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Particle-based simulation of ellipse-shaped particle aggregation
as a model for vascular network formation
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Abstract Computational modeling is helpful for elucidat-
ing the cellular mechanisms driving biological morphogene-
sis. Previous simulation studies of blood vessel growth based
on the cellular Potts model proposed that elongated, adhe-
sive or mutually attractive endothelial cells suffice for the
formation of blood vessel sprouts and vascular networks.
Because each mathematical representation of a model intro-
duces potential artifacts, it is important that model results
are reproduced using alternative modeling paradigms. Here,
we present a lattice-free, particle-based simulation of the cell
elongation model of vasculogenesis. The new, particle-based
simulations confirm the results obtained from the previous
cellular Potts simulations. Furthermore, our current findings
suggest that the emergence of order is possiblewith the appli-
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cation of a high enough attractive force or, alternatively, a
longer attraction radius. The methodology will be applicable
to a range of problems in morphogenesis and noisy particle
aggregation in which cell shape is a key determining factor.

Keywords Vasculogenesis · Cell-based model · Cell
elongation · Morphogenesis · Alignment order

1 Introduction

The vascular system is one of the most important organs
in large multicellular organisms. During embryogenesis, the
need for an efficient transport of nutrients and waste prod-
ucts arises naturally as the increasing size of the organism
makes diffusion less and less efficient. A similar situation
arises in solid tumors, but instead of the de novo formation of
the vasculature (vasculogenesis), tumors are able to remodel
the vascular network in the surrounding tissues and promote
formation of new branches from the existing ones (angiogen-
esis) [7]. Understanding the basic principles behind these
processes could help in controlling tumor growth, as well
as improving restoration of normal vasculature after trauma
such as a stroke. It is tempting to speculate that the same
basic principle that generally promotes network formation
during vasculogenesis also drives blood vessel sprouting dur-
ing angiogenesis.

To explore mechanisms behind vasculogenesis, it is bene-
ficial to turn to computational modeling where all parameters
are under control, before attempting experimental validation
where unknown factors could complicate the interpretation
of the results. Various hypotheses have been constructedwith
the aid of computational biology [3]; however, we argue that
the best modeling approach to study network formation is
through cell-based models [13]. Such models are well suited
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to describe collective behaviors emerging from cellular prop-
erties and interactions, such as collective cell motion [11],
or various morphogenetic processes [14]. Vascular networks
contain structures typically on the scale of a couple to tens of
cells which would invalidate continuum-based approaches
that are better fitted for describing cellular structures of at
least hundreds of cells in size.

Previous studies using cell-based modeling have identi-
fied a handful of candidate mechanisms for sprouting and
network formation [4]. By the nature of biological cells, all
of these mechanisms include a form of long-range attrac-
tion that ensures cell cohesion and a short-range repulsion
that is needed to represent cell incompressibility and thus
prevent unrealistically high cell densities. One class of mod-
els explains the long-range attraction via mechanotaxis,
whereby cells contract and deform an underlying soft sub-
strate, pulling cells toward each other [10] or where the
substrate locally stiffens in response to cellular contrac-
tion directing cells toward one another via durotaxis [16].
This mechanism suffices to explain how in some culture
systems, for example bovine aortic endothelial cells on poly-
acrylamide gels [16], networks form only on substrates
of specific stiffness. Contractile cells on deformable sub-
strates have been described as force dipoles revealing that
such dipoles tend to form locally or globally ordered struc-
tures depending on the Poisson ratio of the substrate [1,2].
An alternative mechanism, based on the observation that
cells preferentially adhere to elongated cellular structures,
explains how networks can form on bare substrates [19,20].
Another body of work focuses on chemotaxis toward a
self-secreted chemokine, in combination with either con-
tact inhibition of chemotaxis [15] or cell elongation [12],
that proves to be a robust mechanism albeit the chemokine
remains to be identified. While the different mechanisms
of attraction distinguish between different hypotheses, the
mechanism of repulsion is less important and is either intro-
duced explicitly (for example, in partial differential equation
models [10] or particle-based models [20]) or is an implicit
property of the model (as in the CPM [12,16] for instance).

The model mechanism we focus on in this paper demon-
strates that cell elongation and volume exclusion together
with contact-dependent cell adhesion [17] or longer range
cell–cell attraction [12] are sufficient for network formation
(Fig. 1). Whereas slightly adherent, dispersed cells aggre-
gate into compact clusters (Fig. 1a), elongated cells form
network-like structures in the models with (Fig. 1b) or with-
out (Fig. 1c) additional longer range chemotaxis. In these
models of elongated cells, the branches are stabilized by the
increasing rotational inertia of growing clusters of elongating
cells: a tightly packed branch of elongated cells is harder to
displace or reorganize, and therefore cells are frozen into the
branched pattern in the model. A somewhat similar cellular
process to elongation described by this model is the apical

Fig. 1 Cellular Potts simulations of chemotaxis and cell elongation
models of vasculogenesis. aA simplemechanism of chemotaxis toward
a self-secreted chemokine generates cell aggregates. b Chemotaxis
together with cell elongation gives rise to robust networks. c Cell elon-
gation without chemotaxis is sufficient to explain network formation.
Used with permission from [17]

constriction of epithelial cells that plays a major role in, for
example, gastrulation and neurulation [18]. Although apical
constriction leads to cell elongation, this elongationmay only
be a passive result of volume conservation and cytoplasmic
flow [8].

As eachmodel implementation is a simplificationwith dif-
ferent limitations, it is worth to examine the model at hand
using more than one implementation with different implicit
assumptions associated with the simulation methodology.
If the hypothesis is independent of the implementation, it
should be able to reproduce the phenomenon in different
implementations. For example, this has been performed in
the case of the preferential adhesion hypothesis, which has
been tested in both a lattice-free model [20] and a grid-based
model [19].

The previous studies [12,17] used the same cellular Potts
model (CPM) description which could introduce model-
specific artifacts. For example, highly elongated cells could
breach the limitations of cell representation within the CPM,
as cell elongation is achieved by maximizing the largest
moments of inertia of the cell [12], which leads to unrealistic
thickening of the cell body at its extremities. As artifacts may
result from the grid-based nature of the model and the imple-
mentation of cell elongation, we chose to implement the cell
elongation hypothesis in a lattice-free model using a gener-
alized attraction and repulsion between cells, describing a
class of models. We use this model to test if the hypothesis
holds and to compare our results to previous reports.

2 Methods

2.1 Computational model

Each cell i in the model is described as an ellipse on a 2D
plane, characterized by its position xi , direction of elongation
φi , area Ai , and the aspect ratio of major-to-minor axis si .
This ellipse is a repulsive core representing the incompress-
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Fig. 2 Cells and their interaction in the model. a Cells are represented
as 2D ellipses consisting of a repulsive core as cell body (blue). Cell
attraction occurs at a finite range around the core in an area represented
as a bigger ellipse surrounding concentrically the repulsive core (red).
b Cell–cell interaction is governed by the overlap area of the two inner
ellipses (blue area) and the overlap of the two outer ellipses (red area).
(Color figure online)

ible cell body (Fig. 2a, blue) and is surrounded by a larger
concentric ellipse that is responsible for cell–cell attraction
in the model (for example, via filopodial adhesion) (Fig. 2a,
red). Cell motion is modeled as a persistent diffusion process
as in a previous study [20]. The change in velocity vi (t) for
cell i at time t is described as

dvi (t)
dt

= 1

mi

⎛
⎝−αvi (t)+Nvξvdt

−0.5+
j∑

j �=i

xi −x j

|xi −x j | Fi j
⎞
⎠ .

(1)

Heremi is themass of cell i (mi = m = 1) andα is a damping
parameter. ξv is a uniformly distributed random vector in the
2D plane (ξv ∈ [−0.5 : 0.5] × [−0.5 : 0.5]), and model
parameter Nv sets the amplitude of this translational noise.
The last term is the sum of pair interactions between cells
describing a short-range core repulsion and a long-range but
finite attraction:

Fi j = λr Ar − λa Aa . (2)

Here Ar is the overlap area between the two repulsive ellipses
of the two cells (Fig. 2b, blue area), Aa is the overlap area
of the two outer ellipses (Fig. 2b, red area), and λr and λa
are model parameters. The overlap is calculated using a pre-
viously published method [9].

Model cells are rotated to minimize overcrowding and
maximize attraction [2]. For every interval �t , an attempt
is made to change the orientation of N randomly selected
cells with a random angle ξa

√
�t , where ξa ∈ [−π : π ] is

a uniform random variable. The change is accepted with a
turn-probability

Pi = min

⎡
⎣1, exp
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⎩

1

Na

⎛
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Fi j −
∑
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⎞
⎠

⎫⎬
⎭

⎤
⎦ , (3)

where F ′
i j is the pair interaction in a configuration after the

proposed rotation and Na is the angular noise parameter.
Simulations were initiated with N = 1000 overlapping

cells distributed at random within a 200 μm × 200 μm unit
area. Cell area was fixed at 250 μm2 throughout the study.
The size of the outer “adhesive” ellipse is set by the attrac-
tion radius parameter defined as Ra = aa/a, where aa is the
semi-major axis of the adhesive (outer) ellipse and a is the
semi-major axis of the repulsive (inner) ellipse, and the aspect
ratio of the outer and inner ellipses is the same. Baseline para-
meters used are Ra = 1.5, λa = 0.0006, λr = 0.02, α =
0.4, Nv = 0.4, Na = 1, and s = 7. These parameters were
estimated by macroscopic inspection of the model to yield
“realistic” pattern formation as a measure of validation. To
prevent excessive cell overlap, themagnitude of the repulsion
strength (λr ) is two orders of magnitude larger than the mag-
nitude of the attraction strength (λa). The model’s sensitivity
to the parameters was tested by altering the parameter val-
ues until unrealistic results, either concerning cell movement
or cell interactions, were produced. Model Eqs. 1 and 2 are
integrated numerically using the forwardEulermethodwith a
fixed time step of�t = 0.1 (or�t = 1 for the longer simula-
tions of up to t = 100, 000 shown in Fig. 5), and orientations
are updated after each iteration synchronously using Eq. 3.
Integration was stopped at t = 25, 000 (or at t = 100, 000
for simulations shown in Fig. 5). In each case, the system
reached a quasi-stationary state at the end of the simulations.
An implementation of this particle-based system is provided
in Online Resource 3.

2.2 Order parameter

Local alignment of elongated cells has been shown to play an
important role in the formation of networks previously [17].
To measure alignment, a local orientational order parameter
is used:

S(r) = 〈cos (2θi (r))〉i . (4)

Here θi (r) is the polar angle betweenφi , the orientationof cell
i , and ηi (r) = 〈φ j 〉{ j :|x j−xi |≤r}, the average cell orientation
within r distance of cell i . S(r) is isotopic and takes the
value of 0 for randomly oriented cells and 1 for perfectly
aligned cells. Smaller values of the order radius r describe
the alignment in the close vicinity of the cell (r = 20), or in
the local structures (r = 80, Fig. 3), while any global order
is captured by the global order parameter, Sg = S(r → ∞),
where all the cells are considered for the calculation ofηi . The
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Fig. 3 Ranges of local order. Two values of r for the order parameter
calculation shown for the center cell within a typical cell arrangement.
While r = 20 describes order at the local cell neighborhood, r = 80 is
an indication of order in multicellular structures in the vicinity

software used for measuring the order parameter is provided
in Online Resource 3.

3 Results

3.1 Elongated cell shape induces network formation

Rounded cells (s = 1.5) aggregate into less-ordered clusters
(Fig. 4a and the animation in Online Resource 1), while more
elongated cells with an aspect ratio s = 7 in the simulation
interconnect to form elongated branches and networks (Fig.
4b and the animation in Online Resource 2). The time evolu-
tion of the order parameters calculated for two simulations of
round and elongated cells shown in Fig. 4 demonstrates that
the initially disordered cells align within t = 104 and keep
a similar level of order for at least 10 times longer at finite
length scales (S(20) and S(80) on Fig. 5a). Positive value
of the global order parameter (Sg) in the elongated cell con-
figurations results from finite system size and indicates the
emergence of a system-wide alignment (Fig. 4c). Elongated
cells (s = 7) produce a significantly higher order than more
round cells (s = 1.5) at all length scales (Fig. 5b). Order
at the cell-to-cell range (S(20)) always supersedes order at
the multicellular level (S(80)), which is always higher than
global order (Sg).

Simulations with cells of increasing aspect ratios and
constant areas reveal that order is gradually increased in sim-
ulationswithmore elongated cells (Fig. 6).When simulations
with increasing s are compared, order emerges first at short
length scale (S(20)) followed by longer range order. Global
order appears in simulations with s ≥ 4. The high varia-
tion of the global order among the different simulations is
consistent with the fluctuation shown in Fig. 5a.

(c)

(a) (b)

Fig. 4 Cell elongation induces network formation. a Short cells with
an aspect ratio s = 1.5 form compact aggregates. b Elongated cells
with an aspect ratio of s = 7 form networks. c Temporal evolution of
network formation for cells with an aspect ratio of s = 7. Global order
is established at about t = 104. The system reaches a fluctuating steady
state: themorphological details change over time, but themorphological
features remain statistically constant

3.2 Increased range of cell attraction enhances cell
alignment

Previous studies showed that chemotaxis could play an
important role in vascular network formation [12,15]. Since
chemotaxis may be interpreted in our model as an adhesive
interaction over a longer range,we investigated how the range
of attraction affects the observed cell alignment.

As expected, a short-range attraction (Ra = 1.1) results
in a dissociated cell configuration and low order (Fig. 7a
and Fig. 7b, Ra = 1.1), compared to the control parame-
ters (Fig. 4b). A long attraction range, however, results in a
marked increase in ordering, consistent with the longer range
attraction of the chemotaxis studies. Interestingly, global
order increases markedly at an interaction range of less than
twice the cell size, where long, aligned strands of cells are
formed (Fig. 7d, Ra = 2).

Increased alignment is also achieved by increasing attrac-
tion strength through parameter λa (Fig. 8), while increased
repulsion leads to dissociation and consequent loss of order
(Fig. 9).
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(a)

(b)

Fig. 5 Order parameters of elongated and rounded cell simulations.
a Temporal evolution of the order parameter, S(r), for r = 20 (green
curves), r = 80 (red curves), and r → ∞ (blue curves) for two
systems of more rounded cells (s = 1.5, dotted lines) and elongated
cells (s = 7, solid lines; �t = 1). Ribbons show standard deviations
over 10 runs. Finite scale order reaches a plateau at t = 104 and remains
approximately stable up to at least t = 105. b, Order parameters from
10 independent simulations show that alignment at t = 105 is higher
for elongated cells than for rounded cells at all length scales (�t = 1).
Within configurations, order at shorter scales is always higher than
order at longer scales. (Color figure online)

3.3 Noise is not essential for alignment

We assessed the importance of noise for cell alignment in
our model (Fig. 10). In the absence of translational noise
(Fig. 10b) or low rotational noise (Fig. 10e), cells align and
formnetworks.At high noise levels, the two types of noise act
in a similarmanner; high translational noise results in a decay
of global order (Fig. 10a, c), while high angular noise allows
for more energy inefficient rotations, thus decreasing global
order (Fig. 10d, f). At low noise levels, the two types of noise
act differently; while low translational noise has no or very
little effect on the orientational order (Fig. 10a), low angular
noise results in higher local order and lower global order
(Fig. 10e), suggesting the formation of isotropic branches
that point in different directions.

(a)

(b) (c) (d)

Fig. 6 Emergent order in the model is an increasing function of cell
elongation. a Simulations with uniform cells of various aspect ratios
show that slightly elongated cells align locally, while more elongated
cells give rise to order at longer length scales. Ribbons show standard
deviations over 10 runs after t = 2.5 × 104. b–d Configurations at
t = 2.5 × 104 for the aspect ratios s = 1.5, s = 4.5, and s = 7

(a)

(b) (c) (d)

Fig. 7 Increasing range of attraction increases order. a Local, inter-
mediate, and global orders are higher with larger attraction ranges for
cells with an aspect ratio of s = 7. Ribbons show standard deviations
over 10 runs after t = 2.5× 104. Configurations at t = 2.5× 104 for b
short, c medium, and d long attraction ranges Ra = 1.1, Ra = 1.6 and
Ra = 2
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(a)

(b) (c)

Fig. 8 Stronger attraction leads to increased order. aOrder parameters
from simulations with increasing attraction parameters for cells with an
aspect ratio of s = 7. b Simulation configurations with low attraction
strengthλa = 4×10−4. cSimulation configurationswith high attraction
strength λa = 2 × 10−3

3.4 Cell elongation is essential for alignment

Finally, we tested whether cell elongation is required for
alignment, by influencing the parameters that had positive
impact on cell order in the previous simulations. Using
rounded cells with an aspect ratio of s = 1.5, three scenarios
with increased range of attraction (Ra), increased attrac-
tion strength (λa), and reduced repulsion strength (λr ) were
tested. Order parameters from these simulations together
with order parameters from simulations of round and elon-
gated cells (Fig. 4a, b) are summarized in Table 1. These
indicate that neither increased adhesion strength or range,
nor decreased repulsion, is able to order the cells to an extent
comparable with elongated cell simulations. Without elon-
gation, cell clusters are unable to deviate from their compact
aggregates (Fig. 11).

4 Discussion

A simple particle-based model is introduced to demonstrate
that elongation can indeed aid cells to aggregate into a net-
work. The mechanism for network formation is simple: Cell
elongation, together with attraction and core repulsion, leads
to local cell alignment and increase in orientational order.

(a)

(b) (c)

Fig. 9 Repulsion acts against order. a Order parameters from simula-
tions with increasing repulsion parameters for cells with an aspect ratio
of s = 7. b Simulation configurations with a low repulsion strength of
λr = 10−2. c Simulation configurations with a high repulsion strength
of λr = 9 × 10−2

The fact that this prediction holds in two completely dif-
ferent model implementations, our particle-based model and
the CPM [12,17], gives confidence that the predictions are
due to the explicit model assumptions, not due to unintended
properties of the simulation methodology. Time evolution
of order and dependence on elongation (Fig. 5b) are simi-
lar in both implementations. Increasing the attraction range
of cells in the current implementation allows the study of
the transition between the pure elongation hypothesis [17]
to the chemotaxis and elongation hypothesis [12]. Extended
attraction range, in the form of chemotaxis, has been shown
to help in the formation of regular networks with a more
defined pattern size across the whole system [12]. Consis-
tent with this previous result, we found that a longer range
of attraction results in higher order and a more network-like
structure (Fig. 7).

Cell movement dynamics is a marked difference between
the CPMand ourmodel. In the CPM, cell movement emerges
from the displacement of the cell boundaries, yielding a
more amoeboid cell movement. By contrast, in particle-
based models model cells translate as a single unit, including
translocation and rotation in our case. Cell movement in the
model is described by an overdamped dynamics, where the
damping factor (α in Eq. 1) controls the movement persis-
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(a)

(c)(b)

(e) (f)

(d)

Fig. 10 Effect of noise on alignment. aOrder parameters as a function
of vectorial noise for cells with an aspect ratio of s = 7. b Simula-
tion configurations in the absence of translational noise. c Simulation
configurations with increased translational noise (Nv = 3). d Order
parameters as a function of angular noise for cells with an aspect ratio of
s = 7. e Simulation configurations with low angular noise (Na = 0.1).
f Simulation configurations with increased angular noise (Na = 2).
Order parameters and configurations are shown at t = 2.5 × 104 sim-
ulation time

tence of cells. For large values of α, the left-hand side of
Eq. 1 vanishes and Eq. 1 can be approximated by an algebraic
equation giving the cell velocities as a function of the external

Table 1 Order parameters for round (s = 1.5) and elongated (s = 7)
cells, comparedwith cellswith an aspect ratio of s = 1.5 at t = 2.5×104

tested with parameters that favor cell ordering

Simulation Parameter S(20) S(80) S(inf)

Round cells s = 1.5 0.38 0.13 0.03

Elongated cells s = 7 0.88 0.67 0.23

High attraction range Ra = 2 0.31 0.11 0.04

High attraction λa = 2 × 10−3 0.38 0.08 0.02

Low repulsion λr = 10−2 0.36 0.12 0.03

Order parameters for elongated cells are shown in boldface

Fig. 11 Effect of parameters on alignment without cell elongation. a
Simulation configurations with increased radius of attraction Ra = 2.
b Simulation configurations with increased attraction strength λa =
2×10−3. c Simulation configurations with low repulsion strength λr =
10−2. Configurations shown at t = 2.5 × 104. All cells have an aspect
ratio of s = 1.5

forces acting on the cells. We have chosen here to work with
a differential equation description, thus keeping the damp-
ing factor in our model as an explicit parameter. Although
we have here only studied overdamped kinetics, smaller val-
ues of α could mimic persistent cell motility: it takes time
for a cell to change its direction if, e.g., the chemoattractant
gradients change, the actin cytoskeleton needs to reorganize
which takes time. Such persistent motion was also explicitly
included in early chemotaxis-based partial differential equa-
tion models of vascular network formation [5]. Although
persistence of motility was later shown to be unnecessary
for network formation, it was argued that in the CPM the
cell shape may cause some directional persistence (Fig. 11
of Ref. [12]). In the present work directional persistence is
severely reduced and is largely independent of the cell shape,
suggesting that persistence is not required for network for-
mation.

Stochasticity in ourmodel is introduced through the angu-
lar noise similar to the noise of the Vicsekmodel [21] and the
translational noise of the Grégoire–Chaté model [6]. Note
that these noise factors describe fluctuations in the system,
and therefore the considered noise factors are independent
from one another and from the noise in the past. Our results
from the study of the angular noise show that noise hinders
the global order, in good agreement with previous particle-
based simulations using only angular noise and force dipoles
to describe multicellular structure formation [2].

Interestingly, an increase in both attraction range (Fig. 7)
and attraction strength (Fig. 8) leads to a higher tendency
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to global ordering as packing of the cells becomes tighter.
This is similar to the previous observation in the CPM mod-
els [12,17], where the more adhesive cells become more
compact and highly ordered in domains, but without the
emergence of global order. In the CPM, cell shape is an
emergent property of the cells and therefore cells are able
to deform in order to maximize the contact surface and
compactness (see Fig. 4a of [17]). In contrast, cells in our
implementation are unable to deform such that they might
be less able to accommodate the boundaries of such locally
ordered domains. This may force them to align globally
through the compacting force of the strong attraction. Sec-
ondly, when attraction range is increased to a distance of two
cell diameters in the current implementation, alignment order
spans through domains of at least 1000 cells, with strands of
cells aligned in parallel even without tight packing (Fig. 7d,
Ra = 2). An effect contributing to this global ordering may
be the implementation of noise in the current particle-based
implementation. In the CPM, at high densities, cells hinder
each other’s translation and rotation, resulting in an increas-
ingly slow development of the pattern as the branches grow
[17]. By contrast, in the particle-based model translation is
not hindered by adjacent cells and occurs for cells as a whole
(Eq. 1), while cells continue to rotate independently as a
whole as long as conflicts with adjacent cells persist (Eq. 3).

In conclusion, here we introduced a particle-based model
to re-examine a hypothetical mechanism for the formation
of microvascular networks, i.e., that elongated vascular cells
tend to aggregate into branches of a network structure. Our
previous work [12,17] simulated this potential mechanism
using the CPM, demonstrating that indeed elongated cell
shape, in combination with mutual attraction or adhesion,
suffices for the formation of network-like patterns. Here we
have shown that this phenomenon also occurs in a lattice-free
particle-based model, adding confidence that the effect is not
causedby artifacts of theCPMorof the present particle-based
model. Thus our models suggest that network formation is a
natural emergent property of elongated, adhesive objects in
a stochastic system. Because a range of alternative mecha-
nisms for network formation and angiogenic sprouting have
been suggested (reviewed in [14] and [3], see also [16]),
to what extent the present mechanism contributes to angio-
genesis in vivo or in vitro at this point must remain an open
question. These and similar studies, however, help generalize
and categorize the main requirements for network forma-
tion and angiogenic sprouting, thus contributing to ongoing
efforts to identify the controlling factors of angiogenesis from
a biophysical point of view.
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