
Undetectable Communication:
The Online Social Networks Case

Filipe Beato
KU Leuven

ESAT/COSIC and iMinds
filipe.beato@esat.kuleuven.be

Emiliano De Cristofaro
University College London
Dept. of Computer Science

e.decristofaro@ucl.ac.uk

Kasper B. Rasmussen
University of Oxford

Dept. of Computer Science
kasper.rasmussen@cs.ox.ac.uk

Abstract—Online Social Networks (OSNs) provide users with
an easy way to share content, communicate, and update others
about their activities. They also play an increasingly fundamental
role in coordinating and amplifying grassroots movements, as
demonstrated by recent uprisings in, e.g., Egypt, Tunisia, and
Turkey. At the same time, OSNs have become primary targets
of tracking, profiling, as well as censorship and surveillance. In
this paper, we explore the notion of undetectable communication
in OSNs and introduce formal definitions, alongside system and
adversarial models, that complement better understood notions
of anonymity and confidentiality. We present a novel scheme
for secure covert information sharing that, to the best of our
knowledge, is the first to achieve undetectable communication
in OSNs. We demonstrate, via an open-source prototype, that
additional costs are tolerably low.

I. INTRODUCTION

In the past few years, Online Social Networks (OSNs), such
as Facebook, Twitter, Google+, Linkedin, have taken the world
by storm, boasting users in the hundreds of millions. OSNs offer
fast and reliable diffusion of information as well as seamless
coordination of social activities. At the same time, however,
they create treasure troves of sensitive information, as an entity
in control of a user’s data can infer her interests, whereabouts,
social circles, or even political and sexual orientation.

OSN providers allow users to select which users (or groups)
can access their profile, however, this process relies not only
on the diligence of the users but also on the trustworthiness
of the providers in enforcing access control and protecting
stored content. While the risk of negative publicity and lawsuits
incentives providers to safeguard user information, end-user
license agreements often include clauses allowing them to mine
profiles or sell information to third-party services [1]. Moreover,
the concentration of personal information also exacerbates the
dangers of data leaks and insider attacks.

OSNs have also become primary targets of government
surveillance and Internet censorship, and not only in coun-
tries regarded as being ruled by oppressive governments.
For instance, the number of subpoenas issued by U.S. law
enforcement agencies on OSN data has increased steadily over
the past few years [2] as also reported by the documents leaked
by Edward Snowden. Several providers, e.g., Twitter, have the
ability to censor content on a country basis in order to comply
with governments’ requests to remove or block certain content.
In general, many countries worldwide are reported to block,
selectively filter, or perform censorship on OSNs [3], [4].

These worrisome issues motivate the need for effective
techniques to protect user privacy in OSNs. While decentralized
architectures have often been advocated as a privacy-respecting
alternative to social networking, e.g., [5]–[8], they often hinder
reliability and real-time availability or require users to buy cloud
storage for their data. On the contrary, centralized OSNs support
high-availability content dissemination to a large number of non-
tech-savvy users. Arguably, centralized online social networks
are here to stay and actively being used by millions of people
around the world, thus we focus on technologies that can be
deployed atop existing OSNs.

Internet users can protect themselves from surveillance
using anonymous communications (e.g., through Tor [9]), so
that actions that they perform online cannot be connected with
their offline identities. However, modern OSNs require users
to create and maintain a profile, thus, only pseudonymity—
rather than anonymity—is actually feasible with respect to the
OSN provider. Moreover, an adversary having access to profiles
(e.g., the provider or a government agency through a subpoena)
would be able to obtain user’s social interactions, content, and
connections, and thus, most likely, the user’s true identity.

In order to hide sensitive social content from the potentially
prying eyes of the OSN provider and/or surveying entities, the
security community has proposed a few solutions: some rely on
encryption [10]–[14], and some on obfuscation [15]. However,
besides often violating the terms of service, posting encrypted
data actually draws even more attention on a user targeted by,
e.g., an oppressive government.

Using the above discussion as main motivation, this paper
formalizes the concept of undetectable communication in
OSNs, whereby unauthorized entities are unable to detect the
existence of secret messages posted and exchanged by OSN
users. While steganographic techniques have been proposed to
achieve general-purpose statistical undetectability, little work
has focused on the specific constraints introduced by OSNs.
Several approaches aim at undetectability by assuming a setting
where a cover object, e.g., an image, has enough entropy to
embed a secret. However, not all OSNs fit into this setting,
and many providers process published images by applying
compression, resizing, or removing metadata, thus, image-based
steganographic techniques are moot in the OSN setting. After
defining two different system models, based on the amount
of entropy available in the cover object (high vs low), we
introduce concrete attacker models and present an information
sharing scheme in OSNs with provable undetectability.



Fig. 1: The high-entropy model. It involves three objects: a cover object, a message, and a stego-object. While the message is embedded in the
stego-object, the adversary should not be able to determine this without access to the key.

Contributions. This paper makes several contributions. First, it
formalizes the notion of undetectable communication in OSNs,
taking into account the limitations of modern OSNs. We then
propose a protocol that provably achieves undetectability in
OSNs. In the process, we identify a number of open challenges
that call for further research. Finally, we build and evaluate an
open-source prototype.

Paper Organization. The rest of this paper is organized
as follows: next section introduces system and adversarial
models. Section III formalizes steganographic security in OSNs,
while Section IV presents our low-entropy information sharing
scheme. In Section V, we discuss possible side-channel attacks
on information hiding schemes in general. Then, we describe
our prototype implementation in Section VI. In Section VII,
we review related work, and Section VIII concludes the paper.

II. SYSTEM MODEL

This section introduces the system and adversarial models
used throughout the rest of the paper.

Undetectability in OSN. Let Alice be an OSN user willing
to send a secret message m to another OSN user, Bob. We
assume that Alice uses the OSN infrastructure and, optionally,
some auxiliary out-of-band channel. Alice and Bob wish to
protect the confidentiality of m and also hide its existence from
the adversaries defined below. We also assume that Alice and
Bob share a symmetric private key, k.

Adversaries. We consider as adversaries any entity attempting
to break the undetectability and/or the confidentiality of the
secret message m sent by Alice to Bob. In practice, there
may be a few different adversarial entities, including the social
network provider as well as a passive adversary monitoring
Alice’s and Bob’s connection to the Internet.

As many social network providers rely on user data for
targeted advertisement, data mining, marketing and sentimental
analysis, financial and commercial interests often lead them
to restrict the use of encryption mechanisms. This restriction
motivates the need for undetectability in case users wish to share
encrypted content. Restrictions on the use of encryption is also
crucial in the presence of a surveilling government attempting to
systematically monitor its citizens; besides partially (or totally)
monitoring users’ traffic, governments can often obtain social
networking data from OSN providers, e.g., through a subpoena
or even warrantless wiretapping (and, in extreme cases, coerce
citizens to surrender encryption keys).

We distinguish between two adversaries, based on the
amount of information they have access to.

• Online Social Network: This adversary may eavesdrop
on all communication and access data routed to, or stored
at, the OSN provider. This includes all data that has been
posted to the OSN in the past, along with relationships,
explicit or inferred, with other users of the same OSN.

• Internet Provider: This adversary has all the powers of the
OSN adversary and also the ability to monitor the network
traffic of any user. It cannot break secure encryption
schemes, e.g., it cannot see the content of a transmission
protected by HTTPS, but it can block the content and will
learn the identities of communicating parties.

The second adversary is strictly more powerful than the OSN
adversary. This implies that, if a scheme is not secure in the
presence of the OSN adversary, then it cannot be secure against
the Internet Provider adversary. Conversely, if a scheme is
secure in the presence of the Internet Provider adversary, then
it will also be secure against the OSN.

III. STEGANOGRAPHIC MODELS IN OSNs

This section defines the concept of steganography in Online
Social Networks (OSNs). We consider two possible models
for undetectable communication. The first is a high-entropy
model that captures the traditional notion of steganography,
where a message is embedded inside a “normal looking” object
(cover object), e.g., an image or a music file. The second is
a low-entropy model which models the case where the cover
object does not have enough entropy to contain the message.

A. High-Entropy Model

Our first model, which we denote as the high-entropy model,
mirrors the traditional steganography setting where a message
is embedded into a cover object using an embedding function
Encode specific to the cover object. This process may, or may
not require a key. The resulting stego-object is self-contained,
i.e., nothing besides the stego-object (and possibly a key) is
required to extract the message. Definition 1 formalizes the
notion of high-entropy stego-systems, and Figure 1 illustrates
the model.

Definition 1 (High-entropy stego-system): A high-entropy
stego-system Sh consists of the following efficient algorithms.
Setup(·) is a probabilistic algorithm that takes as input, a
security parameter 1κ, and returns a key k ∈ K. Encode(·, ·, ·)
is a probabilistic algorithm that takes as input a key k, a cover
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Fig. 2: The low-entropy model. The stego-object, e.g., in the form of a short text, is public and is used as input to Decode (possibly along
with a key) in order to recover the secret message.

object c ∈ C, and a (secret) message m ∈ {0, 1}l, and returns
a stego-object o ∈ O. Decode(·, ·) is a deterministic algorithm
that takes as input a key k and a stego-object o, and returns the
embedded message m. There must exist a polynomial p(|c|)
such that:

∀m, |m| < p(|c|) : Decode(k,Encode(k, c,m)) = m

Security in the high-entropy model pertains to the unfeasi-
bility of an attacker to distinguish between a cover object and a
stego-object. Security definitions are presented in Section III-C.

Naturally, the cover object must have enough entropy to
contain the message. For example, if the cover object is a 2MB
image and the message is a short 100-byte text, the image
could be modified in such a way that the 100 bytes of text
could be embedded, without noticeably altering the image [16],
[17]. On the other hand, if the cover object does not have
enough entropy to hide the message (e.g., a large image cannot
be embedded in a short text), then another approach has to be
used. We present such an approach below as the low-entropy
model.

B. Low-Entropy Model

The low-entropy model is used if the cover object does
not have enough entropy to contain the message. Without loss
of generality, we consider the cover object as a short text,
e.g., some text that could seamlessly be published on a social
network such as, Twitter or Facebook. The low-entropy model
is illustrated in Figure 2.

Observe that the cover object (e.g., some short text) is
chosen to represent the secret message, rather than have the
message encoded in it. The process of linking the stego-object
to the message may, or may not, require a key. The secret
message itself must be sent to the recipient(s) using an out-
of-band channel, since, by definition, the stego-object cannot
contain it. Definition 2 formalizes the notion of low-entropy
stego-system.

Definition 2 (Low-entropy stego-system): A low-entropy
stego-system Sl consists of the following efficient algorithms.
Setup(·) is a probabilistic algorithm that, takes as input a
security parameter 1κ, and returns a key k ∈ K. Encode(·, ·, ·)
is a probabilistic algorithm that takes as input a key k, a cover
object c ∈ C∗, and a secret message m ∈ {0, 1}l, and returns
a stego-object o ∈ O∗ and a secret message m′ (which may
be identical to m). Decode(·, ·, ·) is a deterministic algorithm

that takes as input a key k, a stego-object o, and a secret m′,
and returns the message m. It must hold that:

∀m : (o,m′) = Encode(k, c,m);Decode(k, o,m′) = m

When Bob receives the stego-object, he will use it to
determine the nature of the out-of-band channel and eventually
get the secret message. For instance, consider the following
example scenario:

Alice and Bob have agreed on two different physical
sites for a dead-drop (an envelope with confidential
information). They have also agreed on three key-
words that Alice will use when the information is
ready to be picked up, “Hello” for the first location,
“Good morning” for the second location and “Good
day” for abort pickup.

Prearranged keywords and locations represent the key in the low-
entropy model, while the dead-drop – the out-of-band channel.
We anticipate that our novel covert information sharing, aiming
to achieve steganography in OSNs and presented in Section IV,
will follow the low-entropy model.

C. Security Definition

We now formalize the notion of steganographic security in
OSNs. We aim to provide a generic definition that applies to
both high- and low-entropy stego-systems, thus, we start by
defining the general notation for a stego-system.

Definition 3 (Stego-system): A stego-system S is either a
high-entropy stego-system Sh or a low-entropy stego-system
Sl.

To simplify the notation used in the rest of this section,
we let o(m) denote a cover object that simply encodes
the message m. (Actually, in a high-entropy stego-system
o(m) = Encode(k, c,m), whereas, in a low-entropy stego-
system (o(m),m′) = Encode(k, c,m).)

Before presenting our notion of security of a stego-system
S , we introduce, in Game 1, the following game played between
a challenger and an adversary.

Game 1 (IND-STEGOAdv,Ch,S(κ)): The game between an
adversary Adv and a challenger Ch proceeds as follows:

1) Adv is given access to an oracle that returns cover objects
{c1, . . . , cq}, which are taken from the set appropriate
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sA = secret
tA = short text

index = MACk(tA)

Ek(sA)

index → url

tA tA

index = MACk(tA)

index

url

Ek(sA)

Low Entropy Stenography Scheme

Fig. 3: Low entropy information sharing scheme. Alice derives an
index from the MAC of a small cover text. She then uses a mapping
service, e.g., tinyurl or a TOR hidden service, to create a mapping
from that index to the URL that contains the secret data. Alice posts
the cover text on Facebook where Bob reads it. Later, Bob can retrieve
the secret by first deriving the index from the cover text and then
obtaining the URL for the secret message from the mapping server.
All connections to the storage- and mapping server are assumed to
be encrypted, e.g., using HTTPS.

for the type of stego-system, i.e., C for a high-entropy
stego-system and C∗ for a low-entropy stego-system.

2) Adv outputs a message m and Ch returns either c′ = o(m)
or a random stego-object c′ with probability 1

2 .
3) Eventually, Adv outputs a bit b, where b = 1 if Adv

believes that c′ = o(m) and b = 0 otherwise. The game
outputs 1 iff (c′ = o(m) ∧ b = 1) ∨ (c′ 6= o(m) ∧ b = 0),
i.e., if Adv could successfully guess the type of object
returned by Ch.

We now define IND-STEGO security using Game 1 above:

Definition 4 (IND-STEGO security): A stego-system S is
IND-STEGO-secure if there exists a negligible function negl
such that, for any probabilistic polynomial time adversary Adv,
it holds that:

Pr
(
IND-STEGOAdv,Ch,S(κ) = 1

)
≤ 1

2
+ negl(κ)

IV. COVERT INFORMATION SHARING SCHEME

In this section, we describe our low-entropy stenography
scheme. The scheme conforms to the low-entropy model defined
in Section III-C.

Our goal is to allow Alice to communicate some secret
information to Bob, via a social network, e.g., Facebook. Alice
is assumed to be unable to post the information directly to
Facebook for fear of being arrested by the local authorities. To
simplify the description we first describe the protocol with a
single receiver (Bob), then we generalize to multiple receivers
and groups. The scheme is illustrated in Figure 3.

Alice and Bob share a key k, that is used to derive the
encryption key kENC and the MAC-key kMAC . Given some

secret information that Alice would like to communicate sA,
Alice will first pick a short text tA, independent of the secret,
that will be published on Facebook. The short text can be any
arbitrary string that does not invoke suspicion. Alice creates the
encryption key kENC = H(k ‖ 0) and the MAC-key kMAC =
H(k ‖ 1), using a collision resistant hash function H(·). She
then uploads the secret sA, optionally encrypted EkENC

(sA),
to the storage service, e.g., Dropbox. At the same time, Alice
uploads to the mapping service (e.g., TinyURL or a specific
Tor Hidden Service) the url to the storage service along with a
mapping index, index =MACkMAC

(tA) (this corresponds to
Encode in our model). The mapping service links the index to
the url, and allows flexibility for the choice of the storage server.
Note that while it is optional to encrypt the actual secret, it is
a requirement that the communication with the storage server
is over a secure connection, e.g., HTTPS. In addition, if the
storage server provider supports the option to setup accounts,
Alice can also create a temporary username and password
and set an account as (urs, pwd) =MACkMAC

(tA ‖ index).
These steps can all be done days before Alice actually intends
to transmit the secret to Bob, if needed.

When Alice wishes to send the secret information to Bob,
she publishes her chosen message tA on Facebook. This will
look to Facebook (and anyone else) as an innocent message that
does not carry any additional information. Bob will MAC the
text using the key shared with Alice to derive the MAC-key and
obtain the index that points to the url of the storage service by
using the mapping service, such that index = MACk(tA) (this
corresponds to Decode in our model). Bob can then connect
to url and retrieve the (possible encrypted) secret sA. Again
the communication with the storage server and the mapping
service must be over a secure connection.

If Alice wants to communicate the secret to multiple
receivers, she simply creates multiple accounts, one for each
receiver, on the storage server. Each receiver can then inde-
pendently retrieve a copy of the secret. For revocation, Alice
simply deletes the account corresponding to the key she wishes
to revoke, and users of that key can no longer access the secret.
Users in possession of the revoked key cannot even tell that the
message tA posted to Facebook corresponds to a secret, since
the storage server will not recognize the temporary (usr, pwd)
generated using the revoked MAC-key.

A. Use of the OSN Infrastructure

Our covert information sharing scheme assumes that users
share a key, hence, at some point they must have established
a secure, and possibly authenticated, channel. Therefore, one
could question why these users would later communicate using
the social network infrastructure rather than this secure channel.
In some cases, direct communication might be the best option
but there are several reasons, beyond convenience, why one
might want to use a low-entropy steganographic approach
instead. First, and foremost, the direct secure channel might not
be available all the time. Alice and Bob could have exchanged
USB sticks with each others’ cryptographic keys at some point
in the past, but the information they want to communicate is
only available now. Another reason could be that the secure
channel is very low bandwidth and cannot be used to transfer
the entire secret message.

4



Given that Alice and Bob share a key, they could also
choose to communicate directly, e.g., via an encrypted email
attachment, rather than relying on the OSN. Again there are
plenty of scenarios where this would be the preferred way but
if Alice and Bob are trying to conceal the fact that they are
transferring a potentially large and secret message, our protocol
is ideal.

In addition, by using a mapping service our scheme allows
flexibility with respect to the choice of the storage server per
shared secret. Thereby, if a motivated adversary blocks this
service then the user can always switch to a more privacy-
friendly server.

B. Security Analysis

As mentioned earlier, our proposed scheme is an example
of a low-entropy stego-system. We now prove that it is
IND-STEGO-secure, by measuring the advantage an adversary
Adv has in wining the IND-STEGO-game. We consider two
different adversaries (defined in Section II): the Online social
network adversary and the Internet Provider adversary.

Online Social Network. Without loss of generality we will
use Facebook as an example of a social network adversary.
Facebook has the ability to read any message posted by any
user as well as monitor user behavior.

Even though Facebook has full access to the short text
tA, there is no way to check if tA corresponds to any secret
information, since tA is specifically chosen independently of
the secret. The short text need not have any specific structure or
be about any specific topic. In fact, tA could be a text that Alice
would have posted anyway and therefore it is indistinguishable
from any other message in C∗, in fact Facebook does not even
know which server a potential secret is stored on, since this
information is part of the key. This means that Facebook can
only win the IND-STEGO-game with probability 1/2, and the
scheme is thus IND-STEGO-secure under a social network
adversary.

Internet Provider. The Internet Provider adversary is assumed
to have all the powers of the social media plus the ability to
monitor all connections of specific users in their jurisdiction.

First, we observe that if none of the parties involved in
the protocol (other than Facebook) are under observation the
analysis is identical to the social media scenario, and the scheme
is IND-STEGO-secure.

If at least one other party is under observation, we need a
more careful analysis. Without loss of generality we assume
that Alice is the one under observation. The adversary (Adv)
will see that Alice connected to the storage server, i.e, Adv
will know srv, which is part of the key. Adv can try to use
this knowledge to get an advantage in the IND-STEGO-game.

The IND-STEGO-game proceeds according to Game 1 as
follows. (1) Adv has access to all the users previous messages
(as well as any arbitrary message). (2) Adv submits a secret
message mAdv to Ch and Ch must now return a stego-object.
This involves computing the MAC of an independently chosen
short text tCh, to obtain a username and password, then upload
a secret (either mAdv or random data, chosen with probability
1/2) to the storage server srv, and make the secret accessible

using the newly created username and password. After that the
stego-object tCh is returned to Adv. (3) Adv must now guess
if the secret on the storage server is mAdv or not.

Having A under observation, Adv knows the location of
the storage server srv, but assuming the connection between
A and srv is secure, Adv learns nothing about the data
exchanged between A and srv. Adv learns nothing by supplying
an incorrect username and password to the storage server,
and Adv cannot create the username and password without
knowledge of the MAC-key. Guessing the username and
password corresponds to guessing the output of the MAC,
which can only be done with probability 1/2n, where n is the
number of bits of the MAC output. Since 1/2n is negligible
the protocol is IND-STEGO-secure.

V. SIDE CHANNEL ATTACKS

Our system model in Section III, captures the notion of
undetectable communication. The security definition in Game 1
is based on the difficulty of distinguishing a stego-object from
a covert object. This distinction is, however, subject to various
side channel attacks in any practical scheme. In this section,
we discuss a number of such side channel attacks that could
affect the security of a practical protocol. First, we introduce
the concept of social indistinguishability and highlight its
importance for undetectability in OSNs and, later, discuss traffic
analysis.

A. Social Indistinguishability

The nature of undetectable communication requires more
than just confidentiality. It requires that no one is able to
identify the cover messages as suspicious. We call this notion
Social Indistinguishability. It is very difficult to quantify exactly
what social indistinguishability means. For example, even if the
cover message is completely unrelated to the secret topic, it can
still be suspicious if it is unusual for an individual to express
themselves in a certain way. consider the following example: if
Alice is usually interested in football but has never expressed
any interest in politics, an adversary might have a good reason
to suspect that a message containing political comments is a
cover object for a secret message. However, close to elections,
it might be perfectly normal for Alice to comment on political
figures, even though she is not normally very politically active.
(And similar behavior may exist for any major event, TV show,
news story, Internet meme, etc.)

We choose to model the notion of social indistinguishability
in terms of the constraints a communication system places on
the cover message. For a naive stego-system where the secret
message is derived from the first letter of every word, the cover
message must use words that start with that specific letter in
order to convey the secret message. This will make it hard to
choose a cover message that appears innocent, i.e., socially
indistinguishable.

Our low entropy stenography scheme can use any cover
text without any constraints. This means that the user is free to
express himself in the exact way that he chooses, and that is
appropriate to the context of the message. This freedom comes
from the fact that the cover message itself does not actually
contain the secret message, rather, it acts as an index to where
the secret can be found. Since the cover message is known
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Fig. 4: Plugin block diagram. The user interacts with the plugin in
three ways. The key k, the secret message m and the cover text tA
is communicated to the user via a dedicated Plugin UI. The plugin
communicates with the OSN, e.g., Facebook, using the Document
Object Model (DOM) in the browser, and communication with the
storage- and mapping server is done using HTTPS.

to Alice when she stores the secret message, she can change
the storage location (path in a URL) to fit the cover message,
rather than the other way around.

B. Traffic Analysis

Our security analysis has, thus far, set aside the issue
of traffic analysis [18], although it can ostensibly help the
adversary in the scenario where the storage server is under
observation. Consider the following example: as the storage
server is under observation, the adversary notices that Alice
uploads 1,564 bytes of data. Later, Bob connects to the same
server and downloads exactly 1,564 bytes of data. Even without
considering their interaction on Facebook, it seems likely that
the adversary can guess that there was a transfer of information
between Alice and Bob.

Traffic analysis constitutes a traditional obstacle to privacy,
e.g., for confidentiality [19], [20] and anonymity [21], as well
as censorship resistance [22]. To cope with it, a few solutions
have been proposed both in the general Internet setting [23]
and in OSNs [24]. We readily acknowledge that the security of
our proposed scheme holds assuming traffic analysis resistance
and leave, as part of future work, a thorough study of traffic
analysis issues and countermeasures in the context of our covert
information sharing scheme.

VI. PROTOTYPE IMPLEMENTATION

To demonstrate the viability of our proposals, we imple-
mented a proof-of-concept prototype of the covert information
sharing scheme proposed in Section IV.1

In the description of the implementation, we distinguish
between server- and client-side components, as depicted in
Figure 4. The former is used to realize the out-of-band storage
service, whereas, the latter runs as a browser extension on the
user environment.

Server-side. In our prototype, the server-side corresponds to a
simple PHP back-end server and a MySQL database. It supports
post and get actions:

1Source of our implementations is freely available upon request.

• Post: The storage server returns an url location when
receives, from the user, the tuple (s, usr, pwd), i.e., the
secret s (optionally encrypted), along with the username
and password generated according to our scheme in
Section IV, and stores such tuple in its database.

• Get: On input (usr, pwd), the storage server returns s to
the user.

Client-side. Our covert information sharing scheme is designed
to work with existing OSNs, such as, Facebook, Twitter,
Google+. Therefore, users will interface with the system via
the regular OSN web site. Each operation in our scheme, such
as Encode and Decode, is implemented as a web transaction,
and users perform them from their web browser. There is no
need to perform any operation outside the browser: our covert
information sharing scheme only involves simple symmetric-
key operations that can be executed, e.g., in Javascript using the
Stanford Javascript Crypto Library (SJCL) [25]. We use AES-
CMAC [26] for the MAC implementation and AES-CCM [27]
for the authenticated symmetric encryption, as both are already
available in SJCL.

However, we need a mechanism to seamlessly implement
the interaction between the user and the storage server, i.e.,
without requiring the user to run other software other than their
browser or to leave the OSN website. To this end, we built
a Firefox Extension (FE) that, installed on the user’s device,
is used to post and read secret messages, alongside with the
TinyURL website for the mapping service. Specifically, the
Encode and Decode operations are as follows:

• Encode (Post): The user, Alice, selects a text area on the
OSN website. The FE launches a dialog where the user
inserts the secret message sA and the short text tA. In
addition, the FE publishes tA in the selected text area,
and produces (usr, pwd) = MACk(tA). Subsequently, FE
uploads the tuple (cA, usr, pwd) automatically into the
server that returns a url, where cA = EkENC

(sA). At the
same time, the FE uploads the tuple (index, url) to the
TinyURL server, such that index = MACH(k‖1)(tA).
• Decode (Get): FE parses the messages on the OSN,

and, for each message from Alice, produces index =
MACkMAC

(tA). The index is used to query the TinyURL
service for the valid url. Then, the FE submits the tuple
(usr, pwd) to url, that outputs cA if there is a match, and
⊥ otherwise. If cA exists and the decryption result is sA,
then the FE replaces, transparently, tA with the secret
message sA.

The current prototype is compatible with Firefox 14+,
but it could be easily ported to other browsers extensions,
e.g., to Chrome, as it is written in simple Javascript. In
terms of performance, as it is resumed to the MAC and
AES implementations, that takes about 2ms, and to the
communication latency existent between the client- and server-
side, the prototype presents limited complexity. Thus, while it
only supports desktop browsers at the moment, it is perfectly
suitable for resource-constrained devices, such as smartphones.
This is crucial considering that a significant portion of users
access OSNs via their mobile devices (e.g., almost 60% of
Facebook users in October 2012 [28]).
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VII. RELATED WORK

This section reviews related work: we start with privacy-
enhancing technologies for OSN communication, then, overview
techniques for undetectability focusing on OSNs.

A. Privacy-Enhancing Technologies in OSNs

A few efforts, e.g., [29]–[31], analyzed a multitude of
privacy issues in Facebook, Twitter, MySpace, and other OSNs.
Then, several cryptographic protocols have been proposed
to improve confidentiality, access control, or anonymity in
centralized OSNs. The work in [32] applies the concept
of “virtual private networks” to OSNs, i.e., it establishes a
confidential channel between friends in order to share sensitive
data. Then, FaceCloak [11], and FSEO [33], lets Facebook
users encrypt sensitive data and store it on third party servers,
while posting a short fake text. Only authorized users holding
decryption keys can produce the mapping index, to extract
and decrypt sensitive data on the server. However, FaceCloak
uses random sentences from Wikipedia to represent the fake
text, thus, according to our definitions in V-A, it does not
achieve social indistinguishability. In fact, FaceCloak [11]
employs fake data not to achieve undetectability, rather, to
circumvent restrictions on the use of encryption. FSEO [33],
on the other hand, allows publishers to choose their fake text.
Further, Scramble! [12] uses broadcast encryption for improved
access control on Facebook, i.e., allowing each user to specify
the recipients of shared information, similar to the concept
of circles in Google+, and to hide content from the provider,
while Hummingbird [13] presents a variant of Twitter that
provably guarantees confidentiality of tweet contents, hashtags,
and follower interests.

Decentralized OSNs have also been advocated for privacy-
aware social networking. For example, [6] provides a crypto-
graphic API that achieves improved access control, anonymity
and confidentiality. Whereas, our approach focuses on privacy
for centralized OSNs, a social-network model that supports
high availability and real-time content dissemination. In fact,
decentralized architectures might hinder real-time availability
of information or require users to buy cloud storage for their
data [7]. Furthermore, we are interested in privacy-enhancing
technologies that can be plugged in on top of social networks
that are used today by hundreds of millions of people. In the
context of OSNs, the decision to switch to an other service
is collective by nature, thus, creating challenging obstacles to
large-scale diffusion of new infrastructures, even if privacy-
enhanced, for users for whom privacy is not a primary task. In
other words, users may not be motivated to switch, unless the
majority of their friends will switch as well.

B. Undetectability in OSNs

Undetectability constitutes the main objective of steganog-
raphy, i.e., the practice of transferring hidden messages in
such a way that no one, apart from the sender and intended
recipient, suspects the existence of the message. Steganography
has been intensely studied in the last several years: we now
review relevant models and applications to OSN settings.

Several efforts, e.g., [34]–[36], have focused on information
theoretical definitions for steganography. Cachin [34] proposes
security definitions and adversarial games for steganography in

the presence of a passive adversary. Work in [37] and [38] define
theoretical frameworks, based on computational assumptions,
following a model akin to indistinguishability in cryptography.

There is also a large number of steganographic techniques
using images as cover objects. Many methods rely on the Least-
Significant Bit (LSB) to avoid large visual changes in the cover
object. Techniques like those proposed in [39]–[41] use the
LSB to store different types of secrets. The F5 algorithm [42]
follows the traditional steganography model but is resilient to
visual and statistical attacks, previously highlighted in [43].
Also, some work on text steganography has been done based
on cryptographic paradigms, e.g., [44], [45],

To the best of our knowledge, there is relatively little
work analyzing the notion of steganography in the specific
context of OSNs. In general, OSN providers process pub-
lished images by applying compression, resizing, or removing
metadata, making it very hard for well-known image-based
steganographic approaches to work. Additionally, adversaries
could use steganalysis techniques, e.g., [46], to detect images
containing secret information. Further, NOYB [10] proposes
a technique based on substitution ciphers, used to encrypt
user data (specifically, personal details) and encode resulting
ciphertexts to look like fake yet legitimate data. This is
accomplished using uniformly distributed data from an external
dictionary. Therefore, one could say that NOYB aims to
(somewhat) limited undetectability in OSNs, although limited to
personal details, whereas, our goal is to let users unnoticeably
exchange any secret message on any OSN.

Castiglione et al. [47] propose using image filenames and
tagging as cover objects to embed a secret in an Online Photo
Service (OPS) and circumvent image manipulation issues.
However, this approach requires a large number of images
and an a-priori shared knowledge of pictures.

Castelluccia et al. [48] use caches of publicly available open
DNS resolvers as an out-of-band channel to encode bits of an
encryption key, employed to encipher messages exchanged,
e.g., on OSNs. While they do not aim at undetectability,
their intuition could be modified by mapping ciphertexts in to
innocent-looking texts (e.g., using “MadLibs” techniques [49]),
but it remains unclear how to unnoticeably communicate the
list of resolvers where bits are stored. Also, the availability
of information in DNS caches would be limited to entries’
time-to-live (which, incidentally, is a design goal of [48]).

VIII. CONCLUSION

Motivated by the limited effectiveness of privacy-enhancing
technologies aiming at confidentiality and anonymity in Online
Social Networks (OSNs), this paper presented a first-of-its-kind
study of undetectability in OSNs. After formalizing system and
adversarial models, we presented a novel scheme for secure
covert information sharing in OSNs and demonstrated, via
an open-source prototype, that incurred additional costs are
tolerably low.

Although inherently limited by the centralized nature of
modern OSN architectures, as well as by the power of global
government-like adversaries, the attained degree of privacy
constitutes an important step forward toward secure OSN
communications. We also identified some important open
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challenges that call for further research. Items for future work
include further analyzing social indistinguishability and traffic
analysis issues, usability evaluations of large-scale deployments
of covert information sharing schemes, as well as exploring
the concept of plausible deniability in OSNs.
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