
  

  

Abstract—Wearable lower limb exoskeletons aim to mobilize 
and improve the quality of life of people with lower limb 
paralysis. However, all the current commercially available 
exoskeletons require good upper limb function to operate them 
effectively. This limits their use for people with higher-level 
impairments, such as tetraplegia. In this paper we investigate 
the possibility of being able to decode from the user’s brain 
signals, their intention to perform various actions, including 
standing up and walking, with a view to eventually controlling 
an exoskeleton with a brain-computer interface. As such, we 
present some preliminary results that show statistically 
significant changes in Mu band power, when preparing to 
execute movements and during the execution of movements. 

I. INTRODUCTION 
HE loss of sensorimotor function is a key implication in 
spinal cord injury (SCI) and so many patients use 

wheelchairs to restore a degree of autonomy. Wheelchair use, 
however, increases the risk of a number of conditions 
associated with prolonged periods of immobility, such as 
pressure sores and urinary tract infections [1]. Standing 
regularly has been shown to decrease the incidence of 
urinary tract infections and improve bowel function [1]. 
Therefore, patients are beginning to turn to lower limb 
robotic exoskeletons—wearable devices that are rigid and 
move congruously with the user—both as mobility aids and 
to improve overall quality of life [2] [3]. 

All current commercially available exoskeletons require 
good upper limb function, either to use crutches to provide 
balance (e.g. Ekso Bionics, Indego etc.), or to manipulate a 
joystick to control the device (e.g. Rex Bionics) [4]. For SCI 
patients with tetraplegia initiation of movement using a 
joystick is either extremely difficult or impossible. Therefore, 
in order to bypass the affected neuromuscular system, some 
researchers have proposed to control such exoskeletons 
directly from the user’s brain signals [7]. In this case, the 
participant was asked to imagine performing various tasks 
(e.g. walk, rest etc.).  

 However, we want to see if we can predict when 
someone actually prepares to perform, and goes on to 
perform, these tasks in an unconstrained environment, with a 
view to providing a generic starting point for a decoder to be 
used by SCI patients. 
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In order to bypass the peripheral nervous system, reliable 
neural signal correlates can be mapped for intention and for 
specific actions. The electrical activity of the brain can be 
monitored non-invasively in real time using an array of 
electrodes, which are placed on the scalp in a process known 
as electroencephalography (EEG). If these signals can be 
identified reliably, they may be used to control a lower limb 
exoskeleton using a brain-machine interface (BMI), without 
the need for a joystick or any upper limb function. The 
novelty of this investigation stems from the protocol that 
encompasses all the movement primitives that an 
exoskeleton performs. In this way each movement can be 
classified, and the features from each classification may be 
linked to the correspondent movement. Therefore we may be 
able to create a state-based exoskeleton control paradigm, by 
decoding natural movement intentions from EEG. In future, 
a biometric algorithm may also be used to automatically 
identify the exoskeleton’s current user and adapt the 
parameters of the classification process to maximize the 
BMI performance. 

The aim of this study is to identify the change in Mu 
power leading up to movement and during a movement 
when compared to baseline activity. This could later be used 
in the development of a full brain-machinr interface. 

II. MATERIALS AND METHODS 

A. Electroencephalography (EEG) 
When subjects have the intent to move a part of the body, 

event related desynchronization (ERD) of the underlying 
neuronal populations in the corresponding area of the motor 
cortex manifests itself as a decrease in Mu band (8-12Hz) 
power, which can be successfully detected [5].  

We acquired EEG data at 512Hz using g.Tec’s 16-channel 
active electrode system. The electrodes were located over 
the motor cortex at the International 10–20 system locations 
Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, 
CP1, CPz, CP2, CP4. The right ear lobe was used as a 
reference and the electrode at AFz was used as the ground. 
To minimize artefacts in the data, the participant was asked 
to refrain from blinking and relax facial muscles (including 
swallowing) during the trials. They were also asked not to 
swing their arms actively whilst walking but keep them 
relaxed. 

B. Experiment Protocol 
Ethical approval for this study was obtained from the 
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(8715/001). In this paper, we present the preliminary data 
from a 21-year-old able-bodied male volunteer participant. 
First, whilst the participant was comfortably seated, we 
explained the experiment protocol and set up the EEG 
montage. The participant was then asked to perform a 
number of specific tasks a few seconds after a visual or 
audio cue. These tasks were: stand up; take two steps 
forward; turn twice in place; take two steps backward; sit 
down. In order to minimize any interference from potentials 
evoked by the external cue stimulus, the participant was 
asked to move approximately 3 seconds after each cue. Once 
movement was initiated, a trigger was pressed by the 
experimenter in order to label events. There was a pause of 
at least 5 seconds after each movement was completed, 
during which the participant could rest. This was repeated 10 
times. 

Our protocol allowed for voluntary initiation unlike 
cue-based tasks that measure reaction, where the volunteer is 
advised to move immediately after the cue is heard or seen. 
This is necessary as the neural signals that are associated 
with instructed tasks have been shown to have differences to 
those associated with spontaneous tasks [6].  

C. EEG Data Processing 
We pre-processed the EEG data by applying a notch filter 

at 50Hz to remove any mains interference and then we 
bandpass filtered the data from 1-40Hz. Next we applied the 
spatial Laplacian filter to enhance the signal-to-noise ratio. 
[8]. To ascertain differences between periods of rest, 
pre-movement, and post-movement epochs, we first 
computed the power spectral density (PSD) for each EEG 
channel. We then estimated the PSD features using the 
Welch method over: the baseline (random one second 
intervals during the resting period); one second leading up to 
movement onset (pre-execution); and one second 
immediately after movement onset (execution). 

We assessed statistical differences across conditions using 
the non-parametric Kruskal-Wallis test. 

III. RESULTS AND DISCUSSION 
 As we can see from Fig. 1, looking at the Cz electrode, 

the Mu band power during the execution epochs 
significantly decreased compared with the baseline 
(p<0.001). Moreover, at the same location, the Mu band 
power also significantly decreased during the pre-execution 
epochs (p<0.001).  

This decrease in power could be attributed to the ERD and 
therefore correlated to the intention to move. The fact that 
we see this phenomenon at the Cz electrode is 
neurophysiologically plausible, since it is located close to 
the feet and leg area of the motor cortex. Whilst our detected 
features look promising, we have not yet implemented an 
equivalent to the real-time closed-loop system developed 
in [7]. We will further need to integrate a data-driven 
approach to refine the decoder to the idiosyncrasies of each 
end-user’s EEG patterns. 

 
Fig. 1. The mean Mu band power (8-12Hz) of channel Cz 
(***p<0.001).  

IV. CONCLUSION 
The data in this preliminary study suggests that we could 

identify the intention to initiate an action prior to execution. 
However, we are currently collecting data from more 
participants to increase the power of our results and to see if 
we can discriminate between different actions such as 
starting to walk, compared with standing up or sitting down. 
Our analysis has been post-hoc, so it remains to be seen as to 
whether or not these features can be used in an online 
real-time system where single trial detection is required. 
That said, this study suggests that we may be able to create a 
state-based exoskeleton control paradigm, based upon 
decoding natural movement intentions from EEG.  
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