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Abstract
Adblocking tools like Adblock Plus continue to rise in

popularity, potentially threatening the dynamics of ad-
vertising revenue streams. In response, a number of
publishers have ramped up efforts to develop and de-
ploy mechanisms for detecting and/or counter-blocking
adblockers (which we refer to as anti-adblockers), ef-
fectively escalating the online advertising arms race. In
this paper, we develop a scalable approach for identi-
fying third-party services shared across multiple web-
sites and use it to provide a first characterization of anti-
adblocking across the Alexa Top-5K websites. We map
websites that perform anti-adblocking as well as the en-
tities that provide anti-adblocking scripts. We study the
modus operandi of these scripts and their impact on pop-
ular adblockers. We find that at least 6.7% of websites in
the Alexa Top-5K use anti-adblocking scripts, acquired
from 12 distinct entities – some of which have a direct
interest in nourishing the online advertising industry.

1 Introduction

Today’s web ecosystem is largely driven by online adver-
tising. However, recent years have seen a large number
of users turn to adblocking and tracker-blocking tools1

for the purposes of improving their web-browsing expe-
rience, maintaining privacy, and more recently to pro-
tect themselves against malware [21, 25]. With a recent
study estimating the number of active adblock users to be
198M and revenue losses due to adblockers at $22B [22],
the threat posed by adblockers to the online advertising
revenue model has moved from mildly concerning to ex-
istential. In response, publishers have started to actively
detect users of adblockers, and subsequently block them
or otherwise coerce them to disable the adblocker – in
the rest of the paper, we refer to these practices as anti-

1While adblocking differs from tracker-blocking, to ease presentation,
we refer to tools that provide any of these properties as adblockers.

adblocking. Most recently, this practice gained wide at-
tention with the endorsement of the Internet Advertis-
ing Bureau (IAB) when, in March 2016, it released a
primer on how to deal with users of adblockers, as well
as a semi open-source script2 for detecting the use of ad-
blockers [12]. The tension between key stakeholders in
this ecosystem – publishers, users, and a plethora of in-
termediate beneficiaries – forms part of what has been
dubbed as the adblocking arms race [26].

Motivation. While incidents of anti-adblocking [3, 6,
24, 26], and the legality of such practices [4, 19, 28],
have received increasing attention, current understanding
thereof is limited to a few forums [3] and user-generated
reports [6]. As a result, we lack quantifiable insights into
key questions such as: how prevalent nowadays are such
practices on the Web? Are certain categories of web-
sites more likely to employ anti-adblockers? Who are
the main suppliers of anti-adblocking services? What
mechanisms do these employ to detect the presence of
adblockers? Is it possible for adblockers to counter-block
anti-adblockers? What are common responses after pos-
itive detection of adblockers and their impact on end-
users? In this work, we address these questions by pre-
senting the first characterization of anti-adblocking.

Roadmap. We start with characterizing anti-adblocking
on the Web by identifying anti-adblocking scripts across
Alexa Top-5K sites. To this end, we develop a scal-
able technique to identify popular third-party services
that are shared across multiple websites, and utilize it
to flag anti-adblocking scripts. We then map out the
entities that serve anti-adblocking scripts and the web-
sites that use these scripts. We find that at least 6.7%
of Alexa Top-5K websites conduct some form of anti-
adblocking by downloading 14 scripts from 12 unique
domains most of which belong to ad services, while
one specifically offers anti-adblocking services. Most
of the anti-adblocking websites represent popular cate-

2The script was only made available to members of the IAB.



gories such as news, blogs, and entertainment. We man-
ually visit sample websites from the anti-adblockers and
find that the arms race has already entered the next round:
at least one of three popular browser extensions (Ad-
Block Plus, Ghostery, Privacy Badger) can counter-block
half of the anti-adblocking scripts. We conclude with a
discussion of the anti-adblocking arms race in terms of
ethics and legality, also enumerating existing proposals
that aim to achieve a sustainable and unintrusive online
advertising model.

2 Related Work

Rafique et al. [23] measure anti-adblocking as an in-
cidental aspect of a broader study of malicious and
deceptive advertisements, malware and scams on free
live-streaming services. They find that anti-adblocking
scripts were used by 16.3% of the 1,000 domains they
crawled, which is a bit higher than what we find in
the Alexa Top-5K (6.7%), although not surprising given
their heavy use of deceptive ads.

Our paper also complements work quantifying and
characterizing non-transparent third-party web services,
as well as revealing users’ differential treatment. For
example, Ikram et al. [13] proposed a machine learn-
ing approach to characterize JavaScripts used for online
tracking and those used for providing website function-
ality. Their work allows privacy-enhancing tools to more
selectively block JavaScripts without breaking website
functionality. Acar et al. [1] and Liu et al. [16] mea-
sure the prevalence of tracking across large datasets of
websites, while Mayer [17] studies the effectiveness of
some adblocking and anti-tracking tools against those
sites. Khattak et al. [14] assess discrimination against
Tor users at the network and application layer. Various
studies investigate price discrimination [11, 20] and its
methods [7] employed by online marketplaces, and there
are other studies on filter bubbles – the effect where high
web personalization leads to users being locked in infor-
mation silos [10, 29].

All of these studies illuminate the nature and scale
of opaque practices on the web, informing our under-
standing of complex and multidimensional ecosystems.
Our work complements previous studies by presenting a
novel technique to identify shared objects across multi-
ple websites at scale, and utilizing this approach to pro-
vide a first look at how the Web employs anti-adblocking
techniques.

3 Methodology

This section presents our method for identifying third-
party services that are shared between multiple websites.

We describe the technique in the context of identifying
shared anti-adblocking JavaScripts (JS). The premise of
our approach is that by discovering similar objects (in
our case, JavaScripts) that are loaded by multiple web-
sites, we can infer the presence of a common third-party
JS, its functionality and its source.
Crawler overview. We rely on a Selenium-based web
crawler to generate the set of JavaScripts to analyze.
We load each website in our dataset with four browser
modes – vanilla Firefox (with no extensions), Firefox
with AbBlock Plus, Firefox with Ghostery, and Firefox
with Privacy Badger. For each page load, we capture
screenshots, HTML source code, and responses to all
requests generated by the browser. We extract all the
text between <script> and </script> tags from the
HTML and label them as embedded JS. Similarly, we
detect all JS objects in the collected responses and label
them as downloaded JS. In total, the Top-5K Alexa web-
sites generate over 200K individual JS files when loaded
with the vanilla Firefox browser.
Identifying JS objects with common sources. We for-
mulate our problem of finding groups of similar JS as a
maximal clique finding problem [5]. We consider each
JS file loaded by a website to be a node in a graph. If two
nodes are within some margin of similarity of each other
(we define our similarity metric below), we say there is
an edge between them. We extract classes of JS that have
a common source by identifying all maximal cliques in
this graph. By intentionally focusing on finding similar
JS (rather than identical JS) we allow for the grouping
of objects that differ only slightly because they contain
website-specific identifiers, features and properties.
Choice of similarity metric and threshold. In order
to add an edge between two nodes in the graph (i.e., to
indicate that two JS files in two different websites are
similar), we need to define a metric for similarity, and a
suitable threshold for this metric. To measure the sim-
ilarity of two JS files, we use Term Frequency–Inverse
Document Frequency (TF-IDF) to generate a vector of
keyword weights for each JS file after filtering out JS re-
served words, such as function and var. We then
use the cosine similarity metric to measure the similarity
of the two keyword weight vectors. Similar approaches
using both TF-IDF and cosine similarity have been used
by the information retrieval community for topic identi-
fication and similarity checking of source-code [15, 30].
We note that this method is particularly well suited to
our task compared to other string matching approaches
because it is:

• White-space insensitive: Many websites perform
script minification using different libraries, yielding
different indentation and white-spacing practices.
Our approach is unaffected by these complications.
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Figure 1: Effect of the similarity threshold parameter on the
True Positive Rate (TPR) and the number of maximal cliques.

• Position insensitive: In scripts that have several
functionalities (e.g., tracking and ad-block detec-
tion), the position of each specific function is irrel-
evant to the similarity score.

• Reasonably resistant to noise: Small changes (e.g.,
website specific identifiers) have little impact on the
final similarity score.

In order to determine a similarity score threshold, we
perform a series of experiments on a small dataset of
4.4K JS files extracted from the Alexa Top-100 web-
sites. In each experiment, we set a similarity thresh-
old between 0.40 and 1.00 and compute the cliques in
each of the corresponding graphs. We then manually in-
spect the cliques extracted at each threshold to identify
the fraction of cliques containing JS with identical func-
tionality and sources. Using this approach, we find that at
a similarity threshold of 0.80, 17/20 cliques returned by
our program contain scripts with identical functionality
and sources, i.e., achieving True Positive Rate (TPR) of
0.85. In Figure 1, we illustrate the change in TPR along
with the number of cliques returned as the threshold in-
creases. Although thresholds above 0.90 yield TPR=1.0,
the number of cliques returned drops significantly, which
will result in lower True Negative Rates (TNR). There-
fore, following a conservative stance, we use a threshold
of 0.80 for the remainder of our experiments.

Improving scalability. Our approach involves comput-
ing the cosine similarity between each pair of keyword
weight vectors, thus requiring O(n2) vector multiplica-
tions for n JS files. Given the large number of JS files
used by websites (e.g., the Alexa Top-5K sites contained
over 200K JavaScripts), this may not scale with large
datasets. Therefore, we use a set of heuristically devel-
oped filters to eliminate comparisons between scripts that
are unlikely to ever be part of the same clique:

• Word-count filter: We avoid comparing scripts with
significant word-count difference. Specifically, if a
pair of scripts has a word-count ratio higher than
1.50, we assume that they are unlikely to be a part
of the same clique and set their similarity to 0.

Cliques Websites

Downloaded 1,373 3,619
Embedded 509 2,070
Trackers 456 2,741
Anti-Adblockers 22 335

Table 1: The number of total cliques (out of 1,882 found)
and those related to tracking and anti-adblocking, along with
the number of websites that incorporate these scripts (totalling
4,017 websites, computed over 200K downloaded and embed-
ded scripts).

• Embedded vs. downloaded script filter: JavaScript
is either embedded in the source HTML for page-
specific functionality, or downloaded separately
from external sources to provide site-wide function-
ality. We do not consider them as the same type of
identity thus we set their similarity to 0.

• Source filter: If two JavaScripts are fetched from
the exact same URL, we mark them as identical.

• JS domain filter: JavaScript can communicate with
external sources indicated by embedded URLs. We
assume that for any pair of scripts, if one communi-
cates with external sources and the other does not,
their functionality is different and set their similar-
ity score to 0.

Source and functionality identification. Once maximal
cliques of similar scripts are identified, the content and
meta-data of each script in a clique is used to generate
and log: (i) the FQDN (Fully Qualified Domain Name)
of the script’s source, (ii) FQDNs of external resources
utilized by the script, and (iii) keywords associated with
the script. In Section 4, we use these three features, in
addition to content of the script, to classify cliques by
functionality.
Method limitations. We acknowledge that our method
has a few limitations. First, our similarity metric will
fail to identify obfuscated JS code. Second, given that
we do not compare downloaded with embedded JS code,
we may fail to identify small cliques in which a re-
duced number of sites integrate an anti-adblocking JS
in a different way than is normal. Finally, our method
may fail to identify similarities between composed JS–
i.e., scripts that consist of multiple individual files down-
loaded as a single object. As a result, our method only
provides a lower-bound approximation of the usage of
anti-adblocking across websites. We plan on addressing
these limitations in future work.

4 Dataset and Results

We apply our clique detection methodology to the JS
objects fetched by our crawler using the vanilla Fire-
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fox browser. We restrict our analysis to cliques of size
greater than 5 – i.e., JavaScripts shared by more than
5 sites in our dataset – as we are interested in identi-
fying scripts that are shared across many websites. We
acknowledge that this approach might fail to flag anti-
adblocking scripts utilized by individual or a small num-
ber of websites, and those used by a few websites in the
Alexa Top-5K but popular among websites ranked above
5K. As shown in Table 1, we find 1,373 cliques that are
shared among 3,619 websites in the downloaded files,
with an average of 232 websites per clique (σ=365.6)
and the largest clique having 1,320 websites (which we
find, via manual inspection, is a JS related to jQuery).
Among the embedded scripts, 509 cliques are shared by
2,070 websites (µ=41.2 σ=48.9 max=261).

We manually analyze all the 1,882 cliques (corre-
sponding to 4,017 unique websites) identified for both
downloaded and embedded scripts, and tag them as
trackers (if they upload information such as IP addresses
and cookies to tracking companies), anti-adblockers (if
they check for the presence of adblockers), or oth-
ers. Manual analysis is performed by identifying exter-
nal libraries and function specific keywords used in the
scripts. We note that manual analysis of JS is a tedious
process that does not scale to a larger number of scripts,
therefore we leave as part of future work to investigate
ways to automate JS tagging.

We uncover 22 cliques used for anti-adblocking em-
ployed by 335 websites – about 6.7% of Alexa Top-5K
websites. We observe that Alexa Top-1K have 60 anti-
adblocking websites, and the number increases by about
70 websites for every additional 1K considered, reaching
335 anti-adblocking websites in Top-5K. While study-
ing anti-adblockers, we also identify 456 tracking cliques
employed by about 54% of Alexa Top-5K, validating
previous studies on the pervasiveness of tracking over the
Web [8].
Anti-adblocking by website categories. In Table 2, we
report the categories of the 335 anti-adblocking web-
sites, using McAfee’s URL categorization service [18].
We find that anti-adblocking is common among a di-
verse mix of publishers, and prevalent among publish-
ers of “General News” (19.5%), “Blogs/Wiki” (9.3%),
and “Entertainment” (8.5%) categories, which represent
more than one third of all websites. Note that these
categories are also among the most popular ones across
all Top-5K Alexa domains, although to a lesser extent
– respectively, 9.4%, 6.29%, and 5.4%. Whereas, other
popular categories among Top-5K domains (e.g., “Inter-
net services”, “Online Shopping”, “Business”, which ac-
count for 20% of the Top-5K) are much less prevalent in
anti-adblocking websites.
Website response to detection of adblockers. In order
to assess how anti-adblocking websites behave once they

% Category % Category

19.5% General News 2.5% Pornography
9.3% Blogs/Wiki 2.5% Forum/Bulletin Boards
8.5% Entertainment 2.2% Technical/Business Forums
4.3% Internet Services 2.2% Potential Illegal Software
3.7% Sports 2.0% Online Shopping
3.7% Games 1.7% Portal Sites
3.2% Travel 1.7% Humor/Comics
3.2% Education/Reference 1.2% Social Networking
2.7% Business 1.2% Provocative Attire
2.5% Software/Hardware 1.2% Marketing/Merchandising

Table 2: Distribution of anti-adblocking websites by category
according to McAfee’s URL categorization.

identify adblockers, we look at all the screenshots taken
by our crawler, respectively, when using the vanilla Fire-
fox browser with no extensions and the Firefox browser
with AdBlock Plus enabled (which we assume is more
likely to be detected due to its popularity [21]) .

We note cases where there is an explicit (i.e., warning
to disable adblocker) or a discrete (i.e., blank page via
AdBlock Plus, but normal appearance without) response
to adblocking. For these websites, we also view screen-
shots when accessed by the Firefox browser with each of
the following extensions: Ghostery, Privacy Badger, and
NoScript.

We find only 6 explicit and no discrete responses
to adblocking. Of the explicit responses, 3 are dis-
played by porn websites hosted by the same company
– MindGeek – and employ the same anti-adblocking
script downloaded from DoublePimp. The warning is
displayed for both AdBlock Plus and Ghostery. The re-
maining 3 also employ the same script, but display differ-
ent messages (only for AdBlock Plus) with the same gen-
eral theme, i.e., nudging the user to disable the adblocker
and/or support the website via subscription or donation.

Some websites display adblocker warning to users af-
ter they engage in some form of activity, such as clicking
on links or scrolling. To capture such responses, we re-
peat the above exercise for screenshots taken after mim-
icking user activity – specifically, clicking on a random
link on the page, scrolling down to the bottom of the
newly loaded page, waiting three seconds, then scrolling
back up to the top of the page, waiting 5 seconds. While
the modified methodology validates our previous obser-
vations, we do not discover any new responses.

In the attempt of automating the analysis of websites’
response to anti-adblocking, we have also tried to use im-
age comparison tools, such as perceptual hashing. How-
ever, this generates a high number of false positives due
to dynamic content on many sites as well as false nega-
tives since anti-adblocking warnings and messages gen-
erate a relatively small visual difference.

How anti-adblockers work. Next, we manually in-
spect the 22 anti-adblocking scripts (14 downloaded and
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Domain Description #Sites ABP Gh PB

pagefair.com Anti-adblocking 20 3 7 3

googleadservices.com Ads 61 7 7 7

googlesyndication.com Ads 13 7 7 7

taboola.com Ads 36 7 3 3

outbrain.com Ads 10 7 3 3

ensighten.com Ads 6 7 3 7

hotjar.com Analytics 9 7 7 7

doublepimp.com Pornography 8 7 3 7

tacdn.com Travel 8 7 7 7

cloudflare.com CDN 50 7 7 3

cloudfront.net CDN 6 7 7 7

ytimg.com Content/Ads 108 7 7 7

Table 3: Domains from which anti-adblocking scripts are
downloaded and #websites employing them. The table’s right
side reports whether AdBlock Plus, Ghostery, and Privacy Bad-
ger counter-block anti-adblocking scripts from these domains.

8 embedded) aiming to understand how anti-adblocking
scripts detect adblockers. We note that of these only the
14 downloaded scripts are actually useful as the 8 embed-
ded scripts simply redirect to the downloaded scripts. We
find that anti-adblockers operate on a simple premise: if
a bait object (i.e., an object that is expected to be blocked
by ad-blockers – e.g., a JS or DIV element named ads)
on the publisher’s website is missing when the page
loads, the script concludes that the user has an adblocker
installed.

Specifically, the anti-adblocker detects adblockers by
one of the following approaches: (1) The anti-adblocker
injects a bait advertisement container element (e.g.,
DIV), and then compares the values of properties rep-
resenting dimensions (height and width) and/or vi-
sual status (display) of the container element with the
expected values when properly loaded. (2) The anti-
adblocker loads a bait script that modifies the value of a
variable, and then checks the value of this variable in the
main anti-adblocking script to verify that the bait script
was properly loaded. If the bait object is determined
to be absent, the anti-adblocking script concludes that
an adblocker is present. To track whether the user has
turned off the adblocker after being prompted to do so,
the anti-adblocker periodically runs the ad-block check
and stores the last recorded status in the user’s browser
using a cookie or local storage.

Anti-adblocker suppliers. We analyze the source code
of the 14 anti-adblocking scripts and the domains from
which these are downloaded aiming to infer the suppliers
of these scripts. The remaining 8 embedded scripts redi-
rect to anti-adblocking scripts served by Cloudflare
and Taboola. Our analysis is summarized in Table 3.
We also include a description of these domains – based
on the information available on their official websites,
Google search, and McAfee URL categorization ser-

vice [18] – as well as the number of websites in our
dataset that employ the anti-adblocker.

At the top we find Pagefair, a company specialized
in anti-adblocking services, followed by a number of do-
mains related to Google, Taboola, Outbrain and
Ensighten. Overall the anti-adblockers downloaded
from these 5 domains are employed by 48% of all the
315 websites employing anti-adblockers. We note that
these domains are direct beneficiaries of anti-adblocking
as these inherently thrive on the prevalence of online ad-
vertisements. Though not directly related to online ad-
vertisement, the ability to detect adblockers is a useful
capability for the analytics company HotJar.

We also find two cases where the anti-adblocking
script is shared by entities in the same domain or busi-
ness: TripAdvisor (tacdn.com) distributes the script
to its 8 websites with different country code top-level
domains. Adult websites, all of which are hosted by
MindGeek, turn to DoublePimp for anti-adblocking.
Two anti-adblocking scripts are pulled from popular
Content Delivery Networks (CDNs), but we could not
determine their original supplier. Finally, ytimg (a con-
tent server associated with YouTube) serves a script that
has the ability to detect if ads were properly loaded, how-
ever, it is not clear how it uses this information.
Adblocker response to being blocked. There is anec-
dotal evidence that the adblocking arms race has en-
tered the next level: some adblockers can detect anti-
adblockers and counter-block them [27]. To test for
this behaviour, we visit a sample website for each anti-
adblocking script via AdBlock Plus, Ghostery and Pri-
vacy Badger over Chrome web browser. We repeat the
experiment three times and monitor all HTTP requests
generated when loading the website using Chrome’s De-
veloper Tools. We infer that adblocker can counter-
block if the request to fetch anti-adblocking script fails
to be initiated. As reported in Table 3, half of the
12 anti-adblocking suppliers are blocked by at least
one adblocker. Ghostery and Privacy Badger detect 4
anti-adblockers each, while AdBlock Plus detects only
1. Anti-adblocking scripts served by Taboola and
Outbrain are blocked by both Ghostery and Privacy
Badger, PageFair scripts by both AdBlock Plus and
Privacy Badger, while Doublepimp, Ensighten and
Cloudflare scripts by at most one of the three ad-
blockers. We note that the anti-adblocking suppliers
that are never detected are related to content distribution,
Google ad services, analytics, or site-wide scripts.

5 Discussion

The adblocking arms race involves a plethora of players:
between publishers and consumers, a jostling array of in-
termediaries compete to deliver ads, mostly supported by
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business models that involve taking a cut of the resultant
advertising revenue. At the heart of this rich ecosystem
lie important questions regarding the legality and ethics
of adblocking and anti-adblocking.

The legality of adblocking is potentially contestable
under laws about anti-competitive business conduct and
copyright infringement. To date, only Germany has
tested these arguments in court, with adblockers winning
most [4], but not all of the cases [19]. On the other hand,
anti-adblocking in the EU might in turn breach Article
5(3) of the Privacy and Electronic Communications Di-
rective 2002/58/EC, as it involves interrogating an end-
user’s terminal equipment without consent [28].

Many consider adblocking to be an ethical choice for
consumers and publishers to consider from both an in-
dividual and societal perspective. In reality, however,
both sides have resorted to radical measures to achieve
their goals. The Web has empowered publishers and ad-
vertisers to track, profile and target users in a way that
is unprecedented in the physical realm [8]. In addition,
publishers are inadvertantly and increasingly serving up
malicious ads [25]. This has resulted in the rise of ad-
blocking, which in turn has led publishers to employ anti-
adblocking. The core issue is to get the balance right
between ads and information: publishers turn to anti-
adblocking to force consumers to reconsider the default
blocking of ads for earnest ad-supported publishers but
defaults are difficult to shift at scale. Nevertheless, those
publishers will fail if they do not redress in a fundamen-
tal way the reasons that brought consumers to adblockers
in the first place. There exist proposals to provide a com-
promise, such as privacy-friendly advertising [9] as well
as mechanisms to give users more control over ads and
trackers they are exposed to [2, 31]. Our work extends
these efforts by providing quantified insights into anti-
adblocking, to inform policy that can improve upon the
current blocking/counter-blocking deadlock.

6 Conclusion

This paper presented a measurement-based analysis
aimed to provide a first look at the arms race between
adblocking and anti-adblocking. We found that at least
6.7% of Alexa Top-5K websites, mostly in popular cat-
egories like news, blogs, and entertainment, engage in
some form of anti-adblocking. The arms race has already
entered the next level, as at least one of three popular
browser extensions – AdBlock Plus, Ghostery, Privacy
Badger – can evade half of the anti-adblocking scripts
in our dataset. In future work, we plan to extend our
measurements beyond the Alexa Top-5K websites, and
experiment with crowdsourced and/or automated mech-
anisms to tag JavaScript by functionality and to assess
publisher response to detection of adblockers.
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