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Abstract
Angiogenesis modelling is an important tool to understand the underlying mechanisms

yielding tumour growth. Nevertheless, there is usually a gap between models and experi-

mental data. We propose a model based on the intrinsic microscopic reactions defining the

angiogenesis process to link experimental data with previous macroscopic models. The

microscopic characterisation can describe the macroscopic behaviour of the tumour, which

stability analysis reveals a set of predicted tumour states involving different morphologies.

Additionally, the microscopic description also gives a framework to study the intrinsic sto-

chasticity of the reactive system through the resulting Langevin equation. To follow the goal

of the paper, we use available experimental information on the Lewis lung carcinoma to

infer meaningful parameters for the model that are able to describe the different stages of

the tumour growth. Finally we explore the predictive capabilities of the fitted model by show-

ing that fluctuations are determinant for the survival of the tumour during the first week and

that available treatments can give raise to new stable tumour dormant states with a reduced

vascular network.

Introduction
Angiogenesis, the formation of new vessels from pre-existing ones, is a normal and vital pro-
cess in growth and development of animal organisms. It is required during the repair mecha-
nism of damaged tissues like wound healing processes. However, angiogenesis is also essential
in the transition of avascular forms of solid tumours into cancers that are able to metastasise
and cause the lethal outcome of the disease. Hence, angiogenesis promotes cancer growth.

In general, for tumours reaching size of 1-2 mm3 the necrotic core inside the tumour is
formed [1, 2]. At this stage, cancer cells start to secrete angiogenic factors e.g. FGF, VEGF,
VEGFR, Ang1 and Ang2, which promote proliferation and differentiation of endothelial cells,
smooth muscle cells, and fibroblasts, initiating the formation of new blood vessels. Those
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vessels provide the nutrients for growing cancer mass and help to remove the metabolism
waste products. On the other hand, achieving a better control on angiogenesis would also
improve the cancer treatment allowing anti-cancer drugs to penetrate efficiently the tumour
structure through a good functioning vessel network, and hence reduce the tumour mass.

One of the most well known mathematical models describing the influence of angiogenesis
processes on the tumour dynamics was proposed by Hahnfeldt et al. [3]. This model and its
extensions were later studied, among others, by d’Onofrio & Gandolfi [4–6] and by Piotrowska
& Foryś [7, 8]. Additionally, within last years, different treatment protocols were introduced to
the Hahnfeldt et al. type models, and optimal control theory was applied to these modified
models to find a proper timing and dosing of drug administration (see e.g. [9–13]), settling
those models as the paradigm of angiogenesis modelling. However, global stability of a positive
steady state is a weak point of that type of models without delays, since newly formed vessels
usually have highly unstable structure. Moreover, feedback loops observed in the biological sys-
tems can lead to oscillatory dynamics, [14]. To reflect the complex nature of the vessels forma-
tion process, Arakelyan et al. [15] proposed an intricate computational model, which was
compared with implanted human ovarian carcinoma reported in [16]. Next, that complex
model was simplified to the system of three equations with two time delays. The delays pre-
sented in this latter model reflect the length of feedback loops considered as detailed reactions
in the original computational model [15]. Later in [17], it was showed that independently of
the magnitude of delays, the positive steady state is always unstable and the model can not
reflect a stable behaviour of newly formed vessels observed for less aggressive tumours, [18]. In
[19], combining the ideas presented by Hahnfeldt et al. [3] and Agur et al. [20] a model of
three differential equations with discrete delays describing the process of formation of new ves-
sels that could reflect both, stable and unstable, structures of vessels observed in reality was
proposed. Next, in [21] a detailed stability analysis of this model was performed showing that
for some parameters a hysteresis loop can be observed and multiple stability switches can
occur with increasing time delay.

The models described above are mean-field, in the sense that they deal with the dynamics of
the tumour without taking into account its spatial organisation. On the other hand, there are
several models studying this spatial dependence focusing on the patterning of the vascular net-
work without delving into the microscopic details [22–25].

In the current work we aim to bring together the microscopic reactions occurring at cellular
level with the mean-field models looking for the essential features of the non-linear interaction
between cells, vessels and endothelial growth factors, with the goal to build a solid understand-
ing that can be expanded into the spatial models.

Such a microscopic description starts by identifying the system of reactions that governs the
tumour growth. The advantage of having the microscopic description is twofold. On one hand,
a formal derivation of the macroscopic system of ODE and the meaning of the parameters
become available, giving a justification for the type of models considered in [19] and [21].

In contrast, the microscopic description is intrinsically stochastic, formally described by a
multivariate birth-death process [26], that can be decisive in the macroscopic tumour dynam-
ics giving place to effects not present in a pure deterministic description [27–29], and feature
an upcoming effort to integrate them into experimental data [30, 31]. For this reason we also
analyse the stochastic system through exact simulations of the kinetic reactions and by using
the corresponding Chemical Langevin Equation [32] that gives analytical insight on the effect
of intrinsic noise in the macroscopic evolution of the tumour.

Additionally, to give soundness to the prediction of the model we use experimental data to
give meaningful values to each parameter of the model. The result is a working model able to
predict the dynamics of the Lewis lung carcinoma.
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Materials and Methods

Microscopic description
The dynamical evolution of the tumour is determined by the non—linear interactions between
the tumour cells, N, and the effective number of blood vessel cells, V, or to be precise the num-
ber of endothelial cells that lines the interior surface of blood vessels. This interaction takes
place by means of VEGF, the regulating proteins secreted by the tumour cells that promote the
angiogenesis process, P. It is also useful to define the relative quantity E� V/N, which mea-
sures the number of vessel cells that are available per tumour cell i.e. gives a measure of the
amount of nutrient each tumour cell receives.

The different events characterising the dynamics of the system take place at a microscopic
level as a set of events changing individually the population of each species. Following the
molecular analogue, such events will be referred here on as reactions. Some of these reactions
depend on the absolute number of tumour cells/vessels/proteins (denoted by N/V/P, respec-
tively) while others depend on the concentration of each of those species in the system N� � N

O
,

V� � V
O, P

� � P
O, where O is the parameter relating concentrations with the number of cells (or

molecules), giving a measure of the size of the system. The larger is O for a certain concentra-
tion, the greater will be the corresponding number of cells (proteins). The parameters used to
describe the particular reactions are summarised in Table 1.

Cell reactions. The first considered reaction is the cell proliferation in which a cell can
divide giving place to two daughter cells,

N
agb

N�
Kþf1ðEÞ

� �
! N þ N

ð1Þ

where α> 0 is the maximal proliferation rate and gb(�) is a decreasing function capturing intra-
cellular competition for resources. Such a competition will increase with tumour cell concen-
tration N�, causing a reduction in the proliferation rate. On the other hand, the proliferation
capability increases with the amount of nutrients that the tumour cells receive through the ves-
sels f1(E). These assumptions capture a switching behaviour in which the cells proliferate if the

environmental conditions are favourable (N� < K + f1(E)) (Fig 1A). Thus, for a large

Table 1. Microscopic parameters.

Cell Parameters

α maximal proliferation rate

K characteristic tumour size

b1 maximal nutrient supply

c1 switching value of E for nutrient shortage

δN maximal death rate

n, n1, n2 Hill exponents

Protein Parameters

a2 maximal protein production rate

c2 switching value of E for protein production

δP degradation rate

Vessel Parameters

b3 maximal growth rate

a3 maximal death rate

m3 characteristic protein concentration

n3, n4 Hill exponents

doi:10.1371/journal.pone.0155553.t001
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concentration of available nutrients, the cells duplicate with a maximum rate α, (gb(0) = 1),
while the division decay for a lower concentration of nutrients (limx ! 1 gb(x) = 0). In particu-
lar, we assume that gb(�) has the Hill form

gbðxÞ ¼
1

1þ xn1
ð2Þ

with n1 > 0.
The actual concentration threshold (K + f1(E)) depends non-linearly on the concentration

of endothelial cells through E and it is related to the maximal tumour size that can be reached
assuming the effective vessel density is equal to E. The parameter K corresponds to the maxi-
mal tumour size if no vasculature is present. Thus, following the ideas of [19–21], it is assumed
that f1(E) is an increasing Hill function of E such that f1(0) = 0. Additionally, in a nutrient satu-
ration environment there is a maximum response b1.

f1ðEÞ ¼
b1E

n

c1 þ En
ð3Þ

with b1, c1, n> 0 (see Fig 1A).
On the other hand, under hostile conditions cells can also die following similar arguments

of competition and saturation of resources as the growth rate,

N
dNgd

N�
Kþf1ðEÞ

� �
! ; ð4Þ

Fig 1. Rate dependences characterizing tumour, vascular and VEGF dynamics. (A) Effective nutrients
received f1(E) for c1 = 1 and n = 3. (B) VEGF production rate f2(E), dependence on the effective nutrients
available. (C) Rates of proliferation (solid line) and death (dashed line) for the tumour cells with n1 = 2. (D)
Rates of proliferation and death for the vessels dependence with VEGF concentration for n3 = n4 = 2.

doi:10.1371/journal.pone.0155553.g001
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where δN is the maximum death rate and function gd(�) grows with the concentration of
tumour cells and decreases with the nutrient supply, and analogously to [19–21], is assumed a
Hill increasing function,

gdðxÞ ¼
xn2

1þ xn2
ð5Þ

(see Fig 1C). Note that this description assumes the same characteristic tumour size K + f1(E)
for both, the birth and death rate, as a first approximation in order to reduce the complexity of
the model.

Protein reactions. The regulation proteins, that stimulate vessel growth, are secreted by
tumour cells,

N !f2ðEÞ N þ P: ð6Þ

The rate of stimulatory protein secretion f2(E) also depends on the supply of nutrients to the
tumour cells (E) and it is assumed to be a non-negative decreasing function of E that satisfies
(limE ! 1 f2(E) = 0), see [20]. On the other hand, if no vascular network is present, the VEGF
proteins are secreted at a maximum rate a2 (f2(0) = a2) with a characteristic concentration c2,
giving place to the used expression for

f2ðEÞ ¼
a2c2
c2 þ E ð7Þ

(see Fig 1B).
Additionally, the proteins degrade with a constant rate δP,

P!dP ;: ð8Þ

Vessel reactions. Finally, the regulatory proteins secreted by the tumour cells control the
angiogenesis process, thus

V !f3bðP
�Þ

V þ V ð9Þ

V !f3dðP
�Þ ;: ð10Þ

Similarly, to the tumour cell proliferation, the vascular generation/death is controlled by
two switching mechanisms that follow a rate proportional to the number of vessel cells and a
factor dependent on the protein concentration reaching maximum generation/death rates b3,
a3 > 0, and, following the ideas of [20], can be described as

f3bðxÞ ¼ b3x
n3

mn3
3 þ xn3

ð11Þ

f3dðxÞ ¼ a3m
n4
3

mn4
3 þ xn4

ð12Þ

(see Fig 1B), where n3, n4 > 0 andm3 is a characteristic protein concentration under which the
production and degradation of vessels reach half of their maximum values. Specifically, in the
case b3 = a3,m3 is the protein concentration for which vessel cell birth and death are in balance.
More detailed vessel birth and death reactions (9) and (10) would include competition between
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vessels for the available protein. This is not included in this model as a first approximation to
vessel cell dynamics. Table 1 gathers the introduced parameters for the three species and their
interpretation.

Macroscopic system
Once the reaction scheme is set, a coarse grained (macroscopic) approximation can be per-
formed by expressing the resulting temporal dynamics as a system-size expansion. The leading
order term gives the macroscopic behaviour, while the subsequent orders capture the stochastic
nature of the system (for details, see [33]). The resulting macroscopic dynamics follow

dN�

dt
¼ N� agb

N�

K þ f1ðEÞ
� �

� dNgd
N�

K þ f1ðEÞ
� �� �

ð13Þ

dP�

dt
¼ N�f2ðEÞ � dPP

� ð14Þ

dV�

dt
¼ V�ðf3bðP�Þ � f3dðP�ÞÞ: ð15Þ

Systems (13)–(15) describes the evolution in time of the three magnitudes defining the state
of the tumour (tumour cells, proteins and vessel cells) in such a way that any tumour (finite N,
P, V� 0) will evolve to a steady state (see Theorem A in S1 Text). Thus, to determine and clas-
sify the tumour growth dynamics is mandatory to find the steady states of the system

( _N ¼ _V ¼ _P ¼ 0). Different steady states can be associated with different tumour morpholo-
gies with differentiated biological consequences.

Macroscopic tumour morphologies. The steady states of Eqs (13)–(15) will be labelled
alphabetically: A, B and Ci. The trivial steady state

A ¼ ðN�
A; P

�
A;V

�
AÞ ¼ ð0; 0; 0Þ

always exists, and corresponds to the case in which the tumour disappears completely. This
state is always unstable (see Lemma D in S1 Text). In the rest of steady states (N� 6¼ 0), i.e. the
final state of the tumour will always have a finite number of tumour cells so the relative mea-
sure E = V/N is mathematically well defined. To study the existence and stability of these solu-
tions comes in handy to rewrite Eq (15) in terms of E without any loss of generality

dE
dt

¼ f3bðP�Þ � f3dðP�Þ � agb
N�

K þ f1ðEÞ
� �

þ dNgd
N�

K þ f1ðEÞ
� �� �

E: ð16Þ

In order to have a finite tumour (N� 6¼ 0), a balance of production and death of tumour cells
is required (see Eq (13))

agbðgÞ ¼ dNgdðgÞ with g ¼ N�

K þ f1ðEÞ
ð17Þ

where the solution γ is defined uniquely because gb is a decreasing positive function, gd is
increasing non-negative, gd(0) = 0, and gb(1) = 0. In particular, if n1 = n2, then γ is given by
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the following analytical expression

g ¼
ffiffiffiffiffi
a
dN

n1

r
:

Similarly, in order to reach the steady state condition dE/dt = 0 in Eq (16) requires E = 0 or
a balance in the vessel production and degradation through f3b(P�) = f3d(P�). If E = 0, from Eq
(17) we obtain N� = Kγ, since f1(0) = 0. Using Eq (14) we get P� = a2 N�/δP, obtaining the steady
state

B ¼ ðN�
B; P

�
B;V

�
BÞ ¼ ðKg; a2Kg=dP; 0Þ:

This solution corresponds with the case in which the vessel network disappear from the
tumour, while the number of tumour cells reach a constant amount, i.e. we have an
avascular tumour. The steady state B is locally asymptotically stable if the condition
f3b(a2 Kγ/δP) < f3d(a2 Kγ/δP) holds; for details see Proposition E in S1 Text.

Finally, it only remains to consider the steady state corresponding with E 6¼ 0, and the vessel

balance f3d(P�) = f3b(P�). This last equation has exactly one positive solution denoted by ~P� (see

of Fig 1D). Moreover, in the particular case a3 = b3 we have ~P� ¼ m3. On the other hand, solu-
tion to Eq (17) gives N� = γ(K + f1(E)). Introducing this expression of N� into Eq (14) we
obtain

f2ðEÞgðK þ f1ðEÞÞ ¼ dP~P
�: ð18Þ

This equation can have multiple solutions, determining the steady states Ci. The existence of
these steady states correspond with the positive zeros of the auxiliary function

hðEÞ ¼ f2ðEÞðK þ f1ðEÞÞ �
dP
g
~P�: ð19Þ

For the functions f1 and f2 given by Eqs (3) and (7), respectively, there can be at most three
solutions to Eq (18) (see Fig 2 and Proposition B in S1 Text). The stability of a steady state

Ci ¼ ðN�
Ci
; ~P�;V�

Ci
Þ depends on the behaviour of the function h given by Eq (19) at the point

ECi
¼ V�

Ci
=N�

Ci
. Namely, if the function h is increasing in some neighbourhood of ECi

, then Ci is

unstable (white circles in Fig 2). Otherwise, it is locally asymptotically stable (black circles in
Fig 2) (See Proposition G and Remark H in S1 Text for details).

The number of stable states depends on the sign of h(0) and the local maximum and mini-
mum values of h(E), in a generic case, having four different outcomes gathered in Fig 2: No
steady state (D); one stable steady state (A); two steady states, one stable and one unstable (C);
three steady states, two stable and one unstable (B). In all of them the stability alternates with
increasing E, being the largest ECi

always stable. Changing the parameters of the model one can
change the shape of h(E) or shift h(E) vertically, thus changing the number and positions of
steady states Ci. This is illustrated in Fig 3 where it is indicated the existence and stability of the
steady states C and B in dependence on the parameter δP.

In Table 2 the existence and stability results of the steady states of the systems (13)–(15) are
summarised

Stochastic analysis
Dynamical systems (13)–(15) correspond to the macroscopic limit in which the population
number is big enough to neglect the intrinsic fluctuations of the system. Nevertheless, there is
always a finite population number in a real tumour and the study of stochastic effects is
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necessary to understand the biological scenario. Fluctuations appear naturally in the definition
of the microscopic system (Eqs 1–10).

Stochastic description of the model. The exact stochastic dynamics describe a multivari-
ate birth-death process [26] that can be tackled analytically by means of the corresponding
Master Equation [33, 34]. Unfortunately, the analytical solution of the Master Equation exists
only for a few simple situations, e.g. when birth and death are constants and the corresponding
Master Equation is linear. This is not true for the current case and numerical simulations of the
birth-death process are required. This can be achieved by means of the Gillespie algorithm
[35], which generates exact stochastic realisations of the microscopic reactions.

Fig 3. Bifurcation diagram showing coexistence of different tumour morphologies depending on
protein degradation rate. Scheme showing a possible bifurcation diagram for the systems (13)–(15) for the
tumour cell densityN* (A) and the protein density P* (B) as a function of δP. In the interval δPcr,1 < δP < δPcr,2
(for more details see Proposition B in S1 Text) a coexistence of the stable steady states is observed. Stability
is indicated with solid lines (stable solutions) and dashed lines (unstable solutions).

doi:10.1371/journal.pone.0155553.g003

Fig 2. Possible stable morphologies of a vascular tumour.Different possible shapes of the function h,
which zeros determine the coordinates of positive steady states of systems (13), (14) and (16). The
coordinates ECi

of the steady states are indicated with black circles (stable states) or white circles (unstable
states). EM and Em indicate the values at which h reaches its local maximum and minimum.

doi:10.1371/journal.pone.0155553.g002
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Even though the system can be simulated exactly using Gillespie algorithm, when the num-
ber of reactions is high, the simulations can be computationally heavy. Additionally, such sim-
ulations do not provide analytical insight into the magnitude of the fluctuations. For this
reason it is often useful to approximate the stochastic process, for instance, through state-space
truncating procedures [36] or by approximating the fluctuations as a superimposed random
diffusion [32, 37]. This latter case includes the Chemical Langevin Equation (CLE), which
introduces the fluctuations as a multiplicative noise to the macroscopic evolution of each one
of the species in Eqs (13)–(15). The intensity of the noise is determined by each reaction chan-
nel rate and its stoichiometry [32–34]. This leads to the following system of stochastic differen-
tial equations

dN�

dt
¼ agb � dNgbð ÞN� þ O�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðagb þ dNgdÞN�
p

xNðtÞ

dP�

dt
¼ f2N

� � dPP
� þ O�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2N� þ dPP�

p
xPðtÞ

dV�

dt
¼ f3b � f3dð ÞV� þ O�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðf3b þ f3dÞV�
p

xVðtÞ:

ð20Þ

By ξi(t) we denote white Gaussian noises with the following properties

hxiðtÞi ¼ 0 ð21Þ

hxiðtÞxjðt0Þi ¼ dðt � t0Þdij ð21Þ

where δ(t−t0) denotes the Dirac delta distribution and δij is Kronecker’s delta. The different
noise terms in Eq (20) are uncorrelated between themselves because each reaction only
involves changes in one of the species.

The CLE is valid as long as a time scale exists such that all the reactions take place without a
relevant change in their reaction probability. This is similar to other expansions of volume O in
which the stochastic effect is reduced to an order O1/2, see e.g. [32, 33]. Note that the determin-
istic limit (Eq 13) is recovered for O!1.

In the current analysis we use both, the Gillespie algorithm and the Langevin description.
The first returns exact trajectories while the second is used to determine analytical properties
or obtain stochastic trajectories when the populations of the species is large enough. Actually,
later in the text, the Langevin system will be tested for small populations to assess the agree-
ment of both descriptions obtaining that the CLE approximation is enough in most biological
relevant tumour scenarios.

Table 2. Steady states of the macroscopic systems (13)–(15).

Steady state Stability

A = (0, 0, 0) unstable

B = (Kγ, a2 N*/δP, 0) stable for f3b(a2 Kγ/δP) < f3d(a2 Kγ/δP)

unstable for f3b(a2 Kγ/δP) > f3d(a2 Kγ/δP)

Ci ¼ ðNCi
; ~P�; ~ECi

NCi
Þ

f3bð~P�Þ ¼ f3dð~P�Þ;
hðECi

Þ ¼ 0

NCi
¼ gðK þ f1ðECi

ÞÞ

stable for h0(ECi
) < 0

unstable for h0(ECi
) > 0

doi:10.1371/journal.pone.0155553.t002
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Behaviour of the stochastic system. In contrast to the deterministic model, the resulting
stochastic trajectories have the ability to explore the whole dynamical landscape. Concretely,
one of the effects of the intrinsic noise is the ability to jump between different co-existing stable
steady states. This is presented in Fig 4 where the used parameters correspond with previous
studies [19, 21] for which the bi-stability behaviour (see Fig 5 and Remark H in S1 Text) is
observed, (see S1 Fig). This switching is not available for large O (O> 1000), where the trajec-
tories follow probability distributions around the corresponding deterministic solution. For
smaller volume sizes these transitions become more frequent and the noise plays a more
important role determining the final state of the tumour (see Figs 4, 6, 7 and S1 Fig). This effect
is also seen as a broadening of the probability distributions around each stable state, providing
variability to the tumour characteristic even when it can be described within a single

Fig 4. Fluctuations change the macroscopic evolution of the tumour.Deterministic solution (black)
compared with 10 different realizations of Gillespie (red) and Langevin (green) for two different values of
Ω = 100,1000. Time courses show variability around the macroscopic description and even jumps to different
tumour states. Initial condition (1.5, 0.9, 3.0) and parameters are α = 1.0, δN = 1.1, δP = 0.34, K = 1.0, b1 = 2.3,
c1 = 1.5, a2 = 0.4, c2 = 1.0, a3 = 1.0,m3 = 1.02, b3 = 1.0, n = 2, n1 = 1, n2 = 2 and n3 = n4 = 2 (see [21]).

doi:10.1371/journal.pone.0155553.g004
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morphology. Additionally, as expected, for very small sizes (O* 10) the Langevin approxima-
tion can not recapitulate results predicted by the Gillespie algorithm. Concretely, the CLE over-
estimates the fluctuations giving a higher switching probability. Nevertheless, as will be
discussed in the next section, in a biologically relevant scenario O� 10. Finally, it is interesting
to point out that the transition between states for a growing tumour happens usually at early
times when the populations of species is small (Fig 4), even though there is a continuous flux
over time that predicts a complete depletion of the macroscopic state for a long enough time
(see S1 Fig). A precise quantification of this effect in which jump rate between states changes in
time is analysed in the Results section.

Fluctuations also give the system the possibility to visit unstable states such as state B for
which V� = 0. Nevertheless, once the number of vessel cells reaches zero, the tumour is unable
to create more vessels Eq (9). Therefore, the number of vessel cells remains zero during the rest
of the evolution of the tumour, describing an avascular state. This can also be predicted from
Eq (20), where for V = 0 the deterministic and stochastic terms become null. Thus, even though
the state B can be unstable, it will always capture a stochastic trajectory that reaches V = 0 in
the absorbent set of states (N, P, 0).

Likewise, the state A = (0, 0, 0) (all the tumour cells disappear) is an absorbent state. Even
though state A is linearly unstable, once a fluctuations drives the system in state A cells cannot
proliferate and the system is trapped i.e. fluctuations can make the tumour disappear. Again,
the absorbent state A, which is always unstable, has a very different dynamics when the sto-
chastic nature of the tumour is considered.

Such behaviour is shown in Fig 8, where a stable tumour becomes avascular and finally dies
due to the fluctuations. Since this is an stochastic effect, the rate of absorbency will decrease
with increasing O and disappear in the deterministic limit (Figs 6 and 7).

Estimation of the parameters for the Lewis lung carcinoma
The macroscopic models (13)–(15) gives a general description for the evolution of different
tumours compatible with the microscopic framework proposed. Nevertheless, the model pre-
dictions will vary for different tumour physiologies that come determined by the different
parameters that describe the microscopic reactions.

Fig 5. Bifurcation diagram showing coexistence of different tumour morphologies depending on cell
death rate. Stability diagram for N* depending on parameter δN of systems (13)–(15). Model parameters are
as indicated in the caption of Fig 4. Different steady states of the system are drawn with different colours: A
(red), B (green) andCi (blue). Solid line indicates stability while dashed one instability of the corresponding
steady state.

doi:10.1371/journal.pone.0155553.g005
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Fig 6. System size determines stochastic populations (Langevin dynamics). Distribution of (N*, P*, V*) at time
ttotal = 10000 of 1000 different realizations of Langevin simulation for different values ofΩ = 10, 50, 100, 500 and 1000.
Initial conditionN* = 2.2, P* = 1.0, V* = 3.5 (close to steady stable state C3). The parameters are those of Fig 4.

doi:10.1371/journal.pone.0155553.g006
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Fig 7. System size determines stochastic populations (Gillespie simulations). Distribution of (N*, P*, V*)
at time ttotal = 10000 of 1000 different realizations of Gillespie simulation for different values ofΩ = 10, 50, 100,
500 and 1000. Initial conditionN* = 2.2, P* = 1.0, V* = 3.5 (close to steady stable stateC3). The parameters are
those of Fig 4.

doi:10.1371/journal.pone.0155553.g007
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In particular we apply our model to the lung carcinoma (Lewis) mouse tumour for the
tumour cell line from [38]. An optimal estimation of model parameters should make use of
experiments under identical conditions e.g. run by the same lab. Unfortunately, this informa-
tion is not available, and parameters had to be extracted from different experimental set-ups
and sometimes even different mouse lines. Quite often, such experiments only return qualita-
tive data, such as the case of luminescence measurements, and quantitative readouts are only
relative.

Under these circumstances, the parameter estimation is driven in two parts. First, by
exhausting all the parameters that can be obtained directly from experimental measure-
ments, this first estimation consists of measurements on the VEGF and the tumour cells
physiology. This will give a working range of parameters where the final parameter values
can be inferred by fitting experimental data on tumour growth to the dynamics predicted by
the model.

Since the experimental data provided report the progression of tumour volume (e.g. see
[38]), it comes in handy to rewrite the populations in systems (13)–(15) in terms of absolute
numbers instead of densities, by rescaling the magnitudes with the parameter O without any

Fig 8. Noise can change the morphology of the tumour over time. Three Langevin trajectories showing a stable tumour
becoming avascular and finally disappearing (each trajectory fluctuates around the steady state C3 then jumps to the vicinity of B
trapped in the set of states (N, P, 0) and finally is absorbed by A). Initial condition and parameters are those of Fig 3, Ω = 10.

doi:10.1371/journal.pone.0155553.g008
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loss of generality,

dN
dt

¼ N agb
N

�K þ �f 1ðEÞ

� �
� dNgd

N
�K þ �f 1ðEÞ

� �� �

dP
dt

¼ N f2ðEÞ � dPP

dV
dt

¼ V ð�f 3bðPÞ � �f 3dðPÞÞ

ð23Þ

where �K ¼ K � O, �f 1ðEÞ ¼ f1ðEÞ � O , �f 3bðPÞ ¼ f3bðP=OÞ, �f 3dðPÞ ¼ f3dðP=OÞ and �m3 ¼ m3 � O.
Estimation of VEGF parameters. The VEGF dynamics comes mainly determined by two

parameters, namely, its maximal production rate a2 and its degradation rate δP. Nevertheless,
VEGF interacts in general through three major isoforms of mouse VEGF (VEGF120, VEGF164
and VEGF188), which have different expression levels depending on the species and tissue type
[39] and [40]. For mouse skeletal muscle, the VEGF isoform has been reported to have mRNA
expression ratio of (VEGF164+VEGF188) to VEGF120 has been measured to be 92:8, see Results
in [40], while for the lung tissue this ratio is 82:18. The VEGF isoform distribution and dynam-
ics has already been studied in a thorough in silicomodel for the mouse skeletal muscle [41],
where the secretion rate of VEGF was estimated to be equal to 5875.2 molecules per cell per
day; see Results in [41]. Additionally, the lower and upper bounds of the secretion rate of
VEGF164+VEGF188 has been found to be 864 and 17000 molecules per cell per day, respec-
tively. Thus, using the findings on the skeletal muscle mouse with the ratio for lung tissue we
can set bounds for total VEGF production rates to be 939 and 19000 molecules per cells per

Table 3. Estimated parameters for Lewis lung carcinoma.

FITTED PARAMETERS

Parameter Value/Range Unit Ref. Estimated Value

a2 939–1 proteins�cell−1�day−1 [40, 41] 4.78 × 104

a3 day−1 2.3

b1 cells 4.48 × 109

b3 day−1 11.5

c1 — 3.32 × 103

c2 — 2.38 × 10−10

α 0.41–0.69 day−1 [44] 0.675

δN day−1 3.58 × 10−8

δP 16.6(*) day−1 [42, 43] 8.91

�m3 proteins 221
�K � g (2.33–7.87) × 107 cells [1, 2, 38] 7.86 × 107

FIXED PARAMETERS

Parameter Unit Ref. Value

N(0) cells [38] 8.29 × 108

P(0) proteins 10

V(0) cells 1

n — 2

n1 = n2 — 2

n3 = n4 — 2

(*) reference value in the context of the order of magnitude

doi:10.1371/journal.pone.0155553.t003
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day. Since the estimations made in [41] where done extrapolating information from skeletal
muscle tissue to lung tissue we will assume a looser range that will be refined later in the
parameter fitting.

On the other hand the VEGF degradation rate δP of the three isoforms can be considered
comparable and determined from in vitro half-life measurements [42, 43], obtaining a degrada-
tion rate of 16.6 day−1. Again, this datum correspond to a different tissue, in this case human
cells. Thus, we treat that estimation as a reference for the mouse tumour.

Estimation of tumour cells growth parameters. The maximal tumour growth rate i.e. the
tumour cell proliferation rate with nutrient profusion has been reported for the lung carcinoma
(Lewis) C57BL/6 [44] showing a doubling time of 1–1.7 days. This gives a range for the maxi-
mal growth rate parameter α in the range 0.41–0.69 day−1.

On the other hand, in the absence of nutrient supply from blood vessels the growth of the
tumour is hindered reaching a maximal number of tumour cells that in our model comes
described by the parameter product g�K . This can be related to the first stages of cancer disease
when cells are supplied only by diffusion and no angiogenesis takes place. The typical diameter
of the tumour that can be achieved in this avascular phase of growth is 2–3 mm, [1, 2]. Since
the average diameter of the Lewis lung cancer (LLC) cell equal to 7 μm [38], the average num-
ber of cells at the end of avascular growth can be estimated to be in the range 2.33 × 107–
7.87 × 107 (cells).

All the estimated parameters above mentioned, their ranges and their bibliographical
sources are summarised in Table 3.

Note, that due to a lack of experimental data, none of our estimations take into account the
number of vessel cells V. For instance, in [38] the final vessel cells density for LLC tumours was
determined via counting the number of the microvessels per high-power field (HPF) within
hot spot area. Similarly, in [45] for the same type of tumour, the number of microvessels were
counted for each section and the mean number of microvessels/HPF were calculated as a
marker for microvessel density in tumour tissue. In both cases, such data can not be used to
interpret the actual number of cell vessels V. Similar problems are found in measures of VEGF
such as Fig 5B in [45], where the concentration of plasma level of VEGF (expressed in pg/mL)
at single time point was measured. Such blood samples were drawn by a terminal cardiac punc-
ture after opening of the chest wall and collected in heparin anti-coagulated tubes preventing
to use those data as a measure of VEGF concentration in the tumour tissue.

Fitting of the parameters using tumour volume growth data. With the parameter ranges
obtained, a further inference can be carried out by using volume data growth for the Lewis lung
cancer (LLC) published in [38]. Again, assuming spherical tumour cells of radius r = 3.5 μm
the volume measurements of LLC cultivated in vivo can be directly converted to number of
cells. The resulting profile of number of cells in time can be compared with realisations of the
model for different parameter values. The optimal values of the parameters can be found by
optimising a distance function between the experimental data and the model prediction. In this
case we minimise the mean square error (MSE) between both

MSE ¼ 1

M

XM
i¼1

ε2i with εi ¼
xdatai � xsymi

xdatai

; ð24Þ

whereM is the number of experimental measurements, xdatai are the measured values and xsymi

the values of the solution of ODE for respective time points. Due to the number of parameters,
the optimisation has been done using Particle Swarm Optimization (PSO), a stochastic optimi-
sation technique that explores efficiently the parameter space [46, 47]. The PSO was carried
out using the Matlab1 implementation of the algorithm.
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The resulting optimal set of parameters shows a good agreement with the experimental data
(MSE = 0.07%) predicting LLC volume growth during the first months (Fig 9B). The corre-
sponding values of the estimated data are given in Table 3. In order to give soundness to the
parameter estimation, a sensitivity study was performed on the inferred parameters. The results
of the sensitivity analysis are discussed below in the Results section, while computational
details and specific results are gathered in S2 Text.

Results
The fitted model predicts a single stable state C coexisting with unstable states A and B. Thus,
the model suggests that the natural growth of the tumour results as the evolution towards the
state C, which describes a large tumour with well developed vasculature. This dynamic shows a
very rapid secretion of the VEGF proteins within few first hours, that is followed by the fast
increase of the vessels network (number of endothelial cells) within few first days of the experi-
ment, see Fig 9. After the first day the active VEGF returns to lower levels. This active VEGF
stabilises during the first week causing the future tumour growth. The fast dynamics of VEGF
within the first week can be explained by the injection of a large tumour that need to develop
vascular network fast.

The performed sensitivity analyses (see S2 Text) shows that after homogeneous perturba-
tions on the parameter set (±2% over each parameter), the resulting perturbed tumour mor-
phology is more sensitive to certain specific parameters. Parameters δP and b3 dominate on
determining the number of tumour cells N and effective vessel E, whereasm3 and a3 are also
important for determining the number of regulating proteins P. It is interesting to point out
that the sensitivity of P to different parameters strongly changes during the evolution of the
tumour. On the other hand, the analysis shows that K and tumour cell death rate δN are the
parameters with less influence i.e. the ones with correlation coefficient in the interval (-0.2,
0.2). Including the initial conditions P(0) and E(0) in the sensitivity analysis (N(0) is given by
experimental conditions) did not change the sensitivity results (results not shown), suggesting
that the results are robust to small perturbations of the initial conditions.

Intrinsic fluctuations determine the survival of the tumour during the first
week
The stochastic dynamics of the tumour reveals that the characteristic evolution predicted by
the deterministic equations is preserved. Nevertheless, the fluctuation in the population of spe-
cies can induce on occasions the death of the tumour as described in Materials and Methods
where the tumour dynamics is absorbed by the trivial state A. For the estimated parameters,
the survival of the tumour is determined during the first week when the population of the dif-
ferent species is small (see Fig 10A, 10B and 10C). On the other hand, all the tumours that sur-
vive this first week, grow considerably unaffected by the stochastic effects (see Fig 10D, 10E
and 10F).

A close analysis of the first days of the tumour growth shows that the noise has almost no
influence on the dynamics of the model during the first two days (see Fig 11). At the beginning
of the second day the noise increases dramatically with two possible outcomes. Either the
tumour keeps growing overcoming the noise effects, or a fluctuation drives the tumour to the
absorbent state A. An analysis of the noise intensity of the CLE Eq (20) can be evaluated analyt-
ically along the deterministic trajectory (see Fig 11B). This result points out how the relative
intensity of the noise can be neglected during the first two days and grows suddenly until day
four were it decays again for the rest of the evolution of the tumour, setting a time window that
determines the survival of the tumour. During this time window, around 11% of the growing
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Fig 9. Lewis lung cancer growth prediction during the first month. (A) and (B), comparison of the experimental
tumour Lewis lung cancer data from [38] (red circles) and solutions of model (23) for δP = 8.9112 day−1 (blue lines) for
the best fitted parameters, with MSE error equal to 0.07%. (C), (D), (E) and (F), comparison of solutions P*, E and V*
of system (23) with δP = 8.9112 day−1 (blue lines). Solid green lines show the behaviour of the model for a high
suppression of VEGF (δP = 2 × 104 day−1). For δP > δPcr,2

the model has only one stable steady state with a small
amount of tumour cells. Rest of parameters are given in Table 3.

doi:10.1371/journal.pone.0155553.g009
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tumours die spontaneously. This quantity remains practically constant along the rest of the life
of the tumour that shows less than a 13% of spontaneous death at day 50 (see S2 Fig). A more
detailed analysis (see Remark J in S1 Text) shows that the noise intensity of the tumour cells
increases with the effective amount of nutrient f1(E), revealing that the increase in the intensity
of the noise between days 2 and 4 is the aftermath of the fast vascularisation predicted during
the first days of the tumour growth.

Fig 10. Stochastic population distribution of LLC.Distribution of (N, P, V) for 2000 realizations and parameters of Table 3. (A), (B)
and (C): Histogram at time t = 5 days. (D), (E) and (F): Histogram at time t = 50 days for all the tumours that survived the first week.

doi:10.1371/journal.pone.0155553.g010

Fig 11. Noise can cause tumour spontaneous extinction during the first week. Stochastic results for the first week growth with
parameters of Table 3. (A) Different realizations of the CLE. Two trajectories with a tumour disappearing (begin absorbed by state A),
and three trajectories with a successful growth of the tumour, one of them begin transiently trapped around state B. Dotted line
shows the deterministic evolution of the tumour. (B) Analytic relative noise intensity given by Eq (20).

doi:10.1371/journal.pone.0155553.g011
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VEGF degradation rate controls the appearance of dormant tumours
For the parameters inferred, there is only one stable state (C). Nevertheless, a further analysis
on the dependence of the steady states with biological meaningful changes in the parameters
shows that new steady states Ci can arise, for details see S1 Text.

This is the case of VEGF degradation δP that can be modified through the administration of
a drug (e.g. bevacizumab commercial name Avastin), a humanised monoclonal antibody, that
binds the vascular endothelial growth factor A (VEGF-A) and thus inhibits VEGF-A binding
to receptors on the surface of endothelial cells, effectively increasing δP.

A stability analysis on δP reveals that for higher values of δP new stable states Ci arise. Con-
cretely, over a threshold δPcr,1 ’ 160 day−1 two stable steady C1, C3 coexist (see Figs 3 and 12).
The new stable tumour morphology C1 is considerably smaller. Nevertheless, the evolution to
this state requires to increase δP beyond δPcr,2 ’ 1.2 × 104 day−1 where the original state C3 dis-
appears resulting in a single stable steady state with a comparably smaller amount of tumour
cells (see Fig 12 and green lines in Fig 9).

The size of the new tumour morphology C1 is 8 × 107, corresponding with the number of
tumour cells for the maximal tumour size (�Kg) that can be achieved without direct nutrient
supply from the blood vessels. This is due the fact that for sufficiently large δP, the number of
cells N of steady states C1 and Bmerge (see Fig 12). This result suggests that large enough inhi-
bition of VEGF activity, induces dormant tumours with diameter around 2 mm. Moreover, the
effective vessel network (E) is of order 10−4, that is around nine orders of magnitude lower
than the one for the untreated value of δP = 8.9 day−1, preventing active support of the cancer
cells in nutrients and in turn also preventing the fast tumour growth (see Fig 12). Additionally,
the stability analysis (which results are summarised in Table 2) shows that the number of pro-
teins in the steady state does not depend on δP for the positive steady states Ci. For the biologi-
cally inferred parameters the number of proteins is low and close to 100 not causing strong
stimulation of the endothelial cells, as in the steady state efficient vessel network has been
already created and intensive stimulation of the endothelial cells is not needed any more.

Summary and Discussion
In this paper we have investigated the microscopic foundations of the types of model of tumour
angiogenesis proposed in [19, 20] and later studied in [21]. Our model predicts the same

Fig 12. Different tumour morphologies for LLC depending on VEGF degradation rate. Stability diagram
for steady states of Eq (23) depending on the parameter δP, all other parameter values are given in Table 3.
The stability of existing steady states in indicated by solid lines, while instability by dashed. Colours indicate
the steady states B (green)Ci (blue). Additionally, E = 0 for state B, therefore it is not indicated on the right-
hand side panel.

doi:10.1371/journal.pone.0155553.g012
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qualitative behaviour (regarding the existence and stability of multiple steady states that show
hysteresis), being able to reflect the possible instability of the blood vessel formation and struc-
ture that is observed in the experiments, see [14, 18], but without the requirement of temporal
delays. This was done by describing the tumour dynamics from a set of reactions from which
the deterministic macroscopic ODE system was derived. This macroscopic solution predicts
different behaviours of the tumour, namely, the tumour disappears (state A), the tumour
reaches an avascular state (vicinity of state B) or the tumour evolves towards a discrete set of
tumour morphologies (states Ci). This kind of behaviour is not observed in a family of classical
Hahnfeldt et al. [3] angiogenesis models without delay where all solutions stabilise at a unique
positive steady state. On the other hand, in a modified Hahnfeld et al. model, proposed in [48],
there can exist multiple positive steady states, but due to a lack of the hysteresis loop, the solu-
tion cannot jump between stable steady states when parameters change.

The microscopic description opens the door to the study of the fluctuations intrinsic to reac-
tive systems. This stochasticity allows the transition between the different tumour steady states,
providing new behaviours such as reaching the avascular absorbing set of states (N, P, 0) or the
spontaneous death of the tumour.

In order to explore further the predictions of the model we applied the model to the Lewis
lung cancer. The parameters were inferred using the available experimental data in the litera-
ture obtaining a good agreement with experimental observations on the tumour growth
dynamics in time, during the different phases of tumour formation. A study on the intrinsic
noise effects on the tumour dynamics shows that the noise effects are of key importance during
the first stage of the tumour formation when fluctuations can destroy the tumour. This stochas-
tic time window of extinction is dictated by the fast vascularisation predicted during the first
days of the tumour growth that could be readily tested by a careful tracking of the tumour cell
population during this time period. Alternatively, the fast vessel growth could be a consequence
of the lack of intervessel competence in Eqs (11) and (12), posing the necessity of such a mech-
anism for a proper tumour description. In both cases, a deep understanding of this effect and
the dependence of this time window with the tumour physiology could provide insight into to
tumour prevention and treatment.

We also studied how variations in the degradation of VEGF regulate the tumour progres-
sion. The biological in vivo degradation rate only predicts one possible tumour state. Neverthe-
less, the increase of the degradation rate introduces a new stable dormant tumour state that is
orders of magnitude smaller. This is biologically relevant since the degradation rate can be eas-
ily modified with existing drugs. These two mechanisms of tumour control, spontaneous dead
and dormant tumour, are just two cases in which this model helps to determine changes in the
tumour morphology that could be addressed experimentally. Nevertheless a more exhaustive
analysis may reveal novel strategies in oncology. We hope that this model inspires new experi-
ments and measurements that push forward the knowledge of the field.

Overall, the presented model introduces a simplified reaction scheme being able to exhibit
measurable dynamics of tumour growth and vessel formation. Such a reduced model has
proved to be complex enough to accommodate experimental data. On the other hand, one can
think of a more deeper description of the angiogenesis process described, considering, for
instance, vessel cells competition or more complex regulatory functions. However, such
approach would require more quantitative data than the one available for the Lewis lung carci-
noma. Alternatively, extensions of the model could also address new biological questions such
as a spatial description of the angiogenesis process together with the influence of additional
vessel growth stimuli factor (e.g. some kinds of interleukins). Moreover, we hope that the gen-
eral description of the model makes the analysis easily transferable to other types of cancer
motivating the use of experimental data in, otherwise, purely theoretical models.
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Supporting Information
S1 Text. Mathematical derivation details. Theorems and proofs concerning the existence,
uniqueness, boundedness of the solutions; as well as the existence of the positive steady states
and conditions for the stability of the steady states for the macroscopic model.
(PDF)

S2 Text. Sensitivity analysis of the estimated parameters. Detailed information and results of
the sensitivity analysis of the estimated parameters in Table 3.
(PDF)

S1 Fig. Tumour cells populations diverges from macroscopic predictions.Histogram show-
ing the probability per trajectory of having N� tumour cells at different times. Results corre-
spond with same parameters used in Fig 4 with 1000 Gillespie realisations. Populations around
deterministic state (dark blue) jump over time to a state with less tumour cells (cyan), percent-
ages indicate the probability to find a tumour in each state.
(EPS)

S2 Fig. Tumour spontaneous extinction probability is determined during the first week.
Histogram showing the probability per trajectory of having N� tumour cells at different times.
Results correspond with the same parameters used in Fig 11 with 2000 realisations. A fraction
of the growing tumour population (dark blue) dies during the first week N = V = P = 0 (cyan).
(EPS)
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