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Abstract

Dynamic time warping (DTW) has been widely used for the alignment and

comparison of two sequential patterns. In DTW, dynamic programming is

used to avoid an exhaustive search for the alignment. In this paper, we pro-

pose a randomized extension of the DTW concept, termed randomized time

warping (RTW), for motion recognition. RTW generates time elastic (TE)

features by randomly sampling the sequential data while retaining the tem-

poral information. A set of TE features is represented by a low-dimensional

subspace, called the sequence hypothesis (Hypo) subspace, and the similarity

between two sequential patterns is defined by the canonical angles between

the two corresponding Hypo subspaces. In essence, RTW simultaneously

computes multiple degrees of similarities between a number of warped pat-

terns’ pair candidates, while in practice, RTW generalizes the Hankel matrix

commonly used in modeling of system dynamics. We demonstrate the ap-

plicability of RTW through experiments on gesture recognition using three

∗Corresponding author: Tel./Fax. +81-29-853-5544.
Email addresses: chendra@cvlab.cs.tsukuba.ac.jp (Chendra Hadi Suryanto),

jinghao.xue@ucl.ac.uk (Jing-Hao Xue), kfukui@cs.tsukuba.ac.jp (Kazuhiro Fukui)

Preprint submitted to Image and Vision Computing May 29, 2016



public datasets, namely, the Cambridge gesture database, a subset of the one-

shot-learning dataset from the ChaLearn Gesture Challenge, and the KTH

action dataset.

Keywords: feature extraction, dynamic time warping, subspace method,

Hankel matrix, motion recognition

1. Introduction

Dynamic time warping (DTW), which is also termed dynamic programming-

matching, has been widely used for sequential data analysis. Early uses of

DTW range from the comparison of amino acids sequences in bioinformat-

ics [1], through speech recognition [2], to motion analysis [3]. The core idea

of DTW is to search for the best alignment of two sequential patterns by

optimizing a warping function, which specifies the sequential correspondence

between them. Since the number of possible combinations of warped patterns

is exponentially large, to avoid exhaustive search dynamic programming has

been used, which can effectively optimize the alignment score and produce

the alignment path of the most similar warped patterns.

Although DTW is a very useful and widely applicable tool for sequence

analysis, it has several limitations when applied to tasks of classifying mul-

tiple sequences, such as gesture recognition with many kinds of hand shapes

and personal identification by gait recognition. Here are the issues that we

will address in this paper.

1. Since dynamic programming is basically a deterministic approach, the

obtained solution is likely to be sub-optimal for the sequential data

that contains large intra-variation in the temporal structure.
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2. The alignment is typically done by trying to match an input sequence

to each reference sequence in a given set. This can lead to a high

computational cost when the number of the reference sequences to be

considered is large.

3. DTW has no internal mechanism to remove or ignore irrelevant varia-

tion that may affect the classification result. For example, variation of

lighting conditions in video data or speakers in speech data can signif-

icantly lower the performance of a classification method using DTW.

That is, DTW-based classification methods are sensitive to these un-

desirable effects.

To tackle these issues, we generalize the notion of DTW to construct a

new method for sequential data analysis, which is termed randomized time

warping (RTW). The core idea of RTW is essentially to simultaneously search

for the most similar warped patterns from a number of candidates which

are prepared beforehand through randomization. Figure 1 illustrates the

difference between DTW and our RTW approach.

Instead of searching for the most similar warped patterns using dynamic

programming, RTW progressively generates a set of time warped patterns,

called time elastic (TE) features, through repeated random sub-sampling

while preserving the original temporal order. We utilize this bagging-like

strategy to ensure that the set of the TE features contains sufficient discrim-

inative frames with high probability. The use of TE features converts the

comparison of two sequences to the comparison of two sets of TE features.

Figure 2 shows the comparison process between two sets of the TE features.

The comparison is conducted using a subspace-based method, in which each
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Figure 1: Comparison between DTW and RTW. (a) DTW searches for the most optimal

alignment in a large space through dynamic programming. The outputs of DTW are the

most similar warped patterns and the cost of the alignment. (b) RTW generates many

candidate warped patterns, called time elastic (TE) features, and then compares the sets

of the candidates. The outputs of RTW are multiples of the highest similarities between

the two sets.

set of TE features is represented as a low-dimensional subspace, called a se-

quence hypothesis (Hypo) subspace. Finally, the similarity between the two

sequences is defined by the average of multiple canonical angles θi between

the two Hypo subspaces. We regard the canonical vectors that form the

canonical angles as pseudo-warped patterns (Further discussion is provided

in Section 3.2). This approach can provide a promising solution to each of

the DTW issues previously mentioned:
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Figure 2: The comparison process for two sets of TE features in RTW.

1. Since random sampling is able to generate a large number of time

warped patterns (TE features), our RTW approach is non-deterministic

and can deal with a huge number of possible combinations of warped

patterns with various time-scales, and thus is able to tackle the issue

with large intra-variation in the temporal structure.

2. Since our approach uses the compact subspace-representation, exhaus-

tive matching between all possible TE features is avoided. Each Hypo

subspace can contain the TE features from multiple sequences and the

canonical angles between two subspaces can be calculated with simple

linear algebra. Hence RTW can alleviate the issue of high computa-

tional costs.

3. Our approach is based on a subspace method, which can remove or

reduce the undesirable effects of irrelevant features. This enables RTW

to mitigate the third issue and thus improve the performance of classi-
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fication

To demonstrate the effectiveness of our approach, we focus on gesture

recognition in this paper. We conducted experiments on gesture recognition

using three public datasets, namely, the Cambridge hand gesture dataset [4]

which contains variations of lighting condition, a subset of ChaLearn gesture

dataset [5] which contains very limited training samples, and the KTH action

dataset [6] which is a widely used benchmark dataset for action recognition.

In addition, we also demonstrate the extensibility of RTW by including a

subspace learning method using Grassmann discriminant analysis [7].

In the next section, we start with a review of subspace methods for ges-

ture recognition, which is followed by a review of related works on DTW.

Then we describe how RTW tackles the DTW issues and the relationship

to the Hankel matrix in Section 3. The classification framework of RTW is

provided in Section 4. An adaptation of Grassmann discriminant analysis in

the classification framework is discussed in Section 5. Experimental results

are reported in Section 6. Finally, conclusions and indication of future work

are given in Section 7.

2. Related work

Although we regard the concept of RTW as a generalization of DTW, the

practical process of RTW is partly related to other types of methods such as

subspace methods and the methods based on canonical correlation analysis

(CCA). In the following, we first review such related methods, including

the extensions of the original DTW. Then we describe several DTW-based

methods for gesture recognition.
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In the usage of CCA-based methods, to encode the space-time volume of

a gesture, [4] used a third-order tensor-based CCA with AdaBoost for feature

selection. In [8], the tensor was factorized into a set of tangent spaces, to

which the classification of the video was applied. In [9], two types of sub-

spaces representing activity motion were developed, one from the images of

a sequence and the other from linear autoregressive-moving-average models.

Then the classification was done on a Grassmann manifold, on which each

subspace was interpreted as a point. In [10], dynamic systems of motions were

modeled by Hankel matrices of extracted features. Then subspaces spanning

the columns of the Hankel matrices were obtained by using discriminant

canonical correlation [11], and finally support vector machines were used for

classification. However, these subspace-based methods can suffer when there

is only a small number of training samples.

In the development of DTW, stochastic DTW was proposed in [12] to

tackle the intra-variation problem in speech recognition. In stochastic DTW,

the distances and path costs of conventional DTW were replaced with con-

ditional probabilities and transition probabilities, respectively. Stochastic

DTW shows that the DTW method is strongly related to the hidden Markov

model (HMM) approach [12]. In sequential data analysis throughout the

years, HMMs have been favored over DTW due to their better generaliza-

tion to sets of samples, in which exhaustive pair-wise comparison can be

avoided [13]. This also led to the development of statistical DTW, which

is equivalent to the HMM approach and generates a statistical model from

the set of samples [14, 13]. However, HMMs require many assumptions in

generalizing the system dynamics of time-series data [10]. To avoid these
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difficulties, the Hankel matrix was used to approximate HMMs, especially

in system identification tasks [15, 16]. In Section 3.3 we discuss how, in the

implementation of RTW, the matrix of TE features can be regarded as a

generalization of the Hankel matrix.

Applications of DTW to gesture recognition have been reviewed in several

survey papers [17, 18, 19]. Recent extensions of DTW include the method

in [20], called Isotonic CCA, which generalized the concept of DTW by im-

posing a monotonicity constraint on CCA. Canonical time warping (CTW)

in [21] combined DTW with CCA to take spatial variability into account in

the alignment process. In [22] DTW was extended to generalized time warp-

ing (GTW), which used multiple CCA to find an optimal nonlinear temporal

transformation and a low-dimensional space embedding of multiple multi-

modal sequences. The ideas behind [20, 21, 22] may be used to enhance the

performance of DTW. However, as in classical DTW, the computational cost

increases rapidly with the number of reference sequences to be compared.

3. Randomized time warping

First, we demonstrate that TE features have valid statistical properties as

a key component of the framework of RTW in Section 3.1. Then we describe

how to simultaneously compute multiple similarities between two sets of TE

features in Section 3.2. Finally we discuss the relationship of the matrix from

the set of the TE features with the Hankel matrix in Section 3.3.

3.1. Statistical properties of time elastic features

To deal with large intra-variation of temporal structure, we require fea-

tures to cover both the local and global information of the temporal struc-
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ture: global information accommodates the overall temporal structure; local

information deals with fragments of the temporal structure.

In the following, we show that a set of TE features has such favorable

properties. We consider a set of image sequences each of which consists of a

number of ordered images. Nevertheless, the following discussion can easily

be generalized to other types of data.

Let {x1, . . . ,xN(s)} be the ordered data of sequence s, where N (s) is the

length of the sequence. Let xi ∈ Rf be the original feature vector of an

image. An f×n-dimensional TE feature vector s = [yT
1 yT

2 ... y
T
n ]T is created

by randomly selecting n images from a sequence s, such that y1, . . . ,yn ∈

{x1, . . . ,xN(s)}, t(y1) < ... < t(yn), where t(·) denotes the original order of

the image. The value of n, which denotes the number of image selected to

construct a TE feature, also corresponds to the number of effective frames

needed for recognition, which has been studied in [23].

In statistics, t(y1) is the random variable for the minimal image order of

the n images selected into s, and t(yn) is the maximal order. That is, t(yj) is

the jth order statistic for the TE features and is in the set of {j, . . . , N (s) −

n+ j}. Over this support, the probability that t(yj) = k can be written as

Pr(t(yj) = k) =

(
k−1
j−1

)(
N(s)−k
n−j

)(
N(s)

n

) . (1)

The probability mass functions for t(yj), j = 1, . . . , n, are shown in Fig-

ure 3 where n = 5 and N (s) = 10. This describes a statistical mechanism

for the extraction of TE features, applicable over the whole sequence rather

than constrained to a local neighborhood. Images located near the edges of

a motion are most likely to be selected as the start and end blocks of a TE
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Figure 3: The probability for each image from a sequence of 10 images to be randomly

selected into a TE feature vector [yT
1 yT

2 yT
3 yT

4 yT
5 ]T.
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Figure 4: The probabilities of frame ranges for the selected images.

feature. This indicates that we are able to collect the global structures of

temporal information as well as local temporal structures. The probability

of a TE feature containing a frame range r, for r = n− 1, . . . , N (s) − 1, can

be formulated as

Pr(t(yn)− t(y1) = r) = (N (s) − r)
(
r−1
n−2

)(
N(s)

n

) . (2)

As an illustrative example, Figure 4 shows the probability distribution of the

frame range for the 5-block (n = 5) TE features generated from a motion

containing 10 images (N (s) = 10). The frame range indicates the extent of

the globality of the temporal information encoded in the TE feature. For ex-

ample, the TE features containing images ordered 1, 2, 3, 4, 5 and 2, 3, 5, 9, 10

have frame ranges of 4 and 8, respectively.
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3.2. Simultaneous verification of multiple sequence hypotheses

Through the repetition of random sampling, we ensure that the set of the

TE features contains sufficient discriminative frames with high probability.

However, due to the randomness, not all the selected features in the set

contain discriminative information. We reduce this redundancy by generating

a subspace through applying principal component analysis (PCA) to the set

of the TE features in RTW.

Let the procedure of random selection described in the previous subsec-

tion be repeated R times, such that we obtain s1, . . . , sR. Subsequently, a

correlation-like matrix A, which corresponds to the set of the TE feature

vectors, can be computed as

A =
1

R

R∑
i=1

sis
T
i . (3)

We apply PCA to construct an N -dimensional subspace by computing the

eigenvectors [φ1, ...,φN ] of the matrix A. A set of TE features generated

from a sequence contains various possible warped patterns, each of which

corresponds to one hypothesis. In this sense, the subspace generated from a

set of TE features is called a sequence hypothesis (Hypo) subspace.

One advantage of using the Hypo subspace to represent the set of TE

features is that we can deal with multiple sequences. In the case when there

are multiple reference sequences that belong to the same class, it is possible

to represent the set of their TE features together in one Hypo subspace.

Thus, the recognition of an unknown sequence is more efficient, because it is

not necessary to compare the unknown sequence to every reference sequence

that belongs to the same class.
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3.2.1. Computation of canonical angles

Next, we describe how to compute the similarities between two Hypo

subspaces. The usage of canonical angles for similarity measures is also

known as the mutual subspace method, a technique widely used in image-

set-based 3D object recognition [24, 25, 26, 27]. Let Pc be an N -dimensional

reference subspace of class c, and Q be an M -dimensional input subspace.

The first canonical angle θ1 is defined by

cos θ1 = max
ui∈Q

max
vi∈Pc

uT
i vi , (4)

subject to uT
i ui = vTi vi = 1,uT

i uj = vTi vj = 0, i 6= j. A practical method

of finding cos θi (i = 1, . . . ,M if M ≤ N , and 0 ≤ θ1 ≤ . . . ≤ θM ≤ π
2
)

is by computing the singular values of the matrix W = UTV, where U =

[φ1, ...,φM ], V = [ψ1, ...,ψN ], and φi and ψi are the orthogonal basis vectors

of the subspaces Q and Pc, respectively.

3.2.2. Importance of multiple canonical angles

The similarities between two Hypo subspaces are defined by the cosines

of the canonical angles θi. The first canonical angle θ1 corresponds to the

largest canonical correlation between the two sets of TE features, which can

be interpreted as a distance between the two most similar warped patterns

in the two corresponding Hypo subspaces. The second canonical angle θ2

corresponds to the second largest canonical correlation between the two sets

of TE features, and so on. The use of only the first canonical angle can lead

to less stable recognition performance, as in a DTW approach that considers

only the most similar warped patterns. This suggests that multiple canonical

angles are required in order to take all possible warped patterns in the Hypo
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subspace into consideration and to achieve more stable performance. We use

the average of the similarities of all canonical angles as the final similarity:

Sim(Q,Pc) =
1

M

M∑
i=1

cos2 θi . (5)

Since the multiple similarities between many warped patterns are computed

at the same time, we regard RTW as essentially conducting multiple DTWs

simultaneously.

Furthermore, a pair of canonical vectors ûi and v̂i that form canonical

angle θi can be obtained as follows:

ûi = Uyi, v̂i = Vzi, (6)

where yi and zi are, respectively, the left and right singular vectors of W.

These canonical vectors can be regarded as the most similar pseudo-time-

warped patterns generated through the linear combination of TE features.

3.3. Relationship to the Hankel matrix

Conceptually, RTW generalizes DTW. In its implementation, RTW uses

a matrix of the set of TE features, which can also be regarded as a general-

ization of the Hankel matrix.

The Hankel matrix H is defined as a matrix in which the elements are

skewed diagonally:

Hi,j = Hi−1,j+1 , (7)

where i and j are row and column indices, respectively. In this approach, a

column of the Hankel matrix contains n blocks of the f -dimensional feature

vector xi from an image sequence, where xi (i = 1, ..., N (s)) indicates the
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feature vector of the ith image of sequence s and N (s) is the number of

images in sequence s. The value of n, which is the size of Hankel blocks,

parameterizes the extent to which the temporal information is encoded in

one feature vector hi ∈ Rf×n, where hi = [xT
i xT

i+1 ... x
T
i+n−1]

T is the ith

column vector of the Hankel matrix H.

The form of the Hankel matrix with block size n corresponds to the

RTW matrix formed by the set of TE features with n images selected. The

differences between these two matrices are as follows. Firstly, the maximum

number of features in the Hankel method (number of columns) is given by

N (s)−n+1, while in RTW it is given by
(
N(s)

n

)
. Secondly, the elements of the

Hankel matrix are generated by the rule shown in (7), while in RTW the TE

features are generated by random sampling. These two differences suggest

that the Hankel matrix requires a longer sequence and a much larger number

of training sequences than the RTW matrix to generate a rich spatiotemporal

dictionary of a motion. Moreover, the Hankel matrix is able to contain only

limited global temporal information about a motion, where the extent of

globality depends on the size of Hankel blocks.

To demonstrate the advantage of the generalization over the Hankel ma-

trix, we consider the following simple case of toy data. Let SA = {1, . . . , 20}

and SB = {20, . . . , 1} be two reversed univariate sequential data which be-

long to two different dynamics. Let SI be an input sequence similar to SA

but with noises, shown in Figure 5.

A subspace can be used to model the Hankel matrix [10]. The set of the

TE features generalizes the Hankel matrix through the bagging-like random

sampling. This suggests that the matrix of the set of the TE features contains
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Figure 5: A simple case of univariate reversed sequences and an input sequence with noise.

SA and SB are two sequences of different dynamics which are exactly the reverse of each

other. SI is an input sequence with similar dynamics to SA but containing noise.

the dynamical system with some perturbation of the original dynamical sys-

tem itself. Consequently, subspaces generated from the set of the TE features

contain richer information than that from the Hankel matrix and intuitively

the subspace representation is also suitable for capturing the information

embedded in the set of the TE features. We generated subspaces from the

Hankel representation and the set of the TE features of SA, SB, and SI with

various block parameters (5, . . . , 15). The number of the random sampling

for RTW was set to 1000. Figure 6 displays the plot of the similarity val-

ues when the dimensions of the subspaces were determined by using 99%

cumulative energy ratio of PCA. Here, we can see that when using Hankel,

the similarity value between SI and SA and the similarity value between SI

and SB were almost the same when the block size was small. Note that this

happened because the full rank subspaces that span the trajectory of SA and
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Figure 6: Similarity values between SA and SI and between SB and SI , using the Hankel

method and RTW, with 99% cumulative energy ratio of PCA. With RTW, the similarities

between SA and SI were higher than those between SB and SI . With the Hankel method,

when the block size was small, the similarities between SA and SI were almost the same

as the similarities between SB and SI .

SB are overlapped each other. With the randomization in RTW, SI becomes

more similar to SA than to SB.

4. Flow of the recognition framework

Figure 7 shows the flow of the recognition process. In this figure, R

indicates the number of TE feature vectors and Kc indicates the number of

image sequences of class c.

Training phase:

Step 1 : The random selection is applied to sequence 1 of class c to gen-

erate a set of TE feature vectors {s(1)1 , ..., s
(1)
R }. In the case that there
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Figure 7: Flow of a recognition process using the RTW framework. TERMS, standing for

time elastic random selection, corresponds to the random sampling procedure for gener-

ating TE features.

is more than one training sequence in one class, this process is done

for all Kc sequences to produce a final set of TE feature vectors,

{s(1)1 , ..., s
(1)
R , s

(2)
1 , ..., s

(2)
R , ..., s

(Kc)
1 , ..., s

(Kc)
R }.

Step 2 : Reference subspaces P1, ...,Pc of classes 1, ..., c are constructed by

applying PCA to the corresponding final sets.

Test phase:

Step 1 : Random selection is applied to the sequence of an input motion I

to generate a set of TE feature vectors {s(I)1 , s
(I)
2 , ..., s

(I)
R }.
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Step 2 : Input subspace Q is constructed by applying PCA to the set of

TE feature vectors {s(I)1 , s
(I)
2 , ..., s

(I)
R }.

Step 3 : The similarity between the input subspace Q and each reference

subspace Pc is computed as in (5).

Step 4 : The input motion I is allocated to the class with the highest

similarity:

Class(I) = arg max
c

Sim(Q,Pc) . (8)

5. Discriminant analysis of Hypo subspaces

RTW compares the subspaces of the sets of the TE features that were

generated through repetition of random sampling, which is an ensemble-like

strategy (i.e. a bagging-like sub-sampling but without replacement). The se-

lected features from random sampling can contain irrelevant features that do

not contribute to classification. This suggests that the subspaces also contain

such features. To suppress the effect of this kind of features, further feature

extraction is required. In this section, we briefly describe an adaptation

of Grassmann discriminant analysis (GDA) [7] as one of subspace learning

methods to improve the discriminative power in the classification task.

A Grassmann manifold G(N, d) is defined as a set of N -dimensional sub-

spaces of Rd. Hypo subspaces generated from the sets of TE features are con-

sidered as points on a Grassmann manifold, where the canonical angles are

the distances between them. By repeatedly generating a set of TE features

through the random sampling, we can generate multiple reference subspaces

that belong to the same class. Then, we apply discriminant analysis that

maximizes the variation between classes and minimizes the variation within

18



classes. Let X = {xi}ni=1 and Y = {yi}ni=1 ∈ {1, . . . , C} be a pair set of

samples and their class labels, respectively. Discriminant analysis searches

for a transformation matrix W by maximizing the following function:

J(W) =
W>SbW

W>SwW
, (9)

where Sb =
∑C

c=1 nc(µc−µ)(µc−µ)> and Sw =
∑C

c=1

∑
yi∈c(xi−µc)(xi−µc)

>

are the variance of between classes data and the variance of within classes

data, respectively; nc is the number of samples in class c; µc and µ are the

mean of samples for class c and the mean of all samples, respectively. W

can be obtained by computing the corresponding eigenvectors of the C − 1

largest eigenvalues of S−1w Sb. To apply discriminant analysis on a Grassmann

manifold, kernel discriminant analysis [28, 29] with the Grassmann kernel is

used [7].

Let φ(x) be a function that map x to a Grassmann space G. GDA searches

for a mapping Ŵ : φ(x) → y that maximizes the variance of between class

data and minimizes the variance of within class data. Since data point φ(x)

on a Grassmann manifold is basically a Hypo subspace which has nontrivial

representation, we want to avoid a direct usage of φ(x). For this purpose,

we introduce a kernel function that defines the distance between φ(xi) and

φ(xj) as k(φ(xi), φ(xj)) = ‖φ(xi)
>φ(xj)‖2F which can adopt either (4) or

(5). Let the solution be Ŵ = [ŵ1, . . . , ŵC−1] ∈ Rn×(C−1) and ŵj be written

as a linear combination of the training data ŵj =
∑n

i=1 αi,jφ(xi). As the

result, the mapped ith reference Hypo subspace to the discriminant space is

yi = Ŵ>φ(xi) = α>Ki, where α is a matrix with size n× (C − 1) and Ki is

the ith column of a kernel matrix K ∈ Rn×n with elements computed from
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the kernel function k(φ(xi), φ(xj)). Equation (9) becomes

J(α) =
α>K(V − 1n1>n /n)Kα

α>K(In − V )Kα
, (10)

where 1n ∈ Rn is a vector with value of 1 in all of its elements, and V is a

block diagonal matrix with uniform value of 1nc1
>
nc
/nc in the c-th block. The

solution of (10) is solved in the same way as for (9).

When adapting GDA to the classification framework, the procedure of

the classification is slightly changed as we need to generate multiple reference

subspaces from multiple sets of TE features of the same class to be used in

the GDA computation. In the classification process, all the reference and

input subspaces are mapped to the discriminant space and the classification

is then performed by using k-NN based on the Euclidean distance between

the mapping results [7].

6. Experiments

6.1. Cambridge gesture database

The Cambridge gesture database consists of 9 classes of hand motions

which were captured under 5 different illumination settings, as shown in Fig-

ure 8. Each class consists of 20 sequences with different numbers of images.

6.1.1. Experimental setup

We conducted an experiment using a setup similar to that in [11, 10],

except that in [11] and [10] the length of each image sequence is normalized

to a fixed number, while in our case the lengths can be different. The shortest

sequence length is 37 and the longest is 119. We resized original images to be

of 16 × 12 pixels and used the grayscale pixel value as the image feature. As a
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Figure 8: Nine classes and five illumination settings in the Cambridge gesture

database [11].

result, the dimension of vector xi was 16×12 (f = 192). The dimension of the

TE feature vector si was 192× n, where n is the number of images obtained

by random selection. We used all 20 sequences in the normal illumination

setting (Set 5) for training, and the remaining sequences in other illumination

settings (Sets 1 to 4) for testing. The total number of test sequences was

720 (9 classes × 4 sets × 20 sequences). If not specifically mentioned in

the experimental results, the dimension N of reference subspaces was varied

from 1 to 60 and the dimension M of an input subspace was varied from 1

to 5. In the experiments using DTW, we first computed the alignment cost

between input sequence and the reference sequences. Then, we used k-NN

of the alignment costs to decide the class of the input sequence. The results

reported here are the best among the parameter settings.

6.1.2. Experimental results

Firstly, we evaluated the effect of the number of canonical angles on the

recognition performance. The dimension of the input subspace was fixed

at 10. The dimension of the reference subspace was varied from 10 to 60,

and the best results are reported here. With this setup, up to 10 canonical
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Figure 9: Influence of the number of canonical angles used.

angles can be used for the calculation of the similarity measure. The number

of selected images for one TE feature, n, was 10. The size of the random

selection, R, was 100. From the results shown in Figure 9, we can see that

using more than one canonical angle is significantly better than using only

the first canonical angle, and the performance achieved by using more than

one angle is relatively stable.

To further validate the use of multiple canonical angles, 10 pairs of canon-

ical vectors, which formed 10 canonical angles between an input Hypo sub-

space of class 1 and the reference Hypo subspaces of classes 1 and 2, are

shown in Figures 10 and 11, respectively. In the Cambridge dataset, class 1

is the gesture of a flat hand moving leftward, while class 2 is the gesture of

a flat hand moving rightward. From both Figures 10 and Figure 11, we can

see that the difference between the pairs becomes more noticeable with an

increase in the order of the canonical vectors. This suggests that by using

multiple canonical vectors we can compare Hypo subspaces more effectively

than by using only the first pair of canonical vectors.

Figure 12 shows the value of the similarity (the average of the cosines
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Figure 10: Ten pairs of canonical vectors that form 10 canonical angles between the

reference subspace of class 1 and an input subspace of class 1. The average similarity is

0.52.

of the multiple canonical angles) between an input Hypo subspace and each

reference Hypo subspace. The difference in the similarity between classes was

very small when only the first canonical angle was used: all the similarity

values were close to 1. In contrast, by considering multiple canonical angles,

the separation of the similarity values between classes increased remarkably.

For the rest of our experiments, we used the average of all the canonical

angles, which produces approximately the best performance, as shown in

Figure 9.

Secondly, we investigated the effect of the number of replicates in the

random selection, R, by changing its value to 5, 10, ..., 200. Figure 13 shows

that the recognition rate becomes stable when the value of R reaches about

30.
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Figure 11: Ten pairs of canonical vectors that form 10 canonical angles between the

reference subspace of class 2 and an input subspace of class 1. The average similarity is

0.48.

Thirdly, we compared our proposed RTW method with related meth-

ods [11, 8] including DTW-based and the Hankel-based methods. In the case

of the Hankel-based method, we used several values of the Hankel block pa-

rameter, n, which corresponds to the number of randomly selected images

in RTW for one TE feature, ranging from 5, 10, 15, . . . , 30. The best results

for RTW were obtained with n = 15, while the Hankel method produced the

best results with n = 20. In RTW, the number of random selections R was

set to 100. The experiments were repeated 5 times and we computed the

average recognition rate. From Table 1, we can confirm that our proposed

method outperformed DTW significantly. The performance of DTW was

very poor because DTW does not consider variations other than temporal

structure. When we performed other experiments for DTW using leave-one-
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Figure 12: Comparison of similarities between an input subspace of class 1 and each

reference class.

Table 1: Recognition rates for the Cambridge gesture database [%].

Iso- Kim and Lui and

RTW DTW CCA Hankel Cipolla Beveridge

[20] [11] [8]

Set 1 95.6 52.8 44.4 94.4 81 93

Set 2 92.9 21.7 13.3 91.1 81 88

Set 3 92.2 26.1 21.1 94.4 78 90

Set 4 93.8 47.2 38.3 91.7 86 91

Avg. 93.6 36.9 29.3 92.9 82 91

out experimental setting (i.e., 1 sequence from each class was picked for the

test, and the rest were used as templates), DTW could achieve recognition

rate of 87.3%. Despite the easier experimental setting, as the sequences with

normal lighting conditions were also used as templates, the recognition rate

was still lower than RTW. When we used Isotonic CCA by using the publicly

available code from [20], the recognition rate was worse than DTW. We also

tested with the publicly available code of CTW [21] and GTW [22] but could
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Figure 13: Influence of the number of random selections R on the performance of the

proposed method.

not achieve better results than those of [20], where the average recognition

rate for CTW and GTW were 21.11% and 27.36%, respectively. In addition,

the proposed RTW method is superior to other methods that used tensor

representation [11] and tangent spaces [10]. It is also an advantage that our

RTW method can handle the unequal lengths of image sequences which com-

monly exist in motion videos. In contrast, it is difficult to deal with multiple

sequences that contain different numbers of images using the conventional

methods from [11, 10].

Finally, Figure 14 shows the computational time required to complete the

classification of 720 gestures in the Cambridge gesture dataset. All imple-

mentations were done using Matlab on Intel Xeon E5-2630 2.3Ghz with 32GB

RAM without using parallelization toolbox and the images of the sequential

data were already resized into 12× 16 pixel. DTW requires no training but

it took almost 96 seconds to complete the experiment (13.39ms per gesture).

This is because DTW required to do pairwise comparison between each in-
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Figure 14: Computational time required to complete the classification experiment on the

Cambridge gesture dataset.

put gesture with many references. When using the Hankel-based method

and RTW with block size of 25, the time required to classify one gesture was

about 5.17ms and 6.98ms, respectively. Although there is a slight trade-off

in terms of computational time when using RTW, we consider that its recog-

nition phase is still fast enough to be used in a real time application. When

conducting experiments with Isotonic CCA, CTW and GTW, the time re-

quired to complete the experiments were much more than those of DTW,

the Hankel based and RTW, as they require to solve optimization problems

that are computationally demanding.

6.2. ChaLearn gesture dataset

The experiments using the Cambridge gesture dataset can be regarded

as a case with adequate training samples (20 training samples for each class.

In this experiment, we demonstrate the validity of the proposed method for

a case with limited training samples (one training sample for each class)
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Figure 15: Some examples of the depth image sequences of the ChaLearn gesture dataset

from batch 1 class 8 (top), batch 2 class 8 (middle), and batch 3 class 8 (bottom).

by using the dataset from the One-Shot Learning ChaLearn gesture Chal-

lenge [5]. The dataset consists of up to 50,000 gestures captured using Mi-

crosoft Kinect, grouped into batches. Each batch contains about 100 motions

in 8 to 13 gesture categories. The training video contains one gesture, while

the test video contains 1 to 5 gestures conducted consecutively. In this ex-

periment we merged 20 batches of the development dataset for which the

temporal segmentation and the true labels are provided. Figure 15 shows

some examples of motions from the dataset. In the end, after discarding

sequences that contain less than 15 frames, the number of classes was 178

and the number of test sequence was 1,557.

6.2.1. Experimental setup

As our focus was on how RTW could improve the performance of con-

ventional methods, we did not use any complicated features. We used the

baseline feature extraction of motion histograms of sequential depth images,

for which the code was provided by the Challenge [5]. First, a difference

depth image is obtained by subtracting two consecutive images. Then, the

subtracted depth image is rescaled and vectorized into a 192-dimensional

motion histogram feature vector, and the Hypo subspaces are generated by
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Figure 16: Experimental results for the merged ChaLearn gesture dataset.

applying PCA to the sets of TE features of the motion histogram feature vec-

tors. The dimensions of subspaces were varied from 1 to 60. However, since

the subspace dimension of the Hankel method was limited to N (s)−n, where

N (s) is the number of frames and n is the size of Hankel blocks, the subspace

dimensions for the Hankel method were set to mins({N (s)})−n. The number

of random selections R was set to 100. Again, the experiments using RTW

were repeated 5 times and the average recognition rate is reported as the

final result.

In the experiment, we also incorporated a subspace learning method using

Grassmann discriminant analysis (GDA) [7] into the framework of RTW, as

described in Section 5. As in conventional linear discriminant analysis, GDA

needs a lot of training samples. Since RTW generates many TE features, we

can provide multiple sets of TE features from one sample sequence which can

be used to generate multiple reference Hypo subspaces for the GDA.
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Figure 17: Plot of recognition rate against the dimension of subspace. The blue and red

dashed lines are the plots for RTW+GDA3 and GDA5 with TE block size 5, respectively.

The green solid line is the plot for RTW with TE block size 6.

6.2.2. Experimental results

Figure 16 summarizes the experimental results from the ChaLearn gesture

dataset. Using DTW, we achieved a recognition rate of 63.5%. With Isotonic

CCA [20], we obtained a recognition rate of 59.7%. The best result of the

Hankel method, with a 72.8% recognition rate, was achieved when using

block size 3. We obtained the best recognition rate of 73% when we used

the proposed TE features with 6 selected images. The experimental results

suggest that, DTW experiences difficulties when there is only one training

data item for each class. In the Hankel method, the performance worsens

when the size of Hankel blocks increases; this could be due to the fact that

in this case the size of Hankel vectors that can be generated from a motion

becomes more limited. When we used GDA with 3 subspaces (RTW+GDA3),

we obtained the best result of 74.2% when using block size 5. When the
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number of the subspaces was increased to 5 (RTW+GDA5), the performance

was almost the same with that of the RTW+GDA3. From these results

we can see that the performance of RTW was improved by incorporating a

subspace learning algorithm in the classification framework.

Although our experimental results here is slightly optimistic, since we

used the best results obtained from a number of parameter choices, the per-

formance is relatively stable. Figure 17 shows a plot of the recognition rate

for various subspace dimensions. The performance stabilized when the sub-

space dimension reached 30.

We note that the proposed method does not incorporate a function for mo-

tion segmentation as a pre-processing, although it is possible. Thus, we could

not conduct a direct comparison of the proposed method with other state-

of-the-art methods with more complicated functions, such as [30, 31, 32].

The performance metric based on the recognition rate, which is used in

our experiments, corresponds to that of the opposite of the edit distance

(the Levenshtein distance). This is because we used the ground truth seg-

mentation and consequently the edit distance is the same as the number of

miss-classifications (error rate or 1 - recognition rate). We consider the incor-

poration of a segmentation function into our framework and the comparison

with the other more complicated methods as one of the future works.

6.3. KTH action dataset

In this section, we demonstrate the performance of the proposed method

using the widely used KTH action dataset [6]. The KTH action dataset [6]

consists of six actions: boxing, hand clapping, hand waving, running, jogging,

and walking, conducted by 25 subjects under four scenarios: outdoors, out-
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Table 2: Recognition rates for the KTH action dataset using LOOCV.
Methods Recognition Rate [%]

Hankel (block size 5)+GDA 91.97

RTW (block size 5)+GDA 93.39

Zhang et al. [34] 90.2

Jiang et al. [33] 93.43

Wang et al. [35] 92.43

doors with variation of zooming, outdoors with different clothes, and indoor.

In total there are 2, 391 sequences of actions.

6.3.1. Experimental setup

We used the leave-one-out cross validation (LOOCV) scheme, where one

sequence was used as the test input and the rest as the training sequences.

For each sequence, we used the bounding box from [33] to do segmentation

between actions and resize each original frame to a 16× 16 pixels grayscale

image. We used the raw pixel values with additional information of the height

and width of the bounding box of the subject, resulting in a 258-dimensional

vector for each frame. We then generated a subspace from each sequence

through either the Hankel based method or RTW. The number of the random

sampling and the block size were empirically set to 500 and 5, respectively.

The dimensionality of the subspaces was set in the same manner as our

Chalearn gesture experiment. GDA was adopted as the subspace learning

method for both the Hankel and RTW.

6.3.2. Experimental results

Table 2 shows the experimental results for the KTH action dataset. The

proposed RTW method achieved recognition rate of 93.39%, outperforming

the Hankel method and the established methods in [35, 34]. Our proposed
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method has achieved the same level of performance as [33]. In this compar-

ison, we should note that [33] used a sophisticated shape-motion descriptor

that requires multiple processing steps such as silhouette extraction and op-

tical flow computation.

7. Conclusions and future work

In this paper we have proposed RTW, which is a very simple yet effective

generalization of the DTW concept, using random sampling, subspaces and

multiple canonical angles for classification of sequential data. The matrix

of the set of TE features can also be regarded as a generalization of the

Hankel matrix. The proposed method addresses the issues of classical DTW,

as well as the common issue of lack of training samples that most existing

approaches are struggling with. The effectiveness of the proposed method

was demonstrated through experiments on the Cambridge gesture database,

a subset of the ChaLearn gesture dataset, and the KTH action dataset.

While RTW does not output alignment path, RTW produces multiple

similarities and canonical vectors which we regard as the most similar pseudo-

warped patterns. One task that we have to do is to investigate further the

relationship between the canonical vectors and the alignment path in DTW.

It is also desirable to know the optimal number of frames or images needed

for constituting an effective TE feature vector. We regard this as one of our

future works.

We focus on the basic idea of RTW, which combines the random sam-

pling approach with the subspace-based method to act as a generalization of

DTW in the conceptual level and the Hankel matrix in the implementation.
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For this reason, we did not use complicated representation of an image and

thus also did not compare the proposed method with the state-of-the-art

action recognition methods. Our experimental results can be considered as

the baseline performance of RTW. There is room for improving the proposed

method. The TE features generated by random selection may contain some

information that does not contribute much to recognition. Such informa-

tion can be better suppressed by applying or developing more sophisticated

sampling schemes and feature-extraction techniques. The former includes de-

veloping content-based adaptive sampling, which we will consider as a future

work; the latter includes nonlinear subspace-based and discriminative learn-

ing methods [7, 26], as demonstrated in our experiments on the ChaLearn

gesture dataset and the KTH action dataset. Moreover, adopting sophis-

ticated feature extraction for each frame or a group of frames such as [33]

prior to the random sampling is also one direction which may further improve

the capability of the proposed method, especially for categorizing actions in

challenging situations.
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