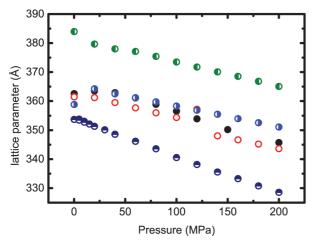

Temperature and Pressure Tuneable Swollen Bicontinuous Cubic Phases Approaching Natures Length-scales

Electronic Supplementary Information

H.M.G. Barriga, A.I.I. Tyler, N.L.C. McCarthy, E.S. Parsons, O. Ces, R. V. Law, J. M. Seddon and N. J. Brooks


Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Lattice parameter results for MO:DOPG 95:5 mol%

Figure S1. Effects of temperature and pressure on the lattice parameter of a swollen bicontinuous cubic phase Im3m composed of MO:DOPG 95:5 mol% shown at 35°C (\bullet), 45°C (\bigcirc), 55°C (\bullet). Error bars are approximately the size of the data points.

Lattice parameter results for MO:chol:DOPS 75:15:10 mol%

Figure S2. Effects of temperature and pressure on the lattice parameter of a swollen bicontinuous cubic phase Im3m composed of MO:chol:DOPS 75:15:10 mol% shown at 25°C (\bigcirc), 35°C (\bigcirc), 46°C (\bigcirc), 55°C (\bigcirc), 65°C (\bigcirc). Error bars are approximately the size of the data points.

Calculation of water content of Im3m cubic phases

The constant mean curvature model¹ (eq. 1) can be used calculate the water volume fraction from the measured lattice parameter. This can then be converted to obtain a w/w hydration (eq. 2)

$$a = 2\sum_{i=0} \frac{\sigma_i \left[\left(\frac{\nu_n}{V}\right) (1 - \phi_w) \right]^{2i}}{\left(\frac{A_n}{V}\right) (1 - \phi_w)} \tag{1}$$

$$\phi_W = \frac{C_W}{C_W + (1 - C_W) \left(\frac{\rho_W}{\rho_L}\right)} \tag{2}$$

Where:

a is the lattice parameter v_n is the molecular volume between the minimal surface and the pivotal surface A_n is the molecular area at the pivotal surface *V* is the molecular volume φ_W is the water volume fraction σ_i are coefficients tabulated for Im3m in reference 2. c_W is the water content (by weight) ρ_W is the density of water ρ_L is the density of the lipid

We have directly measured the lattice parameter (*a*) for all of the mixtures described in this paper and have used values for v_n (465 Å³), A_n (33 Å²) and V (612 Å³) taken from the literature for monoolein³ to calculate the water content of our highly swollen cubic samples as a first approximation. Results were obtained by expanding the coefficients of eq 1. and using a polynomial solver function in Matlab.

References

- 1. T. Y. Tang, N. J. Brooks, C. Jeworrek, O. Ces, N. J. Terrill, R. Winter, R. H. Templer and J. M. Seddon, *Langmuir*, 2012, **28**, 13018-13024.
- 2. R. H. Templer, J. M. Seddon, P. M. Duesing, R. Winter and J. Erbes, *The journal of physical chemistry. B*, 1998, **102**, 7262-7271.
- 3. G. C. Shearman, B. J. Khoo, M.-L. Motherwell, K. A. Brakke, O. Ces, C. Conn, J. M. Seddon and R. H. Templer, *Langmuir*, 2007, **23**, 7276-7285.