ;
(d) Various bands including ν1 +ν5. Note: (c) and (d) Negative PNNL values
have been removed.

rect summation with the corresponding experimentally derived values from Perrin

et al. [142], Flaud et al. [15]. The agreement with the data obtained by Flaud et al.

[15] is very good. Those from Perrin et al. [142] are in fact a compilation of differ-

ent sources [158, 133, 11, 159, 135], some of which were obtained at low resolu-

tion, which could explain the slightly worse agreement with AYTY. Comparing the

total integrated band intensity for the band at 1.5 µm we obtain 3.11×10−17 cm/-

molecule against 2.19, 2.62, and 2.73 ×10−17 cm/ molecule by Perrin et al. [142],

Nakanaga et al. [11] and from HITRAN, respectively.

Finally, Ito et al. [143] presented the relative band intensities as the ratio of

the vibrational transition moments between 2ν4 and 2ν6 of 0.755(48), which can be

compared to AYTY’s absolute value of 0.6264.

The hot line list and relevant supplementary material has been published [105]

and are also included in Appendix A. Currently it is being used in radiative transfer

calculations by Gray et al. [160] in order to investigate formaldehyde maser action.
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Table 4.7: Band intensities, in 10 −17 cm −1 /molecule cm −2 .

Band Ref. Obs AYTY (O-A)/O (%)
ν1

a 1.008 1.057 -4.9
ν2

a 1.219 1.348 -10.6
ν3

b 0.184 0.185 -0.5
ν4

b 0.069 0.089 -27.8
ν5

a 1.120 1.282 -14.6
ν6

a 0.173 0.204 -17.9
ν2 +ν3

c 0.0025 0.0019 22.7
ν2 +ν6

c 0.0790 0.1222 -54.6
2ν3

c 0.0260 0.0428 -64.5
ν2 +ν4

c 0.1100 0.1379 -25.4
ν3 +ν6

c 0.1940 0.3274 -68.8
ν3 +ν4

c 0.0290 0.0300 -3.4
2ν6

c 0.0220 0.0214 2.9
ν4 +ν6

c 0.0062 0.0014 77.7
2ν4

c 0.0060 0.0047 22.4
ν1 +ν6

d 0.0015 0.0022 -45.0
ν2 +ν4 +ν6

d 0.0006 0.0007 -4.6
ν3 +ν5

d 0.0097 0.0098 -1.2
2ν3 +ν6

d 0.0036 0.0027 24.4
ν2 +ν5

d 0.0377 0.0446 -18.2
2ν2 +ν6

d 0.0108 0.0123 -14.0
ν1 +ν2

d 0.0243 0.0275 -13.2
3ν2

d 0.0022 0.0026 -21.4

a Perrin et al. [139] b Perrin et al. [140]
c Perrin et al. [142] d Flaud et al. [15]
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Table 4.8: Residuals, in cm-1, for line positions for the ν3, ν4 and ν6 bands. Observed data
from Reuter et al. [13].

Band J′ J′′ AYTY Obs. Obs.-Calc.
6 17 18 1148.4322 1148.3346 -0.0976
6 17 18 1148.4578 1148.3600 -0.0978
4 11 10 1148.4115 1148.3453 -0.0662
4 3 4 1148.5548 1148.4702 -0.0846
4 16 16 1148.6150 1148.5082 -0.1068
4 1 1 1159.2222 1159.1356 -0.0866
4 2 2 1159.3587 1159.2716 -0.0871
4 28 28 1159.3222 1159.3070 -0.0152
4 15 14 1159.4760 1159.3917 -0.0843
6 6 7 1159.5539 1159.4132 -0.1407
4 9 8 1159.5115 1159.4396 -0.0719
4 3 3 1159.5594 1159.4715 -0.0879
4 18 18 1172.4242 1172.3864 -0.0378
4 6 6 1172.6002 1172.5256 -0.0746
6 12 13 1180.6607 1180.6446 -0.0161
6 4 5 1180.8080 1180.7328 -0.0752
4 24 23 1180.8209 1180.8082 -0.0127
4 11 11 1180.8777 1180.8324 -0.0453
6 13 14 1180.9109 1180.8834 -0.0275
6 10 10 1192.6923 1192.6086 -0.0837
6 3 4 1192.6678 1192.6267 -0.0411
6 9 9 1192.7477 1192.6657 -0.0820
6 8 8 1192.7985 1192.7181 -0.0804
6 18 19 1192.7781 1192.7369 -0.0412
6 7 7 1192.8441 1192.7651 -0.0790



Chapter 5

Hydrogen Peroxide

5.1 Introduction

Terrestrial hydrogen peroxide exists as a trace molecule in the Earth’s atmosphere

and contributes to the atmosphere’s oxidising budget as well as ozone production

and water chemistry [161, 162, 163, 164] and its concentration is now being rou-

tinely observed [163]. Astrophysically there have been multiple detections of H2O2

in the atmosphere of Mars [165, 166, 167, 168] with seasonal variation, possibly

formed by triboelectricity in dust devils and dust storms [167] and may well act as

an agent in the oxidization of the Martian surface. Hydrogen peroxide has also been

detected in the atmosphere of Europa [169] in the 3.5 µm region. The first detection

of interstellar H2O2 was made by Bergman et al. [170] and is believed to play an

important role in astrophysical water chemistry similar to that on Earth. Du et al.

[171] suggest that H2O2 is produced on dust-grains via the hydrogenation of grain

HO2 and released into the gas-phase through surface reactions. On the dust-grain,

H2O2 acts as an intermediate in the formation of water and aids in the production

of other species such as H2CO, CH3OH, and O2.

Hydrogen peroxide belongs to the peroxide group of molecules with an HO-

OH bond dissociation enthalpy of 17050 cm−1[172] at 0 K. H2O2 is an asymmetric

prolate rotor molecule and is the simplest molecule that exhibits internal rotation.

This torsional motion gives rise to a double minimum potential curve with respect to

its internal rotation co-ordinates as well as two alignments of the O-H bonds: cis and
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trans. The consequence of this motion means that there are four sub-levels for each

torsional excitation which are characterized by their symmetry. This necessitates

the use of an additional quantum number, τ , to unambiguously describe its motion.

The molecular states can be classified using the C+
2h(M) symmetry group which best

describes the torsional splitting caused by the cis and trans tunneling [173]. H2O2

has six vibrational modes: ν1 and ν5 represent the symmetric and asymmetric O-H

stretching respectively, ν3 and ν6 represent the O-H bending modes, ν2 represents

the O-O stretch and the ν4 mode represents the torsional excitation with the more

common notation of n.

Experimental studies of ro-vibrational H2O2 spectra have mostly probed the

torsional motion in the ground [27], the ν3 [26] and ν6 [28, 174] vibrational modes.

Conversely, the higher-lying O-H stretching modes, ν1 and ν5, are poorly studied

using high resolution techniques. The difference between the two stretching bands

is about 8 – 10 cm-1 and torsional splitting from the double minimum of the potential

gives rise to doubling [175] in the form of ‘quasi’-degenerate states [176] that are

difficult to resolve with a degree of accuracy. Olson et al. [27] give an estimate of

3610 - 3618 cm-1 for ν5 and 3601 - 3617 cm-1 for ν1 whilst a Raman study gives a

lower value of 3607 cm-1 for the ν1 band-centre [175] but determining the accuracy

to better than 0.1 cm-1 is difficult.

H2O2 has been a benchmark system for developing methods aiming to treat

large amplitude motion [177, 178, 179, 180]. Recent calculations on the ro-

vibrational states for H2O2 include the ab initio computation using CCSD(T)-F12

electronic structure calculations of band frequencies accurate to about 4.0 cm-1 by

Rauhut et al. [176], models of the peroxide stretches by Bacelo and Binning [181],

a discrete variable representation (DVR) calculation for levels up to 6000 cm-1 by

Chen et al. [182], Lin and Guo [183] and finally, potential energy surface (PES)

calculations by Koput et al. [184] and Kuhn et al. [185]. Calculations which also

consider transition intensities are rather rarer but a recent example is provided by

Carter et al. [186]. The peroxide system was used to benchmark the large ampli-

tude calculations of MULTIMODE [187] up to J = 20 and showed good agreement
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against HITRAN line intensities but the PES used had an rms of ≈ 20 cm-1 against

experimental band centres. However, this PES has been superseded by the higher

accuracy ab initio potential energy surface (PES) of Małyszek and Koput [188]

which was further modified by Polyansky et al. [84].

Experimental transition frequencies and intensities for H2O2 are available in

the HITRAN 2012 database [6] but only for room temperature modelling up to

1800 cm−1. This region covers the torsional, O-H bending modes and O-O stretch

but misses the O-H stretches in the 3750 cm−1 region. Only a few studies deal with

absolute intensities of H2O2 in the far-infrared [189, 24, 174] with only PNNL-IR

[10] data providing integrated intensities in the mid-infrared region [190]. The ther-

mal decomposition of hydrogen peroxide at 423 K makes it difficult and dangerous

to study at higher temperatures.

Theoretical line lists can be used to fill in gaps in the experimental data both in

terms of wavelength and temperature coverage. Two line-lists were computed for

hydrogen peroxide, a room temperature and hot line-list.

5.2 Ab-Initio Potential Energy Surface

The ab initio PES is based of the high-accuracy ab initio calculations of Małyszek

and Koput [188]. The Born-Oppenheimer PES was computed using the CCSD(T)-

F12 method with aug-cc-pV5Z basis-sets at 1762 points near equilibrium geom-

etry. The PES was then corrected for core-electron correlation, scalar relativistic

and higher order valence-electron correlation effects. Additionally adiabatic effects

were accounted for by computing the Born-Oppenheimer diagonal correction terms

using Hartree-Fock and CCSD methods on all ab initio points. The points are then

fit to the functional form:

V (q1,q2,q3,q4,q5,τ) = ∑
i jklmn

fi jklmnqi
1q j

2qk
3ql

4qm
5 cosnq6 (5.1)

where qi(i = 1,2,3,4,5) are expansions around the equilbrium geometries of the O-

O bond length (Re), O-H bond length (re) and O-H bond angle (θe). The definitions
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Figure 5.1: The internal co-ordinates of HOOH.

for qi are

q1 =
r1− re

re

q2 =
r2− re

re

q3 =
R−Re

Re

(5.2)

which are the Simons-Parr-Finlan stretching co-ordinates in terms of the bond

lengths: O-O (R), O-H1 (r1) and O-H2 (r2) and

q4 = θ1−θe

q5 = θ2−θe

(5.3)

are the bending co-ordinates in terms of the bond angles for O-H1 (θ1) and O-H2

(θ2). q6 = τ is the torsional angle. The co-ordinates are described in Figure 5.1.

This PES has an rms of≈10 cm-1 for vibrational band origins. Polyansky et al. [84]

further improved the PES by utilizing the larger aug-cc-pV7Z basis-set for certain

parts of the PES as well as a small adjustment of the ab initio equilibrium geometry

and height of the torsional barrier. The PES reproduces observed energies with an
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Table 5.1: Primitive basis functions, co-ordinate borders, number of grid points for
Numerov-Cooley integration and number of solutions

Basis func. Borders No. grid points No. soln
φn1(r1) -0.50–1.00 1000 16
φn2(r2) -0.40–1.20 1000 8
φn3(r3) -0.40–1.20 1000 8
φn4(θ1) -1.40–1.40 1000 14
φn4(θ1) -1.40–1.40 1000 14
φn6(τ) 0.0◦–720.0◦ 10000 42

rms of 1 cm-1 for rotational levels up to J = 35 within low-lying vibrational states.

By utilizing empirical band centre shifting as given in Eq. (2.58), this is reduced to

0.02 cm-1 making it a good starting point for computing variational energies.

5.3 Variational computation
The kinetic energy is expanded around the reference geometry in terms of five lin-

earized co-ordinates of the form:

ζi = xl
i− xe

i (5.4)

where xl
i and xe

i represent linearized version and equilibrium geometry of the bond

lengths and angles respectively. Here, i = 1, i = 2, i = 3, i = 4 and i = 5 represent

R, r1, r2, θ1 and θ2 respectively and i = 6 is the sixth co-ordinate, ζ6 = τ . Similarly

the potential is expanded but the stretches are represented in terms of Morse-type

functions for ζ1,ζ2 and ζ3 and bending functions for ζ4 and ζ5. For both line-lists

the kinetic energy expansion order is 6 and the potential expansion order is 8.

Like formaldehyde, the basis-set was constructed from the methods outlined

in Chapter 2.3.3.2 with parameters outlined in Table 5.1 that is truncated via polyad

number Pmax = 42 [84]. The allowed modes follow the polyad rule:

P = 4v1 +8(v2 + v3 + v4 + v5)+ v6 ≤ Pmax. (5.5)

The six dimensional co-ordinate space is then divided into four reduced subspaces:

(ζ1), (ζ2,ζ3), (ζ4,ζ5) and (ζ6) based on symmetry and solved for Eq. (2.52) to
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obtain the contracted vibrational basis-functions Φ1(ζ1), Φ2(ζ2,ζ3), Φ3(ζ4,ζ5) and

Φ4(ζ6). These basis-functions are then symmetrised according to D2h symmetry

and the final vibrational basis-set is formed from the product of the four contracted

basis-functions which are truncated via Eq. (5.5) and symmetrized again. Finally

the contracted basis-sets are used to solve Eq. (2.54) for the J = 0 wavefunctions.

Using these symmetrized wavefunctions also has the benefit of the Hamiltonian

matrix being factorized into independent blocks according to D2h symmetry. The

D2h is isomorphic to the C+
2h(M) symmetry group which best describes the torsional

splitting caused by the cis and trans tunneling [173]. The irreducible representations

of this group are Ag, Au, B1g, B1u, B2g, B2u, B3g and B3u. However, the states

corresponding to B2g, B2u, B3g and B3u have zero statistical weight and therefore

their matrix blocks are not constructed and diagonalized for J > 0. It is usual to

describe the H2O2 torsional modes using the notation (n,τ), where n describes

the excitation of the torsional mode. The excitations of the torsional (v4/n) mode

are representated by Ag, Au, B2g or B2u symmetry which correspond to the quanta

τ = 1,τ = 4,τ = 2 and τ = 3 respectively.

The τ quantum number can be preserved in the quantum number assignment

in TROVE by utilizing the following form:

v4 = 4n+ i, (5.6)

where n is the excitation and i is the symmetry where i = 0,1,2,3 is Ag, B2g, B2u

and Au respectively. To retrieve n and τ is simply:

τ = (v4 mod 4)+1, n =
v4

4
(5.7)

5.4 Dipole Moment Surface

An ab initio DMS computed at the CCSD(T)-f12b/aug-cc-pV(T+d)Z [81] level of

theory in the frozen-core approximation using CCSD(T) [191] on a grid of 50 000

geometries in conjunction with the finite electric field method and field of 0.005
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Z

Figure 5.2: The principal axes for HOOH used in the DMS expansion.

a.u. The D2h symmetry-adapted projections of the dipole moment Cartesian compo-

nents µx,µy, and µz are given in the analytical representations with each component

expanded in Taylor series (312 parameters in total) in terms of internal coordinates

around the equilibrium configuration using a molecule-fixed axis system as follows.

The z axis is aligned along the O-O bond, and the x axis lies in the plane bisecting

the two O-O-H planes (i.e. planes containing the O-O and O-H bonds). The y axis

is oriented such that the xyz axis system is right-handed. These xyz axes are not ex-

act but are close to the principal axis system shown in Figure 5.2. With the chosen

axes, the x,y, and z components of the dipole moment span the B1u, B3u, and B2u

representations, respectively. The three electronically averaged dipole components

are represented by the following analytical functions:

µ̄x = cos(τ/2) ∑
i1,i2,...,i6

µ
(x)
i1,i2,...,i6ξ

i1
1 ξ

i2
2 ξ

i3
3 ξ

i4
4 ξ

i5
5 ξ

i6
6 , (5.8)

µ̄y = sin(τ/2) ∑
i1,i2,...,i6

µ
(y)
i1,i2,...,i6ξ

i1
1 ξ

i2
2 ξ

i3
3 ξ

i4
4 ξ

i5
5 ξ

i6
6 , (5.9)

µ̄z = ∑
i1,i2,...,i6

µ
(z)
i1,i2,...,i6ξ

i1
1 ξ

i2
2 ξ

i3
3 ξ

i4
4 ξ

i5
5 ξ

i6
6 , (5.10)
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Figure 5.3: The µx dipole moment component for H2O2, computed at the torsional geome-
tries shown

where

ξ1 = ∆Re−(∆R)2
, (5.11)

ξ2 = ∆r1e−(∆r)2
, (5.12)

ξ3 = ∆r2e−(∆r)2
, (5.13)

ξ4 = ∆θ1, (5.14)

ξ5 = ∆θ2, (5.15)

ξ6 = cosτ. (5.16)

The expansion parameters of the y and z components of the dipole obey the follow-

ing permutation rule:

µ
(α)
i1,i2,i3,i4,i5,i6 =−µ

(α)
i1,i3,i2,i5,i4,i6 (5.17)

corresponding to the permutation of the two hydrogen atoms and therefore

µ
(α)
0,0,0,0,0,i6

= 0 (α = y,z) for any i6. The dependence of µx component against

the torsional angle is shown in Figure 5.3.

The 130, 90, and 92 symmetrically independent expansion parameters
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µ
(α)
i1,i2,i3,i4,i5,i6 (α = x,y,z) were obtained in a least-squares fit to the 3 × 20 842

ab initio dipole moment values (corresponding to energies below hc12 000 cm-1)

with the rms error of 0.0013, 0.0002, and 0.0010 D, respectively.

The vibrational transition moment for the ground vibrational state is 1.5683 D

and compares well with measured value of 1.5728 D [192]. This is very different

from the equilibrium value of the ab initio dipole moment µ̄e
x = 1.738 D (at R =

1.4554 Å, r1 = r2 = 0.96257 Å, θ1 = θ2 = 101.083◦), showing strong non-rigid

character of the H2O2 dipole moment.

Information on transition moments for H2O2 is limited; Table 5.2 compares

available experimentally derived values at different torsional excitations from ex-

periment [24]. Our calculated values reproduce the experimental with a maximum

deviation of 2.4%. Some papers report effective transition dipole moments as a tor-

sional expansion in terms of τ , e.g. cosτφz [24] which are difficult to compare to

fully averaged transition dipoles.

Table 5.2: Absolute values of experimental [24] and ab initio transition moments, in debye,
for (n′,τ = 1)↔ (n′′,τ = 3).

n′ n′′ Calc Obs (Obs-Calc)/Obs (%)
0 0 1.5683 1.5723 0.25
0 1 0.3332 0.3413 -2.40
1 0 0.6031 0.6136 -1.72
1 1 1.1664 1.1751 0.74
2 1 1.1664 1.1628 0.31
2 2 1.2638 1.2825 1.46
3 2 1.3276 1.3535 -1.91

5.5 Room temperature line-list
The basis-sets used is described in Section. 5.3. Here the J = 0 wavefunctions with

eigenvalues up to 8000 cm-1 are utilized reducing the size of the Hamiltonian. The

original primitive basis-set was of size 2 789 400, this was reduced to 23 078 in the

contracted form and finally to 2875 using the J = 0 representaion. The room tem-

perature rovibrational energies utilise the empirical band-centre shifting outlined in

Eq. (2.58). Table 5.3 lists all the band-centers that were utilized in the empirical
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shifts together with the ab initio values before the shift.

Table 5.3: Experimental [25, 26, 27, 28] band centres used in the empirical shift.
v1 v2 v3 n v5 v6 τ Symmetry Ab-Initio (cm-1) Shifted/Obs (cm-1)
0 0 0 0 0 0 4 Au 11.312 11.437
0 0 0 0 0 0 3 B2u 11.312 11.437
0 0 0 1 0 0 1 Ag 255.529 254.55
0 0 0 1 0 0 2 B2g 255.532 254.55
0 0 0 1 0 0 4 Au 371.589 370.893
0 0 0 1 0 0 3 B2u 371.590 370.893
0 0 0 2 0 0 1 Ag 570.809 569.743
0 0 0 2 0 0 2 B2g 570.818 569.743
0 0 0 2 0 0 4 Au 777.432 776.1221
0 0 0 2 0 0 3 B2u 777.458 776.1148
0 0 1 0 0 0 1 Ag 865.539 865.939
0 0 1 0 0 0 2 B2g 865.539 865.939
0 0 1 0 0 0 4 Au 877.470 877.934
0 0 1 0 0 0 3 B2u 877.470 877.934
0 0 0 3 0 0 1 Ag 1002.666 1000.882
0 0 0 3 0 0 2 B2g 1002.869 1000.93
0 0 0 0 0 1 1 B1u 1265.003 1264.583
0 0 0 0 0 1 3 B1g 1285.879 1285.121
0 0 0 1 0 1 1 B1u 1506.164 1504.872
0 0 0 1 0 0 3 B1g 1649.977 1648.367
0 0 0 2 0 1 1 B1u 1855.823 1853.634
0 0 0 2 0 1 3 B1g 2075.366 2072.404

Hamiltonian matrices are constructed up to the limit of J = 40 and diagonalized

using the J = 0 contracted basis set for all eigenvalues and eigenvectors but only

eigenvectors up to 8000 cm-1 are stored and used in producing the transitions. The

required linestrengths were produced from the DMS outlined in Section 5.4 via the

methodology described in Chapter 3. Here the symmetry selection rules are:

Ag↔ Au ,B1g↔ B1u (5.18)

with nuclear statistical weights gns = 1 for Ag and Au, gns = 3 for B1g and B1u and

gns = 0 for the B2g,B2u,B3g and B3u symmetries. The transitions were computed

using the energy limits hc 4 000 and hc 8 000 cm−1 for the lower and upper states,

respectively to acheive a target ν̃i f limit of 8 000 cm-1. The TROVE-GAIN code
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Figure 5.4: Overview of synthetic spectrum at T =296 K against HITRAN [6]

was utilized to compute 1 487 073 009 transitions within 6 hours.

5.5.1 Results

The line-list obtains a partition function of 9840.91 at T = 296 K which compares

well to the HITRAN value 9819.80 [23].

Figure 5.4 is the synthetic spectrum at 296 K for all 1.4 billion lines and com-

paring against the 126,983 lines from HITRAN highlights the significant degree

of completeness the line-list provides. However two regions (1) and (2) show dis-

agreement in line intensity, which can be attributed to the lack of the experimental

data used for producing the HITRAN intensities by Perrin et. al [24, 174].

The PNNL-IR [10] database provides additional cross-sections above

1800 cm-1. Figure 5.5 compares the line list’s and HITRAN’s simulated cross-

sections to PNNL using a Gaussian convolution with HWHM at 0.312 cm-1 at

T=323.15 K and demonstrates that the line list agrees much better in intensity and

structure indicating problems with HITRAN intensities for both regions.

Figure 5.6 highlights a band in the 3.5 µm region which is a combination of

the (0,τ = 1)→ (ν3 +6ν4,τ = 1), (0,τ = 1)→ (2ν3 +4ν4,τ = 1), (0,τ = 2)→
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Figure 5.5: Cross-section comparison of the room temperature line-list against experimen-
tal PNNL-IR [10] data at the ν1 and ν5 band at 323.15 K with HWHM = 0.3120
cm−1.

(3ν3,τ = 1), (0,τ = 2)→ (ν3 + ν4 + ν5,τ = 2), (0,τ = 3)→ (ν3 + 4ν4,τ = 4)

and other weaker hot bands. Good agreement is seen in both structure and over-

all intensity but the estimated line profile utilized in the convolution may not be

adequate enough to properly replicate the PNNL-IR cross-section leading to some

minor differences in the overall cross-section.

Figure 5.7 further states the quality of both the line-positions and absolute

intensities by comparing the ν1 and ν5 (ours vs PNNL-IR’s) bands in the 2.7 µm

region. As this is the region of most contention in the literature, it is hopeful that

this line-list may provide a means with which to identify the confusing spectra in

this region.

Finally, the importance of the band shift previously discussed is illustrated in

Figure 5.8. Here the TROVE-I spectra is purely using the ab initio band centers

while TROVE-II utilizes the experimental band centers from Table 5.3. The ab

initio deviation of 1.12 cm-1 reduces significantly to 0.005 cm-1 using this empirical

shifting method.

The room temperature line-list has been published[16] and is also available in

Appendix A.
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Figure 5.6: Cross-section comparison of the room temperature line-list against experimen-
tal PNNL-IR [10] data at 323.15 K with HWHM = 0.3120 cm−1.
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Figure 5.8: Comparing two versions of the synthetic spectrum against HITRAN at
T=295 K. TROVE-I is the ab initio, TROVE-II is using the empirical band-
center shifts.

5.6 Hot line-list
The room temperature line-list provides about 1 billion transitions at up to

8,000 cm-1. However it is limited as the rotational excitation of J = 40 makes it

inadequate for high temperature modelling and the lower energy cut-off means that

coverage above 4,000 cm-1 rapidly becomes incomplete. This new line-list aims

to build upon this line-list by refining the PES towards spectroscopic accuracy and

extending the temperature and frequency range applicability.

5.6.1 Refined Potential Energy Surface

The previous room-temperature H2O2 line list [16] was computed using the PES

stated in Section 5.2. The ab initio PES combined with the empirical shifting re-

produces the known empirical energy levels with a root mean square (rms) of about

0.001 – 0.1 cm-1. As previously stated in Chapter 2.3.5, this can be considered an

ad-hoc PES and will therefore label it as the ‘H2O2-2015’ PES. However, its pre-

dictive ability for bands whose centres have not been experimentally defined was
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limited. In particular, the disagreements from the ν1 and ν5 band-centers. Essen-

tially, their band energies have an accuracy that is closer to ab initio than experi-

mental. In order to improve them towards experimental accuracy, refinement was

performed as outlined in Chapter 2.3.5. Here the original 282 expansion coeffi-

cients of the ab initio PES are reduced to 163 by removing the symmetry-related

O-H stretching (i j) and bending (kl) terms from the input PES and simply linking

them in the computation of potential energy terms in the Hamiltonian. This en-

sures that the symmetry of these terms is preserved during the fitting process. The

quality of the fit is determined by the quality and vibrational diversity of the input

dataset. Two sources of experimental data come from line-positions provided in the

literature and transitions from HITRAN. The HITRAN dataset sources come from

observations by Perrin et al. [174], Perrin et al. [24], Perrin et al. [28] and Klee et al.

[193] with literature line-positions from Flaud et al. [25], Olson et al. [27] Giguere

[194], Zumwalt and Giguere [189] and Camy-Peyret et al. [26]. This empirical

dataset provides the ν4, ν3 + ν4, ν4 + ν6 and ν2 vibrational terms. Unfortunately

there is little data on the ν1 and ν5 energy levels which hampers the vibrational

diversity that would construction of an extensive fitted PES, and the reported band-

centre values vary significantly in literature making them unsuitable for inclusion.

However, these terms can be indirectly improved by the high J values from other

vibrational states included in the fit.

Our input dataset includes all energies for J ≤ 4 up to 4000 cm-1. The weights

wi used have an arbitrary range of values that are normalized in the fit. The energies

given in literature are the simplest to include in the refinement process and are given

the highest weighting. Here the pure torsional band at J > 0 from Camy-Peyret

et al. [26] and Olson et al. [27] are given the highest weighting of wi = 100. The

ν2, ν3, ν6, ν3 + ν4, ν4 + ν6 energies and H2O2 band centers (except for ν1 and ν5)

from Camy-Peyret et al. [26], Giguere [194], Perrin et al. [28], Flaud et al. [25] and

Zumwalt and Giguere [189] are given weights 10≤ wi ≤ 20.

Transitions from HITRAN require additional work. In order to determine the

upper state of a transition requires the assignment of lower state energy. Fortunately
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Table 5.4: Comparison of N weighted experimental data-points in the fit and non-weighted
root mean squared deviation of both H2O2-2016 (this work) and H2O2-2015
[16] for each dataset.

H2O2-2016 H202-2015
Weight N rms (cm-1) rms (cm-1) Comment
100 43 0.001 0.000 J > 0 pure torsional states
10-20 144 0.004 0.007 Band centers and ν3 +ν4, ν6 +ν4 states
1-9 186 0.539 1.369 Upper state extracted

from HITRAN with corroborated lower states

HITRAN provides the lower state energy for all transitions in the database. How-

ever, lower state energies require corroboration from literature data and/or the ab

initio energies for the upper state energies to be included in the fit with 1 ≤ wi ≤ 9

based on confidence of the datum. Each input datum must be correlated with a the-

oretically computed energy level which, in this present work, was straightforward

due to the good agreement given by the initial ab initio PES.

Special measures must be taken in order to ensure that the refinement process

does not lead to unphysical shapes for the new PES due to a limited sampling of

the experimental data not covering all the complexity of the potential energy sur-

face of HOOH. For example the high stretching or bending overtones are poorly

represented in the experimental data and therefore it is important to retain the ab

initio quality of the original PES by Polyansky et al. [84]. To this end the PES is

constrained around the ab initio energies at each geometry [100, 98, 97, 9]

The new potential energy surface is called H2O2-2016. Table 5.4 describes

the rms for states of a particular weight. The energies for H2O2-2016 are computed

without any empirical band shifts and shows that this new semi-empirical PES per-

forms better overall than the ab initio band-shifted PES especially for the lower

weighted states. wi ≥10 relate to vibrational states that were involved in the band-

shifting which gives H2O2-2015 its low rms values. Comparing weights lower than

10 suggests that the predictive ability of the H2O2-2016 PES is greatly enhanced.

The overall comparison as a function of rotational quantum number J with a

weighted rms is given in Table 5.5. Overall H2O2-2016 improves the rms deviations

of H2O2-2015 by more than a factor of 2. Table 5.6 highlights residuals for J ≥ 30
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Table 5.5: Comparision of N experimental data-points in the fit and weighted root mean
squared deviation of both H2O2-2016 (this work) and H2O2-2015 [16].

H2O2-2016 H202-2015
J N wrms (cm-1) wrms (cm-1)
0 34 0.238 0.254
1 47 0.079 0.320
2 81 0.096 0.345
3 116 0.183 0.404
4 132 0.154 0.287
Total 0.150 0.321

for the ν3 and ν6 line positions from Camy-Peyret et al. [26] and Perrin et al. [28]

and shows excellent agreement with an overall rms of 0.0642. The rms deviation

for all 2734 states in HITRAN up to J = 49 and energy up to 3461.02 cm-1 is

0.834 cm-1. Vibrational terms that correspond to the highest weighted states have

an rms of 0.192 cm-1. Around 12 states related to higher excited torsional modes

n > 3 have an rms of 5.2 cm-1 and may well be due to misassignments. This PES is

therefore of improved accuracy and is the one used below.

5.6.2 APTY

The variational calculation uses the same co-ordinates, basis-sets and DMS as the

previous room temperature line-list. The difference is that the J = 0 wavefunctions

are retained at up to to 12,000 cm-1 and Hamiltonian matrices are constructed up

to the limit of J = 85.

The transitions were computed using the energy limits hc 6 000 and hc

12 000 cm−1 for the lower and upper states, respectively giving complete cover-

age of the region 0 cm−1– 6 000 cm−1.

The intensities were computed using an enhanced version of TROVE that uti-

lizes the nVidia graphics processing units (GPU) allowing for the computation of

5,000–30,000 transitions per second on a single GPU. The GPUs utilized were the

nVidia M2090, K20 and the K40 models.

The final hot line list named APTY contains 7 560 352 states and almost 20

billion transitions that completely covers the 0 – 6 000 cm-1 region. An extended

line list is provided which contains an additional 8 billion transitions in the 6 000–
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Table 5.6: Residuals in cm-1 for energies computed from the H2O2-2016 PES. Observed
data is from Camy-Peyret et al. [26] and Perrin et al. [28]. The overall rms is
0.0642 cm-1

J K ν3 n τ ν6 Obs Calc O-C
30 0 0 0 1 0 789.58 789.64 -0.06
30 1 0 0 2 0 793.05 793.12 -0.07
30 2 0 0 1 0 829.29 829.34 -0.05
30 2 0 0 4 0 841.34 841.32 0.02
30 3 0 0 2 0 876.03 876.07 -0.04
30 3 0 0 2 0 876.03 876.07 -0.04
30 4 0 0 1 0 940.03 940.07 -0.04
30 6 0 0 4 0 1134.61 1134.58 0.03
30 2 0 1 4 0 1198.50 1198.58 -0.08
30 7 0 0 2 0 1241.30 1241.33 -0.03
30 7 0 0 2 0 1241.30 1241.33 -0.03
30 7 0 0 3 0 1253.29 1253.25 0.04
30 4 0 1 4 0 1308.34 1308.43 -0.09
30 11 0 0 2 0 1898.17 1898.11 0.06
30 11 0 0 3 0 1910.47 1910.41 0.06
30 6 1 0 2 0 1978.18 1978.19 0.00
30 5 0 1 2 1 2525.44 2525.50 -0.06
30 0 0 2 1 1 2638.21 2638.21 0.00
30 2 0 2 1 1 2678.98 2678.96 0.02
30 6 0 1 4 1 2768.27 2768.35 -0.08
30 9 0 0 3 1 2825.75 2825.74 0.01
30 9 0 1 3 1 3180.32 3180.35 -0.03
30 11 0 0 3 1 3196.72 3196.74 -0.02
30 10 0 1 4 1 3355.50 3355.61 -0.11
31 3 0 0 2 0 928.92 928.97 -0.04
31 4 0 0 1 0 992.69 992.73 -0.04
31 6 0 0 4 0 1187.24 1187.21 0.03
31 1 0 1 3 0 1230.77 1230.86 -0.09
31 2 0 1 4 0 1253.76 1253.86 -0.10
31 7 0 0 2 0 1293.78 1293.81 -0.03
31 7 0 0 2 0 1293.78 1293.81 -0.03
31 0 0 2 1 0 1410.64 1410.73 -0.09
31 0 0 2 1 0 1410.64 1410.73 -0.09
31 8 0 0 4 0 1442.61 1442.56 0.05
31 9 0 0 3 0 1597.29 1597.23 0.06
31 1 1 0 2 0 1717.38 1717.60 -0.23
31 2 1 0 1 0 1736.75 1736.79 -0.05
31 10 0 0 4 0 1769.53 1769.46 0.07
31 3 1 0 2 0 1783.76 1783.79 -0.03
31 4 1 0 1 0 1847.46 1847.49 -0.03
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Figure 5.9: H2O2 lifetimes computed [12] for states up to 6,000 cm-1

8 000 cm-1 region with reduced completeness for higher temperature. Figure 5.9

presents the lifetimes computed[12] for states up to 6,000 cm-1.

An estimate of the temperature applicability of the line list can be performed

by checking the partition function convergence of Eq. (3.9), which is computed via

explicit summation [46]. The convergence can be measured by computing (QJ −

QJ−1)/QJ where QJ is the partition function for all energy levels up to rotational

excitation J. For 296 K, the partition function converges to 0.001% at J = 37 which

matches the room temperature line lists J limit of J = 40. At higher temperatures,

it is well-converged up to at least 1500 K where the estimated error is only 0.2 %

at J = 85. This can be attributed to the good coverage of J states computed that

contribute to the overall population. A second partition Qlim can be evaluated by

only including states that fall below the hc 6 000 cm-1 lower state energy limit of

the line list and compared against Q by computing the ratio Qlim/Q to assess the

completeness of the full line list. Figure 5.10 shows that up to 800 K, the partition

functions are essentially the same. At 1250 K about 90% of the population of states
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Figure 5.10: Qlim/ Q against temperature where Qlimit is the partition function computed
using only energy levels below the lower state threshold of 6000 cm −1 and Q
is the estimate of the full partition function.

is represented by Qlim but this falls to≈80% at 1500 K giving the upper temperature

for which APTY is reasonably complete as 1250 K. Usage of the line list at higher

temperatures runs the risk of losing opacity due to missing contributions. The ratio

Qlim/Q can be used to estimate this. However, the decomposition of H2O2 means

that it is unlikely to be an important species above 1000 K.

Table 5.7 compares the APTY partition function against HITRAN; we see that

at temperatures less than 1000 K we agree better than 1%. For temperatures 1000

– 1500 K, the APTY partition function is greater by 2–4% suggesting that the ex-

plicit summation method gives higher, and probably better values, than the more

approximate method used by HITRAN [23]. However, at 3000 K APTY’s Q is

30% lower than the HITRAN value which can be attributed to the eigenvalue cutoff

of 12 000 cm−1 and J = 85. Studies on ammonia and phosphine have shown that

considerably extended lists of energy levels are required to get converged partition

sums at these elevated temperatures [47].



5.6. Hot line-list 123

Table 5.7: Comparisons of H2O2 partition functions as function of temperature for this
work those used in HITRAN [23].

T / K APTY HITRAN

75 895.506 894.866
150 2 815.866 2 811.187
255 7 360.598 7 336.856
300 10 126.961 10 087.090
500 31 246.17 30 990.11

1000 232 439.8 226 152.5
1500 1 031 673.6 993 983.8
3000 21 847 680 15 151 254

Figure 5.11 is a simulated spectrum of the APTY line list computed at T =

296 K. This highlights the coverage and sheer number and density of transitions

available compared to the current edition of the HITRAN database [6]. Figure 5.12

compares our results with specific regions in the HITRAN database, the torsional

and ν6 bands. Comparisons of the two show excellent agreement in replicating both

line position and intensities.

Our line list in the ν1 and ν5 band regions can be validated by simulating ab-

sorption cross sections in the the 2.7 µm region and comparing against PNNL-IR

data [10]. Figure 5.13 illustrates how the structure and positions are in good agree-

ment with the overall integrated intensity for APTY in this region being 3% stronger

than PNNL. The improvement given by the H2O2-2016 PES can be demonstrated

by comparing with the previous room temperature line list and with the PNNL-IR

data; see Figure 5.14. The wavelengths of the largest two peaks in this band at

2.738 µm and 2.736 µm are correctly reproduced by APTY but are shifted by about

0.001 µm for H2O2-2015, showing the improvement in this band due to use of the

refined PES. Overall the integrated cross-sections for this band differs only by 3%

from PNNL; indeed the entire spectrum up to 6,000 cm-1 only differs by 3%.

Band intensities can be computed by explicit summation of all transitions

within a band and compared against available data. Table 4.7 shows that for the

limit available empirical band intensities we agree with most regions to ≤7.3%
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Figure 5.11: Overview of the synthetic spectrum at T = 296 K against HITRAN data [6].

which is below the estimated experimental uncertainty of≈±10%. Two discrepan-

cies are with the v6 band from Perrin et al. [174] and the ν2 +ν6 band from Johnson

et al. [190]. The former conflicts with other measurements due to Johnson et al.

[190] and Klee et al. [193] where integrated absorption intensities were measured

directly, whilst the band intensities of Perrin et al. [174] were obtained by sum-

ming a synthetic spectrum of only 27 276 transitions. The ν2 +ν6 band intensity is

33.78% weaker than the experimentally derived value. Johnson et al. [190] suggests

that the assignment of this band is ν2 +ν6 compared to the ν2 +ν3 +ν4 assignment

by Giguere [194]. This is based on a Q-branch peak observed at 2,658.62 cm-1. The

assignments from APTY suggest that the peak observed is actually a convolution of

Q-branches of the (0,4)→ ν2 +(0,4), (0,4)→ ν2 +(0,2)+ν6, (0,4)→ ν3 +(4,4),

(0,4)→ ν3 +(2,2), (0,4)→ 2ν3 +(2,3) and (0,4)→ ν3 +(2,2)+ ν6 transitions

with an average separation between them at ≈0.02 cm-1. Computing the band in-

tensities of all of these bands in this region give an answer that agrees with value

given by Johnson et al. [190] to 3.97%. The Kitt Peak Archive provides FTIR spec-
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Figure 5.12: The fundamental bands compared to the HITRAN database [6] at T = 296 K.
(a) Torsional band (b) ν6

tra of H2O2 covering the wavenumber region up to 6422 cm-1, which is only partly

assigned. Figure 5.15 (lower display) shows an uncalibrated spectrum of H2O2 in

the 1.78 µm region (800628R0.002) recorded by R. H. Hunt in 1980, which covers

the ν1 and ν5 fundamental bands of the hydrogen peroxide. These two bands have

not been spectroscopically analysed. The upper display of this figure presents the

APTY absorption spectrum at 296 K simulated using the Doppler line profile. The

APTY synthetic spectrum resembles all the main features of the experimental data.

It is hoped that this will encourage a spectroscopic analysis of the Kitt Peak H2O2

spectra in the IR and near-IR regions currently not present in HITRAN. APTY’s

capability of providing absolute intensities and quantum numbers can assist in the

assignment of these spectra.

Figure 5.16 presents integrated absorption cross-sections computed using a

Doppler profile [195] for a range of temperatures. The figure shows how the opac-
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Figure 5.13: The ν1 and ν5 band region with APTY against PNNL-IR data at 323.15 K
[10] with HWHM = 0.300 cm−1

Table 5.8: Band intensities, in 10 −17 cm −1/(molecule cm −2).

Band Freq range (cm-1) Ref. Obs Calc (O-C)/O (%)
Torsional 0–1,427 [24] 4.0400 3.7450 7.3
ν3 750–1,100 [190] 0.0157 0.0165 -5.43
ν6 1,135–1,393 [190] 1.7458 1.7651 -1.10
ν6 1,170–1,380 [193] 1.8500 1.7633 4.68
ν6 1,170–1,380 [174] 1.0030 1.7633 -75.80
ν2 +ν6 2,300–2,900 [190] 0.0830 0.055 33.78
Multiple bands 2,300–2,900 [190] 0.0830 0.0797 3.97
ν1,ν5 region 3,300–3,800 [190] 0.8356 0.8724 -4.40
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Figure 5.14: Cross-section comparison of peaks in the ν1 and ν5 band region with APTY
(this work) and H2O2-2015 [16] against PNNL-IR data at 323.15 K [10] with
HWHM = 0.300 cm−1

ity changes with increasing temperature. We note the particularly dramatic effect

raising the temperature has on the absorption by H2O2 in the 13.7 µm region. This

smoothing in the overall spectra can only be modelled if there is adequate coverage

and population of rotationally and vibrationally excited states. We also note the

strength of the OH stretch feature at about 2.75 µm; these features are absent from

line databases such as HITRAN because of the absence of assigned spectra in this

region. Hopefully APTY can be used to help analyse spectra in this region, as the

BYTe NH3 line list is being used to analyse ammonia spectra [197, 198].

The APTY line list has been published [196] and can also be found in the

location listed in Appendix A.
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cross-sections (296 K) generated using a Doppler profile; Lower display: an
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Chapter 6

Modelling Cross Sections and

Opacities

The production of three molecular line lists and the computation of transition inten-

sities for phosphine were completed within the allotted three years. During the spare

time that was afforded, other interesting opportunities in improving computational

efficiency were explored within the ExoMol Project. In particular, the impressive

results presented by GAIN has inspired an endeavour in applying the same approach

into other areas of spectroscopic modelling. As previously mentioned in Chapter 1,

computing the opacities of a molecule requires integrating the contribution of tran-

sition intensities of a molecule for a specific frequency. Here, the frequencies are

binned on an equally spaced grid for the range that we wish cover. If a grid of N

points is constructed for a frequency range from ν̃min to ν̃max, then the frequency at

grid-point i is:

ν̃i = i∆ν̃ (6.1)

where ∆ν̃ is defined as:

∆ν̃ =
ν̃max− ν̃min

N
(6.2)

and represents the ’resolution’ of the generated spectra. Generally this should match

the experimental resolution that one wishes to model. If we desire a resolution of

0.001 cm-1 for the spectral range of the BT2 [29] H2O line list (i.e 0.0 – 30,000

cm-1) then N = 3,000,000. The process of computing the opacities requires evalu-
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ating for each transition j at each grid point i:

σi j = I jF(ν̃ j− ν̃i) (6.3)

where I j corresponds to the absorption intensity of a transition with frequency ν̃ j

computed from Eq. (3.7). The function F is the line profile, this was briefly men-

tioned in a qualitative manner in the introduction chapter. For brevity we will only

discuss the Voigt profile as it is the most commonly used, this has the form:

F(x,y) =
y
π

∫
∞

−∞

e−t2

y2 +(x− t)2 dt (6.4)

where we have defined x =
√

ln2 ν̃ j−ν̃i
γD

with Doppler width γD and y =
√

ln2 γL
γD

with

Lorentzian width γL. Here the exponential part comes from the Doppler contribution

and the fractional comes from the Lorentzian. The convolution of the two requires

integrating their combination. The solution to this integral is the real part of the

complex error function often referred to as the Faddeeva function:

z = x+ iy

w(z) = erf(z)

F(x,y) = ℜ[w(z)]

(6.5)

Both complex and real solutions have been the subject of various articles to numer-

ically approximate [199, 17, 200] quickly.

The total opacity σi at a grid point i is the sum contribution of all transitions:

σi = ∑
j

σi j (6.6)

considering there are around half a billion transitions in BT2 and over tens of bil-

lions in other ExoMol line lists, this calculation poses a staggering computational

cost. In order to address this problem, we will take step through a typical calculation

and note the time taken for each transition:
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• Read transition information tr

• Call Voigt function t f

• Compute Voigt on all bins tv

the time taken for Nt transitions is therefore:

T = (tr + t f + tv)Nt (6.7)

of course the contribution of tr is related to I/O and there is little that can be im-

proved as each transition is used once, therefore, assuming that the actual calcula-

tions take no time, the minimum time to complete this is:

Tmin = Nttr (6.8)

however the Voigt profile evaluation does contribute to the time, even if tv < tr. If

we assume that tv = tr
2 (i.e the calculation takes half as long as the reading), then

T = 1.5Tmin, if reading takes 4 hours, then the total time will be 6 hours, 8 becomes

12. The question is: what can be done to remedy this? Whilst it may be obvious

to simply improve the calculation of the Voigt function, this is an extremely grand

endeavour as it will require a radically new method of evaluation and extremely

efficient implementation to approach the minimum time. Another commonly used

method is to reduce the number of transitions, and this can be done by setting an

intensity cut-off. However, such a cut-off is arbitrarily decided and may risk opacity

loss from weak but numerous transitions. Additionally, this doesn’t reduce the IO

time as one still needs to read the transition first. Instead it may be more interesting

to ask: What can be done to hide this?

Let us assume that we implement a system in such a way that we can read the

next transition whilst simultaneously computing the Voigt profile for the previous,

the time function becomes:

T = [tr +max({t f + tv}− tr,0)]Nt (6.9)
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Figure 6.1: The double buffering system used by GEXS. Here the CPU and GPU are work-
ing simultaneously but must synchronize when the CPU buffer is full and when
the GPU has completed its computation.

where the max function will select the higher of the two values (in the case where

the expression is negetive, it will be 0). Here, if tv < tr (assuming t f is zero), then

the time taken is the minimum. In a sense, the reading masks as much of the Voigt

calculation as possible and can reduce the ‘apparent’ calculation time. Therefore,

the requirement for minimum runtime is that the Voigt profile calculation takes as

long as ‘read’, which is a possiblity with GPUs.

6.1 GEXS

GEXS (GPU ExoMol Xross Sections) is a hybrid CPU+GPU code that utilizes this

aspect to compute opactities for extremely large line-lists without an intensity cut-

off. The key to the code relies on a ‘double buffering’ system not dissimilar to the

technique used in generating computer graphics. The system works by having two

equally sized buffers, one in the CPU and one in the GPU. The CPU will conti-

nously read until it fills its own buffer until it exhausts the space at which point it

hands it to the GPU buffer. The GPU performs work on its own buffer while the

CPU simultaneously refills its own. A synchronization step must occur, the CPU

after filling its buffer must wait for the GPU to finish its calculation and the GPU,

after finishing work, must wait for the CPU to supply it a new buffer. Figure 6.1

shows a graphical description of this method. Technically it’s possible to pass tran-

sitions immediately to the GPU as its read. The problem comes from t f , the time

taken to call a function. Each call to the GPU incurs a slight overhead, and this
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overhead can contribute signficantly to the run time and even dominate the Voigt

profile calculation itself if numerous. Therefore buffering reduces this by batching

the transitions into a single call. The actual Voigt implementation uses the Hum-

licek method to compute, it is fairly fast and its results can be compared to currently

available codes in the ExoMol project which aids in debugging.

GEXS can also perform multiple temperature and pressure combinations at

the same time through usage of streams. Generally, there is good performance

with around two to three simultaneous temperature-pressure calculations whilst still

achieving ≈40% of the minimum runtime. This is offset by the fact that we are

achieving 2-3 times throughput in calculation. Table 6.1 shows five different runs in

calculating the cross sections for the half a billion transiions of the BT2 [29] line list

with 3,000,000 grid-points in the 0.0 – 30,000 cm-1 spectral range. The system used

was a 20 core Xeon(R) CPU E5-2687W running at 3 GHz with 256 GB memory and

a single nVidia K40 GPU. The read-only time is considered Tmin of the calculation

and refers to reading the transitions without calculation. The OpenMP serial run

describes the typical run as described previously with a 10−30 cm molecule−1 ab-

solute intensity cutoff and where the actual Voigt uses OpenMP. Finally the GEXS

runs uses no cutoff and describes the number of temperature-pressure (T-P) com-

binations being done simultaneously. Here we see that the GEXS performs better

than the CPU serial read version in all cases and the single (T-P) is extremely close

to minimum time. Whilst there is a reduction in performance with multiple T-P

combinations, the time for a single T-P actually reduces. The 2 and 3 T-P compu-

tation effectively does 1 T-P in 731.83 and 680.58 seconds respectively, which is

less than the minimum time. Essentially we get more value performing multiple

T-P combinations for each read. For the simpler profiles such as Doppler, up to 10

different temperatures can be computed with almost no compromise in time taken.

Figure 5.16 was computed with GEXS for the entire APTY line list using 6,000 grid

points in the 0.0–6,000 cm-1 spectral range. Here, 10 different temperatures were

calculated at the same time on the same run with a run-time≈99% of the minimum.

Four of the 10 cross sections were selected for the plot.
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Table 6.1: Table showing various times to calculate 3,000,000 grid points for the full BT2
[29] line list. ’Read only’ refers to purely IO time. OpenMP serial is an im-
plementation to calculate the Voigt profile using OpenMP but in a serial reading
fashion. Here a 10−30 cm molecule−1 intensity cutoff was used. The GEXS
times uses no cutoff and each describe the number of temperature-pressure com-
binations being calculated. The minimum ratio describes the ratio between the
minimum completion time (Read only) and the run time of the calculation. The
speed up is in relation to the OpenMP version.

Calculation Time (s) Minimum ratio Speed Up
Read only (Tmin) 786.56 1.00 14.29
OpenMP Serial read (10−30 cutoff) 11242.80 0.07 1.00
GEXS 1 T-P (No cutoff) 818.97 0.96 13.73
GEXS 2 T-P (No cutoff) 1463.66 0.54 7.68
GEXS 3 T-P (No cutoff) 2041.76 0.39 5.51

6.2 The current state of GEXS
As of the time of writing, the GEXS code is in the prototype stage of develop-

ment and can be viewed in the location given in Appendix A. Currently the code

suffers a severe performance drop with extremely large numbers of grid points

(≈30,000,000) causing the CPU to stall frequently waiting for the GPU to finish.

Multiple GPUs do alleviate this issue as it gives each GPU more time to complete

their calculations before a new buffer is filled. The problem is due to the fact that

each grid point requires a large range of transitions to be considered and there-

fore increases the memory reads and Voigt evaluations. Steps are being taken to

introduce higher degree of caching to reduce the memory reads but so far this has

paradoxically increased the run-time with no obvious explanation. A more thorough

debugging and profiling process should reveal the issue but in theory this caching

methodology should give better scaling. Additionally an intensity cut-off could be

implemented to reduce the number of transitions for each grid point but this goes

against the philosophy of the code.

In terms of evaluating the Voigt profile, the Humlicek algorithm [199] was only

used to ensure that the buffering system worked by comparing with other ExoMol

codes. However it is fairly inefficient in a GPU setting and unnecessarily calculates

the imaginary parts. Two more promising methods are currently being implemented

and tested. The first is a 10–40 point Gauss-Legendre Quadrature integration; this
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is inspired by the ExoCross [201] code and boasts low numerical error in all regions

and seems well suited to GPU use. The second method utilizes a combination of

Algorithm 916 by Zaghloul and Ali [17] and a 3 point Gauss-Hermite quadrature

similar to the methodology used by Grimm and Heng [202]. Its efficient implemen-

tation and tuneable errors has had promising results and improvements to run time

but is suffering from opacity loss due to a possible error in the code (see Figure

6.2). Additionally, GEXS utilizes the GPU exclusively which is wasteful as there
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Figure 6.2: A comparison between the Humlicek method and Algorithm 916 [17], whilst
improving run-time, there is a coding issue which is giving reduced opacity.

are idle CPU cores which may be commandeered to perform work. However, using

OpenMP directives to split the reading and computing cores apart is difficult without

affecting code readability and organization. Therefore a prototype was developed

using the C++ 2011 standard std::thread class. This has been promising to use

with a single temperature pressure combo as it also gives the GPU ample time to

conduct its calculations but the current implementation causes far too many threads

to be spawned reducing the throughput of calculations. An implementation using a

job queue is being considered to alleviate this problem.
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Lastly the current version of GEXS does not comply with the new ExoMol

format [203] standard so further work must be done in order to support future line

lists.



Chapter 7

Discussion and Conclusion

Simulating atmospheres of hot exoplanets requires tremendous amounts of spec-

troscopic data. The ExoMol project attempts to solve this problem by providing

a database of these much needed molecular opacities constructed through theoret-

ical means. In particular, the currently available data for formaldehyde and hydro-

gen peroxide lacked both spectral and temperature coverage, hindering their usage.

Both of these molecules are prime candidates for production of their hot line lists.

However, this requires the computation of millions of states and tens of billions of

transitions. Such a task is not insurmountable but requires not only the application

of well established methodologies, but also the development of new ones. The work

in this thesis not only contributes high-accuracy line lists for these molecules, but

also a new state-of-the-art code for computing transition linestrengths.

GAIN started off as small code to speed up the computation of H2CO tran-

sitions by experimenting with GPUs. It has escalated into becoming a comple-

mentary code to TROVE. The task of porting the FORTRAN code into CUDA C

was non-trivial and required intimate knowledge of the hardware in order to per-

form properly. However, by exploiting their huge number of cores, their smaller

but faster cache memory and TROVEs basis set arrangement, a substantial increase

in performance was achieved with over 1000× speed-up in the preprocessing step

of the calculation. Improvements in computational efficiency was achieved by us-

ing multiple GPUs to perform the linestrength calculations and MPI to cache all of

the large eigenvectors while providing an even greater number of GPUs to perform
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work. This new code dubbed GAIN-MPI was utilized extensively in completing

the SAlTY hot PH3 line list and, for example, turned the J = 21↔ 22 transitions

from a 1.5 month calculation into less than a few hours. GAIN-MPI has since been

integrated into the ExoMol project ecosystem and has been used to compute over 70

billion transitions for a range of molecules. The code will see further usage in future

molecular line lists including C2H2, C2H4, NH3 and CH4. The task of using accel-

erators seems impregnable, but newer programming standards such as OpenACC

(Open Accelerators) aim to provide the power of accelerators with the simplicity of

OpenMP. The maturity of these standards will see an exponential rise in their usage

in a range of scientific fields.

The first line list produced was for hot formaldehyde. A previously calculated

semi-empirical PES and new ab initio DMS was used in conjunction with TROVE

to variationally compute high-accuracy line positions and intensities. H2CO dif-

fers from the usual ExoMol system of producing polyatomic line lists as no room

temperature version using an ab initio PES was produced first. This procedure dif-

fers from previous line lists produced with TROVE such as PH3 [108] and SO3

[204]. The first line list that was computed, AYTY-0, contained 5 million energy

states and over 3 billion transitions up to 9,600 cm-1 and applicable to 1000 K.

However, AYTY-0 suffered from a major flaw in its line strengths that completely

destroyed its viability for spectroscopic usage. It is interesting to imagine that if

we had followed the usual production schedule, it may have allowed us to fix the

issues due to refinement that was encountered with AYTY-0 early on. However,

this in the end has actually benefited formaldehyde and in turn, future polyatomic

line lists to be produced. Common knowledge dictates that the PES is responsible

for the line positions and the DMS is responsible for the transition intensity. How-

ever, what occurred in AYTY-0 demonstrates that the procedure of refining the PES

also affects the line strengths as well, even when all the energies seem physically

appropriate. Knowledge of this means that future line lists, especially molecules

with little experimental study, can avoid this problem altogether during refinement

of the PES. Additionally, the time lost in its production allowed for new MPI di-
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agonalisers and GAIN to be developed. This meant that significantly more states

and transitions could be computed producing a ’hotter’ hot line list. The ab initio

PES was re-refined to produce a new semi-empirical PES that gave an rms range

of 0.001 cm-1 to 0.2 cm-1. The resulting calculations with TROVE and GAIN pro-

duced over 10 million states and around 14 billion transitions. This is a significant

increase compared to the original and as a result, pushed the maximum frequency

from 9,600 cm-1 to 10,000 cm-1 and the temperature applicability from 1,000 K to

1,500 K.

Fortunately, H2O2 did follow the usual production pattern and an ab initio PES

was used to produce a room temperature line list. Whilst no real problems were

encountered in the actual production of the line list, the hydrogen peroxide molecule

is a far more complicated system than formaldehyde. The internal torsional motion

and tunnelling between configurations results in extremely small splittings. These

splittings have caused a number of issues in interpreting its spectrum, in particular

those involving the ν1 and ν5 bands. Therefore the treatment of the torsional motion

in the variational calculation required a significantly larger basis set in order to

accurately resolve the splitting. Retaining high accuracy with an ab initio PES

required using the empirical band shift method in order to bring the calculated band

centres in line with the experimental. An rms deviation of 0.001 – 0.1 cm-1 was

easily achieved with no modification to the potential. The calculation of up to J = 40

states and 1.4 billion transitions resulted in a temperature applicability of 296 K and

a spectral range of up 8,000 cm-1. The spectral completeness only reaches up to

4,000 cm-1, however, and any bands past this point are incomplete in structure. The

benefit of such an extended range is as a guide to unobserved spectral regions of

interest and to aid in interpretation in experimental studies.

Producing a high accuracy hot line list for H2O2 required far more than per-

forming a band shift. The problem is that for the bands where a definite observation

is unavailable, they gain no benefit in their line positions through this procedure.

This means that their energies are essentially at ab initio levels of accuracy. One of

the uses of a H2O2 line list would be to aid in definitively assigning bands such as ν1
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and ν5. In order to improve these bands, a refinement procedure was performed on

the PES with 410 experimentally observed energies. This new semi-empirical PES

’H2O2-2016’ boasts an rms close to 0.001 cm-1 without shifting on band centres

and a significantly improved rms of 0.064 cm-1 at higher rotational excitations as

well. The predictive ability has improved significantly and compares extremely well

to experimentally observed opacities compared to the shifted ab initio PES. Whilst

the majority of the variational calculation did not change, the maximum J and en-

ergy were increased to 85 and 12,000 cm-1 respectively. This resulted in the APTY

line list with over 7 million states and over 20 billion transitions. The spectral and

temperature completeness reaches up to 6,000 cm-1 and 1250 K respectively. As

of time of writing, the publication of this line list is currently in press. It will be

exciting to see the future usage of APTY in the scientific community.

7.1 Further work
Whilst much has been accomplished concerning the computation of theoretical line

lists. There are still plenty of opportunities for future projects and work to explore

the utilization of both AYTY and APTY line lists as well as tackling the challenge

of producing line lists for larger molecules.

7.1.1 Experimental Assignments

As previously discussed throughout this thesis, there is a limited amount of experi-

mental data for both H2CO and H2O2. Both the AYTY and APTY line list can aid

in this aspect by suggesting regions of interest for experimental observation as well

as providing a robust means of assigning complicated spectra and line intensity. For

formaldehyde, one of the biggest deficiencies is the lack ν3, ν4 and ν6 bands inten-

sities. However, Reuter et al. [13] provides an extensive set of line positions for the

ν3,ν4 and ν6 bands. As the experimental PNNL opacities agree to about 10% with

AYTY (and by Eq. (6.6) the absolute intensities in general), the experimental line

positions can be matched with the AYTY transition intensities using quantum num-

ber assignments. This combination would complete the set of fundamental bands

for H2CO and allow the experimental data to become integrated into the HITRAN



7.1. Further work 142

2000 4000 6000 8000
Wavenumber (cm

-1
)

0

3×10
-21

6×10
-21

9×10
-21

1×10
-20

A
bs

ol
ut

e 
In

te
ns

iti
es

 c
m

/m
ol

ec
ul

e

v
3
+(1)

v
2
+(0)+v

5
v

3
+v

5

v
1
+(0)

v
5
+(0)

3v
3
+(0)

v
2
+(1)

2v
5
+(0)

5v
3

3v
3
+(1)+v

5

3v
5
+(0)

v
1
+v

2
+(0)+v

5

v
1
+(1)

2v
2
+2v

3
+(0)+2v

5

Figure 7.1: A simulated 296 K spectrum up to 8000 cm-1 for H2O2 using the room tem-
perature line list. Preliminary assignments are shown with brackets indicating
torsional excitation n.

database. Additionally, there are further overtone and combination bands worth

investigating that have been hinted at by both AYTY and the PNNL[10] database

that include the 2ν3 and 3ν4 at 3472.22 cm-1, ν1 +ν2 and ν2 +ν5 at 4545.12 cm-1,

4ν2 at 5181.1 cm-1 and 2ν5 at 5649.0 cm-1 as well as the ν5 +3ν6 bands at 6361.3

cm-1 by Zhao et al. [14]. Hydrogen peroxide past 2000 cm-1 contains many strong

bands that require further experimental observation. Figure 7.1 shows a simulated

spectrum using the room temperature line list, this was chosen over the hot line list

due to the larger spectral range and easier computation. Highlighted are the major

bands with preliminary assignments. Included in this range are the ν1 and ν5 bands

fundamental bands as well as a range of overtones and combination bands. The

most interesting are the ν3 and ν1 torsionally excited bands at 2,700 cm-1 and 7,060

cm-1 which display similar band structures. An experimental study in combination

with the APTY line list and the extended line list should provide a more robust anal-

ysis, assignment and absolute intensities to observed line positions in this region for

integration into molecular databases.



7.1. Further work 143

1000 2000 3000 4000 5000 6000
Wavenumber (cm

-1
)

10
-26

10
-24

10
-22

10
-20

10
-18

10
-16

C
ro

ss
 s

ec
tio

n 
(c

m
2 /m

ol
ec

ul
e)

H
2
O

H
2
O

2

H
2
CO

HITRAN H
2
O

2
 region

HITRAN H
2
CO region
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(red) using the BT2, AYTY and APTY line lists with a Doppler profile at 296
K. Highlighted above are the spectral regions that HITRAN covers for H2O2
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7.1.2 Atmospheric and Industrial Applications

As previously discussed in the introductions of Chapters 4 and 5, both hydrogen

peroxide and formaldehyde molecules are trace species in the Earths atmosphere.

IR studies of H2O2 and H2CO in the terrestrial atmosphere can benefit from the

produced molecular line lists. In particular, the identification of features that are not

masked by water absorption bands. Figure 7.2 are plots of cross sections for water,

formaldehyde and hydrogen peroxide using a Doppler profile at 296 K. The masking

effect of water is evident, in particular, almost the entire HITRAN spectrum of H2O2

is hidden. However, both molecules have strong absorption features that reside in

the ’gaps’ of waters IR spectra in the 3,000 cm-1 and 4,500 cm-1 regions. These

regions, in particular the latter, should be investigated as a means of conducting IR

studies of both of these molecules in the Earth’s atmosphere as well as ground based
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IR observations of astrophysical objects.

In combustion studies, the assessment of new biofuels [205] as an alternative

to hydrocarbons requires monitoring their byproducts. Formaldeyhde is a toxic

byproduct of combustion and its concentration in burning is usually monitored by

its UV bands[206, 207] using the highly sensitive cavity ring-down spectroscopy

(CRDS) technique. However, broadband absorption in the UV can complicate ex-

act observation of features[207]. Recently an alternative to CDRS are Quantum

Cascade Lasers (QCL) observations in the mid-infrared region. A comparison of

UV-CDRS and MIR-QCL by Nau Patrick and Andreas [208] on a 1100 K flame

demonstrated that MIR-QCL provides similar sensitivity in measuring formalde-

hyde concentration with a simpler equipment setup and easier to identify absorp-

tion features. The comparison was done using a simulated spectrum from the HI-

TRAN database in the 1694 cm-1 region in combination with the BT2 water line

list. This region was chosen in particular due to the simpler ν2 spectral features

at 1100 K. Further studies using the AYTY line list may enhance the sensitivity of

MIR-QCL by measuring and identifying the more complex bands at the 3000 cm-1

and 4500 cm-1 that have almost no interference from water absorption.

In medical fields, vaporised H2O2 is effective at sterilizing equipment[209]

making its trace-gas-sensing important in minimize exposure risk. Additionally, hy-

drogen peroxide is a byproduct of tissue damage and inflammation[210] and as such

can be used as a possible biomarker in breath condensate [211] to non-intrusively

diagnose lung and throat damage. As such, there is a push towards developing new

MIR lasers[212] specifically for sensing hydrogen peroxide for both decontami-

nation and medical settings. Future work with APTY may involve collaborations

to assist in developing and benchmarking more sensitive lasers. To quote Nancy

P. Sanchez and Tittel [212]: “For future development of mid-IR laser-based sen-

sor systems, it is therefore necessary to explore alternative strong, interference-free

H2O2 absorption lines”.
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7.1.3 Large Molecules, The Curse of Dimensionality and

ANGMOL

The number of vibrational basis functions Nb required to converge a vibrational

overtone can be estimated with a simple expression given by Pavlyuchko et al.

[213]:

Nb ≈
N f

∏
i

(Pt +N f + i)
i

(7.1)

Where Pt is a target polyad given by Eq. (2.50) and N f is the number of vibrational

degrees of freedom. Four atom polyatomic molecules have 6 degrees of freedom,

therefore to achieve high accuracy for the fifth overtones (Pt = 5) requires ≈ 8,000

basis functions for the J = 0 solution. This is similar to what is achieved with the

AYTY line list. To reach full convergence for all polyads (Pt = 16) would require

half a million basis functions, the act of determining the number of basis functions

is an act of balancing the accuracy with computational cost. This expression how-

ever suffers greatly from the ’curse of dimensionality’. Simply adding an additional

atom increases the degrees of freedom to 9 and to achieve accuracy on the fifth

vibrational overtone requires ≈817,190 basis functions. Barring exceptional cases

such as CH4, full variational treatment of rotating and vibrating molecules with

more than four atoms becomes infeasible. This is an issue as there is interest in

hot line lists for hydrocarbons such as ethylene (C2H4) and benzene (C6H6) in both

astrophysical and industrial settings. Overcoming this problem requires implement-

ing a new methodology that can significantly reduce the computational cost of the

problem whilst maintaining accuracy. A solution to this comes from the ANGMOL

code [18], it utilizes a hybrid variational-perturbation method whereby the large vi-

brational matrix is partitioned into three sub-blocks as seen in Figure 7.3. Region 1

contains the largest contributions towards the energies, the contributions of region

2 are pertubatively added on to this sub-block whilst all contribution from region 3

are discarded. The smaller sub-block is then stored and diagonalized. This method

has seen great success in producing a hot line list for nitric acid (HNO3) [19] on a

single workstation that matches well with experimental observations (Figure 7.4)
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Figure 7.3: Taken from Figure 2 of Pavlyuchko et al. [18]. A vibrational maxtrix split
into three sub blocks. Region 1 contains the largest contributions to energy.
Region 2 contains small contributions that are added to Region 1 and Region 3
is discarded. The relations between matrix elements are shown.

ANGMOL however is not general like TROVE and exclusively utilizes curvi-

linear coordinates. Implementing the methods presented by ANGMOL into TROVE

will allow for the production of hot line lists for an even greater range of molecules,

turning TROVE into an extremely powerful general nuclear motion software suite.

7.2 Conclusion
The greatest limitation with experimental data is that it can only provide what has

been observed. Theoretical line lists circumvent this by not only attempting to

replicate the experimental data, but also predict it as well. This gives it the advan-

tage of completeness. To experimentally acquire and analyse the tens of billions of



7.2. Conclusion 147

� ��
�������	
��
���

�
�

�

�

�

�

�

��
��

���
��

���
��

�
�
�� ���

� ��
��

��

����

���� 

Figure 7.4: Taken from Figure 1 of Pavlyuchko et al. [19]. A comparison between the
simulated spectrum from the hot nitric acid line list and PNNL at 296.0 K

transitions needed to compete with theory verges on the impossible. Completeness

however comes with a great computational cost. Exploiting to a high degree the

hardware currently available is key to pushing theoretical line lists to higher tem-

peratures and greater frequency ranges. The PH3, H2CO and H2O2 molecular line

lists are a testament to what the ExoMol project is capable of achieving in a short

timespan.

The works described in this thesis represents three years of effort and required a

thorough understanding of quantum mechanics, molecular spectroscopy and atmo-

spheric physics. The usage of high performance computing facilities necessitated an

intimate understanding of hardware architecture, programming paradigms, acceler-

ators and parallelization in order implement methodologies efficiently followed by

the analysis of terabytes of computed data.



Appendix A

Supplementary Data

Included in this appendix is the location of data produced for each of the listed

Chapters.

A.1 Chapter 3
• GAIN-MPI source: https://github.com/ahmed-f-alrefaie/

GAIN-MPI/

• SAlTY line list: http://www.exomol.com/data/molecules/

PH3/31P-1H3

A.2 Chapter 4
• AYTY hot line list: http://www.exomol.com/data/molecules/

H2CO/1H2-12C-16O

A.3 Chapter 5
• 296 K line list: http://www.exomol.com/data/molecules/

H2O2/1H2-16O2

• APTY hot line list: http://theoryserv2.phys.ucl.ac.uk/

data/molecules/H2O2/1H2-16O2/APTY/

https://github.com/ahmed-f-alrefaie/GAIN-MPI/
https://github.com/ahmed-f-alrefaie/GAIN-MPI/
http://www.exomol.com/data/molecules/PH3/31P-1H3
http://www.exomol.com/data/molecules/PH3/31P-1H3
http://www.exomol.com/data/molecules/H2CO/1H2-12C-16O
http://www.exomol.com/data/molecules/H2CO/1H2-12C-16O
http://www.exomol.com/data/molecules/H2O2/1H2-16O2
http://www.exomol.com/data/molecules/H2O2/1H2-16O2
http://theoryserv2.phys.ucl.ac.uk/data/molecules/H2O2/1H2-16O2/APTY/
http://theoryserv2.phys.ucl.ac.uk/data/molecules/H2O2/1H2-16O2/APTY/
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A.4 Chapter 6
• GEX source: https://github.com/ahmed-f-alrefaie/gpu_

cross

https://github.com/ahmed-f-alrefaie/gpu_cross
https://github.com/ahmed-f-alrefaie/gpu_cross
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and R. Güsten. Detection of interstellar hydrogen peroxide. A&A, 531:L8,

2011.

[171] F. Du, B. Parise, and P. Bergman. Production of interstellar hydrogen perox-

ide (H2O2) on the surface of dust grains. A&A, 538:A91, 2012.

[172] R. D. Bach, P. Y. Ayala, and H. B. Schlegel. A reassessment of the bond

dissociation energies of peroxides. an ab initio study. J. Am. Chem. Soc.,

118:12758–12765, 1996.

[173] J T Hougen. Summary of group theoretical results for microwave and infrare

studies of h2o2. Can. J. Phys., 62:1392–1402, 1984.

[174] A Perrin, A Valentin, J M Flaud, C Camy-Peyret, L Schriver, A Schriver,

and P Arcas. The 7.9-µm band of hydrogen peroxide – line positions and

intensities. J. Mol. Spectrosc., 171:358–373, 1995. ISSN 0022-2852.

[175] P. A. Giguere and T. K. K. Srinivasan. A raman study of h2o2 and d2o2

vapor. J. Raman Spectrosc., 2:125–132, 1974.

[176] G. Rauhut, G. Knizia, and H.-J. Werner. Accurate calculation of vibra-

tional frequencies using explicitly correlated coupled-cluster theory. J. Chem.

Phys., 130:054105, 2009.

[177] D Luckhaus. 6d vibrational quantum dynamics: Generalized coordinate dis-

crete variable representation and (a)diabatic contraction. J. Chem. Phys., 113:

1329–1347, 2000. ISSN 0021-9606.

[178] M Mladenovic. Discrete variable approaches to tetratomic molecules part ii:

application to H2O2 and H2CO. Spectra Chimica Acta A, 58:809–824, 2002.

ISSN 1386-1425.



BIBLIOGRAPHY 171

[179] H G Yu and J T Muckerman. A general variational algorithm to calculate

vibrational energy levels of tetraatomic molecules. J. Mol. Spectrosc., 214:

11–20, 2002. ISSN 0022-2852.

[180] S. Carter, N. C. Handy, and J. M. Bowman. High torsional vibrational en-

ergies of H2O2 and CH3OH studied by multimode with a large amplitude

motion coupled to two effective contraction schemes. Mol. Phys., 107:727–

737, 2009.

[181] D. E. Bacelo and R. C. Binning. Theoretical modeling of the peroxide stretch

in H2O2, F2O2, and Fe2O4. Intern. J. Quantum Chem., 105:740–749, 2005.

[182] R Q Chen, G B Ma, and H Guo. Six-dimensional quantum calculations of

highly excited vibrational energy levels of hydrogen peroxide and its deuter-

ated isotopomers. J. Chem. Phys., 114:4763–4774, 2001. ISSN 0021-9606.

[183] S Y Lin and H Guo. Exact quantum mechanical calculations of rovibrational

energy levels of hydrogen peroxide (HOOH). J. Chem. Phys., 119:5867–

5873, 2003. ISSN 0021-9606.

[184] J. Koput, S. Carter, and N. C. Handy. Potential energy surface and

vibrational-rotational energy levels of hydrogen peroxide. J. Phys. Chem.

A, 102:6325–6335, 1998.

[185] B Kuhn, T R Rizzo, D Luckhaus, M Quack, and M A Suhm. A new six-

dimensional analytical potential up to chemically significant energies for the

electronic ground state of hydrogen peroxide. J. Chem. Phys., 111:2565–

2587, 1999.

[186] S. Carter, A. R. Sharma, and J. M. Bowman. Multimode calculations of rovi-

brational energies and dipole transition intensities for polyatomic molecules

with torsional motion: Application to H2O2. J. Chem. Phys., 135:014308,

2011. ISSN 0021-9606.



BIBLIOGRAPHY 172

[187] J M Bowman, S Carter, and X C Huang. MULTIMODE: a code to calculate

rovibrational energies of polyatomic molecules. Intern. J. Quantum Chem.,

22:533–549, 2003.

[188] P. Małyszek and J. Koput. Accurate ab initio potential energy surface and

vibration-rotation energy levels of hydrogen peroxide. J. Comput. Chem.,

34:337–345, 2013.

[189] L. A. Zumwalt and P. A. Giguere. The infra-red bands of hydrogen peroxide

at λ9720 and the structure and torsional oscillation of hydrogen peroxide. J.

Chem. Phys., 9:458–462, 1941.

[190] T. J. Johnson, R. L. Sams, S. D. Burton, and T. A. Blake. Absolute integrated

intensities of vapor-phase hydrogen peroxide (h2o2) in the mid-infrared at

atmospheric pressure. Anal. Bioanal. Chem., 395:377–386, 2009.

[191] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz. Molpro:
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[205] K. Kohse-Höinghaus, P. Oßwald, T. A. Cool, T. Kasper, N. Hansen, F. Qi,

C. K. Westbrook, and P. R. Westmoreland. Biofuel combustion chemistry:

From ethanol to biodiesel. Angewandte Chemie International Edition, 49

(21):3572–3597, 2010. ISSN 1521-3773.



BIBLIOGRAPHY 174

[206] R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley.

Laser-induced fluorescence of formaldehyde hot bands in flames. Appl. Opt.,

39(21):3712–3715, Jul 2000.

[207] J. E. Harrington and K. C. Smyth. Laser-induced fluorescence measurements

of formaldehyde in a methane/air diffusion flame. Chem. Phys. Lett., 202(3):

196 – 202, 1993. ISSN 0009-2614.

[208] L. A. N. Patrick, K. Julia and B. Andreas. Detection of formaldehyde in

flames using uv and mir absorption spectroscopy. Zeitschrift für Physikalis-

che Chemie, 229:483–494, 2015.

[209] A. Ray, F. Perez, A. M. Beltramini, M.Jakubowycz, P. Dimick, M. R. Jacobs,

K. Roman, R. A. Bonomo, and R. A. Salata. Use of vaporized hydrogen

peroxide decontamination during an outbreak of multidrug-resistant acine-

tobacter baumannii infection at a long-term acute care hospital. Infection

Control & Hospital Epidemiology, 31:1236–1241, 2010.

[210] A. van der Vliet and Y. M.W. Janssen-Heininger. Hydrogen peroxide as

a damage signal in tissue injury and inflammation: Murderer, mediator, or

messenger? Journal of Cellular Biochemistry, 115(3):427–435, 2014. ISSN

1097-4644.

[211] Dorscheid D. Wadsworth S, Sin D. Clinical update on the use of biomarkers

of airway inflammation in the management of asthma. Journal of Asthma

and Allergy, 4:77–86, 2011.

[212] L. Dong, R. J. Griffin, N. P. Sanchez, Y. Yu and F. K. Tittel. Mid-ir laser-

based sensor for hydrogen peroxide detection. Society of Photographic In-

strumentation Engineers, 2016.

[213] A. I. Pavlyuchko, S. N. Yurchenko, and J. Tennyson. A hybrid variation-

perturbation calculation of the ro-vibrational spectrum of nitric acid. J.

Chem. Phys., 142:094309, 2015.


	Introduction
	Transit Spectroscopy
	Atmospheric Retrieval

	Molecular Spectroscopic Databases
	Theoretical Line Lists
	The ExoMol Project

	Solving the Nuclear Motion Problem
	The Born-Oppenheimer Approximation
	Potential Energy Surface
	Hartree-Fock Method
	Coupled Cluster

	TROVE
	Approximate Kinetic Energy Operator
	Symmetry
	Formulating the Ro-vibrational Hamiltonian
	Diagonalization
	Refinement of the Potential Energy Surface


	Transitions and GAIN
	The Dipole Moment
	Simulating Spectra
	Evaluating the Linestrength
	Computing linestrengths in TROVE
	GPU architecture
	Cache and Reduce Kernal
	Large Dipole Matrices

	GAIN
	GAIN-MPI
	Phosphine

	TROVE-GAIN

	Formaldehyde
	Introduction
	Available data

	Potential Energy Surface
	Variational computation
	Dipole moment surface and intensities 
	AYTY-0
	AYTY

	Hydrogen Peroxide
	Introduction
	Ab-Initio Potential Energy Surface
	Variational computation
	Dipole Moment Surface
	Room temperature line-list
	Results

	Hot line-list
	Refined Potential Energy Surface
	APTY


	Modelling Cross Sections and Opacities
	GEXS
	The current state of GEXS

	Discussion and Conclusion
	Further work
	Experimental Assignments
	Atmospheric and Industrial Applications
	Large Molecules, The Curse of Dimensionality and ANGMOL

	Conclusion

	Supplementary Data
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Bibliography

