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Abstract 

We computed the transport of methane through 1-nm wide slit-shaped pores carved out of solid 

substrates. Models for silica, magnesium oxide, and alumina were used as solid substrates. The pores 

were filled with water. The results show that the methane permeability through the hydrated pores is 

strongly dependent on the solid substrate. Detailed analysis of the simulated systems reveals that local 

properties of confined water, including its structure, and, more importantly, evolution of solvation free 

energy and hydrogen bond structure are responsible for the pronounced differences observed. The 

simulations are extended to multi-component systems representative of natural gas, containing methane, 

ethane, and H2S. The results show that all pores considered have high affinity for H2S, moderate affinity 

for methane, and low affinity for ethane. The H2S/methane transport selectivity through hydrated alumina 

pores is comparable, or superior, to that reported for existing commercial membranes. A multi-scale 

approach was then implemented to demonstrate that a Smoluchowski one-dimensional model is able to 

reproduce the molecular-level results for short pores when appropriate values for the local self-diffusion 

coefficients are used as input parameters. We propose that the model can be extended to predict methane 

transport through uniform hydrated pores of macroscopic length. When verified by experiments, our 

simulation results could have important implications in applications such as natural gas sweetening and 

predictions of methane migration through hydraulically fractured shale formations.  
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Introduction 

The separation of natural gas into its components is required for a variety of technological applications. 

For example, natural gas, as extracted, contains methane, ethane, a few higher molecular weight 

hydrocarbons, all of which find use in the petro-chemical industry, but also water, carbon dioxide, 

hydrogen sulfide (H2S) and other compounds that are deleterious for the aforementioned uses. Sweetening 

of the gas (removal of H2O, H2S and CO2) is needed to avoid pipe corrosion during transportation and to 

enhance the heating power of the gas, while the recovery of ethane and higher molecular weight 

hydrocarbons is desirable for upgrade processes such as cracking and polymerization. Industrially, natural 

gas sweetening is often performed via expensive and energy-intensive distillation processes,1,2 although 

membranes are being designed for improving upon such processes.3 Research continues to be performed 

to better engineer the membranes and improve their selectivity and capacity.4 State-of-the-art membranes 

include those obtained using rubbery polyamide-polyether block copolymers, commercially available as 

Pebax, which allow the simultaneous separation of CO2 and H2S from CH4; these membranes are known 

to swell in the presence of liquid water, with negative impact on the membrane selectivity.5 Rubbery 

materials containing H2S-philic groups are sensitive to penetrant H2S at high feed pressures, which causes 

swelling and plasticization.6 As a consequence, rubbery composite membranes typically do not endure 

high-pressure operations, a problem for natural gas sweetening, in which the feed gas pressure is often 

higher than 4 MPa.5 Membranes that are not polymeric (e.g., those obtained from graphene sheets), 

could allow to achieve excellent performance, but this requires well-controlled manufacturing of the 

porous materials. The resultant materials can be very sensitive to the presence of moisture in the gaseous 

mixture and may lose mechanical integrity at high pressure. 

From a different point of view, the presence of methane in drinking water has been documented in several 

parts of the world, most notably in the Marcellus region in the North East of the United States.7 Because 

of the widespread implementation of hydraulic fracturing for the stimulation of shale formations in the 

region during the last 10-20 years, a strong debate is ongoing regarding the source of the methane 

detected in drinking water. Possible sources include microbial and thermogenic ones. Two facts stand out: 
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shale formations are fractured at depths of at least 1,500 m, and the permeability of shale rocks to fluids 

and gases is extremely low (of the order of a few millidarcies or much less). These observations are 

commonly identified as supporting evidence for the low probability of drinking water contamination due 

to hydraulic fracturing. The low recovery of hydraulic fracturing water and its potential impact on 

hydrocarbon production are key issues that remain poorly constrained. For example, recovery of frack 

fluid from the Haynesville shale is very low, roughly 5% whereas for the Barnett and Marcellus recovery 

can reach as high as 50%.8 Imbibition of fracturing fluid into the nanoporous rock matrix has been 

identified as a possible mechanism for fluid loss and reservoir damage.9,10 To substantiate or refute this 

claim, it is critical to better understand the transport of low molecular weight hydrocarbons, especially 

methane, through narrow pores representative of those found in sub-surface shale formations. It is of 

particular interest to understand whether methane can transport across narrow pores filled with water, 

especially because recent computational results have suggested that the methane solubility in confined 

water can be one order of magnitude larger than that measured in bulk water. Other reports are also 

supporting enhanced gas solubility due to confinement effects.11-13 

The computational research presented here reveals a somewhat surprising outcome that small 

hydrocarbons (e.g., methane) can diffuse through narrow pores filled with water. This can have important 

implications in understanding the migration of carbon-bearing fluids in the sub-surface. Moreover, the 

prediction of hydration structure within narrow pores seems to lead to significant chemical selectivity, 

which could be exploited for the separation of gases, e.g., in natural gas sweetening. For the latter 

application, it is notable that the solid materials used for the present study are obtained from rather stable 

structures representative of minerals found in the sub-surface, and therefore are expected to be chemically 

stable for time scales shorter than those at which mineral dissolution processes become relevant. 
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Materials and Methods 

We conducted extensive equilibrium and non-equilibrium molecular dynamics (MD) simulations. The 

models and algorithms implemented have been described at length in our prior contributions,14,15 and 

therefore only a short summary is provided herein. 

Solid supports. We considered slit-shaped pores obtained from three model materials: silica, alumina, and 

MgO, shown in Figure 1. Details about three model materials are described elsewhere. 11,16-21 All the non-

bridging oxygen atoms on silica and alumina surfaces were protonated;17,18 the MgO surfaces were not 

hydroxylated.22 The latter is an over-simplification of reality, but it allows us to understand, 

computationally, how the fluid structure under confinement determines the membrane performance. The 

X and Y dimensions of the three surfaces were of 51.7100.8, 46.990.7, and 52.6105.1 Ȧ2, for silica, 

alumina, and MgO, respectively. 

Force fields. The CLAYFF force field was implemented to simulate the solid substrates.23 The silicon, 

aluminum and oxygen atoms were held at fixed positions while the surface hydroxyl hydrogen atoms 

were allowed to vibrate. All MgO atoms were kept rigid. The transferable potentials for phase equilibria 

(TraPPE) force field was implemented to model methane and ethane.24 The rigid SPC/E model was used 

to simulate water.25 The potential parameters developed by Kamath et al. were used to model H2S.26 Bond 

lengths and angles of water were kept fixed by implementing the SETTLE algorithm.27 Non-bonded 

interactions were modeled by means of dispersive and electrostatic forces. The electrostatic interactions 

were modeled by the Coulombic potential, with long-range corrections treated using the particle mesh 

Ewald (PME) method.28 Dispersive interactions were modeled by 12-6 Lennard-Jones (LJ) potentials. 

The LJ parameters for unlike interactions were determined by Lorentz-Berthelot combining rules29 from 

the values of like components. The cutoff distance for all interactions was set to 9 Å.  

Simulation set up. The simulation box is periodic in the three directions. The Y dimension of the 

simulation boxes reflects the periodicity of the solid crystalline substrates; the X and Z dimensions were 

set to 172.7–42.9, 211.2–33.8, and 201.4 Ȧ – 33.1 Ȧ for silica, alumina, and pores, respectively. The pore 

width in all the three systems was set at 10 Ȧ (the pore width is defined as the shortest center-to-center 
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distance between surface oxygen atoms across the pore volume). Due to periodic boundary conditions, the 

nanopores are effectively infinite along the Y direction. Conversely, the pores are finite along the X 

direction, along which they are exposed to the feed (e.g., methane) and permeate (water + vacuum) 

phases. 

The simulation setup mimics the one implemented by Balbuena et al.30 and by Mizukami et al.,31 adapted 

to investigate the effect of hydration water on selectivity. The initial configurations were built with water 

molecules filling the slit pore. The number of water molecules was fixed at 4500 for three systems. These 

molecules were sufficient to fill the pore volume and form thin layers on the solid substrate outside of the 

pores. As the simulation progresses and methane flows across the pore, the water film remains only on the 

low-pressure side of the solid membrane (see Figure 1). The hydration water within the three pores does 

not show marked differences as the simulations progress. Outside of the pore, one wall was artificially 

constructed using helium atoms, to separate a feed phase on the left side of the pore from the permeate 

phase on the right side of the pore. This wall was necessary because of the periodicity of the simulation 

box along the X direction. The helium atoms interact only weakly with other molecules in the system, 

guaranteeing that the wall does not affect the results concerning the transport of fluids across the pores.32 

Methane was then inserted, randomly, on the left side of the pore, the feed region. The number of 

methane molecules inserted was of 3000, 3700, and 4000 for the silica, MgO, and alumina systems, 

respectively. Different amounts of methane were necessary to drive methane through these membranes at 

a similar flux. In other words, instead of imposing equal pressure drops for the three systems simulated, 

we opted for changing the pressure drop so as to achieve an almost equal methane flux for the three 

systems simulated. The feed region is built of equal volume for silica, MgO and alumina systems. The 

pressures in the feed regions were calculated using the Peng-Robinson equation of states using the 

molecular density of pure methane as input.33 As the simulations progress, methane molecules transport 

through the water-filled pore from the feed to the permeate phase. To evaluate the membrane performance 

by the approach at a constant pressure gradient34 we carried out the following actions: every 30ns remove 

every molecule that has entered the permeate phase and add an equal number of molecules to the feed 
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phase, thus we ensure that the pressure gradient is kept constant during the simulations. The number of 

molecules in the membrane and the number of molecules that passes to the permeate phase are monitored 

against time to obtain the flux across the membrane.  

Algorithms. The MD simulations were conducted using the package GROMACS. 35,36 Simulations were 

performed in the canonical ensemble (NVT), where the number of particles (N), the simulation volume 

(V), and the temperature (T) are kept constant. The simulated temperature was maintained at 300 K by a 

Nose-Hoover thermostat37,38 with a relaxation time of 100 fs. The equations of motion were solved by 

implementing the leapfrog algorithm39 with 1.0 fs time steps. The total simulation time was 600 ns for 

each system. 

Data analysis. The results have been analyzed taking advantage of numerous recent computational 

advancements to calculate membrane permeability, diffusion, free energy profiles, solvation free energy, 

and mean first passage time (MFPT) profiles.  

Membrane permeability. We calculate the mole flux of gas transport (J) across three different pores as: 

𝑱 =
∆𝑸𝒕/∆𝒕

𝑨
  ,       (1) 

where Qt/t is the slope of the fitted straight line for cumulative number of methane molecules in the 

permeate region (Qt) as a function of time t and A is the cross-sectional area available for gas penetration 

perpendicular to the direction of diffusion.40 We can approximate the observed methane permeability (K) 

by the simple formula41 

𝑲 =
𝑱×𝒍

𝒑𝟏−𝒑𝟐
   ,       (2) 

where p1 is the applied pressure in the feed phase, p2 is zero according to the protocol we implemented at 

constant pressure gradient, and l is the length of pore in the X direction. 

Transport diffusion. We calculate the transport diffusion from the time lag defined as the intercept of the 

extrapolated linear part of Qt on the time axis. This type of time lag analysis was first proposed by 

Daynes41 and then refined by Barrer42, and is widely used experimentally to obtain transport 
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diffusivities.43 The approach cannot distinguish between the transport mechanisms that occur in the pore. 

The transport diffusion coefficient of methane is related to the time lag via a simple expression41 

𝑫𝒕 =
𝒍𝟐

𝟔𝜽
     ,     (3) 

where  is the time lag. 

Self-diffusion. Three simulations were carried out for computing the planar self-diffusivity of methane 

inside three 2D periodically infinite hydrated pores under equilibrium MD simulations for 25 ns. The 

systems were built with water molecules filling the slit pore. Ten methane molecules were inserted 

randomly inside the pore. The mean square displacement (MSD) approach was used for self-diffusion 

calculations and the self-diffusion coefficient Ds is calculated with the Einstein relation,44,45 

𝑫𝒔 =  
𝟏

𝟐𝒅
𝐥𝐢𝐦
𝒕→∞

〈|𝒓𝒊(𝒕)−𝒓𝒊(𝟎)|𝟐〉

𝒕
  ,       (4) 

where ri(t) is the position of molecule i at the time t, d is the dimensionality of the system, and … 

denotes ensemble average. 

Free energy profiles. To construct the potential of mean force (PMF) calculated for one methane 

molecule moving across the hydrated pores, we implemented the umbrella sampling algorithm.46,47 The 

methane molecule was forced to remain at a given position through the hydrated pore in the X direction 

using harmonic springs of elastic constant 3000 kJ/mol.nm2. For each pore, 80 independent simulations 

were conducted, imposing that the equilibrium position changes by 0.1 nm from one simulation to 

another. At any given position the simulation was conducted for up to 8 ns, during which time the 

histogram representing the position of the molecule with respect to the pore entrance was populated.48 

The WHAM algorithm was then used to reconstruct the potential of mean force from combining the 

histograms obtained at various locations.47  

Solvation free energy. Initially, we quantify water density fluctuations by calculating the probability of 

observing N molecules within a small spherical observation volume  of radius r = 3.3 Ȧ located at the 

center of the hydrated pores. The probabilities are calculated as:49 
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𝑷𝒗(𝑵) =  〈𝜹(𝑵𝒗 − 𝑵)〉 =  𝐥𝐢𝐦
𝒕→∞

𝟏

𝒕
∫ 𝒅𝒕′𝜹(𝑵𝒗(𝒕′) − 𝑵)

𝒕

𝟎
 ,    (5) 

This distribution is related to the solvation free energy for an ideal hydrophobe through the relation50 

∆𝝁𝒗 = −
𝟏

𝜷
 𝐥𝐧 𝑷𝒗(𝟎)    ,       (6) 

where v is the solvation free energy and  is one over temperature times Boltzmann’s constant. 

MFPT. Assuming that the dynamics of methane are strictly Markovian, according to the theory of 

stochastic processes, the mean first passage time (MFPT) for first reaching a target distance xt when 

starting off from x, is given by51,52 

𝝉𝒇𝒑(𝒙, 𝒙𝒕) = ∫ 𝒅𝒙′𝒙

𝒙𝒕

𝒆𝜷𝑭(𝒙′)

𝑫(𝒙)
∫ 𝒅𝒙′′𝒆−𝜷𝑭(𝒙′′)𝒙𝒓

𝒙′    ,      (7)   

where xr denotes the position of a reflective boundary.  

Statistics for MFPT, which describe the time scale for the methane moving from the center of the pores to 

the outside of the pores, are obtained based on a series of 400 independent MD simulation runs for the 

system containing water filling the pores and one methane molecule at the center of the simulation box 

constrained in the Y-Z plane (~ 8000 ns of total simulation time). Results are shown below for the 

hydrated silica pores. Each of the 400 runs is started with random initial atomic velocities. After 500 ps of 

equilibration, the methane molecule at the center is allowed to move freely only along the X direction 

until it reaches either xt = -14.98 Ȧ or xt = 63.02 Ȧ.   

By differentiating Eq. (7) we are able to obtain the local self-diffusion profile D(x) from the PMF profiles 

and MD-derived MFPT :51,52 

𝑫(𝒙) =
𝒆𝜷𝑭(𝒙)

𝝏𝝉𝒇𝒑(𝒙𝒕,𝒙)/𝝏𝒙
∫ 𝒅𝒙′𝒆−𝜷𝑭(𝒙′)𝒙𝒓

𝒙
   .     (8)  
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Figure 1. Representative simulation snapshots of the initial configurations for methane transport through the silica (top panel), 

MgO (middle panel) and alumina (bottom panel) narrow pores saturated with water. Gray, red, white, cyan, yellow, tan, and 

green spheres represent helium, oxygen, hydrogen, methane, silicon, magnesium, and aluminum atoms, respectively. The 

pressure drop across the membranes is maintained constant following the procedure described in Materials and Methods. 

 

Results 

Transport behavior 

In Figure 1 we represent the three substrates considered for this study. In Table 1 we report the transport 

properties obtained for methane through the three hydrated pores. The results show that the methane flux 

across the three hydrated pores is similar, although the pressure drop is rather different in the three cases. 

The resultant permeability changes by a factor of 2 in the three substrates. For comparison, we calculated 

the permeability of methane through the same pores considered in Table 1, but when water is not present. 

The results, reported in Supporting Information, show that the permeability of methane through the pores 

is much larger, by about 4 orders of magnitude, when the pores are not full of water. Those results also 

show that the permeability is the highest through the Al2O3 pores and the smallest through the SiO2 pores, 

which is the opposite trend compared to the results obtained for the hydrated pores. This suggests that the 
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presence of hydration water dramatically changes the transport properties of molecules present as guests 

in the water-filled pores. 

 

Table 1. Transport properties for methane molecules through narrow pores saturated with water.  

Material 
Pressure Drop 

P (MPa) 

Flux 

J (mol/m2s) 

Membrane 

Permeability 

K  109 

(molm/m2sMPa) 

Transport Diffusion 

Coefficient 

Dt  1010 (m2/s) 

Silica 72.2  0.2 72.4  1.5 5.2  0.1  7.8  0.5 

Magnesium 

Oxide 
120.2  0.3 69.6  1.6 3.1  0.1 5.9  0.2 

Alumina 173.1  0.3 72.9  1.5 2.0  0.1 4.0 0.7 

 

 

To quantify the effects just summarized, we calculated the free energy profile for one methane molecule 

as it is forced to traverse the three hydrated pores while maintaining its lateral coordinates constant in the 

center of the hydrated pores. The corresponding potential of mean force (PMF) profiles, as can be seen in 

Figure 2A, exhibit pronounced oscillations, with minima of the free energy that correspond to positions 

in which fewer water molecules are found on average, and maxima corresponding to locations of high 

molecular water density. The minima obtained in the case of the hydrated silica pores are characterized by 

lower free energy than in the bulk, confirming that methane is favorably attracted inside hydrated silica 

pores. The same was not observed for methane in hydrated MgO or alumina pores. These results are 

consistent with the prediction that methane is preferentially adsorbed in the silica pore filled by water, as 

we reported previously.15  
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Figure 2. (A) Potential of mean force along the X direction as experienced by one methane molecule moving across the hydrated 

pores (bottom) and surface density distributions of water oxygen atoms within the first hydration layer within each of the three 

pores. (B) Density distributions of water-water hydorgen bonds (HBs) found in two slabs (y-z plane) at the locations 

corresponding to the positions of one representative barrier (a) and well (b) in the potential of mean force profiles shown in (A). 

The gray sphere represents the constrained methane molecule. Results were obtained for silica (left panel), MgO (middle panel) 

and alumina (right panel) pores. Atomic and hydrogen bond densities are expressed in 1/ Ȧ3. 

 

The data in Figure 2A are complementary to additional characterization data for hydration water in the 

three pores considered here, in particular the in-plane density distributions of water oxygen atoms found 

in layers parallel to the X – Z plane at several locations along the Y direction within the three pores. We 

reported these data elsewhere,15 and we also quantified density fluctuations for water confined in the three 
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pores.15 Those results demonstrated that the formation of molecular cavities within the hydration water is 

more likely to occur within the hydrated silica pore compared to the other two systems. We proposed the 

possibility that methane can adsorb in such cavities. In Figure 2B we show that when one methane 

molecule is adsorbed in a position corresponding to a free energy maximum (a) it tends to distort the local 

structure of water-water hydrogen bonds (we used the geometrical criterion proposed by Marti to identify 

one hydrogen bond).53 When methane is found in a free energy minimum (b) lower than the bulk free 

energy (attractive adsorption site) the disruption of water-water hydrogen bonds appears to be minimal. 

 

Self-diffusion of methane 

The results just discussed help understand why methane is preferentially adsorbed within the hydrated 

silica pores, but they do not clarify why the transport properties reported in Table 1 are strongly 

dependent on the solid substrate. To further understand the simulated systems we calculated the self-

diffusion coefficients for methane molecules at infinite dilution within the three hydrated pores. In these 

simulations the pores were modeled as infinite along the X and Y directions (hence the external driving 

force to molecular transport was absent). The results are shown in Table 2. The self-diffusion coefficients 

obtained for methane in the confined systems are 0.5 or less compared to those obtained for methane in 

bulk water at similar conditions ( 19  10-10 m2/s).54 This suggests that the well-ordered structure of 

confined water hinders methane diffusion, by a mechanism that will be discussed in detail below. We 

found a higher self-diffusion coefficient in the hydrated silica pore than in the other two systems, 

reflecting the differences in the free energy results discussed above. However, while the height of free 

energy barriers encountered by methane in the hydrated MgO and alumina pores are similar (1.06 and 

1.05 kcal/mol, respectively), the self-diffusion coefficient for methane in the hydrated MgO pores is 

larger. This suggests the possibility that methane molecules do not necessarily diffuse along a straight 

trajectory through the hydrated pores, possibly because water density fluctuations promote irregular 

trajectories for methane to diffuse through the hydrated pores. 
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Table 2. Self-diffusion coefficient of one methane molecule within the three pores, within periodic boundary 

conditions in the two planar directions, saturated with water. 

Material 

Self-Diffusion 

Coefficient 

Ds  1010 (m2/s) 

Silica 7.82  0.13 

Magnesium Oxide 5.51  0.08 

Alumina 3.26  0.05 

 

Solvation behavior 

The analysis suggests that methane molecules encounter a dynamically evolving environment, rather than 

a static one, when adsorbed within the hydrated pores. To quantify this we followed Limmer et al.49, who 

proposed an algorithm to quantify the solvation free energy in water as a time-dependent property. Figure 

3 displays the spatially resolved free energy distribution as experienced by a hard sphere of radius 3.3 Ȧ. 

The free energy change, , is shown as a function of position within a 4040 Ȧ2 section within the X – 

Y plane of the simulation box. The calculations are conducted at the center of the hydrated pores and the 

results are averaged over 10 ns of simulation from an initial surface configuration xo. The results confirm 

that the environment provides a dynamically-changing heterogeneous solvation structure. To quantify the 

time scale of the dynamic fluctuations in solvation we compute the auto-correlation function: C(t)/C(0), 

with C(t) = [({x,y}, t; xo) - ]2, where the first term is the solvation free energy at (x,y) averaged 

over the observation time t from xo, and the second term is the average solvation free energy. The results 

(shown in Supporting Information) suggest that a uniform solvation free energy distribution would be 

achieved should the averages be extended to ~ 10 ns for all three pores. These results are qualitatively 

consistent with the observations reported by Limmer et al.49 for liquid water in contact with metal 

surfaces. It is important to point out that the local solvation free energy distribution (Figure 3) does not 

reflect the atomic structure of the top layer of the solid surfaces (reported in details in Ref. [14]), nor the 

molecular structure of first or second hydration layers (middle and right panels in Figure 3). It instead 
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reflects the coupling between hydrogen-bonding defect structures of the first hydration layer and the 

subsequent hydration layers, as suggested by Limmer et al.49  

 

 

  

Figure 3. In-plane distribution of free energy of solvation from within a the 4040 Ȧ2 section along the X – Y plane at the center 

of the hydrated pores (left). In-plane density distributions for water oxygen in the first (middle) and second (right) hydration 

layers formed on the pore surfaces. Results are obtained for silica (A), MgO (B) and alumia (C) pores. Solvation free energies are 

expressed in kcal/mol and densities are expressed in 1/Ȧ3. 
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Figure 4. In-plane solvation free energy distributions overlapped with trajectories of one representative methane molecule. 

Results are obtained for hydrated silica (top panels), MgO (middle) and alumina (bottom) pores. Regions of favorable and 

unfavorable solvation were determined by averaging over 2100, 2102.5, and 2115 ps for silica, 2305, 2315, and 2320 ps for 

MgO, and 17426, 17501, and 17526 ps for alumina systems. Black dashed, white solid, and grey dashed lines represent the 

trajectories of methane for the next observation time, from the previous to the current and for the past observation time.  

 

The heterogeneous distribution of the free energy of solvation shown in Figure 3 reinforces the 

possibility that averaged information such as the free energy profiles of Figure 2A is not sufficient to 
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describe the molecular phenomena involved with the transport of methane across the hydrated pores. In 

fact, it is possible that local maxima and minima in the free energy landscape fluctuate with the local 

water density fluctuations. Thus, it is possible that the preferential path followed by methane molecules as 

they transport across the hydrated pores change dynamically over time. To assess this possibility, Figure 

4 shows the trajectories of representative methane molecules within the hydrated pores super-imposed on 

the evolution of solvation free energy (SFE) distributions obtained at different observation times. It is 

worth pointing out that the SFE distributions change as the simulation progresses (1 ns < t < 10 ns) within 

each of the three pores considered. In addition, the locations occupied or traversed by methane molecules 

generally show lower SFE because the presence of methane precludes many water molecules from 

occupying those regions as well. Methane trajectories are reported at various observation times together 

with the SFE map averaged over 2100 ps (top left), 2102.5 ps (top middle), and 2115 ps (top right) 

simulation fragments from an initial configuration for silica; over 2305 ps (middle left), 2315 ps (middle 

middle) and 2320 ps (middle right) for MgO; and 17426 ps (bottom left), 17501 ps (bottom middle), 

17526 ps (bottom right) for alumina. Visual inspection of the results in Figure 4 suggests that methane 

molecules travel larger distances when they enter low-density SFE regions, while they remain for longer 

times near high-density SFE locations, where perhaps they are trapped, waiting for a change in density 

fluctuation to open up possible diffusion pathways. Methane molecules generally avoid high-density SFE 

regions, resulting in vibratory movement when they are confined in relatively stable positions surrounded 

by high-density SFE. The resultant diffusion follows hopping events (some of which are shown as 

Supporting Information) from one favorable location to another. It appears that while the SFE distribution 

affects methane diffusion, the vice versa is also true, with the motion of methane molecules inside the 

pores saturated with water causing the evolution of SFE distributions over time.  

 

Transport of gas mixtures 

Because of the host-guest coupling between gas molecules and hydration water, it is likely that the 

transport behavior of various molecules through hydrated narrow pores will depend strongly on the 
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properties of the interactions between the individual gas molecules and hydration water, possibly 

mediated via the constraints due to the solid substrate. To begin the exploration of these effects we 

conducted non-equilibrium simulations for the transport of gaseous mixtures through the three hydrated 

pores. In Figure 5 we report both the schematics for the simulated systems and the cumulative amount of 

gas collected in the permeate phase versus time for the hydrated silica (left), MgO (middle), and alumina 

(right) pores. In all cases, the methane : ethane : H2S molar composition in the feed was of 8 : 1.5 : 0.5. 

The results of gas fluxes are determined by the slope of the fitted straight lines (steady state). Combining 

the gas flux and the pressure drop (also shown in Figure 5) we obtain the permeability of methane, 

ethane, and H2S using Eq. (2). The results show that H2S permeates much more strongly the three 

hydrated pores than the other two components. The H2S/methane and the H2S/ethane selectivity, defined 

by the ratio of the permeabilities, we obtain: ~31 and ~112 for hydrated silica, ~66 and ~56 for hydrated 

MgO, and ~87 and ~59 for hydrated alumina pores, respectively.   

 

 

Figure 5. Top: Snapshots representing the simulated systems. Bottom: Cumulative number of gas molecules (Qt) in the 

permeate region as a function of time. Results are obtained for gas moving across the hydrated silica (left), hydrated MgO 

(middle), and hydrated alumina pores (right). The total number of gas molecules initially inserted in the three simulated systems 

was 3000, 3400, and 3800 for the silica, MgO, and alumina systems, respectively. In all cases, the methane : ethane : H2S molar 

composition was of 8 : 1.5 : 0.5. The gas flux is determined by the slope of the fitted straight lines (black dashed lines).  
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The simulation results suggest that all pores considered in this study are selective to H2S, with the 

hydrated alumina pores being much more selective than the others. The predicted H2S/methane selectivity 

for the hydrated alumina pore, ~87, is higher than those reported for commercial Pebax membranes,55 40-

70, and  for highly siliceous zeolites,4 44. Polymeric membranes based on polyurethane-ether and 

polyurea-ether block copolymers are being proposed as promising membrane materials;56 their 

H2S/methane selectivity at 293-308 K (75-100) is comparable to that predicted for the hydrated pores 

considered here.55 At similar operational temperatures, the hydrated alumina pore presented here is 

predicted to have comparable H2S/methane selectivity but much higher H2S permeability (42  10-8 

molm/m2sMPa for the hydrated alumina pore compared to 3.48-7.47  10-8 molm/m2sMPa for polymeric 

membranes55), which suggests a very promising possibility of using the hydrated pores as perm-selective 

membranes for natural gas sweetening. In these pores hydration water would be essential. 

 

Figure 6. Mean first passage time (MFPT) profiles for methane to start at the center of the hydrated pores and reach the target xt 

outside the pores. (A) Results from explicit-water molecular dynamics (MD) simulations (blue diamonds) for methane moving 

across the hydrated silica pores are compared with those derived from the non- and inversion Smoluchowski (SMOL) approach 

(dashed dark blue). Also shown are the results from SMOL approach with the averaged self-diffusion obtained from SMOL 

approach (red triangles) and MSD calculations (green circles). The thickness of the pore is 5.1 nm. The black dashed line 

represents the entrance of each pore. 
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Multi-scale considerations 

The simulations discussed so far were conducted at the molecular scale, for pores of length much shorter 

than those found in any practical materials. To enable the investigation of practically important substrates, 

we require implementing multi-scale approaches that capture the important details of our simulations. For 

applications, the important parameter to be captured is the mean first passage time (MFPT). In Figure 6 

we report MFPT results, which summarize averages collected during methane transport across the 

hydrated pores. For these calculations the tagged methane molecule was restricted to move one-

dimensionally along the X direction and it was placed at the center of the hydrated pore. The MFPT 

distribution was measured from explicit MD simulations during which the molecule was exiting from the 

pore (as shown in the inset); the time sequence was then transformed to obtain the MFPT for one methane 

molecule that reaches a position within the hydrated pore starting from outside of the pore. The MFPT 

profile from our MD simulations (blue diamonds) suggests that it takes methane 3.67 ns to reach the 

center of the hydrated silica pore starting from outside the pore (xt  -15 Ȧ). In our multi-scale approach 

the goal is to use local self-diffusion coefficients and free-energy profiles, obtained from explicit MD 

simulations, in a continuum model such as the Smoluchowski model of Eq. (7). By comparing the MFPT 

obtained from the continuum model to that calculated from explicit MD the robustness of the coarse-

grained approach can be confirmed. Figure 6 presents the coarse-grained results obtained following two 

different methods: 

(a) Predicted approach. We selected Dx = 18  10-10 m2/s for methane outside (as obtained using 

the position autocorrelation function method, see Ref. [15]) and Dx = 8.2  10-10 m2/s for methane 

inside the pore (estimated from mean-square displacement (MSD) calculations for methane in a 

periodically infinite pore, see Table 2). 

(b) Computationally intensive approach. Assuming that the dynamics of methane is strictly 

Markovian, the local self-diffusion D(x) was calculated from the inversion of the Smoluchowski 

approach Eq. (8) (results are shown in Figure S4 of the Supporting Information) using PMF 
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profiles and MD-derived MFPT as input (this D(x) per construction reproduced the MD-derived 

MFPT). Then, we selected the calculated local self-diffusion of methane outside and inside the 

pore to correspond to the averaged data Dout = 25  10-10 m2/s and Din = 19  10-10 m2/s, as shown 

in Figure S4 of the Supporting Information, and used them to calculate the MFPT in Eq. (7).  

We found that: 

(a) The predicted approach yields a MFPT (green circles) that is 2.5 ns slower than the MFPT 

from MD data.  

(b) Averaging the methane self-diffusion coefficients for inside and outside the pore based on the 

local self-diffusion profile D(x) (red triangles) yields a very good agreement with the MD-derived 

MFPT. This indicates that the detailed structure of D(x) is not crucial. 

The results just described suggest that it is possible to describe methane transport through hydrated pores 

using a coarse-grained approach, but that the results depend strongly on the estimation of the self-

diffusion profile used as input. Unexpectedly the self-diffusion coefficients obtained from extensive MSD 

calculations such as those described in Table 2 yield data not in agreement with the diffusivity estimated 

from the inversion of the MD-derived MFPT. This could be explained by the observation reported by 

Zimmermann et al.:57 in a simulated system of reduced size the self-diffusion coefficients estimated by 

standard MSD methods can be greater than they would be in larger systems when diffusion is 

characterized by low energy barriers of the order of 0.6 kcal/mol. In such conditions, molecules easily 

jump into the next cage and continue to carry out multi-jumps, which results in larger self-diffusivities in 

small simulation boxes than in larger ones. Because the diffusion mechanism discussed by Zimmermann 

et al. is similar to that observed for methane moving through hydrated pores, it is possible that the self-

diffusion coefficients reported in Table 2 for infinite pores are smaller than those we would obtain in 

smaller simulation boxes. Indeed, by conducting additional 100 independent simulations for one methane 

molecule confined in one hydrated silica pore of finite lateral size (5.1 nm, which corresponds to the size 

of the solid substrate used to calculate the MD-derived MFPT in Fig. 6), we obtain an averaged self-
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diffusivity of methane inside the pore of  18  10-10 m2/s from MSD calculations. This value is 

consistent with the average of local self-diffusion profile D(x) estimated using Eq. (8). The ability of the 

coarse-grained approach to reproduce the MD simulation results when an averaged value for the self-

diffusion coefficient is used as input confirms that the MFPT distribution can be accurately described by 

the Smoluchowski approach when reliable values for the self-diffusion coefficients are used as input, and 

when the pores are sufficiently long. 

In Figure 7 we report the MFPT distribution for methane across hydrated silica (blue), MgO (green) and 

alumina (red) pores of length up to 40 nm as predicted by the coarse-grained approach just described 

using the self-diffusion data of Table 2 as input. The results show that methane diffuses through the 

hydrated silica pores much faster than through the other two pores. Because of computing power 

limitations, the verification of these predictions is left for future experimental studies. Such MFPT 

calculations could help predict the fate of methane through pore networks in subsurface formations, with 

possible implications for shale gas. For example, we estimate that to migrate across pores of length 1 cm 

methane molecules would require 1.25, 2.5, and 5 hours when the hydrated pores are carved out of silica, 

MgO, and alumina, respectively. With accurate knowledge of the network of pores within fractured shale 

formations, similar calculations could help estimate the likelihood of methane to reach the water table. 
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Figure 7. Estimated MFPT for methane to transport along hydrated pores carved out of silica (blue), MgO (green) and alumina 

(red) of length 40 nm. The results are obtained by the Smoluchowski approach using the self-diffusion coefficients shown in 

Table 2 as input. 

 

Conclusions 

Atomistic molecular dynamics simulations were employed to quantify the transport of methane, ethane, 

and H2S through 1-nm wide slit-shaped pores filled with water at 300K. Advanced methods of sampling 

were implemented to identify the molecular features responsible for the observed impact of the hydration 

water structure on selective gas transport through the pores. It was found that the main impact on the 

transport of methane molecules inside the water-wet pores is the evolution of solvation free energy 

distribution within the pores. This property appears to be heterogeneous both in space and in time, despite 

the fact that the simulated systems have a very controlled spatially uniform solid structure.  The hydration 

structure within narrow pores leads to significant selectivity to the hydrogen sulfide permeation as 

opposed to volatile hydrocarbon gases, with performance indicators comparable to, or even more 

promising than those reported for the current state-of-the-art polymeric membranes. This study suggests 

that a coarse-grained approach based on the Smoluchowski equation can be used to predict the mean first 
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passage time for gas molecules through the hydrated pores, provided that a reliable value for the local 

self-diffusion profile is used for the calculations. The resultant model allows for estimations of gas 

transport through macroscopic pores requiring moderate computational resources. While experimental 

verification is required, the results revealed unexpected physical mechanisms responsible for gas 

molecules transport through hydrated systems that could be exploited for designing new membranes for 

natural gas sweetening and for assessing the likelihood of methane migrating from shale formations upon 

hydraulic fracturing operations. For the latter application, temperature effects on the phenomena 

described herein should be quantified thoroughly. 
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TOC figure: Representative simulation snapshot for gas mixture transport through a hydrated pore, 

combined with in-plane solvation free energy distribution coupled with trajectories of representative guest 

molecules. 

 


