
How Far Removed Are You? Scalable Privacy-Preserving
Estimation of Social Path Length with Social PaL∗

Marcin Nagy
Aalto University

marcin.nagy@aalto.fi

Thanh Bui
Aalto University

thanh.bui@aalto.fi

Emiliano De Cristofaro
University College London
e.decristofaro@ucl.ac.uk

N. Asokan
Aalto University and
University of Helsinki

asokan@acm.org

Jörg Ott
Aalto University

jorg.ott@aalto.fi

Ahmad-Reza Sadeghi
TU Darmstadt/CASED

ahmad.sadeghi@trust.cased.de

ABSTRACT
Social relationships are a natural basis on which humans make

trust decisions. Online Social Networks (OSNs) are increasingly
often used to let users base trust decisions on the existence and the
strength of social relationships. While most OSNs allow users to
discover the length of the social path to other users, they do so in a
centralized way, thus requiring them to rely on the service provider
and reveal their interest in each other.

This paper presents Social PaL, a system supporting the privacy-
preserving discovery of arbitrary-length social paths between any
two social network users. We overcome the bootstrapping prob-
lem encountered in all related prior work, demonstrating that So-
cial PaL allows its users to find all paths of length two and to
discover a significant fraction of longer paths, even when only a
small fraction of OSN users is in the Social PaL system – e.g.,
discovering 70% of all paths with only 40% of the users. We im-
plement Social PaL using a scalable server-side architecture and a
modular Android client library, allowing developers to seamlessly
integrate it into their apps.

1. INTRODUCTION
The ability to learn the social path length to other social network

users can often help individuals make informed trust and access
control decisions. For instance, if attendees at a large convention
could easily find other attendees with whom they share social links
(e.g., a LinkedIn connection), this could help them decide who to
chat or meet up with. Similarly, travelers and commuters could
more consciously decide with whom to interact, share rides, etc. In
general, discovering the social path length between users is bene-
ficial in many interesting scenarios, such as estimating the famil-
iarity to a location (which can in turn be used for context-based
security [33]), as well as for routing in delay-tolerant ad-hoc mo-
bile networks [10] and anonymous communications [24, 35].

Problem Statement. The widespread adoption of Online Social
Networks (OSNs) makes it appealing to measure the length of a
path between two nodes, e.g., to use this information as a signal
of reciprocal trust and/or social interest. Today, a Facebook user
can see the number of common friends with another user, while
LinkedIn also displays the social path length. However, as pop-
ular OSNs are centralized systems, so are the features they offer
to discover social paths. As such, they do not particularly adapt
∗A preliminary version of this article appears in ACM WiSec 2015. This is
the full version.

well to mobile environments where social interactions are tied to
physical proximity, thus severely limiting the feasibility of many
applications scenarios—users may not always be able to connect
to the Internet or willing to reveal their location and/or interests to
the provider. Relying on centralized systems to learn social path
lengths implies that, whenever Alice queries a server for the social
path length to Bob, the server learns that Alice is interested in Bob,
their frequency of interactions, and their locations.

This prompts the need for decentralized and privacy-preserving
techniques for social path length estimation. Users should only
learn if they have any common friends, without having to recipro-
cally reveal the identities of friends that they do not share, and dis-
cover the length of the social path between them (for paths longer
than two), without learning which users are in the path.

Technical Roadmap. Our work builds on Common Friends [37], a
system supporting privacy-preserving common friend discovery on
mobile devices: building on a cryptographic primitive called Pri-
vate Set Intersection (PSI) [15], it allows mutual friends to be dis-
covered by securely computing the intersection of friendship capa-
bilities, which are periodically distributed from a Common Friends
user to all the friends who are also using it. However, besides be-
ing limited to social paths of length two, Common Friends only
discovers the subset of the mutual friends who are already in the
system, thus suffering from an inherent bootstrapping problem.

This paper introduces Social PaL, the first system that supports
the privacy-preserving estimation of the social path length between
any two social network users. We introduce the notion of ersatz
nodes, created for users that are direct friends of one or more users
of Social PaL but are not part of the system. We guarantee that
two users of Social PaL will be able to discover all their common
friends in the OSN (i.e., all paths of length two). We then present
a hash chain-based protocol that supports the (private) discovery of
social paths longer than two, and demonstrate its effectiveness by
means of extensive simulations.

Our work is not limited to designing protocols: we also fully im-
plement Social PaL and deploy a scalable server architecture and
an Android client library enabling developers to seamlessly inte-
grate it into their applications.

Contributions. In summary, we make the following contributions:
1. We present an efficient privacy-preserving estimation of so-

cial paths of arbitrary length (Section 3).
2. We state and prove several properties of Social PaL includ-

ing the fact that, for two users A and B: (i) Social PaL will

1

ar
X

iv
:1

41
2.

24
33

v3
 [

cs
.C

R
]

 2
3

Ju
n

20
15

find all common friends of A and B, including those who are
not using it, and (ii) for each discovered path between A and
B, Social PaL allows each party to compute the exact length
of the path (Section 4).

3. Using samples of the Facebook graph, we empirically show
that even when only 40% of users use the system, Social PaL
will discover more than 70% of all paths, and over 40% with
just 20% of the users (Section 5).

4. We support Facebook and LinkedIn integration and release
the implementation of a scalable server-side architecture and
a modular Android client library, allowing developers to eas-
ily integrate Social PaL in their applications (Section 6).

5. We build two Android apps: a friend radar displaying the so-
cial path length to nearby users, and a tethering app enabling
users to securely share their Internet connection with people
with whom they share mutual friends (see Section 7).

2. BACKGROUND

2.1 Private Discovery of Common Friends
We start by discussing the problem of privately discovering com-

mon friends, i.e., social paths of length two. We argue that minimal
security properties for this problem include both privacy and au-
thenticity, as users should neither learn the identity of non-shared
friends nor claim non-existent friendships.

Private Set Intersection (PSI) [15]. A straightforward approach
for privately discovering common friends is to rely on PSI, a primi-
tive allowing two parties to learn the intersection of their respective
sets (and nothing else). If friend lists are encoded as sets, then PSI
could be used to privately find common friends as the set intersec-
tion. One could also limit disclosure to the number, but not the
identity, of shared friends, using Private Set Intersection Cardinal-
ity (PSI-CA) [11], which only reveals the size of the intersection.
However, using PSI (or PSI-CA) guarantees privacy but not authen-
ticity, as one cannot prevent users from inserting arbitrary users in
their sets and claim non-existent relationships.

Bearer Capabilities. In order to guarantee authenticity, Nagy et
al. [37] combine bearer capabilities [44] (aka bearer tokens) with
PSI, proposing the Common Friends service, whereby users gener-
ate (and periodically refresh) a random number – the “capability”
– and distribute it to their friends via an authentic and confidential
channel. As possession of a capability serves as a proof of friend-
ship, users can input it into the PSI/PSI-CA protocol, thereby only
learning the identity/number of common and authentic friends.

Since capabilities are large random values, a simpler variant of
PSI for private common friend discovery that only relies on crypto-
graphic hash functions and does not involve public-key operations
can be used. Parties can hash each item in their set and transfer
the hash outputs: since the hash is one-way, parties cannot invert
it, thus they only learn the set intersection upon finding match-
ing hashes.1 This can be further optimized using the Bloom Fil-
ter based PSI (BFPSI) primitive (for high-entropy items) outlined
in [37]. On the other hand, it is not clear whether it is possible to do
so for PSI-CA, i.e., to only count the number of common friends.

Bloom Filters. A Bloom Filter (BF) is a compact data structure for
probabilistic set membership testing [7]. Specifically, a BF is an
array of β bits that can be used to represent a set of α elements in a
space-efficient way. BFs introduce no false negatives but can have
1On the other hand, if sets contained low-entropy items, a malicious party could
(passively) check whether any item item is in counterpart’s set, independently
of whether or not it lies in the intersection.

OSN$servers$ ServerS

Mobile$users$

(1)$

(2)$

(3)$

A$

B$ U$

Internet$

(2)$

(1)$

Figure 1: Overview of the Common Friends architecture, involving three
protocols: (1) OSN user authentication protocol, (2) Common Friends ca-
pability distribution protocol, (3) Common Friends discovery protocol.

false positives, even though the probability of a false positive can
be estimated (and bounded) as a function of α and β.

Formally, let X = {x1, . . . , xα} be a set of α elements, and BF
be an array of β bits initialized to 0. BF(j) denotes the j-th item in
BF. Then, let {hi : {0, 1}∗ → [1, β]}γi=1 be γ independent crypto-
graphic hash functions, salted with random periodically refreshed
nonces. For each element x ∈ X , set BF (hi(x)) = 1 for 1 ≤ i ≤
γ. To test if y ∈ X , check if BF(hi(y)) = 1 ∀i. An item appears
to be in a set even though it was never inserted in the BF (i.e., a
false positive occurs) with probability p = (1 − (1 − 1/β)γ·α)γ .
The optimal size of the filter, for a desired probability p, can be
estimated as: β = d(− log2 p)/(ln 2)e × α.

2.2 Common Friends
In Figure 1, we illustrate the Common Friends [37] system: it

involves a server S, a set of OSN servers (such as Facebook or
LinkedIn), and a set of mobile users, members of one or more of
these OSNs. S is implemented as a social network app (i.e., a third-
party server), which stores the bearer capabilities uploaded by the
Common Friends application running on users’ devices. It also
allows a user’s Common Friends application to download bearer
capabilities uploaded by that user’s friends in the OSNs. Com-
mon Friends consists of three protocols: (1) user authentication,
(2) capability distribution, and (3) common friend discovery.

OSN User Authentication enables the OSN server to authenticate
a user U, provide U’s OSN identifier (IDU) to S, and U to authorize
S to access information about U’s friends in the OSN, which can
be done using standard mechanisms, such as OAuth [21].

Capability Distribution involves S and U, communicating over
a secure channel with server authentication provided by certifi-
cate CertS , and client authentication based on the previous OSN
user authentication process. User U generates a random capabil-
ity cU (taken from a large space) and uploads it to S over the
established channel. S stores cU along with the social network
user identifier IDU, and sends back RU = {(IDj , cj) : IDj ∈
friends(IDU)}, which contains pairs of identifiers and correspond-
ing capabilities of each friend that has already uploaded his capa-
bility. The protocol needs to be run periodically to keep RU up-to-
date, as capabilities are periodically refreshed.

Common Friend Discovery is a protocol run between two users,
A and B, illustrated it in Figure 2, allowing A and B to privately dis-
cover their common (authentic) friends, based on BFPSI. First, A
and B exchange their public keys (PKA and PKB , respectively)

2

User A! User B!
Inputs:!
SKA,PKA,RA!

Inputs:!
SKB,PKB,RB!

SKA, PKA! SKB, PKB!

PKB, KAB! PKA, KAB!

DH-KeyExchange!

RB !
ck PKB PKA()

s.t. (IDk,ck)" RB

#
$
%

&%

'
(
%

)%
RA !

cj PKB PKA()
s.t. (IDj,cj)" RA

#
$
%

&%

'
(
%

)%

XX

Bloom filter based PSI!

False positives removal!

RA RB

Figure 2: Common friend discovery protocol based on BFPSI and bearer
capabilities from [37].

and generate a shared key (KAB) used to encrypt messages ex-
changed as part of the protocol. To prevent man-in-the-middle at-
tacks, A (resp., B) cryptographically binds the DH channel to the
protocol instance: A (resp., B) extends each item in the capability
set RA (resp., RB) by appending DH public keys PKA, PKB ,
building effectively a new set RA (resp., RB). A inserts every ele-
ment of the RA set into a Bloom Filter BFA and sends it to B. B
discovers the set of friends (X ′) in common with A by verifying
whether each item of his input set RB is inBFA. Since Bloom Fil-
ters introduce false positives, the set X ′ may contain non-common
friends. Thus a simple challenge-response protocol is run, where B
requires A to prove knowledge of items available in X ′. At the end
of the protocol, A and B output the set of their common friends X .

3. SOCIAL PAL
We now present the design and the instantiation of the Social PaL,

the system to compute the social path length between two OSN
users in a decentralized and privacy-preserving way.

3.1 System Design
Limitations of [37]. Before introducing Social PaL’s require-
ments, we discuss two main limitations of Common Friends [37],
as addressing them constitute our starting point:

1. Bootstrapping: Users A and B can discover a mutual friend
(say C), only if C has joined the Common Friends system
and uploaded his capability to S. That is, Common Friends
will only discover a subset of the mutual friends between A
and B until all of them start using it.

2. Longer social paths: Common Friends only allows its users
to learn whether they are friends or have mutual friends. If
two users have a longer social path between them, Common
Friends cannot detect it.

To illustrate Common Friends’s bootstrapping problem, we plot, in
Figure 3, a simple social network with 27 nodes (i.e., users) and 34
edges (i.e., friendship relationships). Black circles represent users
who are using Common Friends, and white circles – those who are
not. Purple/solid edges represent direct friend relationships (i.e.,
social paths of length 1) that are discoverable by Common Friends.
When the user base is only 40% of all OSN users (Figure 3(a)), only

(a) Common Friends, 40% of active users

(b) Common Friends, 60% of active users

Figure 3: Coverage of Common Friends with 40% and 60% of users using
the system. Black (resp., white) nodes denote users (resp., non-users) of
the system. Purple/solid edges denote a direct friendship discoverable by
Common Friends.

7 out of the 34 direct friend relationships are discoverable (i.e., cov-
erage is approximately 20%). When it increases to 60%, coverage
increases to about 50% (Figure 3(b)).

System model. Social PaL’s system model is the same as that of
Common Friends (presented in Section 2.2). It involves a server
S (which we design as a social network app), a set of OSN servers
(such as Facebook or LinkedIn), and a set of mobile users members
of one or more of these OSNs (cf. Figure 1).

Functional requirements. Ideally, Social PaL should allow any
two users to always compute the exact length of the social path be-
tween them, even when Social PaL is being used only by a frac-
tion of OSN users. In order to characterize how well Social PaL
meets this requirement, we use a measure of the likelihood that any
two users would discover, using Social PaL, an existing social
path of a given length between them. We denote this measure as
Social PaL’s coverage.

We define Social PaL’s functional requirements as follows:

• (Correctness). Users A and B can determine the exact length
of a social path between them (if any).

• (Coverage Maximization). Social PaL should maximize
coverage, in other words, the ratio between the number of
social paths (of length n) between A and B discovered by
Social PaL and the number of all social paths (of length n)
between A and B.

Privacy requirements. From a privacy point of view, Social PaL
should satisfy the following requirements. Let A and B be two
Social PaL users willing to discover the length of the social path
existing between them:

1. A and B discover the set of their common friends but learn
nothing about their non-mutual friends;

2. A and B do not learn any more information other than what
it is already available from standard OSN interfaces.

In other words, Social PaL should allow two users to learn the
social path length between them (if any), but not the nodes on the

3

Symbol Description
Entities

S Server
A, B User A, B, resp.

U Generic User (can be either A or B)
E User E (ersatz node)

Social graph data
IDU Social identifier of U

F (IDU) Set of direct friends of U
F k(IDU) Set of social contacts k hops from U

Keys
PKA, PKB DH public key of A, B, resp.

KAB DH session key between A and B
Cryptographic functions

hi(x) Hash chain of item x of length i
Social PaL protocol data

cj Capability uploaded by user with identifier IDj
ckj Capability of degree k uploaded by user with identifier IDj
RU Set of capabilities downloaded by U from S
Rh

U Set of higher order capabilities downloaded by U from S
Rd

U Set of derived higher order capabilities downloaded by U from S
I Union of capabilities’ sets RU , Rh

U , Rd
U

I Input sets to Social PaL discovery protocol
BFA Bloom filter sent by A

Table 1: Notation.

path, without reciprocally revealing their social link. If a path be-
tween the users exists that is of length two (i.e., users have some
common friends), then they learn the identity of the common friends
(and nothing else). This only pertains to interacting users, as ensur-
ing that no eavesdropping party learn any information about users’
friends can be achieved by letting users communicate via confiden-
tial and authentic channels.

Threat model. We assume that the participants in Social PaL
are honest-but-curious. The OSN server is trusted to correctly au-
thenticate OSN users and not to attempt posing as any OSN user.
The Social PaL server S is trusted to distribute Social PaL ca-
pabilities only to those Social PaL users authorized to receive
them. Social PaL users use the legitimate Social PaL client,2

but they might attempt to learn as much information as possible
about friends of other Social PaL users with whom they interact.
We aim to guarantee the privacy requirements discussed above in
this setting, and prevent the OSN server or the server S to learn any
information about interactions between Social PaL users.

3.2 Bootstrapping Social Pal
Before presenting the details of the system, in Table 1, we intro-

duce some notation used throughout the rest of the paper.

Ersatz nodes. One fundamental building block of Social PaL are
ersatz nodes3, which we introduce to overcome the bootstrapping
problem faced by services like Common Friends. Recall from Sec-
tion 2.2 that, in the original Common Friends design, the server
S stores bearer capability cU , uploaded by a user U, together with
his social network identifier IDU. The pair (IDU, cU) constitutes
U’s user node in the social graph maintained by S. The set of U’s
friends F (IDU) is the set of edges incident in the user node.

In Social PaL, we let S create an ersatz node for all users who
have not joined the system but who are friends with a user who has.
An ersatz node is identical to a standard user node, but its capability
is generated by S, instead of the user. Figures 4(a) and 4(b) show
how coverage improves when ersatz nodes are added, e.g., with
only 40% joining the system, coverage reaches 75%.

2This is enforced by the OSN app interfaces which ensure that only designated
client apps are allowed to talk to a particular OSN app server, i.e., the So-
cial PaL server S.

3The word ersatz, originally from German, means “substitute.”

(a) Social PaL, 40% of active users with ersatz nodes

(b) Social PaL, 60% of active users with ersatz nodes

Figure 4: Coverage of Social PaL with 40% and 60% of users using the
system and with the addition of ersatz nodes (in grey). Purple/solid edges
here denote a direct friendship discoverable by Social PaL.

Establish a secure connection
using CertS (server auth)

 and pwdU (user auth)

cU

Store (IDU,cU)

RU

User U Server S
Inputs:
pwdU, CertS

Input:
SKS

RU ←
IDj,cj() s.t.
IDj ∈ friends(IDU),

#
$
%

&%

'
(
%

)%

cU ∈R {0,1}
l

∀IDE ∈ friends(IDU) s. t.¬∃ IDE,cE()
Generateand Store IDE,cE()

Figure 5: Adding ersatz nodes to the capability distribution.

Ersatz node creation. Adding ersatz nodes requires a few changes
in the capability distribution protocol, compared to that from Sec-
tion 2.2. We highlight these changes in Figure 5, specifically, in
the blue-shaded box. Before returning RU to U, S first computes
the set MU = {IDE : ¬∃(IDE, cE)} which contains the social
network identifier of each “missing user” E.

Then, ∀IDE ∈MU , it creates E’s an ersatz node as follows:

1. Create an ersatz capability cE ∈R {0, 1}l (where l is the
length of a capability) for E and store {(IDE, cE)}.

2. Create an initial friend set F (IDE), which at this stage con-
tains only IDU.

After the successful creation of all needed ersatz nodes, S returns
RU , which includes the capabilities from the nodes of all of U’s
friends, including the ersatz nodes.

Active social graph updates. Users of Social PaL explicitly au-
thorize the server S to retrieve their friend lists from the OSNs.
Since an ersatz node E is not a user of Social PaL, S cannot learn
the full set of E’s friends F (IDE). Instead, it maintains an estimate

4

of F (IDE) based on the events it can observe from users of So-
cial PaL. For example, when a user U adds E as a friend, S learns
that IDE is added to F (IDU) and can infer that IDU should be
added to F (IDE). Each IDU ∈ F (IDE) corresponds to a real user
U who has explicitly authorized S to learn about the edge U-E in
the social graph.

Turning ersatz nodes into “standard” nodes. If a user E for
whom S has created an ersatz node later joins Social PaL, he
can simply upload his capability cE to S, who (1) overwrites the
old ersatz capability with cE , (2) queries the OSN for E’s friend
list F (IDE), and (3) updates the existing, possibly incomplete, list
of E’s friends with F (IDE), turning an ersatz node into a standard
node. Note that this operation is transparent to all users.

3.3 Discovering Longer Social Paths
We now present the full details of our Social PaL instantiation:

besides addressing the bootstrapping problem (using ersatz nodes),
it also allows two arbitrary users to calculate the social path length
between them. We denote with Dist(A,B) the social path length
between two users A and B, i.e., the minimum number of hops in
the social network graph that separates A and B.

Intuition. We set to allow Social PaL to discover the social path
length between users in the OSN by extending the capability dis-
tribution to include further relationships beyond friendship (e.g.,
friend-of-a-friend) and rely on capability matches for estimating
the social path length. By using cryptographic hash functions, we
can generate and distribute capabilities of higher order that serve as
a proof of a social path between users.

Notation. In the rest of the paper, we use the following notation:
• The hash chain hi(x) of item x (of length i) corresponds

to the evaluation of a cryptographic hash function h(·) per-
formed i times on x. When i = 0, h(x) = x. Specifically:

hi(x) =

 h(h(· · · (h︸ ︷︷ ︸
i times

(x)) · · ·)) i ≥ 1

x i = 0

• ckj is a k-degree capability and is defined as ckj = hk(cj)

• F k (IDU), k ≥ 1 denotes the set of social contacts that are
k-hops from user U.

Capability Distribution: In Figure 6, we detail Social PaL’s
protocol for capability distribution. Interaction between U and S
is identical to the capability distribution protocol from Figure 5, up
until the creation of missing ersatz nodes is completed. In the up-
dated protocol S returns two sets, namely RU and Rh

U , where Rh
U

denotes the set of higher order capabilities provided to U by other
OSN members that are at least 2-hops from U. It is composed of a
number of subsets Ci , i = 2, . . . , n with each subset Ci contain-
ing i− 1 order capabilities of users in F i(IDU). Formally,

Rh
U =

⋃n
i=2 Ci , and

Ci = {(i− 1, ci−1
j) : ∃(IDj , cj) ∧ IDj ∈ F i(IDU)}

Consequently, the total cardinality of Rh
U and RU is:

|RU |+ |Rh
U | =

n∑
i=1

|F i(IDU)|

Finally, U generates missing higher order capabilities. For every
received capability cij of degree i, U hashes it n−i times to generate
a sequence of higher order capabilities of the form:

((i+ 1, ci+1
j), . . . , (n, cnj))

Establish a secure connection
using CertS (server auth)

 and pwdU (user auth)

Store (cU,IDU)

User U Server S
Inputs:
pwdU, CertS

Input:
SKS

RU ← IDj,cj() :IDj ∈ F1 IDU(){ }

RU
h ←

Ci
i=2

n

∪

Ci =
i−1,cj

i−1() :
∃ IDj,cj()∧IDj ∈ Fi (IDU)

&
'
(

)(

*
+
(

,(

&

'

(
(

)

(
(

*

+

(
(

,

(
(

cU ∈R {0,1}
l cU

RU,RU
h

ersatznodescreation

Figure 6: Social PaL’s capability distribution protocol.

All elements of such sequences are combined into one set of de-
rived higher order capabilities Rd

U . Finally all capability sets are
combined to form I :

I = RU ∪ Rh
U ∪ Rd

U

The resulting set I will be used to derive the input sets for PSI
during the social path length discovery protocol as explained below.
The cardinality of the input set to PSI is therefore:

|I | =
n∑
i=1

|F i(IDU)| × (n− i+ 1)

To construct Fn(IDU) of user U, S tracks changes in friend lists
of users by using the following logical implication: if j represents
a friend of i and i is k − 1 hops from U and j was not previously
identified at less than k hops from U, then j is k hops from U.
Formally:

(IDi ∈ F k−1(IDU) ∧ IDj ∈ F (IDi) ∧
IDj /∈ Fm(IDU),m < k) =⇒ IDj ∈ F k(IDU)

Finally, as capabilities are meant to be short-lived (i.e., they should
expire within a couple of days), the protocol needs to be run peri-
odically in order to keep I up-to-date.

Social Path Discovery: In Figure 7, we illustrate the Social PaL
discovery protocol. The protocol involves two users A and B, who
are members of the same OSN. It begins with establishing a se-
cure channel (via Diffie-Hellman key exchange), followed by cryp-
tographic binding of the Diffie-Hellman channel to the protocol
instance, which is needed to avoid man-in-the-middle attacks. A
(resp., B) appends both public keys to each capability cj in IA
(resp., IB) set to form IA(IB). The resulting sets are:

IA = {(cj ||PKA||PKB) : (∗, cj) ∈ IA}

IB = {(cj ||PKA||PKB) : (∗, cj) ∈ IB}

Note that the ∗ symbol in the above equations indicate that, while
constructing IA and IB , the first element of each pair contained in
IA and IB is ignored.

Next, both users execute the steps of Common Friends’s discov-
ery protocol, on the above input sets. Specifically, they interact in
a Bloom-filter based PSI execution and run the challenge-response
part of the protocol needed to remove potential false positives (as
discussed in Section 2.2). The interactive protocol ends with par-
ties outputting the intersection of the sets. From this point on, both
users perform identical actions to calculate the social path length

5

User A! User B!
Inputs:!
SKA,PKA,IA!

Inputs:!
SKB,PKB,IB!

SKA, PKA! SKB, PKB!

PKB, KAB! PKA, KAB!

DH-KeyExchange!

IB !
cj PKA PKB()

s.t. (",cj)# IB

$
%
&

'&

(
)
&

*&
IA !

cj PKA PKB()s. t.
",cj()# IA

$
%
&

'&

(
)
&

*&

False positives removal!

!x " X :

$,cj
i()" I%hk cj

i() = x
lx = 2i+ k + 2
L.insert(lx)

Dist(B,A) =min
lx!L

LDist(A,B) =min
lx!L

L

Bloom filter based PSI!

IA IB

XX

!x " X :

$,cj
i()" I%hk cj

i() = x
lx = 2i+ k + 2
L.insert(lx)

Figure 7: Illustration of Social PaL discovery protocol. The updated part
is marked in grey background.

between them. All operations are done locally, i.e., with no need to
exchange data. This process consists of two phases: (1) calculating
the social path length input set L (i.e., the set containing lengths for
all discovered paths between A and B), and (2) selecting the short-
est length among all lengths contained in L. To this end, A (B)
builds set L by performing following actions on every item x ∈ X:

1. Finding a capability cij such that ∃(∗, cij) ∈ I ∧ hk(cij) = x

2. Calculating path length lx via matching capability x (which
was obtained from some user, say C) and inserting it into L:

lx = (i+ 1)︸ ︷︷ ︸
Dist(A,C)

+(i+ k + 1)︸ ︷︷ ︸
Dist(C,B)

= 2i+ k + 2

L.insert(lx)

At the end, A and B learn the final path length Dist between them
by finding the lowest value of items included in L:

Dist(A,B) = Dist(B,A) = min
lx∈L

L

If Dist(A,B) ≤ 2, then A and B have common friends between
them, thus Social PaL returns identifiers of all these common
friends as in the original Common Friends service. While we could
use Social PaL to reveal the first hop identifiers for Dist > 2, we
do not due to the privacy requirements outlined in Section 4.2.

4. ANALYSIS
This section presents the analysis of Social PaL, showing that

it fulfills functional and privacy requirements from Section 3.1.

4.1 Correctness

LEMMA 1. If IDP ∈ F k(IDA), then:

1. There exists a path X = {xi}, for i ∈ {0, . . . , k − 1},
between A and P, in the social graph.

2. A receives the ith order capability cixi from every xi in X .

PROOF. When IDP ∈ F k(IDA), by using the logical implication
for the social graph building (see Section 3.3), it must hold that, in
order to include IDxi+1 in F i+1(IDA), IDxi must be included in
F i(IDA). Therefore, we can recursively argue:

∃xk−1 : IDxk−1 ∈ Fk−1(IDA) ∧ IDxk−1 ∈ F (IDP)

. . .

∃xi+1 : IDxi+1 ∈ F i+1(IDA) ∧ IDxi+1 ∈ Fk−i(IDP)

∃xi : IDxi ∈ F i(IDA) ∧ IDxi ∈ Fk−1−i(IDP)
. . .

∃x0 : IDx0 ∈ F (IDA) ∧ IDx0 ∈ Fk−1(IDP)

Note that, for every i ∈ {0, . . . , k−1}, there exists a connection to
xi−1 and xi+1, thus, {x0, x1, . . . , xk−1} form a pathX between A
and P. Considering xi ∈ X, 0 ≤ i < k − 1, since xi ∈ F i(IDA),
then A receives cixi .

THEOREM 1. Let there be a path X = {xi}, i ∈ {0, ..., d}, d ≥ 0
between A and B in the social graph. If path X is discovered by
the Social PaL discovery protocol, then both A and B can estimate
the exact length d+ 2 of path X .
PROOF. Let n denote the highest degree of capabilities.
If d < n:
− The set of capabilities of A and B are {cx0 , c1x1 , . . . , c

i
xi , . . . , c

d
xd},

and {cxd , c
1
xd−1

, . . . , cd−ixi , . . . , cdx0}, respectively. (See Figure 8(a)
for a graphic illustration of the distribution of capabilities for A
and B.)

− If A gets a matching capability for cixi , then it must corresponds
to cd−ixi for B.

− A substitutes k = d− i in Dist(A,B) and receives:
lx = 2i+ (d− i) + 2 = i+ d+ 2

− A gets multiple capability matches, and sets Dist(A,B) to be
the minimum lx, which is for i = 0, and Dist(A,B) = d + 2.
(Similar argument holds for B.)

If d ≥ n:
− The set of capabilities of A and B are {cx0 , c1x1 , . . . , c

i
xi , . . . , c

n
xn}

and {cxd , c
1
xd−1

, . . . , cd−ixn , . . . , cd−nxi }, respectively – see Fig-
ure 8(b). (Capabilities for which A and B obtains matches are
marked in green.)

− If A gets a capability match for: {cixi , . . . , c
n
xn}, A substitutes

k = n− i in Dist(A,B) and receives:
lx = 2i+ (n− i) + 2 = i+ n+ 2

− A gets multiple capability matches, and sets Dist(A,B) to be
the minimum lx, which is for i = d − n, and Dist(A,B) =
d+ 2. (Similar argument holds for B.)

4.2 Privacy
As discussed in Section 3.1, our Social PaL instantiation needs

to provide users with strong privacy guarantees, i.e., interaction be-
tween two users A and B does not reveal any information about
their non-mutual friends or any other information than they could
discover by gathering information from the standard OSN interface.

Capability Intersection. First, we review the security of the com-
mon friends discovery protocol from Common Friends [37], since
it constitutes the basis of our work. Its security, in the honest-
but-curious model, reduces to the privacy-preserving computation
of set intersection. That is, privacy stems from the security of
the underlying Private Set Intersection (PSI) protocol that Com-
mon Friends instantiates to privately intersect capabilities and dis-
cover common friends. This is proven by means of indistinguisha-
bility between a real-world execution and an ideal-world execution
where a trusted third party receives the inputs of both parties and

6

!" #"$%" $&" $'" $(")")"

cx0 cx1
1 cxi

i cxd
d

cxd
0cxi

d!icx0
d cx1

d!1

*+,-"!.+"/0102'3'4,+"

*+,-"#.+"/0102'3'4,+"

(a) Theorem 1 capability distribution for d < n case.

!"#$"

cxd
0

%"#&"%"

cxi
i

cxi
n

'" #("

cx0

#)"%"

cxn
n

cxn
i

)*&"

+,-."'/,"01213&4&5-,"

+,-."!/,"01213&4&5-,"

(b) Theorem 1 capability distribution for d ≥ n case.

Figure 8: Illustration of theorem 1 capability distribution.

outputs the set intersection. [37] uses Bloom Filter based PSI (BF-
PSI) and, as discussed in Section 2.1, this does not impact secu-
rity since sets to be intersected are random capabilities, thus, high-
entropy, non-enumerable items.

Discovery. Now observe that the interactive part of the Social PaL’s
(social path) discovery protocol – i.e., the part where information
leakage might occur – mirrors that of Common Friends’s discovery
protocol. During the protocol execution, users A and B engage in
a BFPSI interaction, on input, respectively, IA and IB , i.e., the sets
of their capabilities, and obtain X , which is used to reconstruct the
social path between A and B.

If A and B are friends with each other (or have mutual friends),
they can find out the identity of the user(s) corresponding to match-
ing capabilities, thus, learning that there exists a social path of
length 1 (or 2) and the identity of their mutual friends, but nothing
else. In fact, if an adversary could learn the identity of non-mutual
friends, then, we could build an adversary breaking the common
friends discovery protocol from [37] based on BFPSI. Similarly, if
there exists no social path between A and B, then the BFPSI inter-
action does not reveal any information to each other.

On the other hand, if there exists a social path between A and B
of length Dist(A,B) > 2, then the matching capabilities are for
user nodes for which S has removed identifiers IDj . Therefore, A
and B do not learn the identity of the users yielding a social path
between them, but only how many.

Trust in Server S. Each user U explicitly authorizes Social PaL
to retrieve the set F (IDU) of U’s friends. Requesting users to dis-
close their friend lists is a common practice in social network and
smartphone applications. Social PaL uses this information to have
the server S maintain, distribute, and, in the case of ersatz nodes,
create capabilities attesting to the authenticity of friendships. This
implies that S gradually learns the social graph from Social PaL
users, however, what S learns is a small subset of what the OSN

already knows. Neither S nor the OSN learn any additional infor-
mation, e.g., as opposed to centralized solutions, user locations or
interactions between users.

Authenticity of capabilities. In Section 3.1, we assumed the use
of legitimate Social PaL client applications: as all mobile plat-
forms provide application-private storage, it is reasonable to as-
sume that an adversary on a client device cannot steal the capabili-
ties downloaded on that device by the legitimate client application
or otherwise manipulate the input to the protocol. Alternatively,
the integrity of the Bloom Filter could be ensured by letting S sign
the Bloom Filter along with the public key of the corresponding
Social PaL client. The BFPSI protocol would then need to be
modified accordingly so that each party checks the signature on the
other party’s Bloom Filter is valid and that the same keypair is used
to establish the secure channel.

5. COVERAGE EVALUATION
We now present an empirical evaluation of Social PaL’s cov-

erage, using three publicly available Facebook sample datasets.
Specifically, we analyze how coverage attained by the social path
discovery depends on the fraction of OSN users who join the sys-
tem, i.e., the probability that two users discover an existing path
between them in the social network.

5.1 Datasets Description
We use three datasets derived from a single dataset, created by

Gjoka et al. [17, 18], using three different sampling techniques:

(1) The Social Filter dataset [41] is our primary dataset. It con-
tains 500, 000 users, a connected component derived using the “for-
est fire" sampling method [27] from the original dataset [41]. As
forest fire sampling does not preserve node degree, each node in
this dataset has an average node degree of 30, which is significantly
less than in the original dataset. To investigate the effect of the re-
duced node degree on coverage, we also use the two more datasets.

(2) The MHRW dataset [17] is built using the Metropolis-Hastings
Random Walk (MHRW) method with 28 independent random walks.
It contains the friend lists of 957, 359 users. We call this the set of
sampled users. Each of them has an average of 175 friends, in-
cluding both other sampled users and those who were part of the
original dataset but that were not sampled – we call them outside
users. The MHRW dataset contains a total of 72.2 million outside
users (who are friends of one or more sampled users). Because of
the nature of the MHRW sampling, the average number of connec-
tions between two sampled users in this set is only 3, thus it is used
to evaluate Social PaL’s coverage among poorly connected users.

(3) The BFS dataset [17] is built using Breadth First Search (BFS)
from 28 independent BFS traversals. It consists of 2.2 million sam-
pled users, with an average of 310 friends. The number of outside
users is 93.8 million. BFS sampling results in highly connected
subgraphs, and the average number of connections among sampled
users is 53. Thus, we use the BFS dataset to measure Social PaL’s
coverage among well connected users.

5.2 Simulation
Procedure. To evaluate Social PaL’s coverage on each of the
three datasets, we used the following simulation procedure. First,
we chose, at random, a subset of sampled users, which we call the
test set. For the Social Filter dataset, we used the whole set as
the sampled users set. We chose four different sizes for the test
set: {20, 40, 60, 80}% of the sampled users. Note that the test set
represents the fraction of the users of an OSN who use Social PaL.

7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
o
ci

a
lP

a
l
d
is

co
v
e
ry

 c
o
v
e
ra

g
e
 [

%
]

Fraction of OSN with SocialPaL [%]

2-hops w/o ersatz
3-hops w/o ersatz
4-hops w/o ersatz

2-hops with ersatz
3-hops with ersatz
4-hops with ersatz

Figure 9: Coverage results for the Social Filter dataset.

Fraction of OSN Path length with ersatz [%] w/o ersatz [%]
with Social PaL avg std avg std

20%
2 100 0.0 25.12 0.27
3 47.59 0.11 8.17 0.09
4 44.17 0.21 3.85 0.09

40%
2 100 0.0 46.05 0.30
3 73.05 0.09 25.27 0.11
4 68.93 0.09 18.64 0.14

60%
2 100 0.0 65.02 0.17
3 88.69 0.07 46.87 0.14
4 85.86 0.11 40.94 0.19

80%
2 100 0.0 83.02 0.10
3 97.32 0.04 72.10 0.18
4 96.37 0.05 68.71 0.21

Table 2: Coverage results for the Social Filter dataset. (Also see Fig. 9).

Then, for a given social path length n (n ∈ {2, 3, 4}), we ran-
domly selected 50, 000 pairs of users from the test set in such a
way that at least one path of length n exists. Finally, we computed
the fraction of user pairs for which Social PaL discovers an ex-
isting path between them. We did this for two cases: Social PaL
with support for ersatz nodes, and without it. Each simulation was
repeated 10 times. In total, we conducted 720 different simulations.

Results. We now present the results of our simulations for each of
the three datasets. Social PaL’s discovery coverage is presented
in Figure 9 andTable 2 for the the Social Filter dataset, Figure 10
andTable 3 for the MHRW dataset, and Figure 11 andTable 4 for
the BFS dataset. Each graph shows how the coverage (for paths of
different length) of Social PaL relates to fraction of OSN users
who use Social PaL. Red dotted lines indicate the performance of
Social PaL without ersatz node support, while black solid lines
correspond to the user of ersatz nodes.

Without ersatz nodes, coverage increases linearly as more users
start using Social PaL. The rate of growth is highest for the So-
cial Filter dataset and lowest for the MHRW dataset. In general,
the coverage figures are low. For instance, even if 80% of OSN
users have Social PaL, the coverage for paths of length 4 ranges
between 0.19% (the MHRW dataset) and 68.71% (the Social Filter
dataset). The introduction of ersatz nodes results in a remarkable
improvement across the board in all datasets. As expected, the cov-
erage for paths of length 2 is 100%. When 80% of OSN users are
in the Social PaL system, the coverage is well above 80% in all
cases. Even when only 20% of users have Social PaL, coverage
is still above 40% in all cases, except for the MHRW dataset.

5.3 Take-aways

Ersatz nodes dramatically improve coverage. With ersatz nodes,
Social PaL discovers 100% of social paths of length 2, thus ad-
dressing one of the major limitations of the Common Friends sys-
tem [37]. The coverage for paths of length 3 and 4 always increases,
between 10% and 80%, depending on the fraction of OSN users in
Social PaL and the dataset used for the simulations.

Fraction of OSN Path length with ersatz [%] w/o ersatz [%]
with Social PaL avg std avg std

20%
2 100 0.0 2.52 0.1
3 22.77 0.23 0.15 0.02
4 27.86 0.26 0.003 0.002

40%
2 100 0.0 5.26 0.15
3 43.71 0.22 0.55 0.02
4 48.46 0.25 0.03 0.004

60%
2 100 0.0 7.85 0.14
3 63.50 0.13 1.19 0.03
4 67.09 0.24 0.09 0.005

80%
2 100 0.0 10.34 0.14
3 82.18 0.19 2.04 0.03
4 83.90 0.29 0.19 0.01

Table 3: Coverage results for the MHRW dataset. (Also see Fig. 10).

Fraction of OSN Path length with ersatz [%] w/o ersatz [%]
with Social PaL avg std avg std

20%
2 100 0.0 13.69 0.34
3 42.42 0.30 4.31 0.11
4 54.11 0.21 1.51 0.04

40%
2 100 0.0 23.85 0.26
3 63.46 0.23 10.98 0.17
4 72.39 0.32 6.71 0.11

60%
2 100 0.0 33.19 0.26
3 78.62 0.17 18.50 0.09
4 84.28 0.17 14.30 0.13

80%
2 100 0.0 41.46 0.28
3 90.39 0.12 26.24 0.19
4 93.03 0.10 22.71 0.11

Table 4: Coverage results for the BFS dataset. (Also see Fig. 11).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
o
ci

a
lP

a
l
d
is

co
v
e
ry

 c
o
v
e
ra

g
e
 [

%
]

Fraction of OSN with SocialPaL [%]

2-hops w/o ersatz
3-hops w/o ersatz
4-hops w/o ersatz

2-hops with ersatz
3-hops with ersatz
4-hops with ersatz

Figure 10: Coverage results for the MHRW dataset.

Variation of coverage across different datasets. We observe bet-
ter coverage results with the BFS dataset than with the MHRW
dataset. As the BFS dataset represents coverage among well con-
nected users, the density of ersatz nodes between random users is
higher than in the MHRW dataset, thus yielding better overall cov-
erage. The BFS dataset models societies, such as most of the west-
ern societies, where the penetration of OSNs is high. The high cov-
erage results with the BFS dataset suggests that Social PaL will do
well in this context. On the other hand, the MHRW dataset mod-
els societies where OSN connectivity is poor and, although So-
cial PaL is not as effective here, it may still perform reasonably
well, detecting the majority of social paths even before the number
of users joining Social PaL reaches 50%.

6. IMPLEMENTING SOCIAL PAL
In this section, we present our full-blown implementation of the

Social PaL system. We aim to support scalability for increasing
number of users (in terms of CPU performance and memory) and
to enable developers to easily integrate it into their applications.

6.1 Server Architecture
Server components. On the server side, the Social PaL sys-
tem extends the PeerShare server [36], which allows two or more
users to share sensitive data among social contacts, e.g., friends in

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
o
ci

a
lP

a
l
d
is

co
v
e
ry

 c
o
v
e
ra

g
e
 [

%
]

Fraction of OSN with SocialPaL [%]

2-hops w/o ersatz
3-hops w/o ersatz
4-hops w/o ersatz

2-hops with ersatz
3-hops with ersatz
4-hops with ersatz

Figure 11: Coverage results for the BFS dataset.

a social network. We use the following basic functions of Peer-
Share: (1) OSN interfaces to retrieve social graph information, (2)
the OAuth [21] component for user authentication, and (3) the data
distribution mechanism. On top of these components, we develop
a new server architecture that supports the addition of server-based
applications via an extension mechanism. This design choice al-
lows us to implement the Social PaL functionality in such a way
that the system can efficiently scale (in terms of memory and CPU
performance) to support an increasingly large number of users.

As illustrated in Figure 12, the server architecture consists of
the following components: the Common Apps Server, a group of
applications (e.g., the Social PaL App), the OSN Communicator
Module, and the Bindings Database (Bindings DB). The Common
Apps Server provides the basic functionality that is common for all
applications: (1) storage of data uploaded by users in the Bindings
DB, (2) distribution of users’ data to other authorized users, and
(3) retrieval of basic social graph information, which is needed for
enforcing the appropriate data distribution policy. The OSN Com-
municator Module is a plugin-based service responsible for query-
ing OSNs for social graph information. Its plugin-based structure
allows us to easily add support for new OSNs. The Bindings DB
stores data uploaded by users and information on how to distribute
them among social contacts.

The components interact with each other using a number of dif-
ferent interfaces: Server-OSN Query, Bindings Protocol, App Event,
App-DB Updates and App-OSN Query (cf. Fig 12). The Server-
OSN Query interface is used by the Common Apps Server to re-
trieve social graph information from the OSN. The Bindings Proto-
col interface specifies communication between the Common Apps
Server and the Bindings DB. These two interfaces provide basic
data distribution functionality to all applications. The other three
interfaces are used only by applications that need to perform spe-
cific modifications on distributed data on the server side.

Each application that requires logic on the server side has to be
registered in the Common Apps Server via a Uniform Resource
Identifier (URI). This URI is used by the App Event callback inter-
face to notify the application about incoming application-specific
events (e.g., an upload of new data items). In addition, this inter-
face may be used to modify data read from the Bindings DB before
returning them via the Common Apps Server to the user (e.g., gen-
eration of higher order capabilities). The server application itself
has access to the two remaining interfaces. It uses the App-DB Up-
dates to modify data stored in the Bindings DB or to create new data
items. The App-OSN Query interface is used when the application
needs to obtain social graph information from the OSN.

Social PaL server implementation. The Social PaL server ap-
plication is notified via the App Event callback interface about new
capabilities uploaded by users. It uses the App-DB Updates inter-
face to create any required ersatz nodes and properly update the re-

Figure 12: Single instance of Social PaL server architecture. Components
common to all applications are presented in black, while application specific
elements are presented in blue.

Load%balancer%
(Nginx)%

Social%PaL%
server%%

1%

Social%PaL%
server%

2%

Social%PaL%
server%%
n81%

Social%PaL%
server%%
n%

…"

HTTPS%requests%from%clients%

HTTP%%
requests%

DB%router%
(pgpool)%

DB%router%
(pgpool)%

DB%router%
(pgpool)%

DB%router%
(pgpool)%

DB%
Cluster%
(pgSQL)%

Figure 13: Scalable Social PaL server architecture.

cipient sets of capabilities during the social graph building process.
The Social PaL application also uses the App Event interface to
handle capability download requests. The Common Apps Server,
instead of immediately returning data it has read from the Bindings
DB, passes them to the Social PaL application that generates any
missing higher order capabilities. Finally, the Social PaL appli-
cation returns the complete set of capabilities back to the Common
Apps Server, which completes the request handling. Note that our
implementation of the OSN Communicator Module supports inter-
actions with both LinkedIn and Facebook.

Implementation details. Our core Social PaL server is written
in PHP. We support capabilities of 0th and 1st order, allowing to
discover social paths between users that are up to 4 hops from one
another. Based on relevant prior work [6, 34, 45], a 4-hop distance
is enough for most practical use cases. As the Bindings DB needs
to store the capabilities of users and information about how to share
those, the necessary amount of persistent storage will substantially
grow if Social PaL becomes widely used. Thus, to limit the data
storage overhead, Social PaL server does not store any higher
order capabilities in the Bindings DB, but generates them when
requested by the requesting client. Tests on our server show that
generating higher order capabilities has a negligible impact on the
Social PaL capability distribution protocol performance (i.e., the
server generates 1 million higher order capabilities in about 500ms
using the hardware described in Section 6.2). Finally, in order to
implement the LinkedIn OAuth module for the OSN Communica-
tor Module, we use the OAuth Pecl extension for PHP, while, for
the Bindings DB, PostgreSQL database server.

9

System parameter Value
Nginx

worker_processes 4
worker_connections 2048
client_body_timeout 12

client_header_timeout 12
send_timeout 10

PostgreSQL
max_connections 400

shared_buffers 4GB
temp_buffers 16MB
work_mem 5MB
seq_scan off

Network stack
net.ipv4.tcp_window_scaling 1

net.core.rmem_max 16777216
net.core.wmem_max 16777216
net.ipv4.tcp_rmem 4096 87380 16777216
net.ipv4.tcp_wmem 4096 16384 16777216

Table 5: Details of server implementation settings.

System scaling. Since Social PaL may generate a large num-
ber of server requests if used by a large number of users, we can
take following steps to ensure that the system can scale. Our pro-
posed scaling architecture is illustrated in Figure 13. It includes a
powerful HTTP front-end server (such as Nginx) acting as load bal-
ancer, which terminates incoming secure HTTPS connections and
forwards server requests upstream to n instances of Social PaL
servers acting as request handlers. Each Social PaL server in-
stance will run the HipHop Virtual Machine (HHVM) daemon that
handles HTTP requests. HHVM usage can massively improve server
performance, as it uses just-in-time compilation to take advantage
of the native code execution instead of the interpreted one [42].

Each instance of Social PaL server runs, locally, a database
query router (pgpool) providing access to the actual database clus-
ter including multiple PostgreSQL servers. The query router en-
hances the overall database access performance by keeping open
connections to the database cluster, load-balancing the stored data
among multiple instances of the database servers, and temporar-
ily queuing requests for database access in case of cluster overload.
Note that there are no cross-dependencies between the Social PaL
server instances for the database read access, thus, no complex con-
trol mechanism is needed to support this parallelism.

Server code. The source code of the server implementation is
available from https://github.com/SecureS-Aalto/SoPaL.

6.2 Server Performance Evaluation
Performance testbed. We evaluated our server implementation
in a testbed consisting of two machines: the first played the role
of a single Social PaL server instance (cf. Figure 12), while the
second simulated a group of client devices. The server ran on a
4-core machine with a 2.93GHz CPU on each core and 128GB of
RAM. It hosted Nginx (version 1.1.19), PostgreSQL server (ver-
sion 9.1), and php5-fpm for the PHP 5.6 engine. To improve the
overall server performance, we adjusted the default settings for Ng-
inx, PostgreSQL and php5-fpm (see Table 5).

Inter-process communication was implemented via UNIX sock-
ets. The machine running the clients had 8 CPU cores (at 2.93
GHz) and 64GB of RAM.

To eliminate the unpredictability of network latency, we modi-
fied the server implementation by replacing the OSN Communica-
tor Module with the local service that provided social graph infor-
mation based on the MHRW dataset. We populated the Bindings
DB with capabilities generated for the 120,000 sampled users from

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

R
e
sp

o
n
se

s
p

e
r

se
co

n
d

R
e
sp

o
n
se

 l
a
te

n
cy

 [
s]

Requests per second

Responses per second
Response latency

(a) Responses per second and response latency vs # requests per second.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

C
P
U

 U
sa

g
e
 [

%
]

M
e
m

o
ry

 U
sa

g
e
 [

M
B

]

Requests per second

CPU Usage
Memory Usage

(b) CPU usage and memory consumption vs # requests per second.

Figure 14: Social PaL server performance.

the MHRW dataset. The capabilities of sampled users together
with capabilities generated for ersatz nodes constituted about 10
million data items that were stored in the Bindings DB. Finally, to
minimize impact of the client-server transmission delay, we kept
the server and client machines in the same network and connected
them using a 1 Gbit/s Ethernet link via the single switch.

Experiments. We evaluated server performance by sending bursts
of n requests per second, for n ∈ {1, 10, 20, 30, 40, 50, 60, 70},
from the client machine to fetch capabilities from the server (i.e.,
download of RU and Rd

U in Figure 6) for 60 seconds. Fetching ca-
pabilities involves many read operations on the Bindings DB, thus
yielding the highest load on the server among all operations of the
Social PaL capability distribution protocol. In each experiment,
which we repeated ten times, we measured the number of received
responses per second together with the latency of each response
on the client machine, and CPU usage together with memory con-
sumption on the server machine.

Results. Figure 14 illustrates the results of our experiments. We
observe that 56 requests per second yields a saturation point for the
server. Below 56 requests/second, the number of responses per sec-
ond and the response latency grow linearly. Whereas, as depicted
in Figure 14(a), above 56, we observe an exponential growth of the
response latency and the constant number of received responses
per second. Figure 14(b) also shows that CPU usage reaches more
than 90% above 56 requests/second. Peak memory consumption is
about 700MB, which also shoots up significantly when the number
of requests crosses the saturation point.

The 56 requests/second saturation point shows that the perfor-
mance of our server implementation is in line with that emerging
from studies of systems equipped with similar hardware [42, 43].
We also looked at the server performance when only handling 1
request per second and observed that the average response latency

10

https://github.com/SecureS-Aalto/SoPaL

is about 50ms, and the average Bindings DB interaction time is
around 5ms. Since client-server network latency is negligible, the
vast majority of request handling takes place in the PHP interpreter,
which highlights that PHP is the server’s bottleneck. Therefore, in
order to improve the server performance, php5-fpm should be re-
placed with HHVM, which is reported to be significantly more per-
formant [42, 43]. Further gains could also be obtained by migrating
the PostgreSQL server to a separate machine connected over a fast
link (cf. Fig. 13). We leave these as part of future work.

Assuming that the server handles 56 requests per second, a to-
tal of 4.84 million requests can be processed daily by a single in-
stance of Social PaL server with comparable hardware capabili-
ties. Assuming that each user executes the Social PaL capability
distribution protocol around 4 times a day, about 1.21 million So-
cial PaL users can be handled by one Social PaL server instance.
Since user requests are independent of each other, and because the
scalable architecture of the Social PaL server allows adding fur-
ther instances easily (as described in Section 6.1), the total capacity
of Social PaL system amounts to the cumulative number of users
that can be handled across all Social PaL server instances. Finally
in order to avoid making PostgreSQL become the bottleneck of the
system (which may be caused if many Social PaL server instances
are added), the Bindings DB should be turned into a database clus-
ter with data sharding and replication enabled. This guarantees that
the data kept in the Bindings DB is synchronized and accessible
with high enough availability.

6.3 Client Implementation
Client architecture. The client-side architecture of Social PaL
is depicted in Figure 15. It consists of the Common Apps Client,
the set of OSN plugins, and the Social PaL Client. The first two
components are responsible for the communication with the So-
cial PaL server, while the last one provides the interface for the
applications. Together, these components form a mobile platform
library that can be easily imported by developers into their appli-
cations. To facilitate support for multiple OSNs, similar to our
server design, we have decoupled OSN-specific functionality from
the Common Apps Client and made it a plugin-based solution.

We have considered two possible design choices for the client
architecture: (1) designing it as a stand-alone service with applica-
tions connecting to it, using available inter-process communication
mechanisms, or (2) as a service integrated into the application. We
choose the latter as it supports application-private storage for ca-
pabilities (i.e., not accessible by other applications) and enables
each application to have its own Social PaL server. This choice
provides additional protection against capability leakage to a mali-
cious application and removes the requirement to deploy the global
Social PaL server. On the other hand, if multiple instances of
Social PaL application runs on the same device, we would incur
increased network traffic and require more storage space in com-
parison to the stand-alone service approach. We argue that this
tradeoff is acceptable, as the Social PaL capability distribution is
run no more than a few times a day. Also, the amount of data to
store is likely to be limited in the order of tens of megabytes, which
is justifiable given the clear usability and deployability advantages.

Implementation details and performance. We have implemented
the client library on Android, operating as an Android lightweight
service. To evaluate the performance on the client, we measured
running times of the Social PaL discovery protocolon a Samsung
Galaxy Tablet GT-P3100 running Android 4.1.2 API 16 and a ZTE
Blade S6 running Android 5.0 API 21 connected via Bluetooth.
We assumed that both parties have the same number of input items,

Input size Computation [s] Communication [s]
avg std avg std

1000 2.24 0.09 1.51 0.02
5000 10.15 0.21 3.8 0.11

10000 19.55 0.48 7.17 0.28
15000 29.22 0.55 11.84 0.35
20000 39.79 0.95 13.82 0.38
25000 52.2 0.65 17.06 0.17
30000 63.44 1.3 20.38 0.16
35000 77.0 1.93 23.86 0.06

Table 6: Computation and communication time (in seconds) for the So-
cial PaL discovery protocol for increasing input set sizes.

Figure 15: Social PaL client architecture.

ranging from 1000 to 35000 (with 5000 increments). We also fixed
the intersection of the sets to be 2.5% of the set size. Table 6 shows
average computation and communication times.

Social PaL Client API. The Social PaL application interface is
used by applications to run the Social PaL discovery protocol. It
has been designed to be readily usable by application developers
that are not cryptography experts, but are nonetheless interested in
implementing privacy-preserving discovery of social paths. This
allows developers to delegate the responsibility of this process to
the Social PaL Client, and requires them to integrate only four
basic methods into the application code, which we present below.

Applications running the Social PaL discovery protocol act as
Social PaL message relays between the two Social PaL Client
instances. The application starting the Social PaL discovery ses-
sion calls the startSoPaLSession method. This returns an opaque
Social PaL object, which is forwarded to the remote party. From
this point onward, both parties invoke handleSoPaLMessage for
every message received. This method processes the received mes-
sage, and if needed, creates a response. It also returns a flag indi-
cating if the protocol execution is completed. If so, the application
uses the getResult method to get the social path length it has to a
remote party. Finally, the application must call endSoPaLSession
to let the Social PaL Client release all resources from the session.

Besides these four basic methods, the Social PaL Client also
provides three advanced methods: (1) rejectSoPaLSession cre-
ates a Social PaL message that can be sent by the application to
the remote party if it does not want to run the discovery proto-
col; (2) updateCapabilities and (3) renewCapability can be
used by the application to force fetching the most recent capabili-
ties from the server, and to generate and upload a new capability to
the server, respectively. Table 7 summarizes all the methods avail-
able in Social PaL Client.

11

Name Input Output Description
Basic methods

startSoPaLSession deviceID SoPaL object Initiates Social PaL discovery session
handleSoPaLMessage SoPaL object (SoPaL object,true/false) Processes received message and creates response to it
getResult deviceID value Returns final result of Social PaL discovery protocol
endSoPaLSession deviceID true/false Releases resources with given Social PaL discovery session

Advanced methods
rejectSoPaLSession - object Returns a generic message notifying the remote party

that it doesn’t want to run Social PaL
updateCapabilities - Asynchronous Fetches most recent capabilities from the server
renewCapability - Asynchronous Generates a new capability and uploads it to the server

Table 7: Summary of methods available in the Social PaL Client.

7. SAMPLE APPLICATIONS
To illustrate Social PaL’s relevance and practicality, we inte-

grate it into two Android apps, SpotShare and nearbyPeople,
supporting both Facebook and LinkedIn.

SpotShare4 is an extension of TetheringApp, presented in [37].
It allows a user to provide tethered Internet access to other Spot-
Share users (where access to the tethering hotspot is protected by
a password) so that access control policies can be based on social
relationships. For instance, the user can decide to allow tethered
access only to friends of friends: to this end, SpotShare uses So-
cial PaL in order to determine, in a privacy-preserving way, if the
specified social relationship holds. If so, the password is securely
and automatically sent to the requesting device. In the current ver-
sion of SpotShare, we do not enable discovery of social paths
beyond two hops, as we assume that most users would not want
to allow people with whom they have no common friends to tether
off their smartphone, but removing this constraint is trivial. In Fig-
ure 16(a), we present two screenshots of the app.

nearbyPeople5 is a “friend radar” app allowing users to interact
with people around them and discovering common friends shared
with users of nearby devices, as well as social path lengths, without
having to broadcast their social profiles or rely on a central server.
It relies on the privacy guarantees of Social PaL and the SCAMPI
opportunistic router [25] for device-to-device communication. A
preliminary version of the app was successfully tested at the ACM
CCS Workshop on Smart Energy Grid Security Workshop. In Fig-
ure 16(b), we also show two screenshots.

8. RELATED WORK

Privately discovering social relationships. Nagy et al. [37] intro-
duce Common Friends, reviewed in Section 2.2, combining bearer
capabilities with BFPSI/PSI-CA to allow OSN users to discover,
respectively, the identity or the number of their common friends
in a private, authentic, and decentralized way. While we build
on the concept of capabilities and rely on BFPSI, recall that Com-
mon Friends suffers from an inherent bootstrapping problem and
is limited to the discovery of social paths to OSN users that are two
hops away. Our work does not only address Common Friends’s
limitations via a novel methodology, but also presents the full-
blown implementation of a scalable server architecture and a mod-
ular Android client library enabling developers to easily integrate
Social PaL into their applications.

Mezzour et al. [32] also describe techniques for decentralized
path discovery in social networks. They use a notion similar to
capabilities to represent friendships and hashing to derive higher-

4https://play.google.com/store/apps/details?id=org.sesy.
tetheringapp

5https://se-sy.org/projects/pet/nearbypeople.html

Dataset Path length Social Pal Mezzour et al. [32]

Social Filter
2 29.62 ± 40.12 1,008.12 ± 1,535.26
3 1,037.74 ± 1,575.38 17,093.12 ± 20,159.86
4 1,037.74 ± 1,575.38 125226 ± 96054.86

MHRW
2 3.74 ± 2.63 205.87 ± 295.99
3 209.61 ± 298.62 1,589.78 ± 2,212.04
4 209.61 ± 298.62 40,798.78 ± 46,918.74

BFS
2 55.38 ± 95.45 65,76.99 ± 8,606.57
3 6,632.37 ± 8,702.02 154,059.99 ± 15,1526.57
4 6,632.37 ± 8,702.02 1,255,889.99 ± 525,882.57

Table 8: Average number of input items to PSI in Social PaL and Mezzour
et al. [32] based on the datasets introduced in Section 5.

order capabilities, however, their scheme distributes a different ca-
pability on behalf of a given user to every other user, while So-
cial PaL distributes the same capability to all users at a given
distance. [32]’s computational/communication overhead is signifi-
cantly higher than that of Social PaL: the former requires two PSI
runs, with sets of size equal to the total number of paths from a
node up to the maximum supported path length, whereas, the latter
only requires a single BFPSI run, with input sets as big as the num-
ber of paths that have length equal to half the maximum supported
path length. Table 8 compares the expected number of input items
for Social PaL and [32] based on the datasets introduced in Sec-
tion 5. Furthermore, [32] incurs the same bootstrapping problem
as [37]: if a friend A of user U does not participate in the system, U
cannot detect paths to some other user B that go through A. Finally,
[32] aims to build a decentralized social network, while we aim to
bootstrap the system based on existing centralized social networks.

Liao et al. [30] present a privacy-preserving social matching pro-
tocol based on property-preserving encryption (PPE), which how-
ever relies on a centralized approach. Li et al. [28] then propose
a set of protocols for privacy-preserving matching of attribute sets
of different OSN users. Similar work include [13], [48], and [47].
Private friend discovery has also been investigated in [22] and [46],
which do not provide authenticity as they are vulnerable to mali-
cious users claiming non-existent friendships. While [12] addresses
the authenticity problem, it unfortunately comes at the cost of rely-
ing on relatively expensive cryptographic techniques (specifically,
a number of modular exponentiations linear in the size of friend
lists and a quadratic number of modular multiplications).

Smokescreen [9], SMILE [31], and PIKE [2] support secure/private
device-to-device handshake and proximity-based communication.
Lentz et al. introduce SDDR [26], which allows a device to estab-
lish a secure encounter – i.e., a secret key – with every device in
short radio range, and can be used to recognize previously encoun-
tered users, while providing strong unlinkability guarantees. The
EnCore platform [1] builds on SDDR to provide privacy-preserving
interaction between nearby devices, as well as event-based commu-
nication for mobile social applications.

Building on Social Relationships. Prior work has also focused
on building services on top of existing social relationships. Cici

12

https://play.google.com/store/apps/details?id=org.sesy.tetheringapp
https://play.google.com/store/apps/details?id=org.sesy.tetheringapp
https://se-sy.org/projects/pet/nearbypeople.html

(a) SpotShare

!"#$
%"&'($

(b) nearbyPeople

Figure 16: Screenshots of the SpotShare and nearbyPeople apps.

et al. [8] use OSNs to assess the potential of ride-sharing services,
showing that these would be very successful if users shared rides
with friends of their friends. Sirivianos et al. [41] propose a col-
laborative spam mitigation system leveraging social networks of
administrators, while [38] and [40] use OSNs to verify the veracity
of online assertions. Freedman and Nicolosi [14] describe a sys-
tem using social network for trust establishment in the context of
email white-listing, by verifying the existence of common friends.
Besides not discovering paths longer than two, [14] also does not
address the issue of friendships’ authenticity – unlike Social PaL.

Daly et al. [10] present a routing protocol (called SimBet) for
DTN networks based on social network data. Their protocol at-
tempts to identify a routing bridge node based on the concept of
centrality and transitivity of social networks. Li et al. [29] design
another DTN routing protocol (called Social Selfishness Aware Rout-
ing) which takes into account user’s social selfishness and willing-
ness to forward data only to nodes with sufficiently strong social
ties. Other work [23, 50, 49] also propose adjusting message for-
warding based on some social metrics.

OSN Properties. Another line of work has studied properties of
OSNs. Ugander et al. [45] and Backstrom et al. [6] study the struc-
ture of Facebook social graph, revealing that the average social path
length suggested by the “small world experiment" [34] (i.e., six)
does not apply for Facebook, as the majority of people are sepa-
rated by a 4-hop path. Gilbert et al. [16] define the relationship
between tie strengths (i.e., the importance of a social relationship
between two users) and various variables retrieved from the OSN
social graph. In [5], Arnaboldi et al. investigate the link between
the tie strength definition (given by Granovotter [20]) and a com-
position of factors describing the emotional closeness in online re-
lationships. They demonstrate the existence of the Dunbar number
(i.e., the maximum number of people a user can actively interact
with) for Facebook. In follow-up work [3, 4], they also show the
existence of four hierarchical layers of social relationships inside
ego networks. Existence of the Dunbar number is also shown for
Twitter in [19]. Finally, Saramäki et al. [39] find an uneven distri-
bution of tie strengths within ego networks that is characterized by
the presence of a few strong and a majority of weak ties.

9. CONCLUSION
This paper presented Social PaL – a system geared to privately

estimate the social path length between two social network users.
We demonstrated its effectiveness both analytically and empiri-

cally, showing that, for any two OSN users, Social PaL discov-
ers all social paths of length two and a significant portion of longer
paths. Using different samples of the Facebook graph, we showed
that even when only 20% of the OSN users use the system, we dis-
cover more than 40% of all paths between any two users, and 70%
with 40% of users.

We also implemented a scalable server-side architecture and a
modular client library bringing Social PaL to the real world. Our
deployment supports Facebook and LinkedIn integration and al-
lows developers to easily incorporate it in their projects. Social PaL
can be used in a number of applications where, by relying on the
(privacy-preserving) estimation of social path length, users can make
informed trust and access control decisions.

In future work, we will augment Social PaL with information
about the tie strength [5, 16] between users, and present a usability
study of some sample applications built on top of the system.

Acknowledgments. We thank Minas Gjoka and Michael Siriv-
ianos for sharing the Facebook datasets, Swapnil Udar for help-
ing with the SpotShare implementation, and Jussi Kangasharju,
Pasi Sarolahti, Cecilia Mascolo, Panos Papadimitratos, and Narges
Yousefnezhad for providing feedback on the paper. Simon Eberz
suggested the idea of signed Bloom Filters discussed in Section 4.2.
This work was partially supported by the Academy of Finland’s
“Contextual Security” project (274951), the EC FP7 PRECIOUS
project (611366), and the EIT ICT Labs.

10. REFERENCES
[1] P. Aditya, V. Erdelyi, M. Lentz, E. Shi, B. Bhattacharjee, and

P. Druschel. EnCore: Private, Context-based Communication
for Mobile Social Apps. In MobiSys, 2014.

[2] W. Apolinarski, M. Handte, M. U. Iqbal, and P. J. Marrón.
PIKE: Enabling secure interaction with piggybacked
key-exchange. In PERCOM, 2013.

[3] V. Arnaboldi, M. Conti, A. Passarella, and F. Pezzoni.
Analysis of Ego Network Structure in Online Social
Networks. In PASSAT, 2012.

[4] V. Arnaboldi, M. Conti, A. Passarella, and F. Pezzoni. Ego
networks in Twitter: An experimental analysis. In
INFOCOM, 2013.

[5] V. Arnaboldi, A. Guazzini, and A. Passarella. Egocentric
Online Social Networks: Analysis of Key Features and
Prediction of Tie Strength in Facebook. Elsevier Computer
Communications, 36(10), 2013.

13

[6] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna.
Four Degrees of Separation. CoRR, abs/1111.4570, 2011.

[7] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7), 1970.

[8] B. Cici, A. Markopoulou, E. Frias-Martinez, and
N. Laoutaris. Assessing the Potential of Ride-sharing Using
Mobile and Social Data: A Tale of Four Cities. In Ubicomp,
2014.

[9] L. P. Cox, A. Dalton, and V. Marupadi. Smokescreen:
Flexible privacy controls for presence-sharing. In MobiSys,
2007.

[10] E. M. Daly and M. Haahr. Social Network Analysis for
Routing in Disconnected Delay-tolerant MANETs. In
MobiHoc, 2007.

[11] E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and Private
Computation of Cardinality of Set Intersection and Union. In
CANS, 2012.

[12] E. De Cristofaro, M. Manulis, and B. Poettering. Private
Discovery of Common Social Contacts. In ACNS, 2011.

[13] W. Dong, V. Dave, L. Qiu, and Y. Zhang. Secure friend
discovery in mobile social networks. In INFOCOM, 2011.

[14] M. J. Freedman and A. Nicolosi. Efficient Private Techniques
for Verifying Social Proximity. In IPTPS, 2007.

[15] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient Private
Matching and Set Intersection. In EUROCRYPT, 2004.

[16] E. Gilbert. Predicting Tie Strength in a New Medium. In
CSCW, 2012.

[17] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou.
Walking in Facebook: A Case Study of Unbiased Sampling
of OSNs. In INFOCOM, 2010.

[18] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou.
Practical Recommendations on Crawling Online Social
Networks. IEEE JSAC on Measurement of Internet
Topologies, 2011.

[19] B. Gonçalves, N. Perra, and A. Vespignani. Modeling users’
activity on twitter networks: Validation of Dunbar’s number.
PloS One, 6(8), 2011.

[20] M. Granovetter. The Strength of Weak Ties. The American
Journal of Sociology, 78(6):1360–1380, 1973.

[21] D. Hardt. The OAuth 2.0 authorization framework. RFC
6749, RFC Editor, 2012.

[22] Y. Huang, E. Chapman, and D. Evans. Privacy-preserving
applications on smartphones. In HotSec, 2011.

[23] P. Hui, J. Crowcroft, and E. Yoneki. Bubble Rap:
Social-based Forwarding in Delay Tolerant Networks. In
MobiHoc, 2008.

[24] A. Johnson, P. Syverson, R. Dingledine, and N. Mathewson.
Trust-based anonymous communication: Adversary models
and routing algorithms. In CCS, 2011.

[25] T. Kärkkäinen, M. Pitkänen, P. Houghton, and J. Ott.
SCAMPI Application Platform. In CHANTS, 2012.

[26] M. Lentz, V. Erdélyi, P. Aditya, E. Shi, P. Druschel, and
B. Bhattacharjee. SDDR: Light-Weight, Secure Mobile
Encounters. In USENIX Security Symposium, 2014.

[27] J. Leskovec and C. Faloutsos. Sampling from Large Graphs.
In KDSS, 2006.

[28] M. Li, N. Cao, S. Yu, and W. Lou. FindU: Privacy-preserving
personal profile matching in mobile social networks. In
INFOCOM, 2011.

[29] Q. Li, S. Zhu, and G. Cao. Routing in Socially Selfish Delay
Tolerant Networks. In INFOCOM, 2010.

[30] X. Liao, S. Uluagac, and R. A. Beyah. S-MATCH: Verifiable
Privacy-preserving Profile Matching for Mobile Social
Services. In DSN, June 2014.

[31] J. Manweiler, R. Scudellari, and L. P. Cox. SMILE:
Encounter-based trust for mobile social services. In CCS,
2009.

[32] G. Mezzour, A. Perrig, V. D. Gligor, and P. Papadimitratos.
Privacy-Preserving Relationship Path Discovery in Social
Networks. In CANS, 2009.

[33] M. Miettinen, S. Heuser, W. Kronz, A.-R. Sadeghi, and
N. Asokan. ConXsense: Automated Context Classification
for Context-aware Access Control. In ASIACCS, 2014.

[34] S. Milgram. The small world problem. Psychology Today,
67(1):61–67, 1967.

[35] P. Mittal, M. Wright, and N. Borisov. Pisces: Anonymous
Communication Using Social Networks. In NDSS, 2013.

[36] M. Nagy, N. Asokan, and J. Ott. PeerShare: A System
Secure Distribution of Sensitive Data Among Social
Contacts. In NordSec, 2013.

[37] M. Nagy, E. D. Cristofaro, A. Dmitrienko, N. Asokan, and
A. Sadeghi. Do I know you? Efficient and
Privacy-preserving Common Friend-Finder Protocols and
Applications. In ACSAC, 2013.

[38] G. Norcie, E. De Cristofaro, and V. Bellotti. Bootstrapping
Trust in Online Dating: Social Verification of Online Dating
Profiles. In USEC, 2013.

[39] J. Saramäki, E. Leicht, E. López, S. G. Roberts,
F. Reed-Tsochas, and R. I. Dunbar. Persistence of social
signatures in human communication. Proceedings of the
National Academy of Sciences, 111(3):942–947, 2014.

[40] M. Sirivianos, K. Kim, J. W. Gan, and X. Yang. Assessing
the veracity of identity assertions via OSNs. In COMSNETS,
2012.

[41] M. Sirivianos, K. Kim, and X. Yang. SocialFilter:
Introducing Social Trust to Collaborative Spam Mitigation.
In CollSec, 2010.

[42] C. Stocker. HHVM with Symfony 2 looks amazing.
http://blog.liip.ch/archive/2013/10/29/
hhvm-and-symfony2.html.

[43] A. Tagliapietra. Symfony benchmark using HHVM.
http://www.alexfu.it/2013/10/22/
symfony-benchmark-on-hhvm.html.

[44] A. S. Tanenbaum et al. Using Sparse Capabilities in a
Distributed Operating System. In ICDCS, 1986.

[45] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The
Anatomy of the Facebook Social Graph. CoRR,
abs/1111.4503, 2011.

[46] M. Von Arb, M. Bader, M. Kuhn, and R. Wattenhofer.
VENETA: Serverless friend-of-friend detection in mobile
social networking. In WiMob, 2008.

[47] L. Zhang and X.-Y. Li. Message in a Sealed Bottle: Privacy
Preserving Friending in Social Networks.
http://arxiv.org/abs/1207.7199, 2012.

[48] R. Zhang, Y. Zhang, J. Sun, and G. Yan. Fine-grained private
matching for proximity-based mobile social networking. In
INFOCOM, 2012.

[49] Y. Zhang, J. Zhao, and G. Cao. Roadcast: A Popularity
Aware Content Sharing Scheme in VANETs. SigMobile
Mob. Comput. Commun. Rev., 13(4), Mar. 2010.

[50] J. Zhao and G. Cao. VADD: vehicle-assisted data delivery in
vehicular ad hoc networks. In INFOCOM, 2006.

14

http://blog.liip.ch/archive/2013/10/29/hhvm-and-symfony2.html
http://blog.liip.ch/archive/2013/10/29/hhvm-and-symfony2.html
http://www.alexfu.it/2013/10/22/symfony-benchmark-on-hhvm.html
http://www.alexfu.it/2013/10/22/symfony-benchmark-on-hhvm.html
http://arxiv.org/abs/1207.7199

