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Abstract. Models of complex systems are widely used in the physical and so-
cial sciences, and the concept of layering, typically building upon graph-theoretic
structure, is a common feature. We describe an intuitionistic substructural logic
that gives an account of layering. As in bunched systems, the logic includes the
usual intuitionistic connectives, together with a non-commutative, non-associative
conjunction (used to capture layering) and its associated implications. We give
soundness and completeness theorems for labelled tableaux and Hilbert-type sys-
tems with respect to a Kripke semantics on graphs. To demonstrate the utility
of the logic, we show how to represent a range of systems and security exam-
ples, illuminating the relationship between services/policies and the infrastruc-
tures/architectures to which they are applied.

1 Introduction

Complex systems can be defined as the field of science that studies, on the one hand,
how it is that the behaviour of a system, be it natural or synthetic, derives from the
behaviours of its constituent parts and, on the other, how the system interacts with its
environment. A commonly employed and highly effective concept that helps to manage
the difficulty in conceptualizing and reasoning about complex systems is that of lay-
ering: the system is considered to consist of a collection of interconnected layers each
of which has a distinct, identifiable role in the system’s operations. Layers can be in-
formational or physical and both kinds may be present in a specific system. In [6, 19],
multiple layers are given by multiple relations over a single set of nodes.

We employ three illustrative examples. First, a transport network that uses buses
to move people. It has an infrastructure layer (i.e., roads, together with their markings,
traffic signals, etc., and buses running to a timetable), and a social layer (i.e., the group-
ings and movements of people enabled by the bus services). Second, a simple example
of the relationship between a security policy and its underlying system architecture. Fi-
nally, we consider the security architecture of an organization that operates high- and
low-security internal systems as well as providing access to its systems from external
mobile devices. These examples illustrate the interplay between services/policies and
the architectures/infrastructures to which they are intended to apply.

We give a graph-theoretic definition of layering and provide an associated logic for
reasoning about layers. There is very little work in the literature on layering in graphs.
Notable exceptions are [14, 28, 27]. Layered graphs are an instance of a general alge-
braic semantics for the logic. Our approach stands in contrast to our previous work in
this area [9, 10] in that the additive component of the bunched logic [26, 18] we em-
ploy is intuitionistic, with the consequence that we are able to obtain a tableaux system
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for the logic together with a completeness theorem for the layered graph semantics. In
Section 2, we introduce layered graph semantics and ILGL, the associated intuitionistic
layered graph logic. In Section 3, we establish its basic metatheory — the soundness
and completeness of ILGL’s tableaux system with respect to layered graph semantics —
and, in Section 4, we give an algebraic semantics and a (sound and complete) Hilbert-
type proof system for ILGL. In Section 5, we sketch a modal extension of ILGL that is
convenient for practical modelling, explaining its theoretical status and developing the
three examples mentioned above. We discuss further work in Section 6.

2 Intuitionistic layered graph logic

Layered graph semantics. We begin with a formal, graph-theoretic account of the
notion of layering that, we claim, captures the concept as used in complex systems. In
this notion, two layers in a directed graph are connected by a specified set of edges,
each element of which starts in the upper layer and ends in the lower layer.

Given a directed graph, G, we refer to its vertex set and its edge set by V(G) and
E(G) respectively, while its set of subgraphs is denoted Sg(G) with H ⊆ G iff H ∈

Sg(G). For a distinguished edge set E ⊆ E(G), the reachability relation{E on subgraphs
of G is H {E K iff a vertex of K can be reached from a vertex of H by an E-edge.

We then have a composition @E on subgraphs where G @E H ↓ iff V(G)∩ V(H) =

∅,G {E H and H 6{E G (where ↓ denotes definedness) with output given by the graph
union of the two subgraphs and the E-edges between them. For a graph G, we say it is
layered (with respect to E) if there exist H, K such that H @E K ↓ and G = H @E K
(see Figure 1). Layering is evidently neither commutative nor associative.

Within a given ambient graph, G, we can identify a specific form of layered struc-
ture, called a preordered scaffold, that will facilitate our definition of a model of intu-
itionistic layered graph logic. Properties of graphs that are inherited by their subgraphs
are naturally captured in an intuitionistic logic. This idea is generalized by the structure
carried by a preordered scaffold. To set this up, we begin by defining an admissible
subgraph set is a subset X ⊆ Sg(G) such that, for all G,H ∈ Sg(G), if G @E H↓, then
G,H ∈ X iff G @E H ∈ X. Then, a preordered scaffold (see Figure 2) is a structure
X = (G,E, X,4) such that G is a graph, E ⊆ E(G), X an admissible subgraph set, 4 a
preorder on X. Layers are present if G @E H↓ for at least one pair G,H ∈ X.



Note that the scaffold is preordered and we choose a subset of the subgraph set.
There are several reasons for these choices. From a modelling perspective, we can look
closely at the precise layering structure of the graph that is of interest. In particular, we
can avoid degenerate cases of layering. (Note that this is a more general definition of
scaffold than that taken in [9, 10], where the structure was less tightly defined.) Tech-
nical considerations also come into play. When we restrict to interpreting ILGL on the
full subgraph set, it is impossible to perform any composition of models without the
worlds (states) proliferating wildly. A similar issue arises during the construction of
countermodels from the tableaux system of Section 3, a procedure that is impossible
when we are forced to take the full subgraph set as the set of worlds.

Having established the basic semantic structures that are required, we can now set
up ILGL. The grammar of ILGL is the following:

φ ::= p | > | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ | φ I φ | φ−−I φ | φI−− φ

The familiar connectives will be interpreted intuitionistically. The non-commutative,
non-associative conjunction, I, which will be used to capture layering, is interpreted
intuitionistically, as in BI [26, 18], and has associated right (I−−) and left (−−I) impliica-
tions. We define intuitionistic negation in terms of the connectives: ¬φ ::= φ→ ⊥.

Definition 1 (Layered graph model). A layered graph model, M, of ILGL is a pair
(X,V), where X is a preordered scaffold and V : Prop → ℘(X) is a persistent valua-
tion; that is, G 4 H and G ∈ V(p) implies H ∈ V(p). ut

Satisfaction in layered graph models is then defined in a familiar way.

Definition 2 (Satisfaction in layered graph models). Given a layered graph model
M = (X,V), we generate the satisfaction relation |=M⊆ X × Form as follows:

G |=M > always G |=M ⊥ never G |=M p iff G ∈ V(p)
G |=M ϕ ∧ ψ iff G |=M ϕ and G |=M ψ G |=M ϕ ∨ ψ iff G |=M ϕ or G |=M ψ

G |=M ϕ→ ψ iff, for all G′ such that G 4 G′, G′ |=M ϕ implies G′ |=M ψ

G |=M ϕ I ψ iff there exist H,K such that H @E K↓, H @E K 4 G, and H |=M ϕ and K |=M ψ

G |=M ϕ−−Iψ iff for all G 4 H and all K such that H @E K↓, K |=M ϕ implies H @E K |=M ψ

G |=M ϕI−−ψ iff for all G 4 H and all K such that K @E H↓, K |=M ϕ implies K @E H |=M ψ ut

Definition 3 (Validity). A formula φ is valid in a layered graph modelM ( |=M φ) iff,
for all G ∈ X, G |=M φ. A formula φ is valid (|= φ) iff, for all layered graph modelsM,
|=M φ. ut

Lemma 1 (Persistence). Persistence extends to all formulae with respect to the layered
graph semantics. That is, for all ϕ ∈ Form, G 4 H and G |=M ϕ implies H |=M ϕ.

Proof. By induction on the complexity of formulae. The additive fragment, correspond-
ing to intuitionistic propositional logic (IPL), is standard and we restrict attention to two
examples of the multiplicative connectives.

Suppose G |=M ϕ I ψ and G 4 H. There are K,K′ s.t. K @E K′ ↓ and K @E K′ 4 G,
with K |=M ϕ and K′ |=M ψ. By transitivity of 4, K @E K′ 4 H, so H |=M ϕ I ψ.
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Suppose G |=M ϕ−−Iψ. Then, for all K such that G 4 K and all K′ s.t. K @E K′↓,
if K′ |=M ϕ, then K @E K′ |=M ψ. Let G 4 H and suppose H 4 K and K′ are s.t.
K @E K′↓ and K′ |=M ϕ. So, since G 4 H 4 K, it follows that K @E K′ |=M ϕ. So
H |=M ϕ−−Iψ. ut

Note that, unlike in BI, we require the restriction ‘for all H, G 4 H . . .’ in the
semantic clauses for the multiplicative implications. Without this we cannot prove per-
sistence because we cannot proceed with the inductive step in those cases. The reason
for this is that we put no restriction on the interaction between 4 and @ in the definition
of preordered scaffold. This is unlike the analogous case for BI, where the monoidal
composition is required to be bifunctorial with respect to the ordering. One might re-
solve this issue with the following addendum to the definition of preordered scaffold: if
G 4 H and H @E K ↓, then G @E K ↓ and G @E K 4 H @E K.

Two natural examples of subgraph preorderings show that this would be undesir-
able. First, consider the layering preorder. Let 4 be the reflexive, transitive closure of
the relation R(G,H) iff H @EG ↓, restricted to the admissible subgraph set X. Fig-
ure 3 shows a subgraph H with G 4 H and H @E K ↓ but G @E K ↑ (we write
↑ for undefinedness). Second, consider the subgraph relation. In Figure 4, we have
G ⊆ H and H @E K ↓ but G @E K ↑. It is, however, the case that, with this ordering, if
G ⊆ H,H @E K and G @E K ↓, then G @E K ⊆ H @E K.

Labelled tableaux. We define a labelled tableaux system for ILGL in the spirit of
previous work for BI, BBI, DBI, and LSM [16, 24, 12, 11].

Definition 4 (Graph labels). Let Σ = {ci | i ∈ N} be a countable set of atomic labels.
We define the set L = {x ∈ Σ? | 0 < |x| ≤ 2} \ {cici | ci ∈ Σ} to be the set of graph
labels. A sub-label y of a label x is a non-empty sub-word of x, and we denote the set of
sub-labels of x by S(x). ut

The graph labels are a syntactic representation of the subgraphs of a model, with
labels of length 2 representing a graph that can be decomposed into two layers. We
exclude the possibility cici as layering is anti-reflexive. In much the same way we give
a syntactic representation of preorder.



Definition 5 (Constraints). A constraint is an expression of the form x 4 y, where x
and y are graph labels. ut

Let C be a set of constraints. The domain of C is the set of all non-empty sub-labels
appearing in C. In particular,D(C) =

⋃
x4y∈C(S(x) ∪ S(y)) The alphabet of C is the set

of atomic labels appearing in C. In particular, we haveA(C) = Σ ∩D(C).

x 4 y
〈R1〉x 4 x

x 4 y
〈R2〉y 4 y

x 4 yz
〈R3〉y 4 y

x 4 yz
〈R4〉z 4 z

xy 4 z
〈R5〉x 4 x

xy 4 z
〈R6〉y 4 y

x 4 y y 4 z
〈Tr〉

x 4 z

Fig. 5. Rules for closure of constraints

Definition 6 (Closure of constraints). Let C be a set of constraints. The closure of C,
denoted C, is the least relation closed under the rules of Figure 5 such that C ⊆ C. ut

This closure yields a preorder on D(C), with 〈R1〉 − 〈R6〉 generating reflexivity
and 〈Tr〉 yielding transitivity. Crucially, taking the closure of the constraint set does
not cause labels to proliferate and the generation of any particular constraint from an
arbitrary constraint set C is fundamentally a finite process.

Proposition 1. Let C be a set of constraints. (1) x ∈ D(C) iff x 4 x ∈ C. (2) D(C) =

D(C) andA(C) = A(C). ut

Lemma 2 (Compactness). Let C be a (possibly countably infinite) set of constraints.
If x 4 y ∈ C, then there is a finite set of constraints C f ⊆ C such that x 4 y ∈ C f . ut

Definition 7. A labelled formula is a triple (S , ϕ, x) ∈ {T,F} × L × L, written Sϕ : x.
A constrained set of statements (CSS) is a pair 〈F ,C〉, where F is a set of labelled
formulæ and C is a set of constraints, satisfying the following properties: for all x ∈ L
and distinct ci, c j, ck ∈ Σ, (1) (Ref ) if Sϕ : x ∈ F , then x 4 x ∈ C, (2) (Contra) if cic j ∈

D(C), then c jci < D(C), and (3) (Freshness) if cic j ∈ D(C), then cick, ckci, c jck, ckc j <
D(C). A CSS 〈F ,C〉 is finite if F and C are finite. The relation ⊆ is defined on CSSs
by 〈F ,C〉 ⊆ 〈F ′,C′〉 iff F ⊆ F ′ and C ⊆ C′. We denote by 〈F f ,C f 〉 ⊆ f 〈F ,C〉 when
〈F f ,C f 〉 ⊆ 〈F ,C〉 holds and 〈F f ,C f 〉 is finite. ut

The CSS properties ensure models can be built from the labels: (Ref) ensures we
have enough data for the closure rules to generate a preorder, (Contra) ensures the
contra-commutativity of graph layering is respected, and (Freshness) ensures the lay-
ering structure of the models we construct is exactly that specified by the labels and
constraints in the CSS. As with constraint closure, CSSs have a finite character.

Proposition 2. For any CSS 〈F f ,C〉 in which F f is finite, there exists C f ⊆ C such that
C f is finite and 〈F f ,C f 〉 is a CSS. ut



Tϕ ∧ ψ : x ∈ F
〈T∧〉

〈{Tϕ : x,Tψ : x}, ∅〉
Fϕ ∧ ψ : x ∈ F

〈F∧〉
〈{Fϕ : x}, ∅〉 | 〈{Fψ : x}, ∅〉

Tϕ ∨ ψ : x ∈ F
〈T∨〉

〈{Tϕ : x}, ∅〉 | 〈{Tψ : x}, ∅〉
Fϕ ∨ ψ : x ∈ F

〈F∨〉
〈{Fϕ : x,Fψ : x}, ∅〉

Tϕ→ ψ : x ∈ F and x 4 y ∈ C
〈T→〉

〈{Fϕ : y}, ∅〉 | 〈{Tψ : y}, ∅〉

Fϕ→ ψ : x ∈ F
〈F→〉

〈{Tϕ : ci,Fψ : ci}, {x 4 ci}〉

Tϕ I ψ : x ∈ F
〈T I〉

〈{Tϕ : ci,Tψ : c j}, {cic j 4 x}〉
Fϕ ∗ ψ : x ∈ F and yz 4 x ∈ C

〈F I〉
〈{Fϕ : y}, ∅〉 | 〈{Fψ : z}, ∅〉

Tϕ−−Iψ : x ∈ F and x 4 y, yz 4 yz ∈ C
〈T−−I〉

〈{Fϕ : z}, ∅〉 | 〈{Tψ : yz}, ∅〉

Fϕ−−Iψ : x ∈ F
〈F−−I〉

〈{Tϕ : c j,Fψ : cic j}, {x 4 ci, cic j 4 cic j}〉

TϕI−−ψ : x ∈ F and x 4 y, zy 4 zy ∈ C
〈TI−−〉

〈{Fϕ : z}, ∅〉 | 〈{Tψ : zy}, ∅〉

FϕI−−ψ : x ∈ F
〈FI−−〉

〈{Tϕ : c j,Fψ : c jci}, {x 4 ci, c jci 4 c jci}〉

with ci and c j being fresh atomic labels

Fig. 6. Tableaux rules for ILGL

Figure 6 presents the rules of the tableaux system for ILGL. That ‘ci and c j are fresh
atomic labels’ means ci , c j ∈ Σ \ A(C). We denote by ⊕ the concatenation of lists.

Definition 8 (Tableaux). Let 〈F0,C0〉 be a finite CSS. A tableau for this CSS is a list of
CSS, called branches, built inductively according the following rules:

1. The one branch list [〈F0,C0〉] is a tableau for 〈F0,C0〉;
2. If the list Tm ⊕ [〈F ,C〉] ⊕ Tn is a tableau for 〈F0,C0〉 and

cond〈F ,C〉
〈F1,C1〉 | . . . | 〈Fk,Ck〉

is an instance of a rule of Figure 6 for which cond〈F ,C〉 is fulfilled, then the list
Tm ⊕ [〈F ∪ F1,C ∪ C1〉; . . . ; 〈F ∪ Fk,C ∪ Ck〉] ⊕ Tn is a tableau for 〈F0,C0〉.

A tableau for the formula ϕ is a tableau for 〈{Fϕ : c0}, {c0 4 c0}〉. ut

It is a simple but tedious exercise to show that the rules of Figure 6 preserve the CSS
properties of Definition 7. We now give the notion of proof for our labelled tableaux.

Definition 9 (Closed tableau/proof). A CSS 〈F ,C〉 is closed if one of the following
conditions holds: (1) Tϕ : x ∈ F , Fϕ : y ∈ F and x 4 y ∈ C; (2) F> : x ∈ F ; and (3)
T⊥ : x ∈ F . A CSS is open iff it is not closed. A tableau is closed iff all its branches are
closed. A proof for a formula ϕ is a closed tableau for ϕ. ut

CSSs are related back to the graph semantics via the notion of realization.



Definition 10 (Realization). Let 〈F ,C〉 be a CSS. A realization of 〈F ,C〉 is a triple
R = (X,V, b.c) where M = (X,V) is a layered graph model and b.c : D(C) → X is
such that (1) b.c is total: for all x ∈ D(C) · bxc ↓, (2) for all x ∈ D(C), if x = cic j,
then bcic@Ebc jc ↓ and bxc = bcic@Ebc jc), (3) if x 4 y ∈ C, then bxc 4M byc, (4) if
Tϕ : x ∈ F , then bxc |=M ϕ, and (5) if Fϕ : x ∈ F , then bxc 6|=M ϕ. ut

We say that a CSS is realizable is there exists a realization of it. We say that a tableau is
realizable if at least one of its branches is realizable. We can also show that the relevant
clauses of the definition extend to the closure of the constraint set automatically.

Proposition 3. Let 〈F ,C〉 be a CSS and R = (X,V, b.c) a realization of it. Then: (1)
for all x ∈ D(C), bxc is defined; (2) if x 4 y ∈ C, then bxc 4M byc. ut

3 Metatheory

We now establish the soundness and, via countermodel extraction, the completeness of
ILGL’s tableaux system with respect to layered graph semantics. The proof of sound-
ness is straightforward (cf. [15, 16, 24, 12, 11]). We begin with two key lemmas about
realizability and closure. Their proofs proceed by simple case analysis.

Lemma 3. The tableaux rules for ILGL preserve realizability. ut

Lemma 4. Closed branches are not realizable. ut

Theorem 1 (Soundness). If there exists a closed tableau for the formula ϕ, then ϕ is
valid in layered graph models.

Proof. Suppose that there exists a proof for ϕ. Then there is a closed tableau Tϕ for
the CSS C = 〈{Fϕ : c0}, {c0 4 c0}〉. Now suppose that ϕ is not valid. Then there is
a countermodel M = (X,V) and a subgraph G ∈ X such that G 6|=M ϕ. Define R =

(M,V, b.c) with bc0c = G. Note that R is a realization of C, hence by Lemma 3, Tϕ is
realizable. By Lemma 4, Tϕ cannot be closed. But, this contradicts the fact that Tϕ is a
proof and therefore a closed tableau. It follows that ϕ is valid. ut

We now proceed to establish the completeness of the labelled tableaux with respect
to layered graph semantics. We begin with the notion of a Hintikka CSS, which will
facilitate the construction of countermodels. All remaining proofs omitted from this
section are provided or cited in the appendix.

Definition 11 (Hintikka CSS). A CSS 〈F ,C〉 is a Hintikka CSS iff, for any formulas
ϕ, ψ ∈ L and any graph labels x, y ∈ L, we have the following:

1. Tϕ : x < F or Fϕ : y < F or x 4 y < C 2. F> : x < F 3. T⊥ : x < F
4. if Tϕ ∧ ψ : x ∈ F , then Tϕ : x ∈ F and Tψ : x ∈ F
5. if Fϕ ∧ ψ : x ∈ F , then Fϕ : x ∈ F or Fψ : x ∈ F
6. if Tϕ ∨ ψ : x ∈ F , then Tϕ : x ∈ F or Tψ : x ∈ F
7. if Fϕ ∨ ψ : x ∈ F , then Fϕ : x ∈ F and Fψ : x ∈ F
8. if Tϕ→ ψ : x ∈ F , then, for all y ∈ L, if x 4 y ∈ C, then Fϕ : y ∈ F or Tψ : y ∈ F
9. if Fϕ→ ψ : x ∈ F , then there exists y ∈ L such that x 4 y ∈ C

and Tϕ : y ∈ F and Fψ : y ∈ F
10. if Tϕ I ψ : x ∈ F , then there are ci, c j ∈ Σ such that cic j 4 x ∈ C and

Tϕ : ci ∈ F and Tψ : c j ∈ F



11. if Fϕ I ψ : x ∈ F , then, for all ci, c j ∈ Σ, if cic j 4 x ∈ C, then
Fϕ : ci ∈ F or Fψ : c j ∈ F

12. if Tϕ−−Iψ : x ∈ F , then, for all ci, c j ∈ Σ, if x 4 ci ∈ C and cic j ∈ D(C), then
Fϕ : c j ∈F or Tψ : cic j ∈F

13. if Fϕ−−Iψ : x ∈ F , then there are ci, c j ∈ Σ such that x 4 ci ∈ C and cic j ∈ D(C) and
Tϕ : c j ∈ F and Fψ : cic j ∈ F

14. if TϕI−−ψ : x ∈ F , then, for all ci, c j ∈ Σ, if x 4 ci ∈ C and c jci ∈ D(C), then
Fϕ : c j ∈F or Tψ : c jci ∈F

15. if Fϕ−−Iψ : x ∈ F , then there are ci, c j ∈ Σ such that x 4 ci ∈ C and c jci ∈ D(C) and
Tϕ : c j ∈ F and Fψ : c jci ∈ F . ut

We now give the definition of a function Ω that extracts a countermodel from a
Hintikka CSS. A Hintikka CSS can thus be seen as the labelled tableaux counterpart of
Hintikka sets, which are maximally consistent sets satisfying a subformula property.

Definition 12 (Function Ω). Let 〈F ,C〉 be a Hintikka CSS. The function Ω associates
to 〈F ,C〉 a tuple Ω(〈F ,C〉) = (G,E, X,4,V), such that (1) V(G) = A(C), (2) E(G) =

{(ci, c j) | cic j ∈ D(C)} = E, X = {xΩ | x ∈ D(C)}, where V(cΩi ) = {ci}, E(cΩi ) = ∅,
V((cic j)Ω) = {cic j}, and E((cic j)Ω) = {(ci, c j)}, (3) xΩ 4 yΩ iff x 4 y ∈ C, and (4)
xΩ ∈ V(p) iff there exists y ∈ D(C) such that y 4 x ∈ C and Tp : y ∈ F . ut

The next lemma shows that there is a precise correspondence between the structure
that the Hintikka CSS properties impose on the labels and the layered structure specified
by the construction of the model.

Lemma 5. Let 〈F ,C〉 be a Hintikka CSS and Ω(〈F ,C〉) = (G,E, X,4,V). (1) If ci, c j ∈

A(C), then cic j ∈ D(C) iff cΩi @E cΩj ↓. (2) If cic j ∈ D(C), then (cic j)Ω = cΩi @E cΩj . 3.
xΩ @E yΩ ↓ iff there exist ci, c j ∈ A(C) s.t. x = ci, y = c j and cic j ∈ D(C). ut

Lemma 6. Let 〈F ,C〉 be a Hintikka CSS. Ω(〈F ,C〉) is a layered graph model. ut

Lemma 7. Let 〈F ,C〉 be a Hintikka CSS and M = Ω(〈F ,C〉) = (G,E, X,4,V). For
all formulas ϕ ∈ L, and all x ∈ D(C). we have (1) if Fϕ : x ∈ F , then xΩ 6|=M ϕ, and (2)
if Tϕ : x ∈ F , then xΩ |=M ϕ. Hence, if Fϕ : x ∈ F , then ϕ is not valid and Ω(〈F ,C〉) is
a countermodel of ϕ. ut

This construction of a countermodel would fail in a labelled tableaux system for
LGL (i.e., the layered graph logic with classical additives [9]). This is because it is im-
possible to construct the internal structure of each subgraph in the model systematically,
as the classical semantics for I demands strict equality between the graph under inter-
pretation and the decomposition into layers. This issue is sidestepped for ILGL since
each time the tableaux rules require a decomposition of a subgraph into layers we can
move to a ‘fresh’ layered subgraph further down the ordering. Thus we can safely turn
each graph label into the simplest instantiation of the kind of graph it represents: either
a single vertex (indecomposable) or two vertices and an edge (layered).

We now show how to construct such a CSS. We first require a listing of all labelled
formulae that may need to be added to the CSS in order to satisfy properties 4–15. We
require a particularly strong condition on the listing to make this procedure work: that
every labelled formula appears infinitely often to be tested.



Definition 13 (Fair strategy). A fair strategy for a language L is a labelled sequence
of formulæ (Siχi : (xi))i∈N in {T,F} × L × L such that {i ∈ N | Siχi : (xi) ≡ Sχ : x} is
infinite for any Sχ : x ∈ {T,F} × L × L. ut

Proposition 4. There exists a fair strategy for the language of ILGL. ut

Next we need the concept of an oracle. Here an oracle allows Hintikka sets to be
constructed inductively, testing the required consistency properties at each stage.

Definition 14. Let P be a set of CSSs. (1) P is ⊆-closed if 〈F ,C〉 ∈ P holds whenever
〈F ,C〉 ⊆ 〈F ′,C′〉 and 〈F ′,C′〉 ∈ P holds. (2) P is of finite character if 〈F ,C〉 ∈ P
holds whenever 〈F f ,C f 〉 ∈ P holds for every 〈F f ,C f 〉 ⊆ f 〈F ,C〉. (3) P is saturated if,
for any 〈F ,C〉 ∈ P and any instance

cond(F ,C)
〈F1,C1〉 | . . . | 〈Fk,Ck〉

of a rule of Figure 6 if cond(F ,C) is fulfilled, then 〈F ∪Fi,C∪Ci〉 ∈ P, for at least one
i ∈ {1, . . . , k}. ut

Definition 15 (Oracle). An oracle is a set of open CSSs which is ⊆-closed, of finite
character, and saturated. ut

Definition 16 (Consistency/finite consistency). Let 〈F ,C〉 be a CSS. We say 〈F ,C〉 is
consistent if it is finite and has no closed tableau. We say 〈F ,C〉 is finitely consistent if
every finite sub-CSS 〈F f ,C f 〉 is consistent. ut

Proposition 5. (1) Consistency is ⊆-closed. (2) A finite CSS is consistent iff it is finitely
consistent. ut

Lemma 8. The set of finitely consistent CSS, P, is an oracle. ut

We can now show completeness of our tableaux system. Consider a formula ϕ for
which there exists no closed tableau. We show there is a countermodel to ϕ. We start
with the initial tableau T0 for ϕ. Then, we have (1) T0 = [〈{Fϕ : c0}, {c0 4 c0)}〉] and
(2) T0 cannot be closed. Let P be as in Lemma 8. By Proposition 4, there exists a fair
strategy, which we denote by S, with Siχi : (xi) the ith formula of S. As T0 cannot be
closed, 〈{Fϕ : c0}, {c0 4 c0}〉 ∈ P. We build a sequence 〈Fi,Ci〉i>0 as follows:

- 〈F0,C0〉 = 〈{Fϕ : c0}, {c0 4 c0}〉;
- if 〈Fi ∪ {Siχi : (xi)},Ci〉 < P, then we have 〈Fi+1,Ci+1〉 = 〈Fi,Ci〉; and
- if 〈Fi∪{Siχi : (xi)},Ci〉 ∈ P, then we have 〈Fi+1,Ci+1〉 = 〈Fi∪{Siχi : (xi)}∪Fe,Ci∪

Ce〉 such that Fe and Ce are determined by

Si χi Fe Ce

F ϕ→ ψ {Tϕ : cI+1,Fψ : cI+1} {xi 4 cI+1}

T ϕ I ψ {Tϕ : cI+1,Tψ : cI+2} {cI+1cI+2 4 xi}

F ϕ−−Iψ {Tϕ : cI+2,Fψ : cI+1cI+2} {xi 4 cI+1, cI+1cI+2 4 cI+1cI+2}

F ϕI−−ψ {Tϕ : cI+2,Fψ : cI+2cI+1} {xi 4 cI+1, cI+2cI+1 4 cI+2cI+1}

Otherwise ∅ ∅

with I = max{ j | c j ∈ A(Ci) ∪ S(xi)}.



Proposition 6. For any i ∈ N, the following properties hold: (1) Fi ⊆ Fi+1 and Ci ⊆

Ci+1; (2) 〈Fi,Ci〉 ∈ P. ut

We now define the limit 〈F∞,C∞〉 = 〈
⋃

i>0 Fi,
⋃

i>0 Ci〉 of the sequence 〈Fi,Ci〉i>0.

Proposition 7. The following properties hold: (1) 〈F∞,C∞〉 ∈ P; (2) For all labelled
formulæ Sϕ : x, if 〈F∞ ∪ {Sϕ : x},C∞〉 ∈ P, then Sϕ : x ∈ F∞. ut

Lemma 9. The limit CSS is a Hintikka CSS. ut

Theorem 2 (Completeness). If ϕ is valid, then there exists a closed tableau for ϕ. ut

4 A Hilbert system and an algebraic semantics

We give a Hilbert-type proof system, ILGLH, for ILGL in Figure 7. The additive frag-
ment, corresponding to intuitionistic propositional logic, is standard (e.g., [4]). The pre-
sentation of the multiplicative fragment is similar to that for BI’s multiplicatives [29],
but for the non-commutative and non-associative (following from the absence of a mul-
tiplicative counterpart to ∧2) conjunction, I, together with its associated left and right
implications (cf. [20–23]).

(Ax)
ϕ ` ϕ

ϕ ` ψ ψ ` χ
(Cut)

ϕ ` χ
(>)

ϕ ` >
(⊥)

⊥ ` ϕ

ϕ ` ψ ϕ ` χ
(∧1)

ϕ ` ψ ∧ χ
(∧2)

ϕ1 ∧ ϕ2 ` ϕi
(∨1)

ϕi ` ϕ1 ∨ ϕ2

ϕ ` χ ψ ` χ
(∨2)

ϕ ∨ ψ ` χ

ϕ ` ψ→ χ ν ` ψ
(→1)

ϕ ∧ ν ` χ

ϕ ∧ ψ ` χ
(→2)

ϕ ` ψ→ χ

ϕ ` ψ χ ` υ
(I)

ϕ I χ ` ψ I υ

ϕ ` ψ−−I χ υ ` ψ
(−−I1)

ϕ I υ ` χ
ϕ I ψ ` χ

(−−I2)
ϕ ` ψ−−I χ

ϕ ` ψI−−χ υ ` ψ
(I−−1)

υ I ϕ ` χ
ϕ I ψ ` χ

(I−−2)
ψ ` ϕI−−χ

Fig. 7. Rules of the Hilbert system, ILGLH, for ILGL

This section concludes with equivalence of ILGLH and ILGL’s tableaux system.

Definition 17 (Layered Heyting algebra). A layered Heyting algebra is a structure
A = (A,∧,∨,→,⊥,>,I,−−I,I−−) such that (A,∧,∨,→,⊥,>) is a Heyting algebra, I, −−I,
and I−− are binary operations on A satisfying a ≤ a′ and b ≤ b′ implies a I b ≤ a′ I b′

and a I b ≤ c iff a ≤ b−−I c iff b ≤ aI−− c. ut

We interpret ILGL on layered Heyting algebras. Let V : Prop → A be a valuation
on the layered Heyting algebra (A,∧A,∨A,→A,⊥A,>A,IA,−−IA,I−−A). We maintain the
subscripts to distinguish the operations of the algebra from the connectives of ILGL.
We uniquely define an interpretation function ~−� : Form → A by extending with
respect to the connectives in the usual fashion: ~>� = >A, ~⊥� = ⊥A, ~p� = V(p), and
~ϕ ◦ ψ� = ~ϕ� ◦A ~ψ� for ◦ ∈ {∧,∨,→,I,−−I,I−− }.



Proposition 8 (Soundness). For any layered Heyting algebra A and any interpreta-
tion ~−� : Form→ A: if ϕ ` ψ then ~ϕ� ≤ ~ψ�.

Proof. By induction on the derivation rules of ILGLH. The cases for the additive frag-
ment are standard. For rule (I), we use the property a ≤A a′ and b ≤A b′ implies
a IA b ≤A a′ IA b′ and for the remaining rules pertaining to the multiplicative implica-
tions we use the adjointness property a IA b ≤A c iff a ≤A b−−IA c iff b ≤A aI−−A c. ut

Lemma 10. There is a layered Heyting algebraT and an interpretation ~−�T : Prop→
T such that if ϕ 0 ψ then ~ϕ�T � ~ψ�T .

Proof. We give a Lindenbaum term-algebra construction on the syntax of ILGL with
the equivalence relation ϕ ≡ ψ iff ϕ ` ψ and ψ ` ϕ. The set of all such equivalence
classes [ϕ] gives the underlying set of the layered Heyting algebra, T : >T := [>],
⊥T := [⊥], and [ϕ] ◦T [ψ] := [ϕ ◦ ψ] for ◦ ∈ {∧,∨,→,I,−−I,I−− }.

The fragment (T ,∧T ,∨T ,>T ,⊥T ) forms a bounded distributive lattice with order
[ϕ] ≤T [ψ] iff [ϕ] ∧T [ψ] = [ϕ]. It is straightforward to use rules (Ax), (∧1) and (∧2) to
show that the right hand condition holds iff ϕ ` ψ. We then obtain adjointness of ∧T and
→T from rules (→1) and (→2), monotonicity of IT from rule (I) and the adjointness
of IT ,−−IT and I−−T from rules (−−I1), (−−I2), (I−−1), and (I−−2). Thus T is a layered Heyting
algebra with an interpretation given by ~ϕ� = [ϕ]. By the definition of the ordering,
ϕ 0 ψ implies ~ϕ� �T ~ψ�, as required. ut

We now standardly obtain completeness.

Theorem 3 (Completeness). For any propositions ϕ, ψ of ILGL, if ~ϕ� ≤ ~ψ� for all
interpretations ~−� on layered Heyting algebras then ϕ ` ψ in ILGLH. ut

We now show that the layered graph semantics is a special case of the algebraic
semantics.

Definition 18 (Preordered layered magma). A preordered layered magma is a tuple
(X,4, ◦), with X a set, 4 a preorder on X, and ◦ a binary partial operation on X. ut

It is clear that, given a preordered scaffold (G,E, X,4), the structure (X,4,@E) is
a preordered layered magma. Analogously to the classical case [9], we can generate a
layered Heyting algebra.

Proposition 9. Every preordered layered magma generates a layered Heyting algebra.

Proof. Let (X,4, ◦) be a preordered layered magma. An up-set of the preorder (X,4) is
a set U ⊆ X such that x ∈ U and x 4 y implies y ∈ U. Denote the set of all up-sets
of X by Up(X). The structure (Up(X),∪,∩,→, ∅, X) is a Heyting algebra, where → is
defined as follows: U → V := {x ∈ X | for all y (x 4 y and y ∈ U implies y ∈ V)}We
define the operators I,−−I,I−− as follows:

U I V := {x ∈ X | there exists y ∈ U, z ∈ V (y ◦ z↓ and y ◦ z 4 x)}
U −−IV := {x ∈ X | for all y, z (x 4 y and y ◦ z↓ and z ∈ U implies y ◦ z ∈ V)}
U I−− V := {x ∈ X | for all y, z (x 4 y and z ◦ y↓ and z ∈ U implies z ◦ y ∈ V)}



It is straightforward that these all define up-sets, and are thus well-defined. It remains to
prove monotonicity of I and adjointness of the operators. For monotonicity, let U ⊆ U′,
V ⊆ V ′ and x ∈ U I V . Then there exist y ∈ U ⊆ U′ and z ∈ V ⊆ V ′ such that y ◦ z↓
and y ◦ z ≤ x. It follows immediately that x ∈ U′ I V ′.

Next, adjointness. We give just one case, for I−−. The others are similar. Suppose
V ⊆ U I−−W. We must show U I V ⊆ W, so assume x ∈ U I V . It follows that there
exist x0 ∈ U and x1 ∈ V such that x0 ◦ x1↓ and x0 ◦ x1 4 x. By assumption, x1 ∈ U I−−W
and we have x1 4 x1, x0 ◦ x1↓ and x0 ∈ U, so it follows that x0 ◦ x1 ∈ W. Finally, W is
an up-set, so x0 ◦ x1 4 x entails x ∈ W, and the verification is complete. ut

We can now get the soundness and completeness of the layered graph semantics
with respect to ILGLH as a special case of the algebraic semantics. Note that a persistent
valuation V : Prop → ℘(X) corresponds uniquely to a valuation V′ : Prop → Up(X).
By definition, for each propositional variable p,V(p) is an up-set of the preorder (X,4)
and trivially an up-set of (X,4) is an element of ℘(X). We can thus use a persistent
valuation to generate an interpretation ~−�V on the layered Heyting algebra generated
by (X,4,@E).

Proposition 10. For any layered graph modelM with valuationV : Prop→ ℘(X) and
every formula ϕ of ILGL, we have ~ϕ�V = {G ∈ X | G |=M ϕ} ∈ Up(X). ut

Hence the layered graph semantics of ILGL is a special case of the algebraic se-
mantics and ILGLH is sound and complete with respect to the layered graph semantics.

Proposition 11 (Equivalence of the Hilbert and tableaux systems). ` ϕ is provable
in ILGLH iff there is closed tableau for ϕ. ut

5 Extension to resources and actions: examples

To express the examples mentioned in Section 1 conveniently and efficiently, we con-
sider an extension of layered graph semantics and ILGL in which we label the am-
bient graph with resources and consider action modalities (cf. Stirling’s intuitionistic
Hennessy–Milner logic [32]) that express resource manipulations. This extension intro-
duces a degree of statefulness to ILGL without changing the underlying semantics.

This extension is based on an assignment of a of a set of resources R to the vertices
of the graph G. That is, each r ∈ R is situated at vertices of G. Such assignments are
denoted G[R], where we think of G as the (directed) graph of locations in a system
model. Resources should also carry sufficient structure to allow some basic operations
on resource elements. In [26, 8, 7], resources are required to form pre-ordered partial
monoids, such as the natural numbers (N,≤,+, 0), and we use this approach here. Let
(R,v, ◦, e) be a resource monoid, where R is a collection of sets of resources and ◦ :
R × R → R is a commutative and associative binary operation. It is easy to see that
assignments of resources can be composed and that the algebraic semantics can be
easily extended (cf. [9]).

Lemma 11. Consider @ and ◦. Both are binary operations with @ non-commutative
and non-associative while ◦ is commutative and associative. A non-commutative, non-
associative operation on graphs labelled with resources can be defined.



Proof. We have @E : G×G → G and ◦ : R×R → R. Define •E : (G×R)× (G×R)→
(G × R) as (G1,R1) •E (G2,R2) = (G1 @EG2,R1 ◦ R2). It is clear that •E is both non-
commutative and non-associative. ut

We write G[R] 4 G′[R′] to denote the evident containment ordering on labelled graphs
and resources (i.e., G′ is a subgraph of G and R v R′). We assume also a countable set
Act of actions, with elements a, etc.. Action modalities, 〈a〉 and [a] manipulate (e.g.,
add to, remove from) the resources assigned to the vertices of the graph.

Definition 19 (Satisfaction in resource-labelled models). We extend layered graph
models to graphs labelled with resources and extend the interpretation of formulae to
the action modalities. For a resource monoid R, a countable set of actions, Act, and a
layered graph modelM = (X,V) over labelled graphs, with the containment ordering
on labelled graphs, we generate the satisfaction relation |=M⊆ X[R] × Form as

G[R] |=M > always G[R] |=M ⊥ never G[R] |=M p iff G[R] ∈ V(p)
G[R] |=M ϕ ∧ ψ iff G[R] |=M ϕ and G[R] |=M ψ G[R] |=M ϕ ∨ ψ iff G[R] |=M ϕ or G[R] |=M ψ

G[R] |=M ϕ→ ψ iff, for all G′[R′] such that G[R] 4 G′[R′], G′[R′] |=M ϕ implies G′[R′] |=M ψ

G[R] |=M ϕ1 I ϕ2 iff for some G1[R1],G2[R2] such that G1[R1] •E G2[R2] 4 G[R],
G1[R1] |=M ϕ1 and G2[R2] |=M ϕ2

G[R] |=M ϕ−−Iψ iff for all G[R] 4 H[S ] and all K[T ] such that H[S ] •E K[T ]↓,
K[T ] |=M ϕ implies (H[S ] •E K[T ]) |=M ψ

G[R] |=M ϕI−−ψ iff for all G[R] 4 H[S ] and all K[T ] with K[T ] •E H[S ]↓,
K[T ] |=M ϕ implies (K[T ] •E H[S ]) |=M ψ

G[R] |=M 〈a〉ϕ iff for some well-formed G[R′] such that G[R]
a
→ G[R′], G[R′] |=M ϕ

G[R] |=M [a]ϕ iff for all well-formed G[R′] such that G[R]
a
→ G[R′], G[R′] |=M ϕ ut

We defer the presentation of the metatheory to account for this extension, including
proof systems and completeness results, to another occasion. To do so we follow the ap-
proach of dynamic epistemic logics [33], wherein the transitions underlying the action
modalities correspond to maps between models rather than states. It is clear persistence
will not (and should not) hold for action modalities, but at any given model persistence
will hold. To extend the tableaux system we should instead take sequences of CSSs,
together with a history of actions following similar approaches in the proof theory of
Public Announcement Logic [3].

Example 1 (A transportation network). Here we abstract a public transportation net-
work into social and infrastructure layers. For a meeting in the social layer to be quo-
rate, sufficient people (say 50) must attend. To achieve this, there must be a buses of
sufficient capacity to transport 50 people, represented as resources, to the meeting hall,
in the infrastructure layer (see Figures 8 and 9). The formula φquorum denotes a quorate
meeting, φx denotes that x number of people are picked up at bus stops, and the ar-
rival of buses of capacity x in the infrastructure layer is denoted by the action modality
〈 busx〉. These actions move x amount of people from the bus stops to the meeting hall
in the social layer. Let φmeeting assert the existence of a meeting in the social layer, G1.
Then, if G2 denotes the graph of the infrastructure layer, we have the formulae

G2[R] |=M 〈bus25〉〈bus35〉((φmeeting I φ50)−−I φquorum)
G2[R] |=M 〈bus40〉((φmeeting I φ40)−−I¬φquorum)
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Fig. 9. Buses arrive at meeting

which assert that having two buses available with a total capacity of more than 50 will
allow the meeting to proceed, but that a single bus with capacity 40 will not.

Example 2 (A security barrier). This example (see Figure 10) is a situation highlighted
by Schneier [30], wherein a security system is ineffective because of the existence of a
side-channel that allows a control to be circumvented. The security policy, as expressed

outside road

inside road

security 

barrier

missing fence

route of vehicle

Fig. 10. The security barrier and
side channel

E

E
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Outside

Inside

Security  
layer

Routes 
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Fig. 11. The layered graph model

in the security layer, with graph G1, requires that a token be possessed in order to pass
from from the outside to the inside; that is, 〈pass〉(φinside → φtoken). However, in the
routes layer, with graph G2, it is possible to perform an action 〈swerve〉 to drive around
the gate, as shown in the Figure 11; that is,

G1 @EG2 |=M (〈pass〉(φinside → φtoken) I 〈swerve〉(φinside ∧ ¬φtoken))

Thus we can express the mismatch between the security policy and architecture to which
it is intended to apply.

Example 3 (An organizational security architecture). Our final example concerns an
organization which internally has high- and low-security parts of its network. It also
operates mobile devices that are outside of its internal network but able to connect to it.
Figure 12 illustrates our layered graph model of this set-up. We can give a characteriza-
tion in ILGL of a side channel that allows a resource from the high-security part of the
internal network to transfer to the low-security part via the external mobile connection.
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Fig. 12. Organizational Security Architecture

Associated with the mobile layer are actions that allow the transference We have two
local compliance properties, in the high- and low-security parts of the network, respec-
tively: χhigh(r) describes compliance with a policy allowing resource in the high-security
network and χsec(r) is a correctness condition that if a resource r is not permitted in the
low-security network, then it is not in it. We take actions copy, download, upload asso-
ciated with the mobile layer G2, allowing data to be copied to another location as well
as moved down and up E-edges respectively, with θ(r) a compliance property such that
G2[R] |=M 〈copy〉θ(r) in order to copy data r. Now we have that

G2[R] |=M 〈download〉((χhigh(r) I θ(r)) ∧ 〈copy〉〈upload〉(θ(r) I ¬χsec(r)))

showing that the mobile layer is a side channel that can undermine the policy χsec.

6 Conclusions and further work

Much meta-theoretic work remains to be done. In particular, a decidability result. ILGL
is closely related to BI, a logic which enjoys the finite model property (FMP). It is
apparent that our countermodel construction method is irreducibly infinite. However, if,
as in BI, we base the tableaux system on the algebraic semantics, we conjecture we will
obtain the FMP. The similarity of ILGL to BI raises another possible line of inquiry.
It has been shown [17] that BI faithfully embeds into its classical variant BBI: is the
same true of ILGL and LGL? Similarly, it is clear that by considering the multiplicative
connectives to be ternary modalities we obtain a modal intuitionistic logic of the sort
described in (e.g., [31, 5, 13]). We wish to investigate if the connectives generalize the
modalities of any of those systems. Besides this, we have already completed work on a
display calculus with cut-elimination and topological semantics extending those of IPL.

More substantially, we wish to develop a modelling technology based on layered
graph logics. A simple dynamic variant is given in Section 5 and we must first ensure
its meta-theoretic foundations are sound, following our conjectured proof-sketch. From
there we will build extensions which take seriously the notions of agent and resource.
Preliminary work in this direction appears in the papers of one of us [11, 1, 2], but,
unlike those papers, our approach will take inter-relations with architecture as a central
notion.
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A Proof of completeness of tableaux for layered graph semantics

We provide the proofs omitted from the body of the paper.

Proof (Lemma 5).

1. Let cic j ∈ D(C). Then by CS S property (Contra) we have c jci < D(C). Hence by
definition of Ω we have (ci, c j) ∈ E and (c j, ci) < E. Thus ci @E c j ↓ as required.
The other direction is trivial.

2. Immediate from 1. and the definition of Ω.
3. The right-to-left direction is trivial, so assume xΩ @E yΩ ↓. There are three possible

cases for x and y other than x = ci and y = c j: we attend to one as the others are
similar. Suppose x = cic j and y = ck. Then xΩ @E yΩ ↓ must hold because of either
(ci, ck) ∈ E or (c j, ck) ∈ E. That is, cick ∈ D(C) or c jck ∈ D(C). In both cases the
CS S property (Freshness) is contradicted so neither can hold. It follows that only
the case x = ci and y = c j is non-contradictory, and so by 1. cic j ∈ D(C). ut

Proof (Lemma 6). G is clearly a graph and 4 being a preorder on X can be read off of
the rules for the closure of constraint sets. Thus the only non-trivial aspects of the proof
are that X is admissible and thatV is persistent.

- X is an admissible subgraph set.
Let G,H ∈ Sg(G) with G @E H ↓. First we assume G,H ∈ X. Then G = xΩ and



H = yΩ for labels x, y. By the previous lemma it follows that x = ci and y = c j and
cic j ∈ D(C). Thus G @E H = cΩi @E cΩj = (cic j)Ω ∈ X. Now suppose G @E H ∈ X.
Then G @E H = xΩ for some x ∈ D(C). The case x = ci is clearly impossible as
E(cΩi ) = ∅ so necessarily x = cic j. Then we have ci, c j ∈ D(C) as sub-labels of cic j

and cΩi @E cΩj ↓ with cΩi @E cΩj the only possible composition equal to (cic j)Ω. It
follows that G = cΩi ∈ X and H = cΩj ∈ X as required.

- V is a persistent valuation.
Let G ∈ V(p) with G 4 H. Then G = xΩ and H = yΩ for some x, y ∈ D(C) with
x 4 y ∈ C. By definition ofV there exists z ∈ D(C) with z 4 x ∈ C and Tp : z ∈ F .
By closure rule 〈Tr〉 we have z 4 y ∈ C so H = yΩ ∈ V(p). ut

Proof (Lemma 7). We proceed by a simultaneous structural induction on ϕ.

- Base cases.
• Case Fp : x ∈ F . We suppose that xΩ |=M p. Then xΩ ∈ V(p). By the definition

ofV, there is a label y such that y 4 x ∈ C and Tp : y ∈ F . Then by condition
(1) of Definition 11, 〈F ,C〉 is not a Hintikka CSS, a contradiction. It follows
that xΩ 6|=M p.

• Case Tp : x ∈ F . By property (Re f ), x 4 x ∈ C. Thus, by definition of V we
have xΩ ∈ V(p). Thus xΩ |=M p.

• Cases F⊥ : x ∈ F , T⊥ : x ∈ F , F> : x and T> : x are straightforward conse-
quences of the definition of Hintikka CSS and the layered graph semantics.

- Inductive step. We now suppose that (1) and (2) hold for formulæ ϕ and ψ (IH). We
attend only to the cases 〈T→〉, 〈T I〉 and 〈T−−I〉 as the others are similar.
• Case Tϕ→ ψ : x ∈ F . Suppose xΩ 4 yΩ. Then x 4 y ∈ C and by Definition 11

property (8) it follows that Fϕ : y ∈ F or Tψ : y ∈ F . By (IH) it follows that if
yΩ |=M ϕ then yΩ |=M ψ as required.

• Case Tϕ I ψ : x ∈ F . By Definition 11 property (10) there exist labels ci, c j ∈

D(C) such that cic j 4 x ∈ C and Tϕ : ci ∈ F and Tψ : c j ∈ F . By (IH)
we have cΩi |=M ϕ and cΩj |=M ψ. Further, by definition of Ω we have that
(cic j)Ω = cΩi @E cΩj 4 xΩ, so xΩ |=M ϕ I ψ.

• Case Tϕ−−Iψ : x ∈ F . Suppose xΩ 4 yΩ with yΩ @E zΩ ↓ and zΩ |=M ϕ.
By Lemma 5 we know y = ci, z = c j ∈ A(C) with cic j ∈ D(C). Hence by
Definition 11 property 12, either Fϕ : c j ∈ F or Tψ : cic j ∈ F . By (IH) it
follows either cΩj |=M ϕ or (cic j)Ω = cΩi @E cΩj |=M ψ. As we know the former
cannot be true, it must be the latter. Hence xΩ |=M ϕ−−Iψ as required. ut

Proof (Proposition 4). See [25]. ut

Proof (Proposition 5). See [25]. ut

Proof (Lemma 8). For ⊆-closure and finite character see [25]. We show the cases 〈T I〉
and 〈T−−I〉 for saturation: the rest are similar. Let 〈F ,C〉 ∈ P



– Tϕ I ψ : x ∈ F . We show 〈F ∪ {Tϕ : ci,Tψ : ciC},C ∪ {cic j 4 x}〉 ∈ P. Let
〈F f ,C f 〉 ⊆ f 〈F ∪ {Tϕ : ci,Tψ : ciC},C ∪ {cic j 4 x}〉 ∈ P. Since, Tϕ I ψ : x ∈ F ,
by compactness, there exists C0 ⊆ f C such that x 4 x ∈ C0. Now define

F ′f = (F f \ {Tϕ : ci,Tψ : c j}) ∪ {Tϕ I ψ : x}

C′f = C f ∪ C0

Then 〈F ′f ,C
′
f 〉 is a CSS and 〈F ′f ,C

′
f 〉 ⊆ f 〈F ,C〉 so it is consistent. We have that

[〈F ′f ∪ {Tϕ : ci,Tψ : c j},C
′
f ∪ {cic j 4 x}〉] is a tableau for 〈F ′f ,C

′
f 〉. Thus if it

is possible for 〈F ′f ∪ {Tϕ : ci,Tψ : c j},C
′
f ∪ {cic j 4 x}〉 to be closed then so too

is it for 〈F ′f ,C
′
f 〉: a contradiction. Hence it is consistent. We have that 〈F f ,C f 〉 ⊆

〈F ′f ∪ {Tϕ : ci,Tψ : c j},C
′
f ∪ {cic j 4 x}〉 so 〈F f ,C f 〉 is consistent by Proposition 5.

– Tϕ−−Iψ : x ∈ F and x 4 y, yz 4 yz ∈ C. Suppose neither 〈F ∪ {Fϕ : z},C〉 ∈ P
nor 〈F ∪ {Tψ : yz},C〉 ∈ P. Then there exist 〈F A

f ,C
A
f 〉 ⊆ f 〈F ∪ {Fϕ : z},C〉 and

〈F B
f ,C

B
f 〉 ⊆ f 〈F ∪ {Tψ : yz},C〉 that are inconsistent. By compactness, there exist

C0,C1 ⊆ C such that z 4 z ∈ C0 and yz 4 yz ∈ C1. Thus we define F ′f = (F A
f \ {Fϕ :

z}) ∪ (F B
f \ {Tψ : yz) ∪ {Tϕ−−Iψ : x and C′f = CA

f ∪ C
B
f ∪ C0 ∪ C1. Then 〈F ′f ,C

′
f 〉

is a finite CSS and [〈F ′f ∪ {Fϕ : z},C′f 〉; 〈F
′
f ∪ {Tψ : yz},C′f 〉] is a tableau for it.

We have 〈F A
f ,C

A
f 〉 ⊆ f 〈F

′
f ∪ {Fϕ : z},C′f 〉 and 〈F B

f ,C
B
f 〉 ⊆ f 〈F

′
f ∪ {Tψ : yz},C′f 〉 so

by ⊆-closure of consistency 〈F A
f ,C

A
f 〉 and 〈F B

f ,C
B
f 〉 are inconsistent: respectively

let TA and TB be closed tableaux for them. Then TA ⊕ TB is a closed tableau for
〈F ′f ,C

′
f 〉 and the CSS is inconsistent: contradicting 〈F ′f ,C

′
f 〉 ⊆ f 〈F ,C〉 ∈ P. ut

Proof (Proposition 6). Only 2 is non-trivial. and we prove it by induction on i. The base
case i = 0 is given by our initial assumption. Now for the inductive hypothesis (IH) we
have that 〈Fi,Ci〉 ∈ P. Then the inductive step is an immediate consequence of Lemma
8 for the non-trivial cases. ut

Proof (Proposition 7).

1. First note that 〈F∞,C∞〉 is a CSS since each stage of construction satisfies (Ref) and
by our choice of constants throughout the construction (Contra) and (Freshness) are
satisfied. Further, it is open since otherwise there would be some stage 〈Fk,Ck〉 at
which the offending closure condition is satisfied, which would contradict that each
〈Fi,Ci〉 is consistent. Now let 〈F f ,C f 〉 ⊆ f 〈F∞,C∞〉. Then there exists k ∈ N such
that 〈F f ,C f 〉 ⊆ f 〈Fk,Ck〉. By Proposition 〈Fk,Ck〉 ∈ P so it follows 〈F f ,C f 〉 ∈ P.
As P is of finite character, we thus have 〈F∞,C∞〉 ∈ P.

2. First note that 〈F∞∪{Sϕ : x},C∞〉 is a CSS so (Contra) and (Freshness) are satisfied
when the label x is introduced. By compactness, there exists finite C0 ⊆ C∞ such
that x 4 x ∈ C0. As it is finite, there exists k ∈ N such that C0 ⊆ Ck and by fairness
there exists l ≥ k such that Slχl : (xl) ≡ Sϕ : x. Since (Freshness) and (Contra) are
fufilled with respect to F∞ they are also fulfilled with respect to Fl ∪ {Sϕ : x} so
〈Fl+1,Cl+1〉 = 〈Fl∪{Sϕ : x},Cl〉 ∈ P and 〈Fl+1,Cl+1〉 = 〈Fl∪{Sϕ : x}∪Fe,Cl∪Ce〉.
Hence Sϕ : x ∈ F∞. ut

Proof (Lemma 9). For properties (1)− (3) we have that 〈F∞,C∞〉 is open,. For the other
conditions, the saturation property of the oracle P and 2. of Proposition 7 suffice. ut



Proof (Theorem 2). Suppose there exists no proof for the formula ϕ. Then by Lemma
9 we can construct the Hintikka CSS 〈F∞,C∞〉 from T0 = [〈{Fϕ : c0}, {c0 4 c0)}〉] as
outlined above, with Fϕ : c0 ∈ F∞. Then by Lemma 7, Ω(〈F∞,C∞〉) is a countermodel
for ϕ. That is, ϕ is not valid.


