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We study the microstructure of a granular amorphous silica ceramic mate-

rial synthesized by spark plasma sintering (SPS). Using monodisperse spher-

ical silica particles as precursor, SPS yields a dense granular material with

distinct granule boundaries. We use selective etching to obtain nanoscopic

pores along the granule borders. We interrogate this highly interesting mate-

rial structure by combining scanning electron microscopy (SEM), X-ray com-

puted nanotomography (NanoCT), and simulations based on random close

packed (RCP) spherical particles. We determine the degree of anisotropy

caused by the uni-axial force applied during sintering, and our analysis shows
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that our synthesis method provides a means to avoid significant granule

growth and to fabricate a material with well-controlled microstructure.

Keywords: microstructure, nanoporous, scanning electron microscopy,

sintering, X-ray computed tomography
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1 Introduction

The effective macroscopic properties of a material are directly determined

by its structure and properties on the microscopic scale. Thus, the design

of functional materials begins with an understanding of small scale behavior

(Torquato, 2002). Characterization of microstructure of a material has ad-

vanced substantially in recent years due to increasing capability of two- and

three-dimensional imaging techniques and computational capacity for anal-

ysis of large, high-resolution data sets (Brandon and Kaplan, 2013). Fine

structure such as granule boundaries and nanoscopic voids and pores can be

directly imaged in granular materials.

Spark plasma sintering (SPS) is a method for compaction of granular

materials used to synthesize a wide variety of dense solids including metals,

plastics, composites, alloys, and ceramics. It has some interesting benefits

over traditional sintering methods due to very fast heating and cooling rates

and the potential to fabricate fully dense materials at comparatively low

temperatures and to control granule growth. The kinetics of densification

can be altered to design a range of different microstructures from the same

precursor (Omori, 2000; Shen et al., 2002; Nygren and Shen, 2003; Munir

et al., 2006). Thus, the resulting materials attract attention from a broad

range of industries including minerals engineering and biotechnology due to

their mechanical, thermodynamic, and transport properties (Kang, 2004).

Although the physical driving force of compaction is essentially the decrease
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of interfacial energy, sintering is a very complex process that is not easily

modeled and understood (Munir et al., 2006; Chaim, 2007; Wang et al.,

2010; German, 2010).

Considerable effort has been put into developing models for granular ma-

terials founded on spatial statistics and tessellations of space. For liquid

foams, periodic tessellations can be traced back to Lord Kelvin (Thomson,

1887). In analogy to foams, we will refer to the 2D facets and 1D edges

of granule boundaries as lamellae and borders, respectively. However, ran-

dom tessellations such as Voronoi tessellations are more realistic models for

random heterogeneous materials (Montminy et al., 2004; Redenbach, 2009;

Kraynik et al., 2004), even though they do not correspond to an energy min-

imum (for example, no Voronoi tessellation in three dimensions can satisfy

Plateau’s laws that requires edges to meet at equal angles in random foams

(Kraynik et al., 1999)) but are merely geometrical models. The sintering

process can be thought of as a minimum-energy deformation of, typically,

spherical particles such that the packing density approaches 1 and all voids

between the spherical particles are filled. Hence, with an appropriate SPS

process we can expect to obtain a dense granular material, consisting of ap-

proximately monodisperse, polyhedral particles, that is adequately modelled

by space-filling particles based on random close packed (RCP) spherical par-

ticles (Lautensack et al., 2006).

In this work, we study the microstructure of a novel granular amorphous

silica ceramic material synthesized by SPS. The precursors were spherical,
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amorphous and homogenous in size (r = 0.75 µm) and chemical composition

as compared to another ceramic material prepared via SPS by Ramond et al.

(2011), where the precursor (soda lime glass; also amorphous and spheri-

cal) were approximately 35 times bigger and were heterogeneous both in size

and in chemical composition. SEM images of their soda lime glass samples

sintered at temperatures above 522 ◦C show partial similarity to the mi-

crostructure of our sintered silica samples. In this study, we demonstrate

that nanoscopic pores along the granule (’grain’) borders can be obtained

by selective etching. We combine scanning electron microscopy (SEM), X-

ray computed nanotomography (NanoCT), and simulations to better under-

stand this rather unique material. We determine the degree of anisotropy

caused by the uni-axial force applied during SPS using SEM, and our anal-

ysis shows that our sintering method provides a means to avoid significant

granule growth and hence allows fabrication of a material with well-controlled

microstructure. We further study the pore structure using a combination of

SEM, NanoCT and simulations to better understand the structure of this

highly potential material.

2 Experimental

2.1 Synthesis

We synthesized the granular ceramic silica via SPS using the FDC SPS-925

unit (Fuji Electronic Industrical Co., Saitama, Japan). Monodisperse and
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highly pure amorphous silica spheres (r = 0.75 µm, Geltech Inc., Jupiter,

FL, US) were sintered under vacuum with a maximum pressure of 50 MPa,

a sintering temperature of 1180 ◦C approached at first with a heating rate

of 100 ◦C/min (which was then slowed down during the last 3 minutes of

heating, to prevent temperature overshoot), and a dwell time of 5 min at

the maximum temperature. The sintered disc was transparent. The borders

of the constituent particles were then selectively etched by immersing the

sintered silica in 20 % KOH solution heated to 60 ◦C, using two different

etching times to obtain 150 nm and 450 nm pore diameters.

2.2 Scanning electron microscopy

We obtained SEM images using a FEI Quanta 450 FEG (FEI, Hillsboro, OR,

US) scanning electron microscope using 130 Pa chamber vacuum pressure

and 30 kV accelerating voltage. The pixel size was 29.8 nm. Backscattered

electron and secondary electron detector images were combined into a single

image.

2.3 X-ray computed tomography

We obtained the NanoCT images using a Zeiss NanoCT Ultra XRM-L200

Xradia (Zeiss, Jena, Germany) with a rotating copper anode as an x-ray

source, operating with a photon energy of 8 keV. The voxel size was 16.2 nm

and the theoretical resolution was 50 nm. Noise reduction was performed
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using Gaussian smoothing with σ = 3 voxels.

3 Results and discussion

After SPS, SEM (see Experimental) provides information on 2D cross-sections

of the microstructure. SPS utilizes uni-axial force to compact the silica pow-

der. By controlled fracturing of the sintered silica ceramic into pieces, we

can select an image plane such that the axis of the applied force lies in

that plane. Fig. 1 shows an example of an SEM image where the resulting

anisotropy can be observed visually. We note that the near-polygonal 2D

granule cross-sections are quite reminiscent of Voronoi tessellations. Inter-

estingly, in striking analogy to foams, a closer look reveals that generally no

more than three granule boundaries meet in the same point, and there are

no visible pores so the material appears almost fully dense. However, we

do observe a small number of quadruple nodes i.e. four granules meeting in

the same point. These joints most probably point towards imperfections in

the form of some residual pores. Notwithstanding our material being amor-

phous, the analogy with crystalline granular textures is striking. To avoid

confusion with crystalline structures, we refrain from using the word ’grain’

to describe the constituent particles, but to acknowledge the similarity, we

use the similar word ’granule’ throughout the text.
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1 µm

Figure 1: Example of an SEM image with field of view 15 µm × 15 µm. Some
degree of anisotropy can be observed, caused by the uni-axial force applied
during SPS. The angle of the applied force is (approximately) vertical in the
image and indicated by the red arrows.
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3.1 Microstructure simulation

We model the silica powder as random close packed (RCP) monodisperse

(r = 0.75 µm) spherical particles. A set of K = 104 spherical particles are

assigned random initial positions (xk, yk, zk), k = 1, ..., K, such that no two

particles overlap (the minimum distance between any two center points is

larger than 2r). A system energy

E =
K∑
k=1

(
x2
k + y2k + z2k

)
+ Eoverlap, (1)

is defined, where Eoverlap is ∞ if any two particles overlap and 0 otherwise.

The system energy is minimised using simulated annealing (Kirkpatrick et al.,

1983). In each iteration, a randomly selected particle is assigned a normal

distributed candidate displacement with standard deviation σ. If the dis-

placement decreases the energy, ∆E < 0, the new position is accepted. If

the displacement increases the energy, ∆E > 0, the new position is accepted

only if

u ≤ e−∆E/T (t), (2)

where 0 ≤ u ≤ 1 is a uniform random number and T (t) is a time-dependent,

exponentially decaying temperature. Simulated annealing is performed for

nearly 105 epochs (complete loops over the entire set of particles) over 168

hours. The standard deviation of the random displacements is adapted so

that the acceptance probability is kept in the range 0.2-0.4. The result of
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Figure 2: (Color online) A realization of RCP of K = 104 monodisperse
spherical particles analogous to the silica powder precursor for SPS. The
interior of this sphere cluster has packing density ϕ ≈ 0.644.

each simulation is a sphere cluster, the interior of which has packing density

ϕ ≈ 0.644, well in accordance with known results for RCP of monodisperse

spheres (Berryman, 1983; Jaeger and Nagel, 1992; Torquato et al., 2000; Song

et al., 2008). Fig. 2 shows an example of an RCP configuration. Space-filling

particles are obtained by performing a Voronoi tessellation (Aurenhammer,

1991) based on the RCP spherical particles, defining particle k as the set of

all points (x, y, z) closer to the kth particle center (xk, yk, zk) than to the lth

particle center (xl, yl, zl) for any l ̸= k. In reality, the spherical particles are

deformed but with constant volume V = 4πr3/3, at least during the early

stages of sintering, and the macroscopic volume of the material is reduced by a
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factor ϕ. However, the simulation generates particles with mean volume V/ϕ

and a slight ’artificial’ polydispersity (σ/µ ≈ 0.04) is introduced, originating

from the fact that whereas the spherical particles are identical, the voids

surrounding them are random in size. This polydispersity is immaterial since

it corresponds roughly to the polydispersity of the silica particles used in the

experiment). To ensure that the mean particle volume is V , the simulated

microstructure is scaled by a factor ϕ1/3 in each direction.

3.2 Anisotropy characterization

We take the uni-axial force during spark plasma sintering into account by

modelling the microstructure of the ceramic as an anisotropic scaling of the

simulated microstructure. The aim is to quantify the anisotropy from an

SEM image. Let (x, y, z) be a coordinate system in which the image plane is

(x, y, z0) for some z0. Because the anisotropy is the result of uni-axial force

applied in some direction in the (x, y) plane, we wish to find a direction-

dependent measure of scale to quantify direction and degree of anisotropy.

Define another coordinate system (u, v, z) in which

u = cos(θ)x+ sin(θ)y

v = − sin(θ)x+ cos(θ)y (3)

where θ is the angle of u relative to x. As a measure of scale, the standard

deviation of the coordinates in the u direction comprising a granule cross-
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section, σu(θ), can be used. Note that

σ2
u(θ) = ⟨u2⟩ − ⟨u⟩2 = ...

cos2(θ)
(
⟨x2⟩ − ⟨x⟩2

)
+ ...

sin2(θ)
(
⟨y2⟩ − ⟨y⟩2

)
+ ...

2 cos(θ) sin(θ) (⟨xy⟩ − ⟨x⟩⟨y⟩) , (4)

where the moments are evaluated over all pixel coordinates comprising a

granule cross-section. From the SEM image, granule cross-section contours

(n = 380) are manually identified from the raw image. Studying σu(θ) for

0 ≤ θ ≤ π, it is found that the directions of largest and smallest average

granule cross-section scale are near-orthogonal (1.55 ± 0.01, approximately

88.8◦). This finding lends credence to the assumption that for some angle

θ = θ−, u is the axis of the uni-axial force applied during sintering, i.e. the

axis of maximum compression with scaling factor ρ− and the v and z axes

span the plane of maximum expansion with scaling factors ρ+. The scaling

factors are dependent on material and processing parameters and unknown,

but two theoretical cases provide a hint of the bounds for these factors. In

one theoretical extreme, compaction is perfectly isostatic and the resulting

material is isotropic yielding ρ− = ρ+ = 1. In the other theoretical extreme

compaction is due to uni-axial pressure and under certain hypothetical me-

chanical assumptions, each individual granule is on average compressed by

the same factor as the macroscopic decrease in volume, i.e. ϕ. Thus, we
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postulate that we have the bounds

ϕ ≤ ρ− ≤ 1

1 ≤ ρ+ ≤ ϕ−1/2. (5)

We estimate the parameter vector (θ−, ρ−, ρ+) from an SEM image using ap-

proximate Bayesian computation (Tavaré et al., 1997; Pritchard et al., 1999;

Marjoram et al., 2003). A large number of microstructures are simulated as

described above. Candidate samples (θ∗−, ρ
∗
−, ρ

∗
+) are generated from a flat

prior distribution over a suitable range of parameter values. Simulated 2D

cross-sections (field of view 20 µm × 20 µm) similar to the SEM image are

generated, scaled by the factors ρ∗− and ρ∗+ in the coordinate system (u, v) de-

fined by θ∗−. The similarity between the simulated and experimental images

is defined by the criterion

C =
∫ π

0

(
⟨σexp

u (θ)⟩ − ⟨σsim
u (θ)⟩

)2
dθ, (6)

where the averages are evaluated over all granule cross-sections in the ex-

perimental and simulated cross-sections. By keeping only those candidate

parameters for which C ≤ ϵ for a threshold ϵ, an approximate joint posterior

distribution is obtained from which estimates for the individual parameters

can be extracted. We obtain (m ± sd) θ− = 1.42±0.05 (approximately in the

vertical direction in the SEM image), ρ− = 0.89±0.02, and θ+ = 1.05±0.02.
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Thus, the ratio of the experimental and simulated mean granule volumes

is ρ−ρ
2
+ = 0.98 ± 0.05, indicating that no significant granule growth has

occurred. Also, we note that the scaling factors were within the bounds

postulated in Eq. (5). Fig. 3 shows the SEM image with the estimated axis

of maximum compression indicated, an example of a simulated 2D cross-

section with granule boundaries, the values of ⟨σexp
u (θ)⟩, and the mean value

of ⟨σsim
u (θ)⟩ for 0 ≤ θ ≤ π.

3.3 Pore structure characterization

As a means to understand the microstructure we perform highly selective

etching of the granule borders to create a nanoporous material (see Experi-

mental). First, we use SEM (see Experimental) to obtain 2.5D information

about the pore structure where the pore diameter is approximately 150 nm.

Fig. 4a clearly indicates a 3D pore structure. To get a better understanding

of what is observed, we perform a simulation of an SEM image using the

simulated microstructure. A few highly sophisticated algorithms for SEM

simulation has been proposed, see e.g. (Drouin et al., 2007). We choose a

simple phenomenological approach instead. A microstructure of 5 µm × 5

µm × 2 µm is simulated. Etching is simulated by identifying voxels neigh-

boring three particles simultaneously, and expanding the simulated pores

to the appropriate diameter using a distance transform (Breu et al., 1995).

Particles and pores are assigned ’densities’ δg and δp. We assume that the

’diffusive’ behaviour of the electrons results in a depth-dependent planar
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Figure 3: (Color online) Analysis of the microstructure anisotropy by eval-
uating direction-dependent standard deviations of granule cross-sections. In
(a), an SEM image crop with field of view 10 µm × 10 µm from which granule
cross-section boundaries (n = 380) were manually identified together with
the estimated axis of maximum compression (solid red line) with standard
error bounds (dashed red lines) are shown. In (b), the granule boundaries of
a corresponding cross-section with field of view 10 µm × 10 µm of a simulated
microstructure are shown. In (c), the standard deviation of granule cross-
sections as a function of angle for the experimental data (solid black line,
almost occluded under solid red line), for the simulated data after anisotropic
scaling (solid red line) with standard error bounds (dashed red lines), and
the estimated angle of maximum compression (solid red vertical line) with
standard error bounds (dashed red vertical lines) are shown.
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Gaussian smoothing with standard deviation σ(z) = a + bz where z is the

depth. Further, we assume that the contribution to the intensity is also

depth-dependent and proportional to e−cz. The intensity in each pixel of the

simulated image is

I(x, y) =
∫ zmax

z=0
(1g(x, y, z)δg + (1− 1g(x, y, z)) δp)× ...

e−cz ∗ fG(x, y; 0, a+ bz)dz + ϵ(x, y), (7)

where zmax = 2 µm, 1g is the indicator function for a particle, fG(x, y; 0, a+

bz) is a Gaussian distribution, and ϵ(x, y) is a Gaussian noise term. The

parameters δg, δp, a, b, and c were determined simply by visual inspection.

Using this model, we manage to reproduce the SEM image with quite striking

similarity given the simplicity of the approach, see Fig. 4b, providing a strong

case for the physical nature of the microstructure. We also use NanoCT (see

Experimental) for full 3D characterization of the pore structure. The thick-

ness of the granule boundaries are in the order of the theoretical resolution

of NanoCT (50 nm) so in an attempt to better resolve them we use a sample

where the pore diameter is approximately 450 nm, see Fig. 5a-b. Although

the theoretical resolution is sufficient, NanoCT provides limited contrast for

this material. This renders the histogram of intensity values featureless, pro-

viding no guidance as to how to choose the threshold to binarize the image,

see Fig. 5a. However, we try to circumvent the problem by calculating what

the pore volume fraction should be using a simulated microstructure. By
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Figure 4: SEM analysis of the pore structure. In (a), an SEM image crop
with field of view 5 µm × 5 µm is shown, where pores with 150 nm diameter
are obtained with selective etching. In (b), a corresponding simulated SEM
image with field of view 5 µm × 5 µm is shown. The striking similarity be-
tween the experimental and simulated SEM images further provides a strong
case for the physical nature of the microstructure.

identifying the particle borders and expanding to the same pore diameter as

in the real material, the simulated pore structure has a pore volume fraction

of 0.26, see Fig. 5c. Finding the threshold corresponding to the same pore

volume fraction in the experimental data gives a rough depiction of the real

pore structure, see Fig. 5d-e (very small clusters of voxels have been removed

from the identified structure in Fig. 5d). Unfortunately, we are forced to con-

clude that NanoCT cannot stand on its own as a quantitative technique for

characterising this material.

4 Conclusion

We have studied the microstructure of a novel granular amorphous silica

ceramic material. Spark plasma sintering of a monodisperse spherical silica
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Figure 5: (Color online) 3D characterization of the pore structure using
NanoCT. Pores with 450 nm diameter are obtained with selective etching.
In (a), a slice of the raw NanoCT image with field of view 8 µm × 8 µm is
shown. In the inset, the histogram of the intensity values is shown, providing
no features and thus no guidance for selecting a threshold. In (b), an SEM
image with field of view 10 µm × 10 µm that is used to estimate the pore
diameter is shown. In (c), a simulated microstructure with field of view 4
µm × 4 µm × 4 µm with the same pore diameter as the real material is
shown. The pore volume fraction is 0.26. In (d), a NanoCT image of the
microstructure with field of view 4 µm × 4 µm × 4 µm is shown, picking the
threshold for binarization such that the pore volume fraction is the same as
that in the simulated microstructure in (c). In (e), a binarized version (white
pores, black granules) of the same slice as in (a) is shown.
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precursor yields a foam-like granular material with approximately polyhedral

granules and well-defined granule boundaries. We demonstrate that selective

etching of the granule borders can be used to fabricate a well-controlled

nanoporous material. By combining SEM, NanoCT, and simulations, all of

which jointly contribute to revealing different aspects of the characteristics,

we have gained further insight into the microstructure of this highly promis-

ing material.
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